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Abstract

Finding the right amount of deliberation, between insufficient and excessive, is
a hard decision making problem that depends on the value we place on our time.
Average-reward, putatively encoded by tonic dopamine, serves in existing reinforce-
ment learning theory as the stationary opportunity cost of time, and of delibera-
tion in particular. However, this cost often varies with environmental context that
can change over time. Here, we introduce an opportunity cost of deliberation es-
timated adaptively on multiple timescales to account for non-stationary contextual
factors. We use it in a simple decision-making heuristic based on average-reward re-
inforcement learning (AR-RL) that we call Performance-Gated Deliberation (PGD).
We propose PGD as a strategy used by animals wherein deliberation cost is im-
plemented directly as urgency, a previously characterized neural signal effectively
controlling the speed of the decision-making process. We show PGD outperforms
AR-RL solutions in explaining behaviour and urgency of non-human primates in a
context-varying random walk prediction task and is consistent with relative perfor-
mance and urgency in a context-varying random dot motion task. We make readily
testable predictions for both neural activity and behaviour and call for an integrated
research program in cognitive and systems neuroscience around the value of time.
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symbol quantity
t within-trial time
k trial index
St within-trial state at time ¢
St state sequence up to time ¢
Ry, reward of kth trial
Ty duration of kth trial
tgec decision time of kth trial
Cdlel within-trial opportunity cost of deliberation
T'max maximum reward acheiveable in a trial
by belief of correct report given Sy
7't expected reward for reporting at time ¢
ceem within-trial opportunity cost of commitment
P stationary reward rate
P optimal stationary reward rate
a context parameter
Do context-conditioned stationary reward rate
T, |context-conditioned stationary average trial duration
% reward history filtered through a timescale, 7
Tlong a long timescale over which to estimate p
Teontext | @ context-specific timescale over which to estimate p,,
v tracking cost sensitivity
K subjective reward scale factor
Thlock characteristic duration of a trial block
c auxiliary deliberation cost rate
Ny tokens difference
P jump probability of random walk, p > 1/2

Table I. Symbol glossary. Highlighted in gray are parameters of the PGD model presented in this
paper.

10 INTRODUCTION

n  Humans and other animals make a wide range of decisions throughout their daily lives.
12 Any particular action usually arises out of a hierarchy of decisions involving a careful balance
13 between resources, including one that is always limited: time. The cost of spending time
1 depends on its value, a construct that relies on comparing against the alternative things
15 an agent could potentially do with it. Estimating time’s value is not straightforward for a
16 number of reasons. There are alternative choices at multiple decision levels, e.g. moving on
17 from a job and moving on from a career, and each level requires its own evaluation. Moreover,
18 the value of alternatives needs to be tracked as they may change over time depending on the
o context in which a decision is made. For example, animals will learn to value a given food
o resource differently depending on whether it is encountered during times of plenty versus
1 scarcity. The agent’s knowledge of and ability to track context thus influences the value it
22 assigns to possible alternatives.

-

N

N

23 These are significant, practical complications of making decisions contingent on opportu-
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24 nity costs [1], the formal economic concept capturing the value of the alternatives lost by
»s committing a limited resource to a given use. The opportunity cost of time is nevertheless
2 well-studied in decision-making theory. It plays the role of a reference reward in defini-
27 tions of relative value, most notably as the average reward in average-reward reinforcement

2 learning (AR-RL) [2].

2 In neuroscience, AR-RL was first proposed to extend the reward prediction error hy-
30 pothesis for phasic dopamine to account also for the observed properties of tonic dopamine
xu levels [3]. It has since been used to emphasize the relative nature of reward-based decision-
» making [4] in explanations of human and animal behaviour in foraging [5], free-operant
13 conditioning [6], perceptual decision-making [7, 8], cognitive effort/control [8, 9], and even
s economic exchange [10].

s Unlike the alternative discount-reward approach, AR-RL is a theoretically well-defined
s and numerically stable formulation for long horizon decision problems [11], such as those
v in continuing environments in which there is no definite end [12]. Solutions to AR-RL
;s problems maximize average reward, in contrast to traditional fixed accuracy criteria in
» perceptual decision-making tasks that focus on maximizing trial reward alone [13]. The
w0 solutions to AR-RL formulations of tasks of long sequence of trials are decision boundaries
s in the state space of a trial. Determining this decision boundary requires maximizing the
s relative value, defined using the opportunity cost of time. The resulting optimal decision
3 boundaries typically ‘collapse’ over a trial: they cut deliberation short, e.g. in tasks where
s trial difficulty is variable [7, 14]. Up to now, however, AR-RL and most of its applications
s have focused on fixed context and have used the stationary average reward as the fixed
s opportunity cost of time, which ignores context-dependent performance variation. This is
a7 perhaps not surprising given that in psychological and neuroscientific studies of decision-
s making, we usually eliminate such contextual factors from the experimental design such
s that our models describe stationary behaviour. However, the brain mechanisms under study
so are adapted to a more diverse natural world in which changing environmental factors are
s often relevant, hard to infer and vary over time [4].

52 We pursue a theory of approximate relative-value decision-making under uncertainty in a
53 setting relevant to decision-making neuroscience. We start by showing that value in AR-RL
s« can be expressed using the opportunity costs of deliberation and commitment. Here, the
ss commitment cost is the shortfall in reward (relative to the maximum possible in a trial)
ss that is expected to be lost when committing to a decision at a given time. Highlighting the
s7 risk of value representations in non-stationary environments, we propose an approximation
ss to the AR-RL value-optimal solution, Performance-Gated Deliberation (PGD), that uses
so the increasing opportunity cost of time in a trial to collapse the decision boundary directly,
s0 by-passing the need to maximize relative value. PGD thus reduces decision-making to
s1 estimating two opportunity costs: a commitment cost learned from the statistics of the
2 environment and a deliberation cost estimated from tracking one’s own performance in that
3 environment. It explains how an agent, without explicitly tracking context parameters or
s storing a value function, can trade-off speed and accuracy according to performance at
s the typically longer timescales over which context changes. We propose that deliberation
o6 cost is then directly encoded as “urgency” in the neural dynamics underlying decision-
ev making [7, 15-17]. The theory is thus directly testable using both behaviour and neural
es Tecordings.

so  To illustrate how PGD applies in a specific continuing decision-making task, and to make
70 the links to a neural implementation explicit, we analyze behavior and neural recordings
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7 collected over eight years from two non-human primates (NHPs) [18, 19]. They performed
72 successive trials of the “tokens task”, a probabilistic guessing task in which information
73 about the correct choice is continuously changing within each trial, and a task parame-
74 ter controlling the incentive to decide early (the context) is varied over longer timescales.
s Behavior in the task, in both humans [16] and monkeys [19], provides additional support
76 to an existing hypothesis about how neural dynamics implements time-sensitive decision-
7 making [15]. Specifically, neural recordings in monkeys suggest that the evidence needed
76 to make the decision predominates in dorsolateral prefrontal cortex [20]; a growing context-
79 dependent urgency signal is provided by the basal ganglia [21]; and the two are combined to
s bias and time, respectively, a competition between potential actions that unfolds in dorsal
a1 premotor and primary motor cortex [18]. Similar findings have been reported in other tasks -
& for example, in the frontal eye fields during decisions about eye-movements [17]. We propose
ss PGD as a theoretical explanation for why decision-making mechanisms are organized in this
s way. As an algorithm, it serves as a robust means to balance immediate rewards and the cost
s of time across multiple timescales. As a quantitative model, it serves to explain concurrently
ss recorded behaviour and neural urgency in continuing decision-making tasks. From neural
g7 recordings in non-human primates and and behaviour in human and non-human primates,
ss we show that it does so more accurately than AR-RL solutions. Adapting PGD to the
s random dot motion task in which urgency was first characterized [17], we make quantitative
o predictions about neural urgency is such tasks, which we validate on their data within error
o1 bounds.

02 RESULTS

93 A. Theory of performance-gated deliberation

04 1. Opportunity costs of deliberation and commitment, and drawbacks of average-reward
95 reinforcement learning

s  We consider a class of tasks consisting of a long sequence of trials indexed by k =
o 1,2, ... (see fig. 1a), each of which provides the opportunity to obtain some reward by choos-
o ing correctly. In each trial, a finite sequence of states, S;, t = 0, ..., tnax, 1S observed that
100 provide evidence for an evolving belief about the correct choice among a fixed set of options.
w1 To keep notation simple, we suppress denoting the trial index, k, on quantities such as trial
102 state, S;, that also depend on trial time, t. The time of decision, ¢°°, and the chosen option
103 determine both the reward received, Ry, and the trial duration, T}, > t{°. Importantly,
14 decision timing can affect performance because earlier decisions typically lead to shorter
10s trials (and thus more trials in a given time window), while later decisions lead to higher
s accuracy. Effectively balancing such speed-accuracy trade-offs is central to performing well
107 in continuing episodic task settings. For a fixed strategy, the stationary reward rate (see
108 slope of dashed line in fig. la(right)) is

p::]}LrgOZRk/ZTk. (1)

100 For a stochastic environment, the definition of p includes an ensemble average. Free-operant
o conditioning, foraging, and several perceptual decision-making tasks often fall into this class.


https://doi.org/10.1101/2021.07.31.452742
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.452742; this version posted October 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

5
A
| i | i a - — —> trials
S, A or B? TH 1 B 1 B
2 |changing context .
¥ Al g '
g 3 ¢
2 e t 5 =
k E " slope= p
ER;C reward 3
T}, duration cumulative duration
B del, pc ¢ P N
C/o+C"
g 107!
) o
- PGD AR-RL g
0 c
g 2 S -
CCOH] @ % *l 1075 |
¢ 52 —PGD
commitment o
— AR-RL
O ::dQC ' @ 10_5 ) )
0! trial time,t 10° 10° 10°

experiment time

Figure 1. AR-RL and Performance-Gated Deliberation. (a) Task setting. Left: Within trial state,
S; evolves over trial time ¢ in successive trials indexed by k. The decision ‘A’ is reported at the
decision time t‘,;lec (red cross), determining trial reward, Ry, and trial duration, Tj. Right: Sketch
of cumulative reward versus cumulative duration. Context-conditioned reward rate (slope of red
line), varies with alternating context (labelled 1 and 2) around average reward, p (dashed line). (b)
Decision rules based on opportunity costs of commitment, C{°™, and deliberation, C?el. The AR-RL
rule (black x’) finds ¢ that minimizes C{®' 4 Cf°™. The PGD rule (black cross) finds t4°° at which
they intersect, Cfel = C£°™. (c) Schematic diagram of each algorithm’s dependency. PGD computes
a decision time directly from the two opportunity costs, while AR-RL uses both to first estimate
a value function, whose maximum specifies the decision time. (d) Loss (error in performance with
respect to the optimal policy, (p* — p)/p*) over learning time in a patch-leaving task (AR-RL:

brown, PGD: black). The arrow indicates when the state labels were randomly permuted.

m Previous work [7, 22] has studied the belief of correct report for binary rewards, by = P(R), =
w2 1|8y, 19 = t), which also gives the expected trial reward, 7 = b; - 1+ (1 — b)) - 0 = by [7]
us (see [23] for more about the relationship between value-based and perceptual decisions). S;
s denotes the state sequence observed so far, (Sp,...,S;). We consider greedy strategies that
us report the choice with the largest belief at decision time. The decision problem is then about
ue when to decide.

7 Average-reward reinforcement learning (AR-RL), first proposed in artificial intelli-
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us gence [24], was later incorporated into reward prediction error theories of dopamine sig-
uo nalling [3] and employed to account for the opportunity cost of time [6]. AR-RL was
120 subsequently used to study reward-based decision-making in neuroscience and psychol-
1 0gy [7, 8, 25, 26]. AR-RL centers around the average-adjusted future return, which penalizes
122 the passage of time according the average reward. A reporting decision is associated with a
123 return that for trial-based tasks combines the remainder of the current trial and all future
wa trials, 7y — p(Ty, — t) + Do (Riw — pTir), where p (c.f. eq. (1)) is either estimated online
15 or obtained self-consistently (see Methods for details). Value is defined as the future return
126 averaged over trial sequence realizations. This average of a sum of reward deviations into
127 the future converges on account of the decaying effects of the state at which the decision is
12s made. The AR-RL algorithms we consider aim to achieve the highest p by also maximizing
129 the average-adjusted value. We now provide an alternative, but equivalent definition of
130 average-adjusted trial return in terms of opportunity costs incurred by the agent.
31 We denote the opportunity cost of committing at time ¢ within a trial as C;°™, defined
132 as the difference

C;:om = Tmax — Tt » (2)

133 Where 7.y 18 the maximum trial reward possible a priori. Within a trial, an agent lowers
134 its commitment cost towards zero by accumulating more evidence, i.e. by waiting. Waiting,
135 however, incurs another opportunity cost: the reward lost by not acting. We denote this
156 opportunity cost of deliberation incurred up to a time ¢ in a trial as C3'. In AR-RL, the
157 constant opportunity cost rate of time is integrated so that for Tj, = tdec,

Ci = pt . (3)

s With these definitions, the average-adjusted trial return for deciding at a time ¢ can be
130 expressed as Ty — (CEOM+C2e). Tt is maximized by jointly minimizing C3' and Cio™ (fig. 1b),
10 giving the AR-RL optimal solution (see Methods for a formal statement and solution of the
11 AR-RL problem). Expressed in this way, the average-adjusted trial return emphasizes the
12 more general perspective that an agent’s solution to the speed-accuracy trade-off is about
113 how it balances the decaying opportunity cost of commitment and the growing opportunity
e cost of deliberation.

us  Despite their utility, value representations such as the average-adjusted trial return can
us be a liability in real world tasks where task statistics are non-stationary. To illustrate this,
17 we consider the following foraging task. An foraging agent feeds among a fixed set of food
s (e.g. berry) patches. Total berries consumed in a patch saturates with duration ¢ according
1o to a given saturation profile, shared across patches, as the fewer berries left are harder to
150 find. Patches differ in their richness (e.g. berry density), which is randomly sampled and
151 fixed over the task. Denoting patch identity (serving as context) by s, the food return is
152 directly observed and deterministic given s. To perform well, the agent needs to decide when
153 to move on from depleting the current patch. Further details about the task and its solution
154 are given in the Methods. For a broad class of online AR-RL algorithms, the agent learns the
15 average-adjusted trial return as a function of state and time. For a given patch, it then leaves
155 when this return is at its maximum (c.f. fig. 1b). In fig. 1d, we show how the performance
157 (brown line) approaches that of the optimal policy in time as the estimation of the AR-RL
158 trial return improves with experience (see Methods for implementation details). However, if
150 the agent’s environment undergoes a significant disturbance (e.g. a forest fire due to which
160 the patch locations are effectively re-sampled), the performance of this AR-RL algorithm can
11 drop back to where it started. We implement such a disturbance via random permutation
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162 of the state labels at the time indicated by the arrow in fig. 1d. This is true over a range of
163 learning rates and the number of patches (fig. S8). More generally, any approach that relies
164 ON estimating state-value associations shares this drawback, including those approaches that
16s implicitly learn those associations by directly learning a policy instead [27]. Could context-
16 dependent decision times be obtained without having to associate value or action to state?
17 A means to do so is presented in the next section.

168 2. Performance-Gated Deliberation

1o We propose that instead of maximizing value as in AR-RL, which minimizes the sum of
170 the two opportunity costs, C¢! + Cf°™, the agent simply takes as its decision criterion when
i they intersect (shown as the black cross in fig. 1b).

pdec = mtin {t | ciel > C°™}  (PGD decision rule) (4)

12 We call this heuristic rule at the center of our results Performance-Gated Deliberation
113 (PGD). Plotted alongside the AR-RL performance in fig. 1d for our example foraging task,
s PGD (black line) achieves better performance than AR-RL overall. It is also insensitive to
175 the applied disturbance since PGD uses CZ® and C;°™ directly when deciding, rather than
176 as input to problem of optimizing average-adjusted value as in AR-RL (fig. 1c).

1w We constructed the above task so that PGD is the AR-RL optimal solution. In general,
s however, PGD is a well-motivated approximation to the optimal strategy, so we call it a
o heuristic. In the more general stochastic setting where there is residual uncertainty in trial
1o reward at decision time, the PGD agent will have to learn the association between state
11 and expected reward, 7;. This association is learned from within-trial correlations only. In
> contrast, the opportunity cost of time as the basis for the deliberation cost depends on
s across-trial correlations that together determine the overall performance. It is thus more
184 susceptible to non-stationarity. A typical task setting is when the value of the same low-level
s action plan differs across context. From hereon, we will assume the agent has learned the
s stationary opportunity cost of commitment and so focus on resolving the remaining problem:
1e7 how to learn and use an opportunity cost of deliberation that exhibits non-stationarity on
188 the longer timescales over which context varies.

1
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189 3. Reward filtering for a dynamic opportunity cost of deliberation

1o The state disturbance in the toy example above altered task statistics at only a single
11 time point. In general, however, changes in task statistics over time can occur throughout
192 the task experience. A broader notion of deliberation cost beyond the static average reward
103 is thus needed—one that can account for extended timescales over which performance varies.
104 Such a cost serves as a dynamic reference in a relative definition of value based on a non-
105 stationary opportunity cost of time. We first address how performance on various timescales
106 can be estimated.

17 As a concrete example, we make use of the task that we will present in detail in the fol-
108 lowing section. This task has a context parameter, «, that can vary in time on characteristic
190 timescales longer than the moment-to-moment and can serve as a source of non-stationarity
200 in performance. Here, the context sequence, ., varies on a single timescale, e.g. through pe-
201 riodic switching between two values. The resulting performance (fig. 2a(top)) varies around
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Figure 2. Non-stationary opportunity cost. (a) Top: Dynamics of trial performance (erial =

Ry /Ty; blue) with its distribution as well as dynamics of between context-conditioned averages

of performance (p, = <p}€rial) kla; orange), and the effectively stationary average performance (p ~

<p}€rial>k; purple). Bottom: these are decomposed into a hierarchy by filtering reward history on
trial, context, and long timescales, respectively. (b) Two hypothetical forms for context-specific
trial opportunity cost. Top: Trial-unaware cost in which context varies the slope around p. Bottom:

Trial-aware cost in which context variation is through a bias ( eq. (5)).

202 the stationary average, p (purple), with context variation due to the switching (orange), as
203 well as context-conditioned trial-to-trial variation (blue). The decomposition of time-varying
204 performance into these multiple, timescale-specific components can be achieved by passing
205 the reward signal through parallel filters, each designed to retain the signal variation specific
206 to that timescale (fig. 2a(bottom)). There are multiple approaches to this decomposition.
20 We chose a heuristic approach in which the performance over a finite memory timescale can
208 be estimated by filtering the sequence of rewards through a simple low-pass filter [8, 28].
200 This filter is defined by an integration time, 7, tuned to trade off the bias and variance
210 of the estimate in order to best capture the variation on the desired timescale (e.g. how
2u performance varies over different contexts). We denote such an estimate pf, and show in
212 the Methods that it approximates the average reward over the last 7 time units. We discuss
213 the question of biological implementation in the discussion, but note here that the number
a1e and values of 7 needed to represent performance variation in a given task could be learned
s or selected from a more complete set in an online fashion during task learning. In an exper-
216 imental setting, these learned values can in principle be inferred from observed behaviour
217 and we developed such an approach in the analysis of data that we present in the following
218 section.

2

[t

29 Applying this heuristic decomposition here, the stationary reward rate, p, can be esti-
20 mated to high precision by using a long integration time, Tiong, to the reward sequence Ry,
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~Tlong

21 producing the estimate p,**. If oy were a constant sequence, Ci? = ﬁgc’“gt, the station-
2 ary opportunity cost of deliberation eq. (3) of AR-RL. However, in this example context
223 varies on a specific timescale, to which the former is insensitive. Thus, a second filtered
24 estimate p; " is needed to estimate performance on this timescale. Unlike ﬁ;‘O“g, this es-
2s timate tracks the effective instantaneous, context-specific performance, p,,. Its estimation
226 error arises from a trade-off, controlled by the integration time, Teontext, between its speed
227 of adaptation and its finite memory.

»s  We consider two distinct hypotheses for how to extend AR-RL to settings where perfor-
2o mance varies over context. The first hypothesis, C3? = p,t, is the straightforward, trial-
20 unaware extension of eq. (3), shown in fig. 2b(top). Here, performance is tracked only
231 on a timescale sufficient to capture context variation and the corresponding cost estimate,
22 0,;°°1", is incurred moment-to-moment, neglecting the trial-based task structure. However,
233 this incorrectly lumps together two distinct opportunity costs: those incurred by moment-
23 by-moment decisions and those incurred as a result of the effective planning implied by
235 performance that varies over context. In particular, context is defined over trials not mo-
23 ments, and thus the context-specific component of opportunity cost of a trial is a sunken
237 cost paid at the outset of a trial. This inspires a second trial-aware hypothesis

CI = pt + (pa — )Ty . (trial-aware opportunity cost) (5)

28 Equation (5) is plotted over trial time ¢ in fig. 2b(bottom). Its first term is the AR-RL
230 contribution from the stationary opportunity cost of moment-to-moment decisions using
0 the stationary reward rate, p estimated with p,°"*. The second, novel term in eq. (5) is a
2 context-specific trial cost deviation incurred at the beginning of each trial and computed as
22 the average deviation in opportunity cost accumulated over a trial from that context (7,
23 18 the average duration of a trial in context «). This deviation fills the cost gap made by
24 using the stationary reward rate p in the moment-to-moment opportunity cost instead of
s the context-specific average reward, p,. This baseline cost derived from the orange time
26 series in fig. 2a(bottom) vanishes in expectation, as verified through the mixed-context
27 ensemble average reward (e.g. p =Y paTla/ >, To when the context is distributed evenly
2s among trials such that > (po — p)T, = 0). Thus, this opportunity cost reduces to that
a9 used in AR-RL when ignoring context, and suggests a generalization of average-adjusted
250 value functions to account for non-stationary context. We estimate this baseline cost using
251 (preoset —ﬁ;li“f)Tk,l, where we have used the sample T}_; in lieu of the average T,,. See fig. S1
2 for a signal filtering diagram that produces this estimate of eq. (5) from reward history. A
23 main difference between the cost profiles from the two hypotheses is the cost at early times.
s Both the behaviour and neural recordings we analyze below seem to favor the second, trial-
255 aware hypothesis eq. (5). We hereon employ that version in the main text, and show the

256 results for the trial-unaware hypothesis in fig. S7.

257 B. Neuroscience application: PGD in the tokens task

s In this section, we apply the PGD algorithm to the “tokens task” [16]. We first give a
0 simulated example with periodic context dynamics. We then present an application to a
20 set of non-human primate experiments in which context variation was non-stationary [19].
21 For the latter, we used the decision time dynamics over trials to fit a model for each of the
22 two subjects. We then validated the models by assessing their ability to explain (1) the

=)
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263 concurrently recorded behaviour via their context-specific behavioural strategies and (2) the
26 neural activity in premotor cortex (PMd) via the temporal profile of the underlying neural
265 Urgency signals.

%6 In the tokens task, the subject must guess as to which of two peripheral reaching targets
27 Will receive the majority of tokens that randomly jump, one by one every 200ms, from a
s central pool initialized with a fixed number of tokens. Importantly, after the subject reports,
20 the interval between remaining jumps contracts to once every 150ms (the “slow” condition)
270 or once every 50ms (the “fast” condition), giving the subject the possibility to save time by
o taking an early guess. The interval contraction factor, 1 — a, for slow (o = 1/4) and fast
o2 (o = 3/4) condition is parametrized « € [0, 1], the incentive strength to decide early, which
273 then serves as the task context.

o In contrast to the patch leaving task example from Section A, the tokens task has many
s within-trial states and the state dynamics is stochastic. With the " jump labelled S, €
26 {—1,1} serving as the state, for the purposes of prediction, the history of states can be
or7 compressed into the tokens difference, N, = 23:1 S;, between the two peripheral targets
zs with Ny = 0. The dynamics of V; is an unbiased random walk (see fig. 3a), with its current
270 value sufficient to determine the belief of a correct report, b; (computed in Methods). Since
280 for binary rewards, b; is also the expected reward, NNV, is also sufficient for determining the
261 Opportunity cost of commitment, C;°™ (eq. (2)). We display this commitment cost dynamics
2 in fig. 3b. It evolves on a lattice (gray), always starting at 0.5 (for p = 1/2) and ending at 0
263 for all p. We assume the agent has learned to track this commitment cost. The PGD agent
284 Uses this commitment cost, along with the estimate of the trial-aware deliberation cost, to
25 determine when to stop deliberating and report its guess.

287 1. A simulated example for a reqularly alternating context sequence

s We first show the behaviour of the PGD algorithm in the simple case where « switches
280 back and forth every 300 trials (see fig. 3). We call such segments of constant « ‘trial blocks’,
200 with context alternating between slow (o = 1/4) and fast (o = 3/4) blocks. The decision
201 space in PGD is a space of opportunity costs, equivalent to the alternative decision space
20> formulated using beliefs [7]. In particular, one can think of the deliberation cost as the
203 decision boundary (fig. 3b). This boundary is dynamic (see Supplemental video), depending
204 ol performance history via the estimates, p;*™* and [’)Ec’“g, of the context-conditioned and
205 stationary average reward, respectively. The result of these dynamics is effective context
206 planning: the PGD algorithm sacrifices accuracy to achieve shorter trial duration in trials
207 of the fast block, achieving a higher context-conditioned reward rate compared to decisions
208 in the slow block (c.f. the slopes shown in the inset of fig. S2d). This behaviour can be
200 understood by analyzing the dynamics of p;°™* and ﬁg‘)“g, and their effect on the dynamics
00 of the decision time ensemble.

s The two performance estimates behave differently from one another solely because of
s02 their distinct integration times. Ideally, an agent would choose Teontext t0 be large enough
s03 that it serves to average over trial-to-trial fluctuations in a context, but short enough to
304 NOt average over context fluctuations. In contrast, the value of 7,,, would be chosen large
305 enough to average over context fluctuations. We apply those choices in this simulated
06 example, with rounded values chosen squarely in the range in which the values inferred
s07 from the behaviour in the following application will lie. As a result of this chosen values,

308 the context estimate p,“"** relaxes relatively quickly after context switches to the context-
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Figure 3. PGD agent performs the tokens task for periodic context switching. (a) A tokens task
trial. Left: Tokens jump from a center to a peripheral region (gray circles). Right: The tokens
difference, IV;, evolves as a random walk that accelerates according to « (here 3/4) post-decision
time, t9°°. The trial duration is 7, which includes an inter-trial interval. (b) Decision dynamics
in cost space obtained from evidence dynamics in (a). Commitment cost trajectories (gray lattice;
thick gray: trial-averaged) start at CS°™ and end at 0. Trajectory from (a) shown in black. #d¢
(black cross) is determined by the crossing of the commitment and deliberation cost. (c) Incentive
strength switches between two values every 300 trials. (d) Expected rewards filtered on 7jong (f)g""g,
purple) and Teontext (A", green). Black dashed lines from bottom to top are p,—_i/4, p, and

Pa=3/4-

00 conditioned stationary average performance (dashed lines in fig. 3d), but exhibits stronger
a0 fluctuations as a result. The estimate of the stationary reward, ﬁZlO“g, on the other hand has
su relatively smaller variance. This variance results from the residual zigzag relaxation over
s12 the period of the limit cycle. Given the characteristic block duration, Tyoq, We can be more
s3 precise. In particular, when Tyjoq is much less than Tiong (Thiock/Tiong < 1), the within-block
214 exponential relaxation is roughly linear. Thus, the average unsigned deviation between p, "
a5 and the actual stationary reward, p, can be approximated using 1 — exp [—Thiock/Tiong] =

316 Thlock/Tiong << 1. This scaling fits the simulated data well (fig. S2d: inset).

sz The dynamics of these two performance estimates drives the dynamics of the k-conditioned
s decision time ensemble via how they together determine the deliberation cost (eq. (5); Sup-
20 plemental video). For example, the mean component of this ensemble relaxes after a context
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20 switch to the context-conditioned average, while the fluctuating component remains strong
21 due to the sequence of random walk realizations (fig. S2¢). In the case of periodic context,
122 the performance estimates and thus also the decision time ensemble relax into a noisy peri-
23 odic trajectory over the period of a pair of fast and slow blocks (fig. 3d). Over this period,
224 they exhibit some stationary bias and variance relative to their corresponding stationary
s averages (distributions shown in fig. S2e).

326 2. Fit to behavioural data from non-human primates and model validation

27 Next, we fit a PGD agent to each of the two non-human primates’ behaviour in the
28 tokens task experiments reported in [19] and compare to AR-RL solutions. As with the
»o above example (c.f. fig. 3), trials were structured in alternating blocks of o = 1/4 and
30 a = 3/4. Figure 4a shows context-switching a-sequence from these experiments, which, in
s contrast to the above example exhibits large, irregular fluctuations in block size [29].

s So far, PGD has only two free parameters: the two filtering time constants, 7o, and
33 Teontext- We anticipated only a weak dependence of the fit on the 7iong, so long as it exceeded
135 the average duration of a handful of trial blocks enabling a sufficiently precise estimate of
16 p. In contrast, the context filtering timescale, Teontext, 1S @ crucial parameter as it dictates
;37 where the PGD agent lies on a bias-variance trade-off in estimating p,, , the value of which
138 determines the context-specific contribution to the deliberation cost (eq. (2)). To facilitate
130 the model’s ability to fit individual differences, we introduce a subjective reward bias factor,
s K, that scales the rewards fed into the performance filters. We also add a tracking-cost sen-
sa1 sitivity parameter, v, that controls Teontext t0 avoid wasting adaptation speed (see Methods
s for details). The latter made it possible to fit the asymmetric switching behaviour observed
.3 in the average decision time dynamics. With these four parameters, we quantitatively match
s the baselines and exponential-like relaxation of the average decision time dynamics around
s the two context switches (fig. 4b,c; see Methods for fitting details).

us A comparison of the best-fitting parameter values over the two monkeys (fig. 4d-f) sug-
w7 gests that the larger the reward bias, K (fig. 4e), the more hasty the context-conditioned
23 performance estimate (the smaller Teouext ), and the lower the sensitivity to the tracking cost
w9 (fig. 4f). This is consistent with the hypothesis that subjects withhold cognitive effort in
350 contexts of higher perceived reward [8]. Along with the correspondence in temporal statistics
351 of the behaviour (e.g. fig. S6), the fitted model parameters for the two subjects provides a
32 basis on which to interpret the subject differences in the results of the next section, in par-
353 ticular their separation on a speed-accuracy trade-off, as originating in the distinct reward
358 sensitivity shown here.

36 10 better understand where both the data and the learned PGD agent lie in the space
57 of strategies for the tokens task, we computed reward-rate (AR-RL) optimal solutions for
s a given fixed context, a (here o € [0,1]), using the same approach as [7] (conventional
150 discount-reward value iteration achieved the same solution in the limit of the undiscounted
30 case; result not shown). In each of average-reward and discount-reward formulations, the
;1 dynamic programming approach involves iterating Bellman’s equation to obtain the optimal
32 value functions from which the optimal policy and its reward rate can be obtained (see
33 Methods for details). The optimal reward rate as a function « is shown in fig. 5a. The
;04 Strategies generating these reward rates interpolate from the wait-for-certainty strategy at
365 low « to the one-and-done strategy [30] at high . The a-conditioned reward rates achieved
16 by the two primates with their corresponding PGD model, and a reference human [31]
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Figure 4. PGD model fit to NHP behaviour for non-stationary a-dynamics reported in Ref. [19]. (a)
Block length sequence used in the experiment. (b,c) decision times (dots) aligned on the context-
switching event type (fast-to-slow in gray; slow-to-fast in color) and averaged. Shaded regions
are the standard error bounds of the models’ average decision times. (d) Error evaluated on a
(Teontexts ﬁong)-plane cut through the parameter space at the best-fitting v = 0* and K = K* (gray
area indicates timescales within an order of magnitude of the end of the experiment). Contours
show the first 10 contours incrementing by 0.01 error from the minimum (shown as a circle marker).

Colors refer to subject, as in (b) and (c). (e) Same for (7context, K) at Tiong = 7o, and v = 0. (f)

A ~ A _ A% .
Same for (7context, ) at Tlong = Tong and K = K*.

7 are also shown in fig. 5a. They clearly fall below the optimal strategy, and, as expected,
s above the strategy that picks one of the three actions (report left, report right, and wait) at
o random.

3

k=

3

I3

3

I3

sn To confirm that this similarity in performance between PGD and the data arises from
s a better fit to the behaviour than AR-RL, we plotted the distribution of the differences
w2 between model and data decision times, |Atqec|, conditioned on the context (fig. 5b,c). For
w3 comparison with previous work [7] and to account for deliberation cost in AR-RL, we added
sa to the AR-RL reward objective a constant auxiliary deliberation cost rate, ¢, incurred up
a5 to the decision time in each trial, and chose the cost rate, ¢*, that gave the lowest mean
a6 difference. In both contexts, PGD exhibits lower error than this ¢* AR-RL solution.

sz 'To reveal the source of this discrepancy in both performance and behaviour, we turned

3
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Figure 5. Context-conditioned analysis of PGD and comparison to AR-RL models. (a) Shown
is the reward rate as a function of incentive strength, a (wait-for-certainty strategy shown in
brown; one-and-done strategy shown in red). We additionally show the slow and fast context-
conditioned reward rates for the two primates and the PGD model fitted to them, as well as a
reference expert human. Reward rates for the human and non-human primates are squarely in
between the best (black dashed) and uniformily random (gray) strategy. (b,c) The distribution
over trials of differences in decision times between model and data, |Atgec| = |tdec,data — tdec,model|s
conditioned on slow and fast block contexts. Solid lines are for PGD. Dotted lines are for the
AR-RL solution using the cost rate, ¢*, with the lowest mean error. The residual sum of squares
(RRS) for each model/block combination is displayed. (d-g) Interpolated state-conditioned survival
probabilities, P(t4¢¢ = t|N;,t), over slow (d,f) and fast (e,g) blocks. White dotted lines show the
P(tde¢ = t|N;,t) = 0.5 contour. (h,i) State-conditioned decision time frequencies (cross size) from
AR-RL optimal decision boundaries across different values of the cost rate, ¢ (colored crosses) for
slow (h) and fast (i) conditions. Only samples with V; < 0 and N; > 0, respectively, are shown. For
comparison, the reflected axes shows as gray crosses the state-conditioned decision time frequencies
of the data.
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ws to analyzing the corresponding policies of PGD and c-based AR-RL agents. A robust and
a0 rich representation of the behavioural statistics is the state and time-conditioned survival
0 probability that a decision has not yet occurred. It serves as a summary of the action policy
se1 associated with a stationary strategy (see Methods for its calculation from response times).
322 Applied equally to the decision times of both model and data, it can provide a means of
33 comparison even in this non-stationary setting. We give this conditional probability for
s« each of the two contexts for subject 1 and its fitted PGD model in fig. 5d-g. We left the
335 many possible noise sources underlying the behaviour out of the model in order to more
386 clearly demonstrate the PGD algorithm. However, such noise sources would be necessary
7 t0 quantitatively match the variability in the data (e.g. added noise in the performance
;s estimates leads to larger variability in the location of the decision boundary and thus also
30 to larger spread in these survival probability functions (not shown)). In the absence of
300 these noise sources, we see the model underestimates the spread of probability over time
;o1 and tokens state. Nevertheless, the remarkably smooth average strategy is well captured by
302 the model (white dashed lines in fig. 5d-g). Specifically, policies approximately decide once
303 either of the peripheral targets receive a certain number of tokens. Comparing results across
300 context, we find that fast block strategies (fig. be,g) exhibit earlier decision times relative
105 to slow block strategies (fig. 5d,f) in both model and data. The strategies for subject 2
6 are qualitatively similar, but shifted to earlier times relative to subject 1 (fig. S3). Our
;7 model explains this inter-individual difference as resulting from subject 2’s larger reward
8 bias and faster context integration (c.f. fig. 4e). The correspondence between the PGD
30 model and data over the many token states in fig. 5d-g explains their similar performance
wo (c.f. fig. 5a). This similarity in policy is remarkable given that the model has essentially
s only a single, crucial degree of freedom (Teontext), @ priori unrelated to how decision times
w02 depend on token state. Note that in both the fitted PGD model and the primate behaviour,
a3 residual ambiguity (N; & 0) is resolved at intermediate trial times (fig. 5b-e).

s The AR-RL strategies are plotted across ¢ in fig. 5g,h. In contrast, they give no interme-
w05 diate decision times at ambiguous (V; & 0) states, invariably waiting until the ambiguity
w6 resolves. This in fact holds over the entire (a, ¢)-plane ( see fig. S9 for the complete depen-
w7 dence), and also under the addition of a movement cost, i.e. a constant cost incurred by
w8 either of the reporting actions (data not shown). Thus, whereas AR-RL policies shift around
a0 the edges of the relevant decision space as «a or ¢ is varied, the PGD policy lies squarely
a0 in the bulk, tightly overlaying the policy extracted from the data. We conclude that the
an context-conditioned strategies of the non-human primates in this task are well-captured by
a2 PGD, while having little resemblance to the behaviour that would maximize reward rate
a3 with or without a fixed deliberation cost rate. We address the additional freedom of a
s time-varying cost rate in the discussion.

415 3. Neural urgency and context-dependent opportunity cost

a6 So far, we have fit and analyzed the PGD model with respect to recorded behaviour. Here,
a7 we take a step in the important direction of confronting the above theory of behaviour with
a8 the neural dynamics that we propose drive it. The proposal for the tokens task mentioned
a0 at the end of the introduction has evidence strength and urgency combining in PMd, whose
w20 neural dynamics implements the decision process. In fig. 6a, we restate in a schematic
w1 diagram an implementation of this dynamics that includes a collapsing decision boundary.
2 In the one-dimensional belief space for the choice (fig. 6a(top)) [7, 32|, the rising belief
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23 collides with the collapsing boundary to determine the decision time. In the equivalent
2¢ commitment and deliberation cost formulation developed here (fig. 6a(middle)), the falling
a5 commitment cost collides with the rising deliberation cost. The collapsing boundary in
a6 belief space can be parametrized as C' — u;, where C' is the initial strength of belief, e.g.
227 some desired confidence, that is lowered by a growing function of trial time w; > 0. The
w8 decision criterion is then b; > C' — u;, where b, is the belief, i.e. the probability of a correct
a0 report. For AR-RL optimal policies, u; emerges from value maximization and thus has a
s complicated dependence on the opportunity cost sequence, C&¢!. For PGD, in contrast, C
a3 s interpreted as the maximum reward 7., and wu, is identically Cfel. For a linear neural
2 encoding model in which belief, rather than evidence, is encoded in neural activity, the sum
a33 of the encoded belief b, and the encoded collapsing boundary, u,, evolve on a one-dimensional
s34 choice manifold. According to the proposal, when this sum becomes sufficiently large (e.g.
w5 by + @y > C for some threshold C’), PMd begins to drive the activity in downstream motor
136 areas towards the associated response.

=

s Neural urgency was computed from the PMd recordings of [19] in [33]. This computation
a8 relies on the assumption that while a single neuron’s contribution to b, will depend on
a3 its selectivity for choice (left or right report), the urgency @, is a signal arising from a
a0 population-level drive to all PMd neurons, irrespective of their selectivity. Thus, @, can
w1 be extracted from neural recordings by conditioning on zero-evidence states (b; = 0) and
w2 averaging over cells. In [33], error bars were computed at odd times via bootstrapping; data
w3 at even times was obtained by interpolating between N; = +1; and data was pooled from
aa both subjects. We have excluded times at which firing rate error bars exceed the range
as containing predictions from both blocks. To assess the correspondence of the components
us of the deliberation cost developed here and neural urgency, in fig. 6b we replot their result
a7 (c.f. fig.8b of [33]). We overlay the mean (+/- standard deviation) of the opportunity cost
ws sequence, C2 (shaded area in fig. 4; averaged over all trials produced by applying the two
uo fitted PGD models on the data sequence and conditioning the resulting average within-
w0 trial deliberation cost on context). To facilitate our qualitative comparison, we convert
w51 cost to spikes/step simply by adjusting the y-axis of the deliberation cost. The observed
ss2 urgency signals then lie within the uncertainty of the context-conditioned deliberation cost
w53 signals computed from the fitted PGD models. There are multiple features of the qualitative
ss¢ correspondence exhibited in fig. 6b: (1) the linear rise in time; (2) the same slope across
ss5 both fast and slow conditions; and (3) the baseline offset between conditions, where the fast
a6 condition is offset to higher values than the slow condition. Such features would remain
»s7 descriptive in the absence of a theory. With the theory we have presented here, however,
ss8 each has their respective explanations via the interpretation of urgency as the opportunity
ss0 cost of deliberation: (1) the subject uses a constant cost per token jump, (2) this cost rate
w0 refers to moment-to-moment decisions, irrespective of context, that is reflective of the use
s of the context-agnostic stationary reward, and (3) trial-aware planning over contexts leads
w2 t0 an opportunity cost baseline offset with a sign given by the reward rate deviation p, — p
w63 with respect to the stationary average, p.

s Up to now, the computational and neural basis for urgency has remained largely un-
w65 explored in normative approaches, which also typically say little about adaptation effects
w6 (see [34] for a notable exception). In summary, we exploited the adaptation across context
a7 switches to learn the model and explained earlier responses in high reward rate contexts
s as the result of a higher opportunity cost of deliberation. While this qualitative effect is
w0 expected, we go beyond existing work by quantitatively predicting the average dependence
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Figure 6. Comparing neural urgency and collapsing decision boundaries. (a) Top: Rising be-
lief (blue) meets collapsing decision boundary (black dashed) in belief space. Middle: Falling
commitment cost (blue) meets rising deliberation cost (black-dashed) in cost space. Bottom: Be-
lief/commitment cost is encoded (blue) into a low-dimensional neural manifold, with the addition of
an urgency signal (orange) (c.f. fig.8 in [7]). The decision (red circle) is taken when the sum passes
a fixed threshold (black-dashed). (b) Deliberation cost maps onto the urgency signal extracted
from zero-evidence conditioned cell-averaged firing rate in PMd (200ms time steps).

w0 on both time and state (fig. 5b-e) as well as the qualitative form of urgency signal (fig. 6b).
an Taken together, the data is thus consistent with our interpretation that neural activity un-
a2 derlying context-conditioned decisions is gated by opportunity costs reflective of a trial-aware
a3 timescale hierarchy computed using performance estimation on multiple timescales.

a74 DISCUSSION

a5 We introduced PGD, a heuristic decision-making algorithm for continuing tasks that
ars gates deliberation based on performance. We constructed a foraging example for which
a7 PGD is the optimal strategy with respect to the average-adjusted value function of average-
s reward reinforcement learning (AR-RL). While this will not be true in general, PGD does
a0 strike a balance between strategy complexity and return. The PGD decision rule does not
w0 depend on task specifics and exploits the stationarity of the environment statistics while
1 simultaneously hedging against longer term non-stationarity in reward context. It does so
a2 by splitting the problem into two fundamental components—learning the statistics of the
a3 environment in order to compute the opportunity cost of commitment, and tracking one’s
s own performance in that environment with which to compute the opportunity cost of de-
a5 liberation. This splitting is not only crucial to making efficient use of the opportunity cost
a6 of time in non-stationary settings. Building on the field’s current understanding of how the
w7 cortico-basal ganglia system supports higher-level decision-making [35], we propose that the
a8 cost of deliberation arises from performance estimated on multiple, behaviourally-relevant
a0 timescales and is broadcast to multiple, lower-level decision-making areas to gate the speed
w0 of their respective evidence-driven attractor dynamics. Incorporating this cost into existing
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s models of such dynamics [32, 36, 37] is an interesting direction for future work. Consistent
w02 with this picture, PGD’s explanatory power was borne out at both the behavioural and
03 neural levels for the tokens task data we analyzed. In particular, a deliberation cost con-
a0 structed from trial-aware planning was supported independently by both these data sources.
a5 We used behavioural data to fit and validate the theory, and neural recordings to provide
w06 evidence of one of the neural correlates it proposes: the temporal profile of neural urgency.

w7 Scientific and clinical tmplications In our proposal, we have linked two important and
a8 related, but often disconnected fields: the systems neuroscience of the neural dynamics of
a0 decision-making and the cognitive neuroscience of opportunity cost and reward sensitivity.
so0 The view that tonic dopamine encodes average reward is two decades old [3]. However, the
so1 existence of a reward representation decomposed by timescale has received increasing em-
s02 pirical support only in recent years, from cognitive results [38-40] to a recent unified view of
s03 how dopamine encodes reward prediction errors using multiple discount factors [41, 42] and
s Of dopamine as encoding both value and uncertainty [43]. Dopamine’s effect on time per-
s0s ception has been proposed [44] and has empirical support [45], but the mechanism by which
s its putative effect on decision speed is implicated in the neural dynamics of the decision-
sor making areas driving motor responses was unknown. Our theory fills this explanatory gap
so8 by considering dynamic evidence tasks and parametrizing urgency using a multiple-timescale
so0 Tepresentation of performance. One candidate for the latter’s neural implementation is in
s10 the complex spatio-temporal filtering of dopamine via release-driven tissue diffusion and
su integration via DR1 and DR2 binding kinetics [46]. Subsequent neural filtering and compu-
s12 tation by striatal network activity could also play a role [47]. The study of spatiotemporal
si13 filtering of dopamine is increasingly accessible experimentally [48, 49] and provides an excit-
suu ing direction for multiscale analysis of behaviour. Our proposal that urgency is the means
s15 by which the neural representation of reward ultimately affects neural dynamics in decision-
s16 making areas frames a timely research question on which these experimental methods could
s17 shed light.

s We applied PGD to decisions playing out in PMd, a decision-making area relevant to arm
s10 movements. PGD appears to be relevant to other kinds of decisions, however. For instance,
s20 & large body of work has studied decisions through recordings in lateral intraparietal cortex
s21 in random dot motion tasks whose environment is formally similar to that of the tokens task.
s22 One seminal study identified an urgency signal with the same properties as those exhibited
s23 by the tokens task: a linear rise at early trial times that is independent of trial evidence
s2 and an offset with sign given by the reward rate deviation of the current context, here two
s2s and four-choice trials [17]. While decision boundaries obtained using AR-RL are evidence-
s26 independent, these models require tailored cost functions that are fit to those experiments
s27 in a procedure that assumes optimality a piori [7]. Here, we offer an alternative explanation
s2s that behaviour is in fact suboptimal, with the decision boundary determined directly by the
s20 estimated opportunity cost only. PGD decision boundaries are thus independent of evidence
s3 by construction. In contrast to the tokens task, however, context in these random dot task
su1 experiments was sampled randomly and thus its dynamics lacked temporal correlation [17].
s In this case, a natural hypothesis from our approach is that a pair of performance filters,
s33 one for each context, tracks the reward history in two parallel streams. In this case, our
s3 theory would predict that the ratio of slopes of urgency across the two contexts reflects
s35 the ratio of context-conditioned reward rates. An estimation procedure described in the
s3 Methods for this data [17] agrees to within 20% error, providing support for the hypothesis
s37 that PGD underlies non-human primate behaviour on this widely-studied task. Within the

ey
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s3s context of the drift-diffusion models typically used to understand neural activity for that
s3 task, PGD provides a principled mechanism that implements collapsing decision boundary.
ss0 PGD is thus easily incorporated into such models and testing the generality of our theory
sa1 using tailored experiments in this setting is an important next step.

s2  Urgency may play a role in both decision and action processes, potentially providing a
ss3 transdiagnostic indicator of a wide range of cognitive and motor impairments in Parkinson’s
sa disease and depression [50]. Our theory offers a means to ground these diverse results in
sss neural dynamics by formulating opportunity cost estimation as the underlying causal factor
s45 linking vigor impairments (e.g. in Parkinson’s disease) and dysregulated dopamine signalling
se7 in the reward system [50-52]. We provide a concrete proposal for a signal filtering system
sais that extracts a context-sensitive opportunity cost from a reward prediction error sequence
sa9 putatively encoded by dopamine. Neural recordings of basal ganglia provide a means to
sso identify the neural substrate for this system.

ss1 Commitment cost estimation Beyond the estimation of the opportunity cost of deliber-
s2 ation, we assumed that the agent had a precise estimate of the expected reward, which it
ss3 used to compute the within-trial commitment cost. For the tokens task, a recorded signal in
sse dorsal lateral prefrontal cortex of non-human primates correlates strongly with belief [20],
sss equivalent to the expected reward for binary rewards). How this quantity is computed by
ss6 neural systems is not currently known. However, for a general class of tasks, a generic,
ss7 neurally plausible means to learn the expected reward is via distributional value codes [43].
sss For example, the Laplace code is a distributional value representation that uses an ensemble
ss0 of units over a range of temporal discount factors and reward sensitivities [53]. The authors
ss0 show that expected reward is linearly decodeable from this representation.

sev  Faperimental predictions A feature of our decision-making theory is that it is highly
ss2 vulnerable to falsification. First, with regards to behaviour via the shape of the action
s63 policy using our survival probability representation (c.f. fig. 5b-e,g;h), PGD varies markedly
ses With reward structure and thus provides a wealth of predictions for how observed behaviour
ses should be altered by it. For example, a salient feature of the standard tokens task is its
s reflection symmetry in the tokens difference, N;. We can break this symmetry for which the
ser theory predicts a distinctly asymmetric shape (fig. S10; for details see Methods). Our theory
ses 1S also prescriptive for neural activity via the temporal profile of neural urgency. The slope of
se0 C3¢! remained fixed across blocks for relatively short block lengths used in the data analyzed
s0 here. In the opposite limit, Thock/Tiong > 1, p°"® approaches p, except when undergoing
s large, transient excursions after context switches. Thus, the deliberation cost is given by
s» the first component in eq. (5) most of the time, with the context specific reward rate as the
s73 slope. One simple prediction is that the slope of urgency should exhibit increasing variation
s74 as the duration of the blocks increases.

sts Reinforcement learning theory We suggest how to generalize average-adjusted value
s76 functions to context-varying opportunity cost of time in a way that reduces to AR-RL
s7 when context is fixed or not tracked. This adds a continuing task perspective to episodic
st AR-RL, in line with recent work in machine learning, which is arguably the more appropriate
s79 reinforcement learning setting for many decision-making experiments in neuroscience. The
ss0 epistemic perspective entailed in the estimation of these costs parallels a recent epistemic
se1 interpretation of the discount-reward formulation as encoding knowledge about the volatility
se2 of the environment [54].

ss3  Our work also suggests a new class of reinforcement learning algorithms between model-
ssa based and model-free: only parts of the algorithm need adjustment upon task structure
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sss variation. This is reminiscent of how the effects of complex state dynamics are decoupled
sss from reward when using a successor representation [55], but tailored for the average-reward
ss7 rather than the discount-reward formulation. We have left analysis of the algorithmic com-
sss plexity of PGD to future work, but expect performance improvements, as with successor
s0 Tepresentations, in settings where decoupling the learning of environment statistics from the
so0 learning of reward structure is beneficial.

s Comparison with humans In the space of strategies, PGD lies in a regime between fully
s2 exploiting assumed task knowledge (average-case optimal) and assumption-free adaptation
s03 (worst-case optimal). Highly incentivized human behaviour is likely to be more structured
s than PGD because of access to more sophisticated learning. While some humans land on
s0s the optimal one-and-done policy in the fast condition when playing the tokens task [56],
so6 MOst do not. The human brain likely has all the components needed to implement PGD.
sov Nevertheless, the situations in which we actually exploit PGD, if any, are as yet unclear. In
se8 particular, how PGD and AR-RL relate to existing behavioural models tailored to explain
so0 relative-value, context-dependent decision-making in humans [4], such as scale and shift
s00 adaptation[57], is an open question. Whether or not PGD is built into our decision-making,
so1 the question remains if PGD is optimal with respect to some bounded rational objective.
s02 In spite of the many issues with the latter approach [58], using it to further understand the
s03 computational advantages of PGD is an interesting direction for future work.

sa  Despite our putative access to sophisticated computation, humans still exhibit measurable
s0s bias in how we incorporate past experience [59]. One simple example is the win-stay /lose-
s06 shift strategy, a more rudimentary kind of performance-gated decision-making than PGD,
sor which explains how humans approach the rock-paper-scissors game [60]. In that work,
s0s nNumerical experiments demonstrated that this strategy outperforms at a population level the
s00 optimal Nash equilibrium for this game, demonstrating that the use of such seemingly sub-
s10 optimal strategies can confer a surprising evolutionary advantage. This example supports
su the claim that relatively simple and nimble strategies such as PGD make for attractive
s12 candidates when acknowledging that a combination of knowledge and resource limitations
s13 over task, development, and evolutionary timescales have shaped decision-making in non-
s14 stationary environments.

615 METHODS

ss  Code for simulations and main figure generation (written in Python 3) is publicly acces-
a7 sible as a online repository: https://github.com/mptouzel/dyn_opp_cost/.

618 Patch leaving task

sis  We devised a mathematically tractable patch leaving task for which PGD learning is
s20 optimal with respect to the average-adjusted value function. Here the value is simply the
s21 Teturn from the patch. This value function is related, but not equivalent to the marginal
e22 value of optimal foraging, for which the decision rule is C{® > 7. — C™ = 7, [5]). This
s23 choice of task allowed us to compare PGD’s convergence properties relative to conventional
s2a AR-RL algorithms that make use of value functions. In contrast to PGD, the latter requires
s2s exploration. For a comparison generous to the AR-RL algorithm, we allowed it to circumvent
s26 exploration by estimating the value function from off-policy decisions obtained from the
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soz PGD algorithm using the same learning rate. We then compared them to PGD using their
s2s on-policy, patched-averaged reward. This made for a comparison based solely between the
s20 parameters of the respective models. If we did not allow for this, the AR-RL algorithms
s30 would have to find good learning signals by exploring. In any form, this exploration would
en1 lead them converge substantially slower. This setting thus provides a lower bound on the
s22 convergence times of the AR-RL algorithm.

13 In this task, the subject randomly samples (with replacement) d patches, each of a dis-
s34 tinct, fixed, and renewable richness defined by the maximum return conferred. These maxi-
s3s mum returns are sampled before the task from a richness distribution, p(7max), With rp. > 0
e3s and are fixed throughout the experiment. The trials of the task are temporally extended
s37 periods during which the subject consumes the current patch. After a time ¢ in a patch,
e3s the return is defined 7(t) = ryax(1 — (A#)™1). This patch return profile, 1 — (At)™?, is shared
s30 across all patches and saturates in time with rate A\, a parameter of the environment that
sa0 sets the reference timescale. The return diverges negatively for vanishing patch leaving times
sa1 for mathematical convenience, but also evokes situations where leaving a patch soon after
s42 arriving is prohibitively costly (e.g. when transit times are long). A stationary policy is then
o3 a leaving time, ¢, for each of d patches, where the s-subscript indexes the patch. Given any
sas policy, the stationary reward rate for uniformly random sampling of patches is then defined

p= er(ts)/zts . (6)

s1s We designed this task to (1) emphasize the speed-return trade-off typical in many delibera-
sa7 tion tasks, and (2) have a tractable solution with which to compare convergence properties
s of PGD and AR-RL value function learning algorithms.

s0 A natural optimal policy is the one that maximizes the average-adjusted trial return,
ss0 Q(1,t) = r—pt. Given the return profile we have chosen, the corresponding optimal decision
es1 time, ¢¥, in the sth patch obtained by maximizing r — pt is % = \/Tmax.s/(Ap), which scales
ss2 inversely with the reward rate so that decision times are earlier for larger reward rates,
653 because consumption (or more generally deliberation) at larger reward rates costs more. We
es4 chose this return profile such that stationary PGD learning gives exactly the same decision
ess times: the condition C3¢ = Co™ for patch s here takes the form pty = rpaxs/(Ms). Thus,
ess they share the same optimal reward rate, p*. Using t* for each patch in eq. (6) gives a
es7 self-consistency equation for p with solution p* = A\u? /4u?/2, where 1 = (o) pirmae) (W
ess have assumed d is large here to remove dependence on s). Described so far in continuous
sso time, the value function was implemented in discrete time such that the action space is

~

se0 a finite set of decision times selected using the greedy policy, t* = argmax, Q(r,t), where
661 Q(r, t) is the estimated trial return. As a result, there is a finite lower bound on the
s> performance gap, i.e. the relative error, e = (p* — p)/p* > 0 for the AR-RL algorithm.
s3 Approaching this bound, convergence time for both PGD and AR-RL learning is limited
se¢ by the integration time 7 of the estimate p] (c.f eq. (8)) of p. We note that PGD learns
sss faster in all parameter combinations tested. To demonstrate the insensitivity of PGD to the
ss6 State space representation, at 5 x 10° time steps into the experiment we shuffled the labels
so7 Of the states. PGD is unaffected, while the value function-based AR-RL algorithm is forced
ss tO relearn and in fact does so slower than in the initial learning phase, due to the much
se0 larger distance between two random samples, than between the initial values (chosen near

s the mean) and the target sample.
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671 Filtering performance history

ez For unit steps of discrete time, the step-wise update of the performance estimate, p7, is

pi = (1= PB)piy + bR, (7)

s with § = 1/(1+7) called the learning rate, and 7 the characteristic width of the exponential
sz« window of the corresponding continuous time filter over which the history is averaged. We
o5 add 7 as a superscript when denoting the estimate to indicate this. Exceptionally, here ¢
e76 indexes absolute time rather than trial time. Note that a continuous-time formulation of
77 the update is possible via an event-based map given the decision times in which the reward
s event sequence is given as a sum of delta functions. In either case, to leading order in S,
o0 pf = B L R;, i.e. the filter sums past rewards. Thus, when 7 ~ O(t) > 1, B ~ O(1/t) < 1
e and so 7 ~ B30 R; — p when t is large.

1 The rewards in this task are sparse: R; = 0 except when a trial ends and the binary
s> trial reward Ry (1 or 0) is received. A cumulative update of eq. (7) that smooths the
ss3 reward uniformly over the trial duration and is applied once at the end of each trial is
e84 thus more compuatationally efficient. Resolving a geometric series leads to the cumulative
sss update [8, 28]

Fi = (1= By + (1= (1= BTyt (8)
ess Where the smoothed reward, pi®! = Ry /T},, can be interpreted as a trial-specific reward rate.
se7 The initial estimate, pj, is set to 0. Exceptionally, p] = R1/Ty, after which eq. (8) is used.
ess Using the first finite sample as the first finite estimate is both more natural and robust than
ss0 having to adapt from zero. We will reuse this filter for different 7 and denote the filtered
e00 estimate from its application with a 7-superscript, p;. For example, the precision of ﬁg"“g
o1 as an estimate of a stationary reward rate p is set by how many samples it averages over,
s2 which is determined by the effective length of its memory given by 7ione. Since we assume
s03 the subject has learned the expected reward, 7;, we use it instead of R; when computing

trial

694 Op

695 Tokens task: a random walk formulation

s The tokens task is a continuing task of episodes (here trials), which can be formulated
eor using the token difference, N;. Each trial effectively presents to the agent a realization
e0s Of a finite-length, unbiased random walk, NV; . = (No,...,Ny,..) with N, = {—t,... t}
so and Ny = 0. We express time in units of these steps. The agent observes the walk and
70 reports its prediction of the sign of the final state, sign(N;,_, ) = £1 (fmax is 0dd to exclude
71 the case it has no sign). The time at which the agent reports is called the decision time,
02 19¢ € {0,1,...,tmax}. For a greedy policy, sign(N;) can be used as the prediction (and
703 the reporting action selected randomly if Nuaee = 0). The decision-making task then only
704 involves choosing when to decide. In this case, the subject receives reward R = O(N;,,,, Nydec)
705 at the end of the random walk, i.e. a unit reward for a correct prediction, otherwise nothing
06 (© is the Heaviside function: ©(z) = 1 if 2 > 0, zero otherwise).

7z An explicit action space beyond decision time is not necessary for the case of greedy
78 actions. It can nevertheless be specified for illustration in an Markov decision process (MDP)
70 formulation: the agent waits (a; = 0 for ¢ < t9°°) until it reports its prediction, @ = =,
70 after which actions are disabled and the prediction is stored in an auxiliary state variable
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1 used to determine the reward at the end of the trial. A MDP formulation for a general class
712 of perceptual decision-making tasks, including the tokens and random dots task, is given in
713 Methods).

ns  Perfect accuracy in this task is possible if the agent reports at tyax since R = O(N2 ) =
75 1. The task was designed to study reward rate maximizing policies. In particular, the task
716 has additional structure that allows for controlling what this optimal policy is through the
717 incentive to decide early, «, incorporated into the trial duration for deciding at time ¢ in the
718 trial,

T(t) =t + (1 — @) (tmax — ) + Trr. 9)

70 Here, a dead time between episodes is added via the inter-trial interval, Tit;, to make
720 suboptimal the strategy of predicting randomly at the trial’s beginning. We emphasize that
721 it is through the trial duration that « serves as a task parameter controlling the strength
722 of the incentive to decide early. When « is fixed, we denote the corresponding optimal
723 stationary reward rate, p,, obtained from the reward rate maximizing policy. This policy
724 shifts from deciding late to deciding early as « is varied from 0 to 1 (c.f. fig. S9f,g).

725 We consider a version of the task where « is variable across two episode types, a slow
76 ( = 1/4) and fast (o = 3/4) type. The agent is aware that the across-trial a dynamics
727 are responsive (maybe even adversarial), whereas the within-trial random walk dynamics
728 (controlled by the positive jump probability, here p = 1/2) can be assumed fixed (see the
720 next section for how p factors into the expression for the expected reward, 7.

730 Expected trial reward for the tokens task

7 We derived and used an exact expression for the expected reward in a trial of the tokens
722 task. We derive that expression here as well as a simple approximation. The state sequence
733 18 formulated as a ¢ -length sequence of random binary variables, S;, .. = (S1,...,S5,..),
S = 1,1 =1,2,...,tnax. Consider a simple case in which each is an independent and
73 identically distributed Bernoulli sample, P(s) = p% (1— p)%, for jump probability p > 1/2.
736 The distribution of S, is then

tmax

H%Q:Hmw. (10)

73z We will use this distribution to compute expectations of quantities over this space of trajec-
738 tories, namely the sign of N, = Z';Zl S;, for some 0 <t < ¢, and in particular the sign of
730 the final state, £ := sgn(Ny,..) € {4+, —} given N; = n. Note that IV, is even if ¢ is even and
740 same with odd values. We remove the case of no sign in N, . by choosing ¢, to be odd.

1 First, consider predicting sgn(/N;) with no prior information. The token difference, —t <
72 N, < t, appears directly in P(s;,_, ). Marginalizing (here just integrating out) the additional
3 degrees of freedom leads to a binomial distribution in the number of S; for ¢ <t for which
s S; = +1, Nt+ = ZZ:I @(Sz) = (t -+ Nt)/Q,

)pm e (1)
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ns with n € {0,...,t} and N; = 2N,;* — t. Thus, the probability that N; > 0, i.e. N;” > /2, is
t
t -n
P> 0) =3 (1) - pr et 1/2). (12)
n=0 n

76 Now consider predicting £ = sgn(Vy,,,. ), given the observation N; = n. Define t’ = t,.x—1t
727 as the remaining time steps to the predicted time and Ny = ZZZ;’J‘A s;, i.e. the total count
7 in the remaining part of the realization. Then the probability of ¢ = 4 conditioned on the
79 state Ny = n, denoted p,,+, is defined in the same way as P(N; > 0),

t ’
piy=PE=+N=n)=)_ (fl,)p"/u —p)' e — (¢ —n)/2).  (13)
n'=0

w0 where N;f =n/ is the number of positive jumps in the remaining ¢ = t,,., — t steps and we
s have used Ny, = N;+Ny = Nf —(t'—N,)/2. The ©(n'—('—n)/2) factor effectively changes
752 the lower bound of the sum to max{0, [(t'—n)/2]}, where [-] rounds up. If [(# —n)/2] <0
s then p,, = 1 since the sum is over the domain of the distribution, which is normalized.
75 Otherwise, the lower bound is [(¢' — n)/2], and the probability of £ = +1 is

t/
t, n '_n!
= X (L)ra-n (1)

n/=[(t'-n)/2]
755 For odd thax, the probability that § = — is denoted p,,, = 1 — p:;t. For the symmetric case,

756 P = 1 / 2,
t/
1 t
+
Pre=50 D <n) , (15)
W=[(t—n)/2]

757 when [ (' —n)/2] > 0 and 1 otherwise. This expression is equivalent to equation 5 in [16],
7 which was instead expressed using IV, .

0 The space of trajectories, i.e. of s;_ ., maps to a space of trajectories for pj{vt defined on
70 an evolving lattice in belief space. The expected reward in this case is,

7t := (r|Ny = n) = E[O(Ny,,.. Nt)| Nt = n] (16)

= maX{p:Lr,ta 1 - prtt} (17)

== bt y (18)

1 where the belief of correct report by := max{p;,,1 —p;,}. The commitment cost C{™ =

762 Tmax — Tt, then also evolves on a lattice (see fig. 3(b)). More generally, 7y = Arb; + Tincorrect
763 for Ar the difference of correct reomrect (here 1) and incorrect ripcorrect (here 0) rewards. Since
764 Tmax = Tcorrect, We have C°™ = Ar(1 — b;). For p=1/2 and Ar =1, C°F = 1/2.
s  The shape of p,tt is roughly sigmoidal, admitting the approximation,

1
1+ exp[—(at + b)n]
766 where fitting constants a and b depend on t,,.«. For t,., = 15, a = 0.03725 and b = 0.3557.
77 We demonstrate the quality of this approximation in fig. S5. Approximation error is worse
768 abt ¢ near t... More than 95% of decisions times in the data we analyzed occur before
70 12 time steps, where the approximation error in probability is less than 0.05. A similar
70 approximation without time dependence was presented in [16]. We nevertheless used the
m exact expression eq. (15) in all calculations.

(19)

+ ~
pn,t ~
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72 PGD implementation and fitting to relaxation after context switches

73 We identified the times of the context switches in the data and their type (slow-to-fast
7 and fast-to-slow). Taking a fixed number of trials before and after each event, we averaged
7 the decision times over the events to create two sequences of average decision times around
76 context switches (the result is shown in fig. 4a,b). We used a uniformly weighted squared-
77 error objective, minimized with the standard (Nelder-Mead) simplex routine in python’s
778 scientific computing library’s optimization package.

779 Survival probabilities over the action policy

70  Behavioural analyses typically focus on response time distributions. From the perspective
71 of reinforcement learning, this is insufficient to fully characterize the behaviour of an agent.
72 Instead, the full behaviour is given by the action policy. In this setting, a natural represen-
783 tation of the policy is the probability to report as a function of both the decision time and
74 the environmental state (see fig. 5). These are computed from the histograms of (Nyaee, t9°),
75 over trials. However, the histograms themselves do not reflect the preference of the agent
786 to decide at a particular state and time because they are biased by the different frequencies
7e7 with which the set of trajectories visit each state and time combination. While there are
788 obviously the same number of trajectories at early and late times, they distribute over many
780 more states at later times and so each state at later times is visited less on average than states
790 at earlier times. We can remove this bias by transforming the data ensemble to the ensemble
71 of two random variables: the state conditioned on time (N;|t), and the event that ¢ = tdec.
2 Conditioning this ensemble on the state gives P(t = t9¢| N, t) = p(N;, t = tde|t) /p(Ny|t). To
73 reduce estimator variance, we focus on the corresponding survival function, P(t < t3°| Ny, t).
70 S0, P(t < 19| Ny, t) = 1 when ¢t = 0 and decays to 0 as ¢ and |N;| increase. Unlike the
75 unconditioned histograms, these survival probabilities vary much more smoothly over state
796 and time. This justifies the use of the interpolated representations displayed in fig. 5b-e.
797 Note that to simplify the analysis, we have binned decision times by the 200 ms time step
798 between token jumps. This is justified by the small deviations from uniformity of decision
799 times modulo the time step shown in fig. S11.

soo  Episodic decision-making and dynamic programming solutions of value iteration

s We generalize the mathematical notation and description of an existing AR-RL formu-
so2 lation and dynamic programming solution of the random dots task [7], a binary perceptual
s03 evidence accumulation task extensively studied in neuroscience. To align notation with
soa convention in reinforcement learning theory, exceptionally here s denotes the belief state
sos variable, ie. a representation of the task state sufficient to make the decision (e.g. the to-
sos kens difference, Ny, in the case of the tokens task). We connect this extended formulation to
sor account for a dynamic deliberation cost. We write it in discrete time, though the continuous
sos time version is equally tractable.

so  The problem is defined by a recursive optimality equation for the value function V'(s|t)
g0 in which the highest of the action values, Q(s,alt), is selected. We formalize the non-
sn stationarity within episodes by conditioning on the trial time, ¢, where ¢ = 0 is the trial start
s12 time. (s, alt) is the action-value function of average-reward reinforcement learning [11], i.e.

jan
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s13 the expected sum of future reward deviations from the average when selecting action a when
s in state s, at possible decision time ¢ within a trial, and then following a given action policy
a1s T thereafter. The action set for these binary decision tasks consists of report left (=), report
s16 Tight (+), and wait. When wait is selected, time increments and beliefs are updated with
sz new evidence. We use a decision-time conditioned, expected trial reward function, r(s, alt)
s1s with @ = +, that denotes the reward expected to be received at the end of the trial after
s10 having reported + in state s at time ¢ during the trial. Note that r(s,a|t) can be defined
s20 in terms of a conventional reward function r(s, a) if the reported action, decision time, and
21 current time are stored as an auxiliary state variable so they can be used to determine the
s22 non-zero reward entries at the end of the trial.

&3 The average-reward formulation of Q(s,alt) naturally narrows the problem onto deter-
2« Mining decisions within only a single episode of the task. To see this, we pull out the
g2s contribution of the current trial,

[t

T
ZRt—/)

t'=t

Q(s,alt) =E" Si=s,A =a|+V(s|T+1) (20)

s26 where T is the (possibly stochastic) trial end time and V' (s|T + 1) is the state value at the
s27 start of the following trial, which does not depend on s; and a; for independently sampled
s28 trials. Following conventional reinforcement learning notation, the expectation E™ is over
820 all randomness conditioned on following the policy, 7, which itself could be stochastic [11].
g0 When trials are identically and independently sampled, the state at the trial start is the
ga1 same for all trials and denoted sy with value V. Thus, the value at the start of the trial
s V(s|t =0) = V(s|T+1) = Vi equals that at the start of the next trial and so, by construction,
s33 the expected trial return (total trial rewards minus trial costs) must vanish (we will show
s this explicitly below). Note that the value shift invariance of eq. (20) can be fixed so that
a5 Vo = 0.

s The optimality equation for V(s|t) arises from a greedy action policy over Q(s,alt): it
s37 selects the action of the largest of Q(s, —[t), Q(s, +|t), and Q(s, wait|t). The value expression
s3s for the wait-action is incremental, and so depends on the value at the next time step. In
s30 contrast, expression for the two reporting actions integrates over the remainder of the trial
sa0 since no further decision is made and so depends on the value at the start of the following
s trial. The resulting optimality equation for the value function V(s|t) is then

V(s|t) = max Q(s,alt) ,

T
Qs, £|t) =r(s,£[t) = > v+ V(slt =T +1),
t=t+1
Q(Sa wait|t) =—C+ E5t+1|5 [V(st+1|t + 1)] )
V(ist=0)=V(slt=T+1).

(21)

sz Here, t = 0,1,...,t1. Within the current trial and t = T+ 1,7 + 2... in the following
sa3 trial, with ¢,,.x the latest possible decision time in a trial, and 7" = T'(¢) the decision-time
sas dependent trial duration. For inter-trial interval Tipr, T satisfies Tirr < T < tnax + TiTI-
ss ¢y 1S the cost rate at time t. The second term in Q(s,wait|t) uses the notation [E,,[2], i.e.
sss the expectation of z with respect to p(z|y). The last line in eq. (21) is the self-consistency
sar criterion imposed by the AR-RL formulation, which demands that the expected value at
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sas the beginning of the trial be the expected value at the beginning of the following trial. The
sa0 greedy policy then gives a single decision time for each state trajectory as the first time when
ss0 Q(s,—|t) > Q(s,wait|t) or Q(s,+|t) > Q(s,wait|t), with the reporting action determined
gs1 by which of Q(s, —|t) and Q(s, +|t) is larger. For given ¢;, dynamic programming provides
g2 a solution to eq. (21) [7] by recursively solving for V' (s|t) by back-iterating in time from the
ss3 end of the trial. For most relevant tasks, to never report is always sub-optimal, so the value
sse At t = fmayx 1S set by the best of the two reporting (+) actions, which do not have a recursive
sss dependence on the value and so can seed the recursion.

s We now interpret this general formulation in terms of opportunity costs. For the choice
es7 Of a static opportunity cost rate of time, ¢, = p. This is the AR-RL case. As in [7], a
s constant auxiliary deliberation cost rate, ¢, incurred only up to decision time can be added,
ss0 c; = p + Ot —t). Of course, p is unknown a priori. For this solution method, its value
sso can be found by exploiting the self-consistency constraint, V(s|t = 0) = V/(s|t = T+1). This
ss1 dependence can be seen formally by taking the action value eq. (20), choosing a according
s> tO 7 to obtain the state value, V(s|t), and evaluating it for ¢ = 0,

8!

a1

@

V(s|t =0) =B | Ri—p|+V(slt=T+1) (22)
= Ejaee [r(_tdec) — pT(t% )] + V (st =T +1) (23)
=R—-pT+V(s|t=T+1). (24)

ss Here, R = Eaee [r(t%°)] and T' = Eyaee [T'(t%°°)] denotes the expectations over the trial en-
ses semble that, when given the state sequence, transforms to an average over t4°, the trial deci-
ses sion time, defined as when V' (s|t) achieves its maximum on the state sequence, (So, . .., St,..)-
ses The expected trial reward function, r(t) := max,c(— 4} r(s, alt) is the expected trial reward

s7 for deciding at ¢. Imposing the self-consistency constraint on eq. (24) recovers the definition
868 ) — R/ T.

869 Asymmetric switching cost model

so  Here, we present the model component that accounts for the asymmetric relaxation
sn timescales after context switches. The basic assumption is that tracking a signal at a higher
g2 temporal resolution should be more cognitively costly, so that adapting from faster to slower
g3 environments should happen more quickly than the reverse, so as to not pay this cost un-
e necessarily. We now develop this idea formally (see fig. S4).

ss Let Tiace and Ty be the timescale of tracking and of the tracked system, respectively.
s One way to interpret the mismatch ratio, Tiys/Tirack, 1S via an attentional cost rate, g.
7 This rate should decay with Ti,.a: the slower the timescale of tracking, the lower the
g7s cognitive cost. For simplicity, we set ¢ = 1/Tiack (fig. S4a). Integrating this cost rate over a
sro characteristic time of the system is then the tracking cost, Q = ¢Tyys = Tiys/Tirack, Which is
g0 also the mismatch ratio. We propose that () enters the algorithm via a scale factor on the
1 integration time of the reward filter for p="* ", Teontext- We redefine Teontexs as

8

J

J

8|

[<5]

Tcontext
context ¥ ) 25
Tcontext 1+ QY (25)

se2 Wwhere v is a sensitivity parameter that captures the strength of the nonlinear sensitivity of
se3 the speed up (for v > 1) or slow down (for ¥ < 1) in adaptation with the tracking cost,
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see () (fig. S4a shows how this timescale varies over @) for three values of v). A natural choice
ses for Ty is T}, the trial duration. For Ti;ac, we introduce the filtered estimate of the trial
sse duration, T,Z“’“te’“ (computed using the same simple low-pass filter c.f. eq. (8)). Thus, the
se7 tracking timescale adapts to the system timescale. As a result of how Teontext 1S lowered by Q)
sss for v > 1, this adaptation is faster in the fast-to-slow transition relative to the slow-to-fast
830 transition.

890 Prediction for asymmetric rewards

s Given a payoff matrix, R = (), where r, , is the reward for reporting a € {—, +} in the
so2 trial realization leading to s, here the sign of NV, __ , and the probability that the rightward
g3 choice is correct, p;t, the expected reward for the two reporting actions in a trial is given
s« by the matrix equation

o =) fla = -8 = [ty 1] [ 722 7]

ss Here, the corresponding reported choice is a* = argmax,¢;_ +}<7"\a, n,t). In this paper and
so6 in all existing tokens tasks, R was the identity matrix. In this case, and for all cases where
so7 R is a symmetric matrix, R = R', an equivalent decision rule is to decide based on the sign
ss Of IV;. When R is not symmetric, however, this is no longer a valid substitute. Asymmetry
soo can be introduced through the actions and the states.

oo  Using an additional parameter v, we introduce asymmetry via a bias for + actions that
o1 leaves the total reward unchanged by replacing the payoff matrix with

R — rir(l+7) reo(1=7)
om = | (1) 1 (1=m)]

o2 The result for v = —0.6, 0, and 0.6 is shown in fig. S10. For v > 0 the decision boundary for
w3 a = + shifts up proportional to 7. For v < 0 the decision boundary for a = — shifts down
os proportional to —v. The explanation is that the components are set and exchange where
o5 the decision is exchanged, N; = 0 for the symmetric case. This changes to N; o« = for the
906 asymmetric v # 0 case.

907 Comparing reward rates and slopes of urgency

ws  Reference [17] parametrize urgency with the saturation value, u4,, and the half-maximum,
90 T1/2. The initial slope is given by their ratio. We used the context-conditioned values
a0 published in Table 1 in [17] for the n = 70 (no 90° control) dataset. The context-conditioned
o reward rates, p,, are computed as the accuracy (R)|, divided by the average trial time, (7)o
a2 for choice number a € {2,4} as context. We computed (R)|q—2 = 0.71 and (R)|4—4 = 0.49.
o1z The trial time is the sum of the response time, the added time penalty if incorrect, and the
os inter-trial interval. We computed the response times fresponse,a=2 = 0.527 and tresponse,a=14 =
a5 0.725. While the dataset contains the response times, it does not have the latter two. The
a6 time penalty was on the order of 1 second, as was the time penalty [61]. Under those
a7 estimates, the reward rates are p,—o = 0.40 and p,—s = 0.22. The ratio between slopes is
as 1.8 and the ratio of reward rates was 2.3 giving an error of about 20%.
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Figure S1. Reward filtering scheme for online computation of within-trial opportunity cost. With
t denoting absolute time, the reward sequence, R;, is integrated on both a stationary (7iong) and
context (Teontext) filtering timescale to produce estimates of the stationary and context-specific
reward rates, respectively. These are large and small, respectively, relative to the average context
switching timescale, Thoc. The estimate of the context-specific offset, o; is computed by time-
integrating the difference of these two estimates. In this filtering, when a trial terminates, the
effective operation is that Cfel is set to oy, and the latter is zeroed. Thus, the opportunity cost
starts at this offset and then integrates piong, Cg’,’;l = 07, , k-1 T Plongk—1t, Where oy, | 1 =
(Pcontext,k—1 — Plong,k—1)Tk—1. Notes on the computational graph: Arrows pass the value at each
time step (dashed arrows only pass the value when a trial terminates). Links annotated with ‘—’
multiply the passed quantity by —1.
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Figure S2. PGD agent plays the tokens task with periodic a-dynamics. (a) Trials are grouped
into alternating trial blocks of constant a (fast (orange) and slow (blue) conditions). (b) Here,
trial block durations are constant over the experiment. (c) Decision times over the trials from
(a) distribute widely, but relax after context switches. (d) Block-averaged decision times remain
stationary. Inset shows the context-conditioned trial-averaged reward (Ry) and trial duration (T%)
(orange and blue dots; black is unconditioned average; (-) denotes the trial ensemble average).
Lines pass through the origin (slope given by the respective reward rate). (e) Distribution of

estimates have lower variance than the trial reward rates, p'™@! (gray). The conditioned averages of
pree et shown as blue and orange. (f) The relative error in estimating p, Ey = % S ﬁzlong —pl/p,

for Tiong = 103(circle), 10%(square), 10°(triangle). Inset shows that B, X (Tlong /Thioac) ! over a
grid of Tigng and Thieck as expected (black line).
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Figure S4. Asymmetric switching cost model. (a) Attentional cost rate, g, is set to be inversely
proportional to tracking timescale, Tiyack. (b) Filtering timescale Tcontext is scaled down with
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Figure S6. Model validation on behavioural statistics from [19]. (a,b) Running average (last 1000
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Figure S7. Comparison of trial-aware and trial-unaware results. (a,b) 1/2-Survival probability
contours for subject 1 (dashed), trial-aware PGD (blue), and trial-unaware PGD (red) for slow
(a) and fast (b) context-conditioned data. (c¢) Opportunity cost for trial-unaware PGD (compare
with fig. 2b). Opportunity cost range adjusted here such that data within standard error of trial-
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Figure S8. Comparison of PGD and AR-RL learning on a patch leaving task. Performance is
defined as relative regret rate, (p — p*)/p* (PGD (dots); AR-RL (lines)). (a) Performance over
different sizes of the state vector (d = 100 (blue), 200 (orange), 300 (green)). (b) Performance over
different learning rates (parametrized by integration time constant, 7 = 1 x 10* (blue), 2 x 10*
(orange), 3 x 10* (green)). (parameters: A\ = 1/5; rpax sampled uniformily on [0, 1]). A random

state label permutation is made at the time indicated by the black arrow. Values were initialized
at —1.
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Figure S9. Reward rate optimal strategies in (a,c) plane. (a) The reward-rate maximizing policy
interpolates from the wait-for-certainty strategy at weak incentive (low «) and low deliberation
cost (low ¢), to the one-and-done strategy at strong incentive (high «) and high deliberation cost
(high ¢). Dashed lines bound a transition regime between the two extreme strategies. Red line
denotes where they have equal performance. (b-e) Slices of the (o, ¢)-plane. Shown are the reward
rate as a function of a (b,c) and ¢ (d,e) (wait-for-certainty strategy is shown in blue; one-and-done
strategy is shown in orange). N is the magnitude of the token difference
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Figure S10. Asymmetric action rewards skew survival probability. Here, we plot the half-maximum
of the PGD survival probability for three values of the action reward bias, v = —0.6,0,0.6 (blue,
black and orange, respectively). Other model parameters same as in fitted model.
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