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Abstract

Finding the right amount of deliberation, between insufficient and excessive, is

a hard decision making problem that depends on the value we place on our time.

Average-reward, putatively encoded by tonic dopamine, serves in existing reinforce-

ment learning theory as the stationary opportunity cost of time, and of delibera-

tion in particular. However, this cost often varies with environmental context that

can change over time. Here, we introduce an opportunity cost of deliberation es-

timated adaptively on multiple timescales to account for non-stationary contextual

factors. We use it in a simple decision-making heuristic based on average-reward re-

inforcement learning (AR-RL) that we call Performance-Gated Deliberation (PGD).

We propose PGD as a strategy used by animals wherein deliberation cost is im-

plemented directly as urgency, a previously characterized neural signal effectively

controlling the speed of the decision-making process. We show PGD outperforms

AR-RL solutions in explaining behaviour and urgency of non-human primates in a

context-varying random walk prediction task and is consistent with relative perfor-

mance and urgency in a context-varying random dot motion task. We make readily

testable predictions for both neural activity and behaviour and call for an integrated

research program in cognitive and systems neuroscience around the value of time.
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symbol quantity

t within-trial time

k trial index

St within-trial state at time t

St state sequence up to time t

Rk reward of kth trial

Tk duration of kth trial

tdeck decision time of kth trial

Cdelt within-trial opportunity cost of deliberation

rmax maximum reward acheiveable in a trial

bt belief of correct report given St
r̄t expected reward for reporting at time t

Ccomt within-trial opportunity cost of commitment

ρ stationary reward rate

ρ∗ optimal stationary reward rate

α context parameter

ρα context-conditioned stationary reward rate

Tα context-conditioned stationary average trial duration

ρ̂τk reward history filtered through a timescale, τ

τlong a long timescale over which to estimate ρ

τcontext a context-specific timescale over which to estimate ρα
ν tracking cost sensitivity

K subjective reward scale factor

Tblock characteristic duration of a trial block

c auxiliary deliberation cost rate

Nt tokens difference

p jump probability of random walk, p ≥ 1/2

Table I. Symbol glossary. Highlighted in gray are parameters of the PGD model presented in this

paper.

INTRODUCTION10

Humans and other animals make a wide range of decisions throughout their daily lives.11

Any particular action usually arises out of a hierarchy of decisions involving a careful balance12

between resources, including one that is always limited: time. The cost of spending time13

depends on its value, a construct that relies on comparing against the alternative things14

an agent could potentially do with it. Estimating time’s value is not straightforward for a15

number of reasons. There are alternative choices at multiple decision levels, e.g. moving on16

from a job and moving on from a career, and each level requires its own evaluation. Moreover,17

the value of alternatives needs to be tracked as they may change over time depending on the18

context in which a decision is made. For example, animals will learn to value a given food19

resource differently depending on whether it is encountered during times of plenty versus20

scarcity. The agent’s knowledge of and ability to track context thus influences the value it21

assigns to possible alternatives.22

These are significant, practical complications of making decisions contingent on opportu-23
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nity costs [1], the formal economic concept capturing the value of the alternatives lost by24

committing a limited resource to a given use. The opportunity cost of time is nevertheless25

well-studied in decision-making theory. It plays the role of a reference reward in defini-26

tions of relative value, most notably as the average reward in average-reward reinforcement27

learning (AR-RL) [2].28

In neuroscience, AR-RL was first proposed to extend the reward prediction error hy-29

pothesis for phasic dopamine to account also for the observed properties of tonic dopamine30

levels [3]. It has since been used to emphasize the relative nature of reward-based decision-31

making [4] in explanations of human and animal behaviour in foraging [5], free-operant32

conditioning [6], perceptual decision-making [7, 8], cognitive effort/control [8, 9], and even33

economic exchange [10].34

Unlike the alternative discount-reward approach, AR-RL is a theoretically well-defined35

and numerically stable formulation for long horizon decision problems [11], such as those36

in continuing environments in which there is no definite end [12]. Solutions to AR-RL37

problems maximize average reward, in contrast to traditional fixed accuracy criteria in38

perceptual decision-making tasks that focus on maximizing trial reward alone [13]. The39

solutions to AR-RL formulations of tasks of long sequence of trials are decision boundaries40

in the state space of a trial. Determining this decision boundary requires maximizing the41

relative value, defined using the opportunity cost of time. The resulting optimal decision42

boundaries typically ‘collapse’ over a trial: they cut deliberation short, e.g. in tasks where43

trial difficulty is variable [7, 14]. Up to now, however, AR-RL and most of its applications44

have focused on fixed context and have used the stationary average reward as the fixed45

opportunity cost of time, which ignores context-dependent performance variation. This is46

perhaps not surprising given that in psychological and neuroscientific studies of decision-47

making, we usually eliminate such contextual factors from the experimental design such48

that our models describe stationary behaviour. However, the brain mechanisms under study49

are adapted to a more diverse natural world in which changing environmental factors are50

often relevant, hard to infer and vary over time [4].51

We pursue a theory of approximate relative-value decision-making under uncertainty in a52

setting relevant to decision-making neuroscience. We start by showing that value in AR-RL53

can be expressed using the opportunity costs of deliberation and commitment. Here, the54

commitment cost is the shortfall in reward (relative to the maximum possible in a trial)55

that is expected to be lost when committing to a decision at a given time. Highlighting the56

risk of value representations in non-stationary environments, we propose an approximation57

to the AR-RL value-optimal solution, Performance-Gated Deliberation (PGD), that uses58

the increasing opportunity cost of time in a trial to collapse the decision boundary directly,59

by-passing the need to maximize relative value. PGD thus reduces decision-making to60

estimating two opportunity costs: a commitment cost learned from the statistics of the61

environment and a deliberation cost estimated from tracking one’s own performance in that62

environment. It explains how an agent, without explicitly tracking context parameters or63

storing a value function, can trade-off speed and accuracy according to performance at64

the typically longer timescales over which context changes. We propose that deliberation65

cost is then directly encoded as “urgency” in the neural dynamics underlying decision-66

making [7, 15–17]. The theory is thus directly testable using both behaviour and neural67

recordings.68

To illustrate how PGD applies in a specific continuing decision-making task, and to make69

the links to a neural implementation explicit, we analyze behavior and neural recordings70
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collected over eight years from two non-human primates (NHPs) [18, 19]. They performed71

successive trials of the “tokens task”, a probabilistic guessing task in which information72

about the correct choice is continuously changing within each trial, and a task parame-73

ter controlling the incentive to decide early (the context) is varied over longer timescales.74

Behavior in the task, in both humans [16] and monkeys [19], provides additional support75

to an existing hypothesis about how neural dynamics implements time-sensitive decision-76

making [15]. Specifically, neural recordings in monkeys suggest that the evidence needed77

to make the decision predominates in dorsolateral prefrontal cortex [20]; a growing context-78

dependent urgency signal is provided by the basal ganglia [21]; and the two are combined to79

bias and time, respectively, a competition between potential actions that unfolds in dorsal80

premotor and primary motor cortex [18]. Similar findings have been reported in other tasks -81

for example, in the frontal eye fields during decisions about eye-movements [17]. We propose82

PGD as a theoretical explanation for why decision-making mechanisms are organized in this83

way. As an algorithm, it serves as a robust means to balance immediate rewards and the cost84

of time across multiple timescales. As a quantitative model, it serves to explain concurrently85

recorded behaviour and neural urgency in continuing decision-making tasks. From neural86

recordings in non-human primates and and behaviour in human and non-human primates,87

we show that it does so more accurately than AR-RL solutions. Adapting PGD to the88

random dot motion task in which urgency was first characterized [17], we make quantitative89

predictions about neural urgency is such tasks, which we validate on their data within error90

bounds.91

RESULTS92

A. Theory of performance-gated deliberation93

1. Opportunity costs of deliberation and commitment, and drawbacks of average-reward94

reinforcement learning95

We consider a class of tasks consisting of a long sequence of trials indexed by k =96

1, 2, . . . (see fig. 1a), each of which provides the opportunity to obtain some reward by choos-97

ing correctly. In each trial, a finite sequence of states, St, t = 0, . . . , tmax, is observed that9899

provide evidence for an evolving belief about the correct choice among a fixed set of options.100

To keep notation simple, we suppress denoting the trial index, k, on quantities such as trial101

state, St, that also depend on trial time, t. The time of decision, tdeck , and the chosen option102

determine both the reward received, Rk, and the trial duration, Tk ≥ tdeck . Importantly,103

decision timing can affect performance because earlier decisions typically lead to shorter104

trials (and thus more trials in a given time window), while later decisions lead to higher105

accuracy. Effectively balancing such speed-accuracy trade-offs is central to performing well106

in continuing episodic task settings. For a fixed strategy, the stationary reward rate (see107

slope of dashed line in fig. 1a(right)) is108

ρ := lim
k→∞

∑
k

Rk

/∑
k

Tk . (1)

For a stochastic environment, the definition of ρ includes an ensemble average. Free-operant109

conditioning, foraging, and several perceptual decision-making tasks often fall into this class.110
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Figure 1. AR-RL and Performance-Gated Deliberation. (a) Task setting. Left: Within trial state,

St evolves over trial time t in successive trials indexed by k. The decision ‘A’ is reported at the

decision time tdeck (red cross), determining trial reward, Rk, and trial duration, Tk. Right: Sketch

of cumulative reward versus cumulative duration. Context-conditioned reward rate (slope of red

line), varies with alternating context (labelled 1 and 2) around average reward, ρ (dashed line). (b)

Decision rules based on opportunity costs of commitment, Ccomt , and deliberation, Cdelt . The AR-RL

rule (black ‘x’) finds t that minimizes Cdelt + Ccomt . The PGD rule (black cross) finds tdec at which

they intersect, Cdelt = Ccomt . (c) Schematic diagram of each algorithm’s dependency. PGD computes

a decision time directly from the two opportunity costs, while AR-RL uses both to first estimate

a value function, whose maximum specifies the decision time. (d) Loss (error in performance with

respect to the optimal policy, (ρ∗ − ρ)/ρ∗) over learning time in a patch-leaving task (AR-RL:

brown, PGD: black). The arrow indicates when the state labels were randomly permuted.

Previous work [7, 22] has studied the belief of correct report for binary rewards, bt = P (Rk =111

1|St, tdec = t), which also gives the expected trial reward, r̄t = bt · 1 + (1 − bt) · 0 = bt [7]112

(see [23] for more about the relationship between value-based and perceptual decisions). St113

denotes the state sequence observed so far, (S0, . . . , St). We consider greedy strategies that114

report the choice with the largest belief at decision time. The decision problem is then about115

when to decide.116

Average-reward reinforcement learning (AR-RL), first proposed in artificial intelli-117
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gence [24], was later incorporated into reward prediction error theories of dopamine sig-118

nalling [3] and employed to account for the opportunity cost of time [6]. AR-RL was119

subsequently used to study reward-based decision-making in neuroscience and psychol-120

ogy [7, 8, 25, 26]. AR-RL centers around the average-adjusted future return, which penalizes121

the passage of time according the average reward. A reporting decision is associated with a122

return that for trial-based tasks combines the remainder of the current trial and all future123

trials, r̄t − ρ(Tk − t) +
∑

k′>k(Rk′ − ρTk′), where ρ (c.f. eq. (1)) is either estimated online124

or obtained self-consistently (see Methods for details). Value is defined as the future return125

averaged over trial sequence realizations. This average of a sum of reward deviations into126

the future converges on account of the decaying effects of the state at which the decision is127

made. The AR-RL algorithms we consider aim to achieve the highest ρ by also maximizing128

the average-adjusted value. We now provide an alternative, but equivalent definition of129

average-adjusted trial return in terms of opportunity costs incurred by the agent.130

We denote the opportunity cost of committing at time t within a trial as Ccomt , defined131

as the difference132

Ccomt = rmax − r̄t , (2)

where rmax is the maximum trial reward possible a priori. Within a trial, an agent lowers133

its commitment cost towards zero by accumulating more evidence, i.e. by waiting. Waiting,134

however, incurs another opportunity cost: the reward lost by not acting. We denote this135

opportunity cost of deliberation incurred up to a time t in a trial as Cdelt . In AR-RL, the136

constant opportunity cost rate of time is integrated so that for Tk = tdeck ,137

Cdelt = ρt . (3)

With these definitions, the average-adjusted trial return for deciding at a time t can be138

expressed as rmax−(Ccomt +Cdelt ). It is maximized by jointly minimizing Cdelt and Ccomt (fig. 1b),139

giving the AR-RL optimal solution (see Methods for a formal statement and solution of the140

AR-RL problem). Expressed in this way, the average-adjusted trial return emphasizes the141

more general perspective that an agent’s solution to the speed-accuracy trade-off is about142

how it balances the decaying opportunity cost of commitment and the growing opportunity143

cost of deliberation.144

Despite their utility, value representations such as the average-adjusted trial return can145

be a liability in real world tasks where task statistics are non-stationary. To illustrate this,146

we consider the following foraging task. An foraging agent feeds among a fixed set of food147

(e.g. berry) patches. Total berries consumed in a patch saturates with duration t according148

to a given saturation profile, shared across patches, as the fewer berries left are harder to149

find. Patches differ in their richness (e.g. berry density), which is randomly sampled and150

fixed over the task. Denoting patch identity (serving as context) by s, the food return is151

directly observed and deterministic given s. To perform well, the agent needs to decide when152

to move on from depleting the current patch. Further details about the task and its solution153

are given in the Methods. For a broad class of online AR-RL algorithms, the agent learns the154

average-adjusted trial return as a function of state and time. For a given patch, it then leaves155

when this return is at its maximum (c.f. fig. 1b). In fig. 1d, we show how the performance156

(brown line) approaches that of the optimal policy in time as the estimation of the AR-RL157

trial return improves with experience (see Methods for implementation details). However, if158

the agent’s environment undergoes a significant disturbance (e.g. a forest fire due to which159

the patch locations are effectively re-sampled), the performance of this AR-RL algorithm can160

drop back to where it started. We implement such a disturbance via random permutation161
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of the state labels at the time indicated by the arrow in fig. 1d. This is true over a range of162

learning rates and the number of patches (fig. S8). More generally, any approach that relies163

on estimating state-value associations shares this drawback, including those approaches that164

implicitly learn those associations by directly learning a policy instead [27]. Could context-165

dependent decision times be obtained without having to associate value or action to state?166

A means to do so is presented in the next section.167

2. Performance-Gated Deliberation168

We propose that instead of maximizing value as in AR-RL, which minimizes the sum of169

the two opportunity costs, Cdelt + Ccomt , the agent simply takes as its decision criterion when170

they intersect (shown as the black cross in fig. 1b).171

tdec := min
t

{
t
∣∣ Cdelt ≥ Ccomt

}
(PGD decision rule) (4)

We call this heuristic rule at the center of our results Performance-Gated Deliberation172

(PGD). Plotted alongside the AR-RL performance in fig. 1d for our example foraging task,173

PGD (black line) achieves better performance than AR-RL overall. It is also insensitive to174

the applied disturbance since PGD uses Cdelt and Ccomt directly when deciding, rather than175

as input to problem of optimizing average-adjusted value as in AR-RL (fig. 1c).176

We constructed the above task so that PGD is the AR-RL optimal solution. In general,177

however, PGD is a well-motivated approximation to the optimal strategy, so we call it a178

heuristic. In the more general stochastic setting where there is residual uncertainty in trial179

reward at decision time, the PGD agent will have to learn the association between state180

and expected reward, r̄t. This association is learned from within-trial correlations only. In181

contrast, the opportunity cost of time as the basis for the deliberation cost depends on182

across-trial correlations that together determine the overall performance. It is thus more183

susceptible to non-stationarity. A typical task setting is when the value of the same low-level184

action plan differs across context. From hereon, we will assume the agent has learned the185

stationary opportunity cost of commitment and so focus on resolving the remaining problem:186

how to learn and use an opportunity cost of deliberation that exhibits non-stationarity on187

the longer timescales over which context varies.188

3. Reward filtering for a dynamic opportunity cost of deliberation189

The state disturbance in the toy example above altered task statistics at only a single190

time point. In general, however, changes in task statistics over time can occur throughout191

the task experience. A broader notion of deliberation cost beyond the static average reward192

is thus needed–one that can account for extended timescales over which performance varies.193

Such a cost serves as a dynamic reference in a relative definition of value based on a non-194

stationary opportunity cost of time. We first address how performance on various timescales195

can be estimated.196

As a concrete example, we make use of the task that we will present in detail in the fol-197

lowing section. This task has a context parameter, α, that can vary in time on characteristic198

timescales longer than the moment-to-moment and can serve as a source of non-stationarity199

in performance. Here, the context sequence, αk, varies on a single timescale, e.g. through pe-200

riodic switching between two values. The resulting performance (fig. 2a(top)) varies around201
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Rk/Tk; blue) with its distribution as well as dynamics of between context-conditioned averages

of performance (ρα = 〈ρtrialk 〉k|α; orange), and the effectively stationary average performance (ρ ∼
〈ρtrialk 〉k; purple). Bottom: these are decomposed into a hierarchy by filtering reward history on

trial, context, and long timescales, respectively. (b) Two hypothetical forms for context-specific

trial opportunity cost. Top: Trial-unaware cost in which context varies the slope around ρ. Bottom:

Trial-aware cost in which context variation is through a bias ( eq. (5)).

the stationary average, ρ (purple), with context variation due to the switching (orange), as202

well as context-conditioned trial-to-trial variation (blue). The decomposition of time-varying203

performance into these multiple, timescale-specific components can be achieved by passing204

the reward signal through parallel filters, each designed to retain the signal variation specific205

to that timescale (fig. 2a(bottom)). There are multiple approaches to this decomposition.206

We chose a heuristic approach in which the performance over a finite memory timescale can207

be estimated by filtering the sequence of rewards through a simple low-pass filter [8, 28].208

This filter is defined by an integration time, τ , tuned to trade off the bias and variance209

of the estimate in order to best capture the variation on the desired timescale (e.g. how210

performance varies over different contexts). We denote such an estimate ρ̂τk, and show in211

the Methods that it approximates the average reward over the last τ time units. We discuss212

the question of biological implementation in the discussion, but note here that the number213

and values of τ needed to represent performance variation in a given task could be learned214

or selected from a more complete set in an online fashion during task learning. In an exper-215

imental setting, these learned values can in principle be inferred from observed behaviour216

and we developed such an approach in the analysis of data that we present in the following217

section.218

Applying this heuristic decomposition here, the stationary reward rate, ρ, can be esti-219

mated to high precision by using a long integration time, τlong, to the reward sequence Rk,220
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producing the estimate ρ̂
τlong
k . If αk were a constant sequence, Cdelt = ρ̂

τlong
k t, the station-221

ary opportunity cost of deliberation eq. (3) of AR-RL. However, in this example context222

varies on a specific timescale, to which the former is insensitive. Thus, a second filtered223

estimate ρ̂τcontextk is needed to estimate performance on this timescale. Unlike ρ̂
τlong
k , this es-224

timate tracks the effective instantaneous, context-specific performance, ραk
. Its estimation225

error arises from a trade-off, controlled by the integration time, τcontext, between its speed226

of adaptation and its finite memory.227

We consider two distinct hypotheses for how to extend AR-RL to settings where perfor-228

mance varies over context. The first hypothesis, Cdelt = ραt, is the straightforward, trial-229

unaware extension of eq. (3), shown in fig. 2b(top). Here, performance is tracked only230

on a timescale sufficient to capture context variation and the corresponding cost estimate,231

ρ̂τcontextk−1 , is incurred moment-to-moment, neglecting the trial-based task structure. However,232

this incorrectly lumps together two distinct opportunity costs: those incurred by moment-233

by-moment decisions and those incurred as a result of the effective planning implied by234

performance that varies over context. In particular, context is defined over trials not mo-235

ments, and thus the context-specific component of opportunity cost of a trial is a sunken236

cost paid at the outset of a trial. This inspires a second trial-aware hypothesis237

Cdelt = ρt+ (ρα − ρ)Tα . (trial-aware opportunity cost) (5)

Equation (5) is plotted over trial time t in fig. 2b(bottom). Its first term is the AR-RL238

contribution from the stationary opportunity cost of moment-to-moment decisions using239

the stationary reward rate, ρ estimated with ρ̂
τlong
k . The second, novel term in eq. (5) is a240

context-specific trial cost deviation incurred at the beginning of each trial and computed as241

the average deviation in opportunity cost accumulated over a trial from that context (Tα242

is the average duration of a trial in context α). This deviation fills the cost gap made by243

using the stationary reward rate ρ in the moment-to-moment opportunity cost instead of244

the context-specific average reward, ρα. This baseline cost derived from the orange time245

series in fig. 2a(bottom) vanishes in expectation, as verified through the mixed-context246

ensemble average reward (e.g. ρ ≡∑α ραTα/
∑

α Tα when the context is distributed evenly247

among trials such that
∑

α(ρα − ρ)Tα = 0). Thus, this opportunity cost reduces to that248

used in AR-RL when ignoring context, and suggests a generalization of average-adjusted249

value functions to account for non-stationary context. We estimate this baseline cost using250

(ρ̂τcontextk−1 −ρ̂τlongk−1 )Tk−1, where we have used the sample Tk−1 in lieu of the average Tα. See fig. S1251

for a signal filtering diagram that produces this estimate of eq. (5) from reward history. A252

main difference between the cost profiles from the two hypotheses is the cost at early times.253

Both the behaviour and neural recordings we analyze below seem to favor the second, trial-254

aware hypothesis eq. (5). We hereon employ that version in the main text, and show the255

results for the trial-unaware hypothesis in fig. S7.256

B. Neuroscience application: PGD in the tokens task257

In this section, we apply the PGD algorithm to the “tokens task” [16]. We first give a258

simulated example with periodic context dynamics. We then present an application to a259

set of non-human primate experiments in which context variation was non-stationary [19].260

For the latter, we used the decision time dynamics over trials to fit a model for each of the261

two subjects. We then validated the models by assessing their ability to explain (1) the262
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concurrently recorded behaviour via their context-specific behavioural strategies and (2) the263

neural activity in premotor cortex (PMd) via the temporal profile of the underlying neural264

urgency signals.265

In the tokens task, the subject must guess as to which of two peripheral reaching targets266

will receive the majority of tokens that randomly jump, one by one every 200ms, from a267

central pool initialized with a fixed number of tokens. Importantly, after the subject reports,268

the interval between remaining jumps contracts to once every 150ms (the “slow” condition)269

or once every 50ms (the “fast” condition), giving the subject the possibility to save time by270

taking an early guess. The interval contraction factor, 1 − α, for slow (α = 1/4) and fast271

(α = 3/4) condition is parametrized α ∈ [0, 1], the incentive strength to decide early, which272

then serves as the task context.273

In contrast to the patch leaving task example from Section A, the tokens task has many274

within-trial states and the state dynamics is stochastic. With the tth jump labelled St ∈275

{−1, 1} serving as the state, for the purposes of prediction, the history of states can be276

compressed into the tokens difference, Nt =
∑t

i=1 Si, between the two peripheral targets277

with N0 = 0. The dynamics of Nt is an unbiased random walk (see fig. 3a), with its current278

value sufficient to determine the belief of a correct report, bt (computed in Methods). Since279

for binary rewards, bt is also the expected reward, Nt is also sufficient for determining the280

opportunity cost of commitment, Ccomt (eq. (2)). We display this commitment cost dynamics281

in fig. 3b. It evolves on a lattice (gray), always starting at 0.5 (for p = 1/2) and ending at 0282

for all p. We assume the agent has learned to track this commitment cost. The PGD agent283

uses this commitment cost, along with the estimate of the trial-aware deliberation cost, to284

determine when to stop deliberating and report its guess.285286

1. A simulated example for a regularly alternating context sequence287

We first show the behaviour of the PGD algorithm in the simple case where α switches288

back and forth every 300 trials (see fig. 3). We call such segments of constant α ‘trial blocks’,289

with context alternating between slow (α = 1/4) and fast (α = 3/4) blocks. The decision290

space in PGD is a space of opportunity costs, equivalent to the alternative decision space291

formulated using beliefs [7]. In particular, one can think of the deliberation cost as the292

decision boundary (fig. 3b). This boundary is dynamic (see Supplemental video), depending293

on performance history via the estimates, ρ̂τcontextk and ρ̂
τlong
k , of the context-conditioned and294

stationary average reward, respectively. The result of these dynamics is effective context295

planning: the PGD algorithm sacrifices accuracy to achieve shorter trial duration in trials296

of the fast block, achieving a higher context-conditioned reward rate compared to decisions297

in the slow block (c.f. the slopes shown in the inset of fig. S2d). This behaviour can be298

understood by analyzing the dynamics of ρ̂τcontextk and ρ̂
τlong
k , and their effect on the dynamics299

of the decision time ensemble.300

The two performance estimates behave differently from one another solely because of301

their distinct integration times. Ideally, an agent would choose τcontext to be large enough302

that it serves to average over trial-to-trial fluctuations in a context, but short enough to303

not average over context fluctuations. In contrast, the value of τlong would be chosen large304

enough to average over context fluctuations. We apply those choices in this simulated305

example, with rounded values chosen squarely in the range in which the values inferred306

from the behaviour in the following application will lie. As a result of this chosen values,307

the context estimate ρ̂τcontextk relaxes relatively quickly after context switches to the context-308
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Figure 3. PGD agent performs the tokens task for periodic context switching. (a) A tokens task

trial. Left: Tokens jump from a center to a peripheral region (gray circles). Right: The tokens

difference, Nt, evolves as a random walk that accelerates according to α (here 3/4) post-decision

time, tdec. The trial duration is T , which includes an inter-trial interval. (b) Decision dynamics

in cost space obtained from evidence dynamics in (a). Commitment cost trajectories (gray lattice;

thick gray: trial-averaged) start at Ccomt=0 and end at 0. Trajectory from (a) shown in black. tdec

(black cross) is determined by the crossing of the commitment and deliberation cost. (c) Incentive

strength switches between two values every 300 trials. (d) Expected rewards filtered on τlong (ρ̂
τlong
k ,

purple) and τcontext (ρ̂τcontextk , green). Black dashed lines from bottom to top are ρα=1/4, ρ, and

ρα=3/4.

conditioned stationary average performance (dashed lines in fig. 3d), but exhibits stronger309

fluctuations as a result. The estimate of the stationary reward, ρ̂
τlong
k , on the other hand has310

relatively smaller variance. This variance results from the residual zigzag relaxation over311

the period of the limit cycle. Given the characteristic block duration, Tblock, we can be more312

precise. In particular, when Tblock is much less than τlong (Tblock/τlong � 1), the within-block313

exponential relaxation is roughly linear. Thus, the average unsigned deviation between ρ̂
τlong
k314

and the actual stationary reward, ρ, can be approximated using 1 − exp [−Tblock/τlong] ≈315

Tblock/τlong � 1. This scaling fits the simulated data well (fig. S2d: inset).316

The dynamics of these two performance estimates drives the dynamics of the k-conditioned317

decision time ensemble via how they together determine the deliberation cost (eq. (5); Sup-318

plemental video). For example, the mean component of this ensemble relaxes after a context319
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switch to the context-conditioned average, while the fluctuating component remains strong320

due to the sequence of random walk realizations (fig. S2c). In the case of periodic context,321

the performance estimates and thus also the decision time ensemble relax into a noisy peri-322

odic trajectory over the period of a pair of fast and slow blocks (fig. 3d). Over this period,323

they exhibit some stationary bias and variance relative to their corresponding stationary324

averages (distributions shown in fig. S2e).325

2. Fit to behavioural data from non-human primates and model validation326

Next, we fit a PGD agent to each of the two non-human primates’ behaviour in the327

tokens task experiments reported in [19] and compare to AR-RL solutions. As with the328

above example (c.f. fig. 3), trials were structured in alternating blocks of α = 1/4 and329

α = 3/4. Figure 4a shows context-switching α-sequence from these experiments, which, in330

contrast to the above example exhibits large, irregular fluctuations in block size [29].331332

So far, PGD has only two free parameters: the two filtering time constants, τlong and333

τcontext. We anticipated only a weak dependence of the fit on the τlong, so long as it exceeded334

the average duration of a handful of trial blocks enabling a sufficiently precise estimate of335

ρ. In contrast, the context filtering timescale, τcontext, is a crucial parameter as it dictates336

where the PGD agent lies on a bias-variance trade-off in estimating ραk
, the value of which337

determines the context-specific contribution to the deliberation cost (eq. (2)). To facilitate338

the model’s ability to fit individual differences, we introduce a subjective reward bias factor,339

K, that scales the rewards fed into the performance filters. We also add a tracking-cost sen-340

sitivity parameter, ν, that controls τcontext to avoid wasting adaptation speed (see Methods341

for details). The latter made it possible to fit the asymmetric switching behaviour observed342

in the average decision time dynamics. With these four parameters, we quantitatively match343

the baselines and exponential-like relaxation of the average decision time dynamics around344

the two context switches (fig. 4b,c; see Methods for fitting details).345

A comparison of the best-fitting parameter values over the two monkeys (fig. 4d-f) sug-346

gests that the larger the reward bias, K (fig. 4e), the more hasty the context-conditioned347

performance estimate (the smaller τcontext), and the lower the sensitivity to the tracking cost348

(fig. 4f). This is consistent with the hypothesis that subjects withhold cognitive effort in349

contexts of higher perceived reward [8]. Along with the correspondence in temporal statistics350

of the behaviour (e.g. fig. S6), the fitted model parameters for the two subjects provides a351

basis on which to interpret the subject differences in the results of the next section, in par-352

ticular their separation on a speed-accuracy trade-off, as originating in the distinct reward353

sensitivity shown here.354355

To better understand where both the data and the learned PGD agent lie in the space356

of strategies for the tokens task, we computed reward-rate (AR-RL) optimal solutions for357

a given fixed context, α (here α ∈ [0, 1]), using the same approach as [7] (conventional358

discount-reward value iteration achieved the same solution in the limit of the undiscounted359

case; result not shown). In each of average-reward and discount-reward formulations, the360

dynamic programming approach involves iterating Bellman’s equation to obtain the optimal361

value functions from which the optimal policy and its reward rate can be obtained (see362

Methods for details). The optimal reward rate as a function α is shown in fig. 5a. The363

strategies generating these reward rates interpolate from the wait-for-certainty strategy at364

low α to the one-and-done strategy [30] at high α. The α-conditioned reward rates achieved365

by the two primates with their corresponding PGD model, and a reference human [31]366
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Figure 4. PGD model fit to NHP behaviour for non-stationary α-dynamics reported in Ref. [19]. (a)

Block length sequence used in the experiment. (b,c) decision times (dots) aligned on the context-

switching event type (fast-to-slow in gray; slow-to-fast in color) and averaged. Shaded regions

are the standard error bounds of the models’ average decision times. (d) Error evaluated on a

(τ̂context, τ̂long)-plane cut through the parameter space at the best-fitting ν = ν̂∗ and K = K̂∗ (gray

area indicates timescales within an order of magnitude of the end of the experiment). Contours

show the first 10 contours incrementing by 0.01 error from the minimum (shown as a circle marker).

Colors refer to subject, as in (b) and (c). (e) Same for (τ̂context, K̂) at τ̂long = τ̂∗long and ν = ν̂∗. (f)

Same for (τ̂context, ν̂) at τ̂long = τ̂∗long and K = K̂∗.

are also shown in fig. 5a. They clearly fall below the optimal strategy, and, as expected,367

above the strategy that picks one of the three actions (report left, report right, and wait) at368

random.369

To confirm that this similarity in performance between PGD and the data arises from370

a better fit to the behaviour than AR-RL, we plotted the distribution of the differences371

between model and data decision times, |∆tdec|, conditioned on the context (fig. 5b,c). For372

comparison with previous work [7] and to account for deliberation cost in AR-RL, we added373

to the AR-RL reward objective a constant auxiliary deliberation cost rate, c, incurred up374

to the decision time in each trial, and chose the cost rate, c∗, that gave the lowest mean375

difference. In both contexts, PGD exhibits lower error than this c∗ AR-RL solution.376

To reveal the source of this discrepancy in both performance and behaviour, we turned377

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.07.31.452742doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.31.452742
http://creativecommons.org/licenses/by-nc-nd/4.0/


14

D F

E G

0 0.5 1.0

human

subject 1

subject 2

fitted PGD

A

H

I

α

AR-RL models

subject 1

subject 1

auxiliary
deliberation
cost, 

0

0.04

0.04

0.02

0.06

re
w

ar
d 

ra
te

wait-for-certainty

one-and-done

AR-RL

c

sl
ow

bl
o
ck

fa
st

bl
o
ck

−10

0

10

to
ke

n
di

ff
er

en
ce

,
N

t

subject 1

−10

0

10

PGD model

0 5 10 15
time, t

−10

0

10

to
ke

n
di

ff
er

en
ce

,
N

t

0 5 10 15
time, t

−10

0

10 0.0

0.5

1.0

surv.
prob.

0 5 10 15

∆tdec

PGD

incentive strength,

B

C

model error

0

0 5 10 15
time, t

AR-RL c∗)

(c=0)

RRSPGD = 7.04

RRSARRL= 22.5

RRSPGD = 8.05

RRSARRL= 19.1

(

Figure 5. Context-conditioned analysis of PGD and comparison to AR-RL models. (a) Shown

is the reward rate as a function of incentive strength, α (wait-for-certainty strategy shown in

brown; one-and-done strategy shown in red). We additionally show the slow and fast context-

conditioned reward rates for the two primates and the PGD model fitted to them, as well as a

reference expert human. Reward rates for the human and non-human primates are squarely in

between the best (black dashed) and uniformily random (gray) strategy. (b,c) The distribution

over trials of differences in decision times between model and data, |∆tdec| = |tdec,data− tdec,model|,
conditioned on slow and fast block contexts. Solid lines are for PGD. Dotted lines are for the

AR-RL solution using the cost rate, c∗, with the lowest mean error. The residual sum of squares

(RRS) for each model/block combination is displayed. (d-g) Interpolated state-conditioned survival

probabilities, P (tdec = t|Nt, t), over slow (d,f) and fast (e,g) blocks. White dotted lines show the

P (tdec = t|Nt, t) = 0.5 contour. (h,i) State-conditioned decision time frequencies (cross size) from

AR-RL optimal decision boundaries across different values of the cost rate, c (colored crosses) for

slow (h) and fast (i) conditions. Only samples with Nt < 0 and Nt > 0, respectively, are shown. For

comparison, the reflected axes shows as gray crosses the state-conditioned decision time frequencies

of the data.
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to analyzing the corresponding policies of PGD and c-based AR-RL agents. A robust and378

rich representation of the behavioural statistics is the state and time-conditioned survival379

probability that a decision has not yet occurred. It serves as a summary of the action policy380

associated with a stationary strategy (see Methods for its calculation from response times).381

Applied equally to the decision times of both model and data, it can provide a means of382

comparison even in this non-stationary setting. We give this conditional probability for383

each of the two contexts for subject 1 and its fitted PGD model in fig. 5d-g. We left the384

many possible noise sources underlying the behaviour out of the model in order to more385

clearly demonstrate the PGD algorithm. However, such noise sources would be necessary386

to quantitatively match the variability in the data (e.g. added noise in the performance387

estimates leads to larger variability in the location of the decision boundary and thus also388

to larger spread in these survival probability functions (not shown)). In the absence of389

these noise sources, we see the model underestimates the spread of probability over time390

and tokens state. Nevertheless, the remarkably smooth average strategy is well captured by391

the model (white dashed lines in fig. 5d-g). Specifically, policies approximately decide once392

either of the peripheral targets receive a certain number of tokens. Comparing results across393

context, we find that fast block strategies (fig. 5e,g) exhibit earlier decision times relative394

to slow block strategies (fig. 5d,f) in both model and data. The strategies for subject 2395

are qualitatively similar, but shifted to earlier times relative to subject 1 (fig. S3). Our396

model explains this inter-individual difference as resulting from subject 2’s larger reward397

bias and faster context integration (c.f. fig. 4e). The correspondence between the PGD398

model and data over the many token states in fig. 5d-g explains their similar performance399

(c.f. fig. 5a). This similarity in policy is remarkable given that the model has essentially400

only a single, crucial degree of freedom (τcontext), a priori unrelated to how decision times401

depend on token state. Note that in both the fitted PGD model and the primate behaviour,402

residual ambiguity (Nt ≈ 0) is resolved at intermediate trial times (fig. 5b-e).403

The AR-RL strategies are plotted across c in fig. 5g,h. In contrast, they give no interme-404

diate decision times at ambiguous (Nt ≈ 0) states, invariably waiting until the ambiguity405

resolves. This in fact holds over the entire (α, c)-plane ( see fig. S9 for the complete depen-406

dence), and also under the addition of a movement cost, i.e. a constant cost incurred by407

either of the reporting actions (data not shown). Thus, whereas AR-RL policies shift around408

the edges of the relevant decision space as α or c is varied, the PGD policy lies squarely409

in the bulk, tightly overlaying the policy extracted from the data. We conclude that the410

context-conditioned strategies of the non-human primates in this task are well-captured by411

PGD, while having little resemblance to the behaviour that would maximize reward rate412

with or without a fixed deliberation cost rate. We address the additional freedom of a413

time-varying cost rate in the discussion.414

3. Neural urgency and context-dependent opportunity cost415

So far, we have fit and analyzed the PGD model with respect to recorded behaviour. Here,416

we take a step in the important direction of confronting the above theory of behaviour with417

the neural dynamics that we propose drive it. The proposal for the tokens task mentioned418

at the end of the introduction has evidence strength and urgency combining in PMd, whose419

neural dynamics implements the decision process. In fig. 6a, we restate in a schematic420

diagram an implementation of this dynamics that includes a collapsing decision boundary.421

In the one-dimensional belief space for the choice (fig. 6a(top)) [7, 32], the rising belief422
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collides with the collapsing boundary to determine the decision time. In the equivalent423

commitment and deliberation cost formulation developed here (fig. 6a(middle)), the falling424

commitment cost collides with the rising deliberation cost. The collapsing boundary in425

belief space can be parametrized as C − ut, where C is the initial strength of belief, e.g.426

some desired confidence, that is lowered by a growing function of trial time ut > 0. The427

decision criterion is then bt > C − ut, where bt is the belief, i.e. the probability of a correct428

report. For AR-RL optimal policies, ut emerges from value maximization and thus has a429

complicated dependence on the opportunity cost sequence, Cdelt . For PGD, in contrast, C430

is interpreted as the maximum reward rmax and ut is identically Cdelt . For a linear neural431

encoding model in which belief, rather than evidence, is encoded in neural activity, the sum432

of the encoded belief b̃t and the encoded collapsing boundary, ũt, evolve on a one-dimensional433

choice manifold. According to the proposal, when this sum becomes sufficiently large (e.g.434

b̃t + ũt > C̃ for some threshold C̃), PMd begins to drive the activity in downstream motor435

areas towards the associated response.436

Neural urgency was computed from the PMd recordings of [19] in [33]. This computation437

relies on the assumption that while a single neuron’s contribution to b̃t will depend on438

its selectivity for choice (left or right report), the urgency ũt is a signal arising from a439

population-level drive to all PMd neurons, irrespective of their selectivity. Thus, ũt can440

be extracted from neural recordings by conditioning on zero-evidence states (b̃t = 0) and441

averaging over cells. In [33], error bars were computed at odd times via bootstrapping; data442

at even times was obtained by interpolating between Nt = ±1; and data was pooled from443

both subjects. We have excluded times at which firing rate error bars exceed the range444

containing predictions from both blocks. To assess the correspondence of the components445

of the deliberation cost developed here and neural urgency, in fig. 6b we replot their result446

(c.f. fig.8b of [33]). We overlay the mean (+/- standard deviation) of the opportunity cost447

sequence, Cdelt (shaded area in fig. 4; averaged over all trials produced by applying the two448

fitted PGD models on the data sequence and conditioning the resulting average within-449

trial deliberation cost on context). To facilitate our qualitative comparison, we convert450

cost to spikes/step simply by adjusting the y-axis of the deliberation cost. The observed451

urgency signals then lie within the uncertainty of the context-conditioned deliberation cost452

signals computed from the fitted PGD models. There are multiple features of the qualitative453

correspondence exhibited in fig. 6b: (1) the linear rise in time; (2) the same slope across454

both fast and slow conditions; and (3) the baseline offset between conditions, where the fast455

condition is offset to higher values than the slow condition. Such features would remain456

descriptive in the absence of a theory. With the theory we have presented here, however,457

each has their respective explanations via the interpretation of urgency as the opportunity458

cost of deliberation: (1) the subject uses a constant cost per token jump, (2) this cost rate459

refers to moment-to-moment decisions, irrespective of context, that is reflective of the use460

of the context-agnostic stationary reward, and (3) trial-aware planning over contexts leads461

to an opportunity cost baseline offset with a sign given by the reward rate deviation ρα − ρ462

with respect to the stationary average, ρ.463

Up to now, the computational and neural basis for urgency has remained largely un-464

explored in normative approaches, which also typically say little about adaptation effects465

(see [34] for a notable exception). In summary, we exploited the adaptation across context466

switches to learn the model and explained earlier responses in high reward rate contexts467

as the result of a higher opportunity cost of deliberation. While this qualitative effect is468

expected, we go beyond existing work by quantitatively predicting the average dependence469
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Figure 6. Comparing neural urgency and collapsing decision boundaries. (a) Top: Rising be-

lief (blue) meets collapsing decision boundary (black dashed) in belief space. Middle: Falling

commitment cost (blue) meets rising deliberation cost (black-dashed) in cost space. Bottom: Be-

lief/commitment cost is encoded (blue) into a low-dimensional neural manifold, with the addition of

an urgency signal (orange) (c.f. fig.8 in [7]). The decision (red circle) is taken when the sum passes

a fixed threshold (black-dashed). (b) Deliberation cost maps onto the urgency signal extracted

from zero-evidence conditioned cell-averaged firing rate in PMd (200ms time steps).

on both time and state (fig. 5b-e) as well as the qualitative form of urgency signal (fig. 6b).470

Taken together, the data is thus consistent with our interpretation that neural activity un-471

derlying context-conditioned decisions is gated by opportunity costs reflective of a trial-aware472

timescale hierarchy computed using performance estimation on multiple timescales.473

DISCUSSION474

We introduced PGD, a heuristic decision-making algorithm for continuing tasks that475

gates deliberation based on performance. We constructed a foraging example for which476

PGD is the optimal strategy with respect to the average-adjusted value function of average-477

reward reinforcement learning (AR-RL). While this will not be true in general, PGD does478

strike a balance between strategy complexity and return. The PGD decision rule does not479

depend on task specifics and exploits the stationarity of the environment statistics while480

simultaneously hedging against longer term non-stationarity in reward context. It does so481

by splitting the problem into two fundamental components—learning the statistics of the482

environment in order to compute the opportunity cost of commitment, and tracking one’s483

own performance in that environment with which to compute the opportunity cost of de-484

liberation. This splitting is not only crucial to making efficient use of the opportunity cost485

of time in non-stationary settings. Building on the field’s current understanding of how the486

cortico-basal ganglia system supports higher-level decision-making [35], we propose that the487

cost of deliberation arises from performance estimated on multiple, behaviourally-relevant488

timescales and is broadcast to multiple, lower-level decision-making areas to gate the speed489

of their respective evidence-driven attractor dynamics. Incorporating this cost into existing490
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models of such dynamics [32, 36, 37] is an interesting direction for future work. Consistent491

with this picture, PGD’s explanatory power was borne out at both the behavioural and492

neural levels for the tokens task data we analyzed. In particular, a deliberation cost con-493

structed from trial-aware planning was supported independently by both these data sources.494

We used behavioural data to fit and validate the theory, and neural recordings to provide495

evidence of one of the neural correlates it proposes: the temporal profile of neural urgency.496

Scientific and clinical implications In our proposal, we have linked two important and497

related, but often disconnected fields: the systems neuroscience of the neural dynamics of498

decision-making and the cognitive neuroscience of opportunity cost and reward sensitivity.499

The view that tonic dopamine encodes average reward is two decades old [3]. However, the500

existence of a reward representation decomposed by timescale has received increasing em-501

pirical support only in recent years, from cognitive results [38–40] to a recent unified view of502

how dopamine encodes reward prediction errors using multiple discount factors [41, 42] and503

of dopamine as encoding both value and uncertainty [43]. Dopamine’s effect on time per-504

ception has been proposed [44] and has empirical support [45], but the mechanism by which505

its putative effect on decision speed is implicated in the neural dynamics of the decision-506

making areas driving motor responses was unknown. Our theory fills this explanatory gap507

by considering dynamic evidence tasks and parametrizing urgency using a multiple-timescale508

representation of performance. One candidate for the latter’s neural implementation is in509

the complex spatio-temporal filtering of dopamine via release-driven tissue diffusion and510

integration via DR1 and DR2 binding kinetics [46]. Subsequent neural filtering and compu-511

tation by striatal network activity could also play a role [47]. The study of spatiotemporal512

filtering of dopamine is increasingly accessible experimentally [48, 49] and provides an excit-513

ing direction for multiscale analysis of behaviour. Our proposal that urgency is the means514

by which the neural representation of reward ultimately affects neural dynamics in decision-515

making areas frames a timely research question on which these experimental methods could516

shed light.517

We applied PGD to decisions playing out in PMd, a decision-making area relevant to arm518

movements. PGD appears to be relevant to other kinds of decisions, however. For instance,519

a large body of work has studied decisions through recordings in lateral intraparietal cortex520

in random dot motion tasks whose environment is formally similar to that of the tokens task.521

One seminal study identified an urgency signal with the same properties as those exhibited522

by the tokens task: a linear rise at early trial times that is independent of trial evidence523

and an offset with sign given by the reward rate deviation of the current context, here two524

and four-choice trials [17]. While decision boundaries obtained using AR-RL are evidence-525

independent, these models require tailored cost functions that are fit to those experiments526

in a procedure that assumes optimality a piori [7]. Here, we offer an alternative explanation527

that behaviour is in fact suboptimal, with the decision boundary determined directly by the528

estimated opportunity cost only. PGD decision boundaries are thus independent of evidence529

by construction. In contrast to the tokens task, however, context in these random dot task530

experiments was sampled randomly and thus its dynamics lacked temporal correlation [17].531

In this case, a natural hypothesis from our approach is that a pair of performance filters,532

one for each context, tracks the reward history in two parallel streams. In this case, our533

theory would predict that the ratio of slopes of urgency across the two contexts reflects534

the ratio of context-conditioned reward rates. An estimation procedure described in the535

Methods for this data [17] agrees to within 20% error, providing support for the hypothesis536

that PGD underlies non-human primate behaviour on this widely-studied task. Within the537
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context of the drift-diffusion models typically used to understand neural activity for that538

task, PGD provides a principled mechanism that implements collapsing decision boundary.539

PGD is thus easily incorporated into such models and testing the generality of our theory540

using tailored experiments in this setting is an important next step.541

Urgency may play a role in both decision and action processes, potentially providing a542

transdiagnostic indicator of a wide range of cognitive and motor impairments in Parkinson’s543

disease and depression [50]. Our theory offers a means to ground these diverse results in544

neural dynamics by formulating opportunity cost estimation as the underlying causal factor545

linking vigor impairments (e.g. in Parkinson’s disease) and dysregulated dopamine signalling546

in the reward system [50–52]. We provide a concrete proposal for a signal filtering system547

that extracts a context-sensitive opportunity cost from a reward prediction error sequence548

putatively encoded by dopamine. Neural recordings of basal ganglia provide a means to549

identify the neural substrate for this system.550

Commitment cost estimation Beyond the estimation of the opportunity cost of deliber-551

ation, we assumed that the agent had a precise estimate of the expected reward, which it552

used to compute the within-trial commitment cost. For the tokens task, a recorded signal in553

dorsal lateral prefrontal cortex of non-human primates correlates strongly with belief [20],554

equivalent to the expected reward for binary rewards). How this quantity is computed by555

neural systems is not currently known. However, for a general class of tasks, a generic,556

neurally plausible means to learn the expected reward is via distributional value codes [43].557

For example, the Laplace code is a distributional value representation that uses an ensemble558

of units over a range of temporal discount factors and reward sensitivities [53]. The authors559

show that expected reward is linearly decodeable from this representation.560

Experimental predictions A feature of our decision-making theory is that it is highly561

vulnerable to falsification. First, with regards to behaviour via the shape of the action562

policy using our survival probability representation (c.f. fig. 5b-e,g,h), PGD varies markedly563

with reward structure and thus provides a wealth of predictions for how observed behaviour564

should be altered by it. For example, a salient feature of the standard tokens task is its565

reflection symmetry in the tokens difference, Nt. We can break this symmetry for which the566

theory predicts a distinctly asymmetric shape (fig. S10; for details see Methods). Our theory567

is also prescriptive for neural activity via the temporal profile of neural urgency. The slope of568

Cdelt remained fixed across blocks for relatively short block lengths used in the data analyzed569

here. In the opposite limit, Tblock/τlong � 1, ρ
τlong
k approaches ρα except when undergoing570

large, transient excursions after context switches. Thus, the deliberation cost is given by571

the first component in eq. (5) most of the time, with the context specific reward rate as the572

slope. One simple prediction is that the slope of urgency should exhibit increasing variation573

as the duration of the blocks increases.574

Reinforcement learning theory We suggest how to generalize average-adjusted value575

functions to context-varying opportunity cost of time in a way that reduces to AR-RL576

when context is fixed or not tracked. This adds a continuing task perspective to episodic577

AR-RL, in line with recent work in machine learning, which is arguably the more appropriate578

reinforcement learning setting for many decision-making experiments in neuroscience. The579

epistemic perspective entailed in the estimation of these costs parallels a recent epistemic580

interpretation of the discount-reward formulation as encoding knowledge about the volatility581

of the environment [54].582

Our work also suggests a new class of reinforcement learning algorithms between model-583

based and model-free: only parts of the algorithm need adjustment upon task structure584
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variation. This is reminiscent of how the effects of complex state dynamics are decoupled585

from reward when using a successor representation [55], but tailored for the average-reward586

rather than the discount-reward formulation. We have left analysis of the algorithmic com-587

plexity of PGD to future work, but expect performance improvements, as with successor588

representations, in settings where decoupling the learning of environment statistics from the589

learning of reward structure is beneficial.590

Comparison with humans In the space of strategies, PGD lies in a regime between fully591

exploiting assumed task knowledge (average-case optimal) and assumption-free adaptation592

(worst-case optimal). Highly incentivized human behaviour is likely to be more structured593

than PGD because of access to more sophisticated learning. While some humans land on594

the optimal one-and-done policy in the fast condition when playing the tokens task [56],595

most do not. The human brain likely has all the components needed to implement PGD.596

Nevertheless, the situations in which we actually exploit PGD, if any, are as yet unclear. In597

particular, how PGD and AR-RL relate to existing behavioural models tailored to explain598

relative-value, context-dependent decision-making in humans [4], such as scale and shift599

adaptation[57], is an open question. Whether or not PGD is built into our decision-making,600

the question remains if PGD is optimal with respect to some bounded rational objective.601

In spite of the many issues with the latter approach [58], using it to further understand the602

computational advantages of PGD is an interesting direction for future work.603

Despite our putative access to sophisticated computation, humans still exhibit measurable604

bias in how we incorporate past experience [59]. One simple example is the win-stay/lose-605

shift strategy, a more rudimentary kind of performance-gated decision-making than PGD,606

which explains how humans approach the rock-paper-scissors game [60]. In that work,607

numerical experiments demonstrated that this strategy outperforms at a population level the608

optimal Nash equilibrium for this game, demonstrating that the use of such seemingly sub-609

optimal strategies can confer a surprising evolutionary advantage. This example supports610

the claim that relatively simple and nimble strategies such as PGD make for attractive611

candidates when acknowledging that a combination of knowledge and resource limitations612

over task, development, and evolutionary timescales have shaped decision-making in non-613

stationary environments.614

METHODS615

Code for simulations and main figure generation (written in Python 3) is publicly acces-616

sible as a online repository: https://github.com/mptouzel/dyn opp cost/.617

Patch leaving task618

We devised a mathematically tractable patch leaving task for which PGD learning is619

optimal with respect to the average-adjusted value function. Here the value is simply the620

return from the patch. This value function is related, but not equivalent to the marginal621

value of optimal foraging, for which the decision rule is Cdelt > rmax − Ccomt = r̄t [5]). This622

choice of task allowed us to compare PGD’s convergence properties relative to conventional623

AR-RL algorithms that make use of value functions. In contrast to PGD, the latter requires624

exploration. For a comparison generous to the AR-RL algorithm, we allowed it to circumvent625

exploration by estimating the value function from off-policy decisions obtained from the626
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PGD algorithm using the same learning rate. We then compared them to PGD using their627

on-policy, patched-averaged reward. This made for a comparison based solely between the628

parameters of the respective models. If we did not allow for this, the AR-RL algorithms629

would have to find good learning signals by exploring. In any form, this exploration would630

lead them converge substantially slower. This setting thus provides a lower bound on the631

convergence times of the AR-RL algorithm.632

In this task, the subject randomly samples (with replacement) d patches, each of a dis-633

tinct, fixed, and renewable richness defined by the maximum return conferred. These maxi-634

mum returns are sampled before the task from a richness distribution, p(rmax), with rmax > 0635

and are fixed throughout the experiment. The trials of the task are temporally extended636

periods during which the subject consumes the current patch. After a time t in a patch,637

the return is defined r(t) = rmax(1− (λt)−1). This patch return profile, 1− (λt)−1, is shared638

across all patches and saturates in time with rate λ, a parameter of the environment that639

sets the reference timescale. The return diverges negatively for vanishing patch leaving times640

for mathematical convenience, but also evokes situations where leaving a patch soon after641

arriving is prohibitively costly (e.g. when transit times are long). A stationary policy is then642

a leaving time, ts, for each of d patches, where the s-subscript indexes the patch. Given any643

policy, the stationary reward rate for uniformly random sampling of patches is then defined644

as645

ρ =
d∑
s=1

rs(ts)

/ d∑
s=1

ts . (6)

We designed this task to (1) emphasize the speed-return trade-off typical in many delibera-646

tion tasks, and (2) have a tractable solution with which to compare convergence properties647

of PGD and AR-RL value function learning algorithms.648

A natural optimal policy is the one that maximizes the average-adjusted trial return,649

Q(r, t) = r−ρt. Given the return profile we have chosen, the corresponding optimal decision650

time, t∗s, in the sth patch obtained by maximizing r − ρt is t∗s =
√
rmax,s/(λρ), which scales651

inversely with the reward rate so that decision times are earlier for larger reward rates,652

because consumption (or more generally deliberation) at larger reward rates costs more. We653

chose this return profile such that stationary PGD learning gives exactly the same decision654

times: the condition Cdelt = Ccomt for patch s here takes the form ρts = rmax,s/(λts). Thus,655

they share the same optimal reward rate, ρ∗. Using t∗s for each patch in eq. (6) gives a656

self-consistency equation for ρ with solution ρ∗ = λµ2
1/4µ

2
1/2, where µn = 〈rnmax〉p(rmax)

(we657

have assumed d is large here to remove dependence on s). Described so far in continuous658

time, the value function was implemented in discrete time such that the action space is659

a finite set of decision times selected using the greedy policy, t∗ = argmaxt Q̂(r, t), where660

Q̂(r, t) is the estimated trial return. As a result, there is a finite lower bound on the661

performance gap, i.e. the relative error, ε = (ρ∗ − ρ)/ρ∗ > 0 for the AR-RL algorithm.662

Approaching this bound, convergence time for both PGD and AR-RL learning is limited663

by the integration time τ of the estimate ρ̂τk (c.f. eq. (8)) of ρ. We note that PGD learns664

faster in all parameter combinations tested. To demonstrate the insensitivity of PGD to the665

state space representation, at 5× 105 time steps into the experiment we shuffled the labels666

of the states. PGD is unaffected, while the value function-based AR-RL algorithm is forced667

to relearn and in fact does so slower than in the initial learning phase, due to the much668

larger distance between two random samples, than between the initial values (chosen near669

the mean) and the target sample.670
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Filtering performance history671

For unit steps of discrete time, the step-wise update of the performance estimate, ρ̂τt , is672

ρ̂τt = (1− β)ρ̂τt−1 + βRt , (7)

with β = 1/(1+τ) called the learning rate, and τ the characteristic width of the exponential673

window of the corresponding continuous time filter over which the history is averaged. We674

add τ as a superscript when denoting the estimate to indicate this. Exceptionally, here t675

indexes absolute time rather than trial time. Note that a continuous-time formulation of676

the update is possible via an event-based map given the decision times in which the reward677

event sequence is given as a sum of delta functions. In either case, to leading order in β,678

ρ̂τt ≈ β
∑t

iRi, i.e. the filter sums past rewards. Thus, when τ ∼ O(t)� 1, β ∼ O(1/t)� 1679

and so ρ̂τt ≈ β
∑t

iRi → ρ when t is large.680

The rewards in this task are sparse: Rt = 0 except when a trial ends and the binary681

trial reward Rk (1 or 0) is received. A cumulative update of eq. (7) that smooths the682

reward uniformly over the trial duration and is applied once at the end of each trial is683

thus more compuatationally efficient. Resolving a geometric series leads to the cumulative684

update [8, 28]685

ρ̂τk = (1− β)Tk ρ̂τk−1 + (1− (1− β)Tk)ρtrialk , (8)

where the smoothed reward, ρtrialk = Rk/Tk, can be interpreted as a trial-specific reward rate.686

The initial estimate, ρ̂τ0, is set to 0. Exceptionally, ρ̂τ1 = R1/T1, after which eq. (8) is used.687

Using the first finite sample as the first finite estimate is both more natural and robust than688

having to adapt from zero. We will reuse this filter for different τ and denote the filtered689

estimate from its application with a τ -superscript, ρ̂τk. For example, the precision of ρ̂
τlong
k690

as an estimate of a stationary reward rate ρ is set by how many samples it averages over,691

which is determined by the effective length of its memory given by τlong. Since we assume692

the subject has learned the expected reward, r̄t, we use it instead of Rk when computing693

ρtrialk .694

Tokens task: a random walk formulation695

The tokens task is a continuing task of episodes (here trials), which can be formulated696

using the token difference, Nt. Each trial effectively presents to the agent a realization697

of a finite-length, unbiased random walk, Ntmax = (N0, . . . , Ntmax) with Nt = {−t, . . . , t}698

and N0 = 0. We express time in units of these steps. The agent observes the walk and699

reports its prediction of the sign of the final state, sign(Ntmax) = ±1 (tmax is odd to exclude700

the case it has no sign). The time at which the agent reports is called the decision time,701

tdec ∈ {0, 1, . . . , tmax}. For a greedy policy, sign(Nt) can be used as the prediction (and702

the reporting action selected randomly if Ntdec = 0). The decision-making task then only703

involves choosing when to decide. In this case, the subject receives reward R = Θ(NtmaxNtdec)704

at the end of the random walk, i.e. a unit reward for a correct prediction, otherwise nothing705

(Θ is the Heaviside function: Θ(x) = 1 if x > 0, zero otherwise).706

An explicit action space beyond decision time is not necessary for the case of greedy707

actions. It can nevertheless be specified for illustration in an Markov decision process (MDP)708

formulation: the agent waits (at = 0 for t < tdec) until it reports its prediction, atdec = ±,709

after which actions are disabled and the prediction is stored in an auxiliary state variable710
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used to determine the reward at the end of the trial. A MDP formulation for a general class711

of perceptual decision-making tasks, including the tokens and random dots task, is given in712

Methods).713

Perfect accuracy in this task is possible if the agent reports at tmax since R = Θ(N2
tmax

) =714

1. The task was designed to study reward rate maximizing policies. In particular, the task715

has additional structure that allows for controlling what this optimal policy is through the716

incentive to decide early, α, incorporated into the trial duration for deciding at time t in the717

trial,718

T (t) = t+ (1− α)(tmax − t) + TITI. (9)

Here, a dead time between episodes is added via the inter-trial interval, TITI, to make719

suboptimal the strategy of predicting randomly at the trial’s beginning. We emphasize that720

it is through the trial duration that α serves as a task parameter controlling the strength721

of the incentive to decide early. When α is fixed, we denote the corresponding optimal722

stationary reward rate, ρα, obtained from the reward rate maximizing policy. This policy723

shifts from deciding late to deciding early as α is varied from 0 to 1 (c.f. fig. S9f,g).724

We consider a version of the task where α is variable across two episode types, a slow725

(α = 1/4) and fast (α = 3/4) type. The agent is aware that the across-trial α dynamics726

are responsive (maybe even adversarial), whereas the within-trial random walk dynamics727

(controlled by the positive jump probability, here p = 1/2) can be assumed fixed (see the728

next section for how p factors into the expression for the expected reward, r̄t.729

Expected trial reward for the tokens task730

We derived and used an exact expression for the expected reward in a trial of the tokens731

task. We derive that expression here as well as a simple approximation. The state sequence732

is formulated as a tmax-length sequence of random binary variables, Stmax = (S1, . . . , Stmax),733

St = ±1, i = 1, 2, . . . , tmax. Consider a simple case in which each is an independent and734

identically distributed Bernoulli sample, P (s) = p
1+s
2 (1−p) 1−s

2 , for jump probability p ≥ 1/2.735

The distribution of Stmax is then736

P (stmax) =
tmax∏
i=1

P (si) . (10)

We will use this distribution to compute expectations of quantities over this space of trajec-737

tories, namely the sign of Nt =
∑t

i=1 Si, for some 0 ≤ t ≤ tmax and in particular the sign of738

the final state, ξ := sgn(Ntmax) ∈ {+,−} given Nt = n. Note that Nt is even if t is even and739

same with odd values. We remove the case of no sign in Ntmax by choosing tmax to be odd.740

First, consider predicting sgn(Nt) with no prior information. The token difference, −t ≤741

Nt ≤ t, appears directly in P (stmax). Marginalizing (here just integrating out) the additional742

degrees of freedom leads to a binomial distribution in the number of Si for i ≤ t for which743

Si = +1, N+
t =

∑t
i=1 Θ(si) = (t+Nt)/2,744

P (N+
t = n) =

(
t

n

)
pn(1− p)t−n , (11)
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with n ∈ {0, . . . , t} and Nt = 2N+
t − t. Thus, the probability that Nt > 0, i.e. N+

t > t/2, is745

P (Nt > 0) =
t∑

n=0

(
t

n

)
pn(1− p)t−nΘ(n− t/2) . (12)

Now consider predicting ξ = sgn(Ntmax), given the observation Nt = n. Define t′ = tmax−t746

as the remaining time steps to the predicted time and Nt′ =
∑tmax

i=t+1 si, i.e. the total count747

in the remaining part of the realization. Then the probability of ξ = + conditioned on the748

state Nt = n, denoted pn,t, is defined in the same way as P (Nt > 0),749

p+n,t := P (ξ = +|Nt = n) =
t′∑

n′=0

(
t′

n′

)
pn
′
(1− p)t′−n′Θ(n′ − (t′ − n)/2) . (13)

where N+
t′ = n′ is the number of positive jumps in the remaining t′ = tmax − t steps and we750

have usedNtmax = Nt+Nt′ = N+
t′ −(t′−Nt)/2. The Θ(n′−(t′−n)/2) factor effectively changes751

the lower bound of the sum to max{0, d(t′−n)/2e}, where d·e rounds up. If d(t′−n)/2e ≤ 0752

then p+n,t = 1 since the sum is over the domain of the distribution, which is normalized.753

Otherwise, the lower bound is d(t′ − n)/2e, and the probability of ξ = +1 is754

p+n,t =
t′∑

n′=d(t′−n)/2e

(
t′

n′

)
pn
′
(1− p)t′−n′ . (14)

For odd tmax, the probability that ξ = − is denoted p−n,t = 1− p+n,t. For the symmetric case,755

p = 1/2,756

p+n,t =
1

2t′

t′∑
n′=d(t′−n)/2e

(
t′

n′

)
, (15)

when d(t′ − n)/2e > 0 and 1 otherwise. This expression is equivalent to equation 5 in [16],757

which was instead expressed using N−t′ .758

The space of trajectories, i.e. of stmax , maps to a space of trajectories for p+n,t defined on759

an evolving lattice in belief space. The expected reward in this case is,760

r̄t := 〈r|Nt = n〉 = E [Θ(NtmaxNt)|Nt = n] (16)

= max{p+n,t, 1− p+n,t} (17)

= bt , (18)

where the belief of correct report bt := max{p+n,t, 1 − p+n,t}. The commitment cost Ccomt =761

rmax − r̄t, then also evolves on a lattice (see fig. 3(b)). More generally, r̄t = ∆rbt + rincorrect762

for ∆r the difference of correct rcorrect (here 1) and incorrect rincorrect (here 0) rewards. Since763

rmax = rcorrect, we have Ccomt = ∆r(1− bt). For p = 1/2 and ∆r = 1, Ccomt=0 = 1/2.764

The shape of p+n,t is roughly sigmoidal, admitting the approximation,765

p+n,t ≈
1

1 + exp [−(at+ b)n]
(19)

where fitting constants a and b depend on tmax. For tmax = 15, a = 0.03725 and b = 0.3557.766

We demonstrate the quality of this approximation in fig. S5. Approximation error is worse767

at t near tmax. More than 95% of decisions times in the data we analyzed occur before768

12 time steps, where the approximation error in probability is less than 0.05. A similar769

approximation without time dependence was presented in [16]. We nevertheless used the770

exact expression eq. (15) in all calculations.771
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PGD implementation and fitting to relaxation after context switches772

We identified the times of the context switches in the data and their type (slow-to-fast773

and fast-to-slow). Taking a fixed number of trials before and after each event, we averaged774

the decision times over the events to create two sequences of average decision times around775

context switches (the result is shown in fig. 4a,b). We used a uniformly weighted squared-776

error objective, minimized with the standard (Nelder-Mead) simplex routine in python’s777

scientific computing library’s optimization package.778

Survival probabilities over the action policy779

Behavioural analyses typically focus on response time distributions. From the perspective780

of reinforcement learning, this is insufficient to fully characterize the behaviour of an agent.781

Instead, the full behaviour is given by the action policy. In this setting, a natural represen-782

tation of the policy is the probability to report as a function of both the decision time and783

the environmental state (see fig. 5). These are computed from the histograms of (Ntdec , t
dec),784

over trials. However, the histograms themselves do not reflect the preference of the agent785

to decide at a particular state and time because they are biased by the different frequencies786

with which the set of trajectories visit each state and time combination. While there are787

obviously the same number of trajectories at early and late times, they distribute over many788

more states at later times and so each state at later times is visited less on average than states789

at earlier times. We can remove this bias by transforming the data ensemble to the ensemble790

of two random variables: the state conditioned on time (Nt|t), and the event that t = tdec.791

Conditioning this ensemble on the state gives P (t = tdec|Nt, t) = p(Nt, t = tdec|t)/p(Nt|t). To792

reduce estimator variance, we focus on the corresponding survival function, P (t < tdec|Nt, t).793

So, P (t < tdec|Nt, t) = 1 when t = 0 and decays to 0 as t and |Nt| increase. Unlike the794

unconditioned histograms, these survival probabilities vary much more smoothly over state795

and time. This justifies the use of the interpolated representations displayed in fig. 5b-e.796

Note that to simplify the analysis, we have binned decision times by the 200 ms time step797

between token jumps. This is justified by the small deviations from uniformity of decision798

times modulo the time step shown in fig. S11.799

Episodic decision-making and dynamic programming solutions of value iteration800

We generalize the mathematical notation and description of an existing AR-RL formu-801

lation and dynamic programming solution of the random dots task [7], a binary perceptual802

evidence accumulation task extensively studied in neuroscience. To align notation with803

convention in reinforcement learning theory, exceptionally here s denotes the belief state804

variable, ie. a representation of the task state sufficient to make the decision (e.g. the to-805

kens difference, Nt, in the case of the tokens task). We connect this extended formulation to806

account for a dynamic deliberation cost. We write it in discrete time, though the continuous807

time version is equally tractable.808

The problem is defined by a recursive optimality equation for the value function V (s|t)809

in which the highest of the action values, Q(s, a|t), is selected. We formalize the non-810

stationarity within episodes by conditioning on the trial time, t, where t = 0 is the trial start811

time. Q(s, a|t) is the action-value function of average-reward reinforcement learning [11], i.e.812
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the expected sum of future reward deviations from the average when selecting action a when813

in state s, at possible decision time t within a trial, and then following a given action policy814

π thereafter. The action set for these binary decision tasks consists of report left (−), report815

right (+), and wait. When wait is selected, time increments and beliefs are updated with816

new evidence. We use a decision-time conditioned, expected trial reward function, r(s, a|t)817

with a = ±, that denotes the reward expected to be received at the end of the trial after818

having reported ± in state s at time t during the trial. Note that r(s, a|t) can be defined819

in terms of a conventional reward function r(s, a) if the reported action, decision time, and820

current time are stored as an auxiliary state variable so they can be used to determine the821

non-zero reward entries at the end of the trial.822

The average-reward formulation of Q(s, a|t) naturally narrows the problem onto deter-823

mining decisions within only a single episode of the task. To see this, we pull out the824

contribution of the current trial,825

Q(s, a|t) = Eπ
[

T∑
t′=t

Rt − ρ
∣∣∣∣St = s, At = a

]
+ V (s|T + 1) (20)

where T is the (possibly stochastic) trial end time and V (s|T + 1) is the state value at the826

start of the following trial, which does not depend on st and at for independently sampled827

trials. Following conventional reinforcement learning notation, the expectation Eπ is over828

all randomness conditioned on following the policy, π, which itself could be stochastic [11].829

When trials are identically and independently sampled, the state at the trial start is the830

same for all trials and denoted s0 with value V0. Thus, the value at the start of the trial831

V (s|t = 0) = V (s|T+1) = V0 equals that at the start of the next trial and so, by construction,832

the expected trial return (total trial rewards minus trial costs) must vanish (we will show833

this explicitly below). Note that the value shift invariance of eq. (20) can be fixed so that834

V0 = 0.835

The optimality equation for V (s|t) arises from a greedy action policy over Q(s, a|t): it836

selects the action of the largest of Q(s,−|t), Q(s,+|t), and Q(s, wait|t). The value expression837

for the wait-action is incremental, and so depends on the value at the next time step. In838

contrast, expression for the two reporting actions integrates over the remainder of the trial839

since no further decision is made and so depends on the value at the start of the following840

trial. The resulting optimality equation for the value function V (s|t) is then841

V (s|t) = max
a
Q(s, a|t) ,

Q(s,±|t) = r(s,±|t)−
T∑

t′=t+1

ct′ + V (s|t = T + 1) ,

Q(s, wait|t) = −ct + Est+1|s [V (st+1|t+ 1)] ,

V (s|t = 0) = V (s|t = T + 1) .

(21)

Here, t = 0, 1, . . . , tmax within the current trial and t = T + 1, T + 2 . . . in the following842

trial, with tmax the latest possible decision time in a trial, and T = T (t) the decision-time843

dependent trial duration. For inter-trial interval TITI, T satisfies TITI ≤ T ≤ tmax + TITI.844

ct is the cost rate at time t. The second term in Q(s, wait|t) uses the notation Ex|y[z], i.e.845

the expectation of z with respect to p(x|y). The last line in eq. (21) is the self-consistency846

criterion imposed by the AR-RL formulation, which demands that the expected value at847

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.07.31.452742doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.31.452742
http://creativecommons.org/licenses/by-nc-nd/4.0/


27

the beginning of the trial be the expected value at the beginning of the following trial. The848

greedy policy then gives a single decision time for each state trajectory as the first time when849

Q(s,−|t) > Q(s, wait|t) or Q(s,+|t) > Q(s, wait|t), with the reporting action determined850

by which of Q(s,−|t) and Q(s,+|t) is larger. For given ct, dynamic programming provides851

a solution to eq. (21) [7] by recursively solving for V (s|t) by back-iterating in time from the852

end of the trial. For most relevant tasks, to never report is always sub-optimal, so the value853

at t = tmax is set by the best of the two reporting (±) actions, which do not have a recursive854

dependence on the value and so can seed the recursion.855

We now interpret this general formulation in terms of opportunity costs. For the choice856

of a static opportunity cost rate of time, ct = ρ. This is the AR-RL case. As in [7], a857

constant auxiliary deliberation cost rate, c, incurred only up to decision time can be added,858

ct = ρ + cΘ(tdec − t). Of course, ρ is unknown a priori. For this solution method, its value859

can be found by exploiting the self-consistency constraint, V (s|t = 0) = V (s|t = T+1). This860

dependence can be seen formally by taking the action value eq. (20), choosing a according861

to π to obtain the state value, V (s|t), and evaluating it for t = 0,862

V (s|t = 0) = Etdec

[
T∑
t=0

Rt − ρ
]

+ V (s|t = T + 1) (22)

= Etdec
[
r(tdec)− ρT (tdec)

]
+ V (s|t = T + 1) (23)

= R̄− ρT̄ + V (s|t = T + 1) . (24)

Here, R̄ = Etdec
[
r(tdec)

]
and T̄ = Etdec

[
T (tdec)

]
denotes the expectations over the trial en-863

semble that, when given the state sequence, transforms to an average over tdec, the trial deci-864

sion time, defined as when V (s|t) achieves its maximum on the state sequence, (s0, . . . , stmax).865

The expected trial reward function, r(t) := maxa∈{−,+} r(s, a|t) is the expected trial reward866

for deciding at t. Imposing the self-consistency constraint on eq. (24) recovers the definition867

ρ = R̄/T̄ .868

Asymmetric switching cost model869

Here, we present the model component that accounts for the asymmetric relaxation870

timescales after context switches. The basic assumption is that tracking a signal at a higher871

temporal resolution should be more cognitively costly, so that adapting from faster to slower872

environments should happen more quickly than the reverse, so as to not pay this cost un-873

necessarily. We now develop this idea formally (see fig. S4).874

Let Ttrack and Tsys be the timescale of tracking and of the tracked system, respectively.875

One way to interpret the mismatch ratio, Tsys/Ttrack, is via an attentional cost rate, q.876

This rate should decay with Ttrack: the slower the timescale of tracking, the lower the877

cognitive cost. For simplicity, we set q = 1/Ttrack (fig. S4a). Integrating this cost rate over a878

characteristic time of the system is then the tracking cost, Q = qTsys = Tsys/Ttrack, which is879

also the mismatch ratio. We propose that Q enters the algorithm via a scale factor on the880

integration time of the reward filter for ρ̂τcontextk , τcontext. We redefine τcontext as881

τcontext ←
τcontext
1 +Qν

, (25)

where ν is a sensitivity parameter that captures the strength of the nonlinear sensitivity of882

the speed up (for ν > 1) or slow down (for ν < 1) in adaptation with the tracking cost,883
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Q (fig. S4a shows how this timescale varies over Q for three values of ν). A natural choice884

for Tsys is Tk, the trial duration. For Ttrack, we introduce the filtered estimate of the trial885

duration, T̂ τcontextk (computed using the same simple low-pass filter c.f. eq. (8)). Thus, the886

tracking timescale adapts to the system timescale. As a result of how τcontext is lowered by Q887

for ν > 1, this adaptation is faster in the fast-to-slow transition relative to the slow-to-fast888

transition.889

Prediction for asymmetric rewards890

Given a payoff matrix, R = (rs,a), where rs,a is the reward for reporting a ∈ {−,+} in the891

trial realization leading to s, here the sign of Ntmax , and the probability that the rightward892

choice is correct, p+n,t, the expected reward for the two reporting actions in a trial is given893

by the matrix equation894

[
〈r|a = +, n, t〉 〈r|a = −, n, t〉

]
=
[
p+n,t 1− p+n,t

] [r++ r+−
r−+ r−−

]
.

Here, the corresponding reported choice is a∗ = argmaxa∈{−,+}〈r|a, n, t〉. In this paper and895

in all existing tokens tasks, R was the identity matrix. In this case, and for all cases where896

R is a symmetric matrix, R = R>, an equivalent decision rule is to decide based on the sign897

of Nt. When R is not symmetric, however, this is no longer a valid substitute. Asymmetry898

can be introduced through the actions and the states.899

Using an additional parameter γ, we introduce asymmetry via a bias for + actions that900

leaves the total reward unchanged by replacing the payoff matrix with901

Rasym =

[
r++(1 + γ) r+−(1− γ)
r−+(1 + γ) r−−(1− γ)

]
,

The result for γ = −0.6, 0, and 0.6 is shown in fig. S10. For γ > 0 the decision boundary for902

a = + shifts up proportional to γ. For γ < 0 the decision boundary for a = − shifts down903

proportional to −γ. The explanation is that the components are set and exchange where904

the decision is exchanged, Nt = 0 for the symmetric case. This changes to Nt ∝ ±γ for the905

asymmetric γ 6= 0 case.906

Comparing reward rates and slopes of urgency907

Reference [17] parametrize urgency with the saturation value, u∞, and the half-maximum,908

τ1/2. The initial slope is given by their ratio. We used the context-conditioned values909

published in Table 1 in [17] for the n = 70 (no 90◦ control) dataset. The context-conditioned910

reward rates, ρα, are computed as the accuracy 〈R〉|α divided by the average trial time, 〈T 〉|α911

for choice number α ∈ {2, 4} as context. We computed 〈R〉|α=2 = 0.71 and 〈R〉|α=4 = 0.49.912

The trial time is the sum of the response time, the added time penalty if incorrect, and the913

inter-trial interval. We computed the response times tresponse,α=2 = 0.527 and tresponse,α=4 =914

0.725. While the dataset contains the response times, it does not have the latter two. The915

time penalty was on the order of 1 second, as was the time penalty [61]. Under those916

estimates, the reward rates are ρα=2 = 0.40 and ρα=4 = 0.22. The ratio between slopes is917

1.8 and the ratio of reward rates was 2.3 giving an error of about 20%.918
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Figure S1. Reward filtering scheme for online computation of within-trial opportunity cost. With

t denoting absolute time, the reward sequence, Rt, is integrated on both a stationary (τlong) and

context (τcontext) filtering timescale to produce estimates of the stationary and context-specific

reward rates, respectively. These are large and small, respectively, relative to the average context

switching timescale, Tblock. The estimate of the context-specific offset, ot is computed by time-

integrating the difference of these two estimates. In this filtering, when a trial terminates, the

effective operation is that Cdelt is set to ot, and the latter is zeroed. Thus, the opportunity cost

starts at this offset and then integrates ρlong, Cdelt,k = oTk−1,k−1 + ρlong,k−1t, where oTk−1,k−1 =

(ρcontext,k−1 − ρlong,k−1)Tk−1. Notes on the computational graph: Arrows pass the value at each

time step (dashed arrows only pass the value when a trial terminates). Links annotated with ‘−’

multiply the passed quantity by −1.
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Figure S2. PGD agent plays the tokens task with periodic α-dynamics. (a) Trials are grouped

into alternating trial blocks of constant α (fast (orange) and slow (blue) conditions). (b) Here,

trial block durations are constant over the experiment. (c) Decision times over the trials from

(a) distribute widely, but relax after context switches. (d) Block-averaged decision times remain

stationary. Inset shows the context-conditioned trial-averaged reward 〈Rk〉 and trial duration 〈Tk〉
(orange and blue dots; black is unconditioned average; 〈·〉 denotes the trial ensemble average).

Lines pass through the origin (slope given by the respective reward rate). (e) Distribution of

estimates have lower variance than the trial reward rates, ρtrial (gray). The conditioned averages of

ρ̂τcontextk shown as blue and orange. (f) The relative error in estimating ρ, Et = 1
t

∑t
k |ρ̂

τlong
k − ρ|/ρ,

for τlong = 103(circle), 104(square), 105(triangle). Inset shows that ETexp ∝ (τlong/Tblock)−1 over a

grid of τlong and Tblock as expected (black line).
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Same as fig. 5.
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tracking cost, Q = Tsys/Ttrack from a base timescale, here denoted τ0 (shown for three values of

sensitivity ν = 2, 4, 8).
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Figure S6. Model validation on behavioural statistics from [19]. (a,b) Running average (last 1000

trial) of trial reward rate ρtrialk . (c,d) Histograms of trial reward rate, ρtrialk (c) and trial duration,

Tk (d). (e) Auto-correlation function of trial duration. (f) Data vs. model decision time (gray-scale

is count; white dashed line is perfect correlation; actual Pearson correlation is shown)

.
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Figure S7. Comparison of trial-aware and trial-unaware results. (a,b) 1/2-Survival probability

contours for subject 1 (dashed), trial-aware PGD (blue), and trial-unaware PGD (red) for slow

(a) and fast (b) context-conditioned data. (c) Opportunity cost for trial-unaware PGD (compare

with fig. 2b). Opportunity cost range adjusted here such that data within standard error of trial-

unaware PGD model prediction for slow block (blue).
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A B

Figure S8. Comparison of PGD and AR-RL learning on a patch leaving task. Performance is

defined as relative regret rate, (ρ̂ − ρ∗)/ρ∗ (PGD (dots); AR-RL (lines)). (a) Performance over

different sizes of the state vector (d = 100 (blue), 200 (orange), 300 (green)). (b) Performance over

different learning rates (parametrized by integration time constant, τ = 1 × 104 (blue), 2 × 104

(orange), 3 × 104 (green)). (parameters: λ = 1/5; rmax sampled uniformily on [0, 1]). A random

state label permutation is made at the time indicated by the black arrow. Values were initialized

at −1.
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(high c). Dashed lines bound a transition regime between the two extreme strategies. Red line

denotes where they have equal performance. (b-e) Slices of the (α, c)-plane. Shown are the reward

rate as a function of α (b,c) and c (d,e) (wait-for-certainty strategy is shown in blue; one-and-done

strategy is shown in orange). N is the magnitude of the token difference
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Figure S10. Asymmetric action rewards skew survival probability. Here, we plot the half-maximum

of the PGD survival probability for three values of the action reward bias, γ = −0.6, 0, 0.6 (blue,

black and orange, respectively). Other model parameters same as in fitted model.
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Figure S11. Decision times relative to token jumps. Here, we plot the histograms of decision

times using their position between token jumps, the step fraction. The data is separated by α and

monkey.
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