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Abstract 11 

Near-infrared reflectance spectroscopy (NIRS) has been used by the agricultural industry as a 12 

high-precision technique to quantify nutritional chemistry in plants both rapidly and 13 

inexpensively. The aim of this study was to evaluate the performance of NIRS calibrations in 14 

predicting the nutritional composition of ten pasture species that underpin livestock industries 15 

in many countries. These species comprised a range of functional diversity (C3 legumes; C3/C4 16 

grasses; annuals/perennials) and origins (tropical/temperate; introduced/native) that grew 17 

under varied environmental conditions (control and experimentally induced warming and 18 

drought) over a period of more than 2 years (n = 2,622). A maximal calibration set including 19 

391 samples was used to develop and evaluate calibrations for all ten pasture species (global 20 

calibrations), as well as for subsets comprised of the plant functional groups. We found that 21 

the global calibrations were appropriate to predict the six key nutritional quality parameters 22 

studied for our pasture species, with the highest accuracy found for ash (ASH), crude protein 23 

(CP), neutral detergent fibre and acid detergent fibre (ADF), and the lowest for ether extract 24 

(EE) and acid detergent lignin parameters. The plant functional group calibrations for C3 25 

grasses performed better than the global calibrations for ASH, CP, ADF and EE parameters, 26 

whereas for C3 legumes and C4 grasses the functional group calibrations performed less well 27 

than the global calibrations for all nutritional parameters of these groups. Additionally, our 28 

calibrations were able to capture the range of variation in forage quality caused by future 29 

climate scenarios of warming and severe drought. 30 

Keywords: climate change, forage quality, grass, legume, temperate, tropical  31 
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1. INTRODUCTION 32 

Forage quality depends on plant nutritional composition, which influences digestibility and 33 

forage intake, and which are typically used as indicators of potential animal production (Ball 34 

et al., 2001; Coleman and Moore, 2003; Dumont et al., 2015). In view of this, evaluation of 35 

nutrient composition is essential for determining whether forage quality is adequate for animal 36 

production and in guiding livestock managers/farmers in determining how much forage and 37 

supplementation is needed to optimize food use efficiency for a particular animal and 38 

production goal (Ball et al., 2001). Traditionally, forage nutritional quality was evaluated by 39 

animal trials (e.g. in vivo and in situ digestibility with fistulated animals), however, this method 40 

has a number of constraints including high costs, labour, time investment and amount of the 41 

feed required in the trials. Consequently, this method is not suitable for examining large 42 

numbers or types of forage samples. Alternatives that have been used successfully to evaluate 43 

forage quality include proximate analysis of forage nutritional composition (nutrients and anti-44 

nutrients), in vitro digestibility assays and near-infrared reflectance spectroscopy (NIRS) 45 

(Coleman and Moore, 2003).  46 

Near-infrared reflectance spectroscopy has been embraced by the agricultural industry 47 

as a high-precision technique for measuring nutritional chemistry that is rapid, time-efficient, 48 

inexpensive, produces no chemical waste, and requires a small sample size and minimal 49 

preparation of samples (Abrams et al., 1987; Foley et al., 1998; Murray, 1993; Roberts et al., 50 

2004). This is a non-destructive technique that uses the absorption and reflectance of near-51 

infrared light, and often visible wavelengths as well, from a sample to predict the chemical 52 

composition and other traits (e.g. digestibility, palatability etc.; Foley et al., 1998; Moore et al., 53 

2010; Reddersen et al., 2013; Stuth et al., 2003). The reflectance spectrum of near-infrared 54 

light is influenced primarily by the nature of chemical bonds between hydrogen and carbon, 55 

hydrogen and nitrogen, and hydrogen and oxygen in each sample, and consequently by the 56 

nature and quantity of complex carbon and nitrogen-containing compounds, such as crude 57 

protein, fibre, and other plant constituents (Foley et al., 1998; Parrini et al., 2018; Smith et al., 58 

2019). Based on these, concentrations can often be accurately predicted from the near-infrared 59 

reflectance spectra by developing standardized calibrations with samples of known nutritional 60 

composition (Foley et al., 1998). The process involves well-established statistical procedures 61 

used to develop, assess and improve predictive calibration equations for reflectance spectra 62 

based on reference values obtained by a variety of standard wet chemistry or other analytical 63 

techniques (Stuth et al., 2003). Importantly, accurate NIRS predictions of unknown samples 64 

depend on a calibration set (i.e. a large database) that is representative of the chemical and 65 
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spectral variation encountered in the target population (Foley et al., 1998; Puigdomènech et al., 66 

1997; Reddersen et al., 2013; Shenk and Westerhaus, 1991). After the development of reliable 67 

calibrations, NIR spectra of new samples can then be acquired and used for immediate 68 

quantification of multiple parameters, bypassing the need for wet chemistry analyses, and the 69 

associated expense of the latter.  70 

Near-infrared reflectance spectroscopy has been shown to accurately predict forage 71 

nutritional quality, such as in studies involving mixed bulk samples of central European 72 

grasslands (Berauer et al., 2020), fresh samples from natural pastures in Italy (Parrini et al., 73 

2019), warm-season legumes in the United States (Baath et al., 2020), and native and temporary 74 

grasses in the United Kingdom (Bell et al., 2018). However, few studies report on the 75 

establishment of NIRS calibration models for predicting multiple nutritional constituents, such 76 

as ash, crude protein, ether extract, neutral detergent fibre, acid detergent fibre and acid 77 

detergent lignin, and fewer still include calibrations using large sample sets comprised of 78 

multiple pasture species (Parrini et al., 2018; Parrini et al., 2019; cf. Norman et al., 2015; 79 

Norman et al., 2020). In addition, many calibration models for predicting nutritional 80 

composition do not capture variation across multiple species for a range of functional diversity 81 

and origins of pasture species, particularly growing under future environmental conditions such 82 

as climate change scenarios (Berauer et al., 2020).  83 

In southern Australia, pasture systems are based on a diverse range of grasses and 84 

legumes, for which information on nutritional composition under a wide range of 85 

environmental (including climatic) conditions is limited (Howden et al., 2008; Lee et al., 2013; 86 

Norman et al., 2020; Norman et al., 2021). To address this knowledge gap, we used the Pastures 87 

and Climate Extremes (PACE) experimental facility to evaluate the nutritional responses of a 88 

wide range of pasture/rangeland species (including tropical/temperate, introduced/native, 89 

grasses/legumes) to year-round warming (including intensification of heatwaves) and extreme 90 

winter/spring droughts events. We specifically aimed to evaluate the performance of NIRS 91 

calibrations in predicting species’ nutritional composition under differing climatic conditions. 92 

The species used in this study comprised a range of functional diversity (C3 legumes; C3/C4 93 

grasses; annuals and perennials) and origins (tropical and temperate; introduced and native) 94 

with a wide variation in concentrations of chemical constituents. Additionally, we tested 95 

different calibration strategies using combined datasets from all studied pasture species (global 96 

calibrations) and different independent datasets of plant species groups (plant functional group 97 

calibrations), in order to contribute to the improvement of NIRS calibrations and wider use of 98 

this technology in the research and development of livestock nutrition.  99 
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 100 

2. MATERIALS AND METHODS 101 

2.1. Pasture sample collection 102 

Representative samples of the pasture species were collected at the Pastures and Climate 103 

Extremes (PACE) experimental field facility and from an associated glasshouse study at the 104 

Hawkesbury Campus of Western Sydney University, at Richmond, NSW, Australia (S33.610, 105 

E150.740, elevation 25 m). The field site has a mean annual precipitation of 800 mm and mean 106 

annual temperature of 17.2°C, with monthly means peaking in January (22.9 C) and at their 107 

lowest in July (10.2°C) (Australian Government Bureau of Meteorology, Richmond- UWS 108 

Hawkesbury Station). At the field facility, the soil was a loamy sand with a volumetric water-109 

holding capacity of 15 - 20%, pH of 5.7, plant available N of 46 mg/kg, plant available (Bray) 110 

P of 26 mg/kg and 1% soil organic carbon (more details are reported in Churchill et al., 2020). 111 

In a companion study using a glasshouse facility, two of the species from the field site (Festuca 112 

arundinacea and Medicago sativa) were grown using field soil. A detailed overview of the 113 

experimental facilities descriptions and pasture management are reported in Churchill et al. 114 

(2020; field), Catunda et al. (2021; glasshouse), and Zhang et al. (2021; glasshouse). The ten 115 

different pasture species used in this study include a range of plant functional groups (C3 116 

legumes; C3/C4 grasses; annuals and perennials) and origins (tropical and temperate; introduced 117 

and native) and are commonly used as forage in grasslands in south-eastern Australia and, with 118 

the exception of the grass Rytidosperma caespitosum, internationally (Table 1). Plants were 119 

grown under a wide range of environmental conditions, including warming and/or drought 120 

treatments; (Churchill et al., 2020; Catunda et al., 2021), while other conditions were held 121 

constant (soils, fertilization, pests, etc.). These experimentally manipulated conditions 122 

maximised the range of variation in the concentrations of chemical components (Catunda et 123 

al., 2021).  124 

Plant samples from the field were collected throughout a period of 2 years and 4 months 125 

(from November 2017 to March 2020) in regular harvests of aboveground biomass based on 126 

cut and carry recommendations used by local farmers (Clements et al., 2003); perennial species 127 

were harvested 3-5 times per year and annual species 2-3 times (Clark et al., 2016). Samples 128 

from the glasshouse study were collected in June and August 2018 following the same harvest 129 

protocol adopted in the field. Swards were cut at 5 cm above the soil surface and weighed (fresh 130 

weight). The representative samples were composed of leaves, stems/tillers, and flowers when 131 

present, as well as a mixture of both live and dead material as present. Weeds were removed 132 

prior to the collection of near‐infrared reflectance spectra and wet chemical analysis of a subset 133 
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of the target species’ material. A total of 2,622 samples (2,238 from the field and 384 from the 134 

glasshouse) were collected and used for evaluation as described below (Table 1).  135 

 136 

2.2. Sample preparation and spectral data collection 137 

Forage samples were either immediately frozen (-18°C) and later freeze-dried (for the 138 

glasshouse facility) or microwaved at 600 W for 90 seconds to deactivate enzymes 139 

(Landhäusser et al., 2018), followed by oven-drying at 65°C for 48 h (for the field facility). To 140 

homogenize samples, dried plants were ground through a 1-mm screen in a laboratory mill 141 

(Foss Cyclotec Mill, Denmark) and stored in airtight plastic containers in the dark at room 142 

temperature prior to the collection of near‐infrared reflectance spectra and wet chemical 143 

analysis. For the nitrogen analysis, plant samples were ground further, using a ball-mill to 144 

produce a fine powder (Retsch® MM200; Hann, Germany).  145 

Near-infrared spectra were collected on a FOSS XDS Rapid Content™ Analyzer with 146 

XDS near-infrared technology (FOSS Analytical, Hilleroed, Denmark). All samples were 147 

analysed in the range of 400-2500 nm with a spectral resolution of 0.5 nm. Spectra were 148 

acquired with ISIscanTM Routine Analysis Software (Foss, Denmark). Samples were repacked 149 

and scanned in duplicate, and the average spectrum for each sample was used for subsequent 150 

calibrations and predictions. A subset of 391 representative samples was selected for 151 

determining nutritional composition by wet chemistry using the ‘select’ function in the 152 

software WinISI 4.8.0 (FOSS Analytical A/S, Denmark). The selected samples for wet 153 

chemical analyses were representative across sample collection periods, field and glasshouse 154 

settings, functional diversity and species’ origin. Furthermore, the subset covered the range of 155 

spectral variation in the full scanned population of plant samples, summarized by a principal 156 

component analysis to minimize spectral redundancy.  157 

 158 

2.3. Wet chemical analysis 159 

Samples were subjected to analyses of dry matter (DM) and ash (ASH) according to the official 160 

methods and procedures for animal feed outlined by the Association of Official Analytical 161 

Chemists (AOAC, 1990). Nitrogen (N) concentration was determined from ~ 100 mg of sample 162 

using an automated combustion method with a Leco TruMac CN analyzer (Leco Corporation, 163 

USA). Crude protein (CP) concentration was then calculated by applying a 6.25 conversion 164 

factor to the N concentration (AOAC, 1990). Ether extract (EE) was determined according to 165 

the American Oil Chemists' Society (AOCS) high-temperature method using petroleum ether 166 

(B.P. 40-70ºC) and the Soxhlet method (Buchi 810 Soxhlet Multihead Extract Rack, UK). Fibre 167 
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fractions were determined with an ANKOM Fibre Analyzer (model 200, ANKOM® 168 

Technology, NY, USA) with use of neutral and acid detergent solutions and correction for dry 169 

matter content (Goering and Van Soest, 1970). The samples were analysed for neutral detergent 170 

fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL) by the sequential 171 

method of Van Soest and Robertson (1980). Sodium sulphite and α-amylase were added to the 172 

solution for NDF determination. Each sample was analysed in duplicate and nutrient 173 

concentrations were expressed on a DM basis (as a percentage). 174 

 175 

2.4. Calibration development and statistics 176 

NIRS calibration models were established using WinISI software version 4.8.0 (FOSS 177 

Analytical A/S, Denmark). We adopted two calibration strategies (Figure 1): 1) global and 2) 178 

plant functional group-based. For the global calibration models development, samples from all 179 

pasture species were subjected to wet chemistry analysis (n = 391), and randomly assigned to 180 

either a calibration set (n = 313 samples) or an external validation set (n = 78 samples). We 181 

also investigated the performance of dedicated calibration models for each of three functional 182 

group categories: (1) C3 legumes, (2) C3 grasses and (3) C4 grasses (Figure 1). For each of 183 

these plant functional group models, 80% of the chemistry/spectra pairs were used for the 184 

calibration set and the remainder were kept for external validation.  185 

Predictive equations based on samples analysed with wet chemistry were then developed 186 

using modified partial least-squares regression (MPLS), with cross-validation to prevent 187 

overfitting of models (Shenk and Westerhaus, 1991). The best performing equations were 188 

selected by testing a range of scattering pre-treatment options with different derivative gaps 189 

and smoothing using the software WinISI 4.8.0. The variety of scattering pre-treatments tested 190 

included none, standard normal variate + detrend, standard normal variate only, detrend only, 191 

standard multiplicative scatter correction, and weight multiplicative scatters correction in order 192 

to reduce the influence of the sample particle size on NIRS spectra and the path-length 193 

variations. The different derivative mathematical pre-treatments tested for each calibration 194 

equation to decrease noise effects were coded as follows: “1,4,4,1,” “1,6,4,1,” “1,8,6,1,” 195 

“2,4,4,1,” “2,6,4,1,” “2,8,6,1,” “2,10,10,1,” and “3,10,10,1,” where the first digit is the number 196 

of the derivative, the second one is the gap over which the derivative is calculated, the third 197 

one is the smoothing segment and the last one is the secondary smoothing segment. For the six 198 

key nutritional parameters, the best models were selected on the basis of the highest coefficient 199 

of determination of calibration (R2) and the internal cross-validation (one minus the variance 200 

ratio, 1-VR), along with the lowest standard error of calibration (SEC) and internal cross-201 
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validation (SECV), and the smallest difference between SEC and SECV; this was achieved 202 

using the software WinISI 4.8.0 (Andueza et al., 2011; Norman et al., 2020). To compare the 203 

predictive ability of calibration equations among different parameters, the correlation 204 

coefficient of actual and predicted values (R2) obtained in the external cross-validation set was 205 

evaluated. In addition, to support data interpretation and allow comparison with other studies, 206 

we calculated the ratio performance deviation (RPD) by dividing the standard deviation of the 207 

reference data by the standard error of prediction (Williams and Sobering, 1996; Williams, 208 

2014). All scatter plots were created using R software, version 4.0.0 (R Core Team, 2020). 209 

 210 

3. RESULTS AND DISCUSSION 211 

The ranges and means for the six nutritional parameters (ASH, CP, EE, NDF, ADF and 212 

ADL) of pasture species used in the calibration models are presented in Table 2. Our wet 213 

chemistry results reveal a broader range of values than those reported in previous studies with 214 

forage species (Andueza et al., 2011, Parrini et al., 2019, Parrini et al., 2018), allowing our 215 

NIRS calibration models in term to be applied to samples spanning a broader range of quality 216 

values. This may reflect the fact that as well as comprising a broad range of functional diversity 217 

and species origins, our plants were also grown under very varied environmental conditions, 218 

including control conditions as well as warming and severe droughts, imposed individually and 219 

in combination. Warming treatments included continuous + 3°C above-canopy temperature 220 

(field experiment; Churchill et al., 2020) and + 4°C above ambient (glasshouse experiment; 221 

Catunda et al., 2021; Zhang et al., 2021). Drought treatments consisted of winter and spring 222 

periods of 60% rainfall reduction (field experiment), and 60% soil water holding capacity 223 

reduction (glasshouse experiment). These climate treatments represented the extreme climate 224 

change predictions for average surface air temperatures and winter/spring droughts for the 225 

study region (CSIRO and BoM, 2015; CSIRO, 2020).   226 

Overall, our calibrations accurately predicted the nutritional composition of pasture 227 

biomass across a range of species and plant functional groups, which accords with previous 228 

studies predicting forage quality by NIRS (Andueza et al., 2011; Smith et al., 2019). Optimal 229 

calibrations were obtained using different calibration parameters for each of the key nutritional 230 

parameters, including different mathematical spectral pre-treatments for each constituent, 231 

although standard normal variate + detrend was the most effective scattering pre-treatment in 232 

all cases, as also reported by Barnes et al. (1989). 233 

The samples in our study, across all pasture species, were first value-predicted for each 234 

nutritional parameter using equations developed by the global calibrations (Figure 1), then 235 
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samples from each plant species group (C3 legumes, C3 grasses, and C4 grasses) were separated 236 

and predicted using their respective plant functional group calibrations in order to improve the 237 

results that were obtained with the global calibrations. From this step, C3 legumes and C4 238 

grasses functional group calibrations did not improve the accuracy of any nutritional 239 

parameters compared to results obtained using the global calibrations, however, the C3 grasses 240 

functional group calibration improved predictions, relative to the global calibrations, for some 241 

nutritional parameters (ASH, CP, EE and ADF). Norman et al. (2015; 2020) investigated the 242 

use of NIRS calibrations to predict the nutritional value of grasses, legumes and forbs, 243 

concluding that separating taxonomically similar species into groups, did not lead to more 244 

accurate predictions than broad, mixed species calibrations. The best-performing calibration 245 

models obtained in our study for each nutritional parameter based on optimal wavelengths, 246 

mathematical pre-treatments, scattering processing and regression method are summarized in 247 

Table 2 (global and C3 grasses calibration models).  248 

Most models used wavelengths from 400-2500 nm, with the exception of CP which 249 

used wavelengths from 700-2500 nm (Table 2). Among the chemical constituents, different 250 

chemical bonds absorb at different wavelengths, thus identifying these regions located in the 251 

spectrum contributes to better estimation of the concentration of these nutritional parameters 252 

(Foley et al., 1998). In addition, the best calibration statistics in our study were found using the 253 

second derivative mathematical treatment for most of the parameters calibration models, 254 

whereas the third derivative treatment was best for CP and ADL in the global calibration and 255 

ASH for the C3 grasses calibration models (Table 2).  256 

The global calibrations had high accuracy and predictive power in both internal (cross) 257 

and external validation for ASH, CP, NDF and ADF (Table 2; Figure 2). The accuracy was 258 

lower for EE and ADL than other parameters examined in this study (Table 2; Figure 2), and 259 

this may be due to the occurrence of samples with low concentrations of these constituents 260 

(Table 2). The low concentrations found here could cause changes in the spectrum wavelength 261 

and absorption, making it difficult to measure using NIRS, compared to the other nutritional 262 

parameters, as reported by Roberts et al. (2004). Only a few studies have reported NIRS 263 

calibrations for EE and ADL nutritional parameters, making comparison and clarification 264 

challenging; this may reflect a general difficulty in achieving satisfactory calibrations. Berauer 265 

et al. (2020) in a study with 512 (calibration set) bulk samples of European species-rich 266 

montane pastures, reported similar predictions for EE (R2c = 0.86, R2v = 0.73). In contrast, 267 

Parrini et al. (2018) presented calibration models using 105 bulk pasture samples in their 268 

calibration set collected from Tuscany (Italy) that were able to predict EE and ADL with higher 269 
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accuracy than in our study (for both parameters R2c =0.99, R2v =0.98). In the latter case, the 270 

small number of samples used may have contributed to low variability of values between 271 

samples used in the calibration sets and lower errors in the associated predictions. 272 

Plant functional groups are widely used to describe trait variation within and across 273 

plant communities (Thomas et al., 2019). Despite the widespread use of plant functional groups 274 

to describe common plant morphological, physiological, biochemical and phenological traits 275 

(Pérez-Harguindeguy et al., 2013), in our study calibration models based on plant functional 276 

groups were only superior to the global calibrations for C3 grasses. The predictions for C3 grass 277 

samples were superior using the C3 grass functional group calibration models for ASH, CP, EE 278 

and ADF (Table 2, Figure 3).  279 

In order to evaluate the accuracy of a calibration model and to allow standard 280 

comparison with other studies, we calculated the RPD (ratio performance deviation), a non-281 

dimensional statistic for the quick evaluation and classification of NIR spectroscopy calibration 282 

models which has been widely used in NIRS studies (Williams and Sobering, 1996; Williams, 283 

2014). In our study, RPD values from the validation set for ASH, CP, NDF and ADF (Table 284 

2) were acceptable for quality control, ranging from 3 for ASH (global calibrations) to 6 for 285 

the NDF (global calibrations) and CP (C3 grasses calibrations) equations, with respectively 286 

“good” to “excellent” classification according to Williams (2014). The high accuracy found in 287 

our study for predictions of NDF and CP may be related to the wide range of concentrations in 288 

biomass samples included in this study, as also reported by Andrés et al. (2005) in predictions 289 

of forage species from Leon (Spain). RPD values (validation set) for EE (global and C3 grasses 290 

calibration models) and ADL (global calibrations) were lower (both RPD = 2) than the other 291 

parameters, although these are considered acceptable for screening purposes (Williams, 2014). 292 

For Australian forage species, Norman et al. (2020) developed calibration models that included 293 

3 years of data collection of forage species, found RPD values for validation datasets of CP, 294 

NDF and ADF that are comparable to those we report here; however, they did not report EE 295 

and ADL parameters so comparison for these is not possible. Other studies with multiple forage 296 

species showed lower NIRS predictive ability than our models for specific nutritional 297 

parameters such as ASH (Andueza et al., 2011; Berauer et al., 2020; Norman et al., 2020), CP 298 

(Andueza et al., 2011; Berauer et al., 2020), EE (Berauer et al., 2020), NDF and ADF (Smith 299 

et al., 2019). 300 

Our NIRS calibrations provided satisfactory accuracy (predictive power) to be able to 301 

detect changes in forage nutritional quality associated with differences in phenology and 302 

warming and/or drought scenarios over the 2 years of sample collections. These characteristics 303 
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qualify our calibrations to assess the effects of seasonality on forage quality and suggest the 304 

feasibility of future development of real-time in-field NIRS monitoring approaches to monitor 305 

seasonal and interannual changes in nutrient concentrations of pasture species (Bell et al., 2018; 306 

Murphy et al., 2021). These abilities will help farmers/ industry to assist with regular feed 307 

management decision-making, including in the face of climate change and associated climate 308 

extremes, such as are increasingly being experienced across Australia and, indeed, worldwide. 309 

 310 

4. CONCLUSION 311 

This study showed that global NIRS calibrations for a diverse range of pasture species were 312 

able to predict multiple key nutritional parameters. Predictions of nutritional metrics for C3 313 

grass biomass were improved by using a plant functional group-specific calibration models for 314 

ash, crude protein, ether extract and acid detergent fibre, whereas those for C3 legumes and C4 315 

grasses were accurately predicted using the global calibrations. In addition, our calibrations 316 

explicitly capture the range of variation in forage quality brought about by warming and 317 

drought treatments in this suite of pasture species. High quality, accurate NIRS calibrations are 318 

an essential tool to help rapidly track/monitor forage quality changes in response to 319 

management interventions and climate conditions, consequently improving pasture 320 

management practice in the future. 321 
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TABLES 490 

Table 1. Information about pasture species, climate conditions and sample number included in the study. 491 

Type  Photosynthetic  

Pathway  

Common name Latin name (cultivar) Origin  Lifecycle Climate conditions# Sample 

 number 

Legumes* C3 Biserrula Biserrula pelecinus (Casbah) Temperate, introduced Annual Drought 139 

C3 Lucerne Medicago sativa (SARDI 7 series 2) Temperate, introduced Perennial Drought and warming 542 

C3 Sub-clover Trifolium subterraneum (Campeda) Temperate, introduced Annual Drought and warming 29 

Grasses C3 Phalaris Phalaris aquatic (Holdfast GT) Temperate, introduced Perennial Drought and warming 332 

C3 Ryegrass Lolium perenne (Kidman) Temperate, introduced Annual  Drought 92 

C3 Tall Fescue Festuca arundinacea (Quantum II MaxP) Temperate, introduced Perennial Drought and warming 429 

C3 Wallaby Rytidosperma caespitosum Temperate, native Perennial Drought and warming 185 

C4 Digit Digitaria eriantha (Premier) Tropical, introduced Perennial Drought 300 

C4 Kangaroo grass Themeda triandra Tropical, native Perennial Drought and warming 417 

C4 Rhodes Chloris gayana (Katambora) Tropical, introduced Perennial Drought 157 

*Legumes received appropriate rhizobium inoculant during sward establishment: ALOSCA granular inoculant for Biserrula (Group BS; ALOSCA 492 

Technologies, Western Australia, Australia); Easy Rhiz soluble legume inoculant and protecting agent to Lucerne (Group AL; New Edge 493 

Microbials, New South Wales, Australia); and NoduleN for the Sub-clover (Group C; New Edge Microbials). 494 

#A detailed overview of the climate conditions is reported in Churchill et al. (2021; field), Catunda et al. (2021; glasshouse) and Zhang et al. 495 

(2021; glasshouse). 496 
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Table 2. Details of treatment of spectra, calibration and validation sets, and performance statistics of the global and C3 grasses calibration models 497 

for nutritional  parameters (expressed as percentage of dry matter) of pasture species. 498 

Calibrations 

 

Parameter 

 
Range (%) 

Mean 

(%) 

Wavelengths 

(nm) 

Mathematical 

treatment* 

Calibration 

 

Validation 

N SEC R2c SECV 
1-

VR 
RPD N SEP R2v RPD 

Global 

ASH 3.1 - 19.0 8.1 400-2492  2,8,6,1 307 0.41 0.96 0.73 0.88 5.0  78 0.91 0.89 3.0 

CP 1.7 - 32.0 12.0 700-2492 3,10,10,1 309 0.89 0.97 1.13 0.95 5.9  78 1.10 0.95 4.5 

EE 0.1 - 7.6 2.9 400-2492 2,6,4,1 306 0.54 0.92 0.89 0.79 3.6  78 0.99 0.72 2.0 

NDF 22.0 - 84.2 58.2 400-2492 2,8,6,1 311 1.78 0.98 2.50 0.96 7.1  78 2.34 0.97 5.9 

ADF 15.8 - 54.7 31.9 400-2492 2,4,4,1 308 1.41 0.94 1.80 0.89 4.2  78 2.06 0.91 3.3 

ADL 0.3 - 18.3 6.1 400-2492 3,10,10,1 309 1.14 0.85 1.51 0.73 2.6  78 1.55 0.72 2.0 

C3 grasses 

ASH 3.4 - 18.9 8.7 400-2492 3,10,10,1 151 0.35 0.98 0.87 0.87 7.1  39 0.73 0.93 3.8 

CP 2.8 - 27.8 11.5 700-2492 2,4,4,1 153 0.30 0.99 0.73 0.97 10.0  39 0.87 0.97 5.9 

EE 0.1 - 7.6 3.3 400-2492 2,4,4,1 150 0.43 0.95 0.80 0.83 4.5  39 0.98 0.75 2.0 

ADF 19.1 - 46.1 30.6 400-2492 2,4,4,1 153 0.83 0.98 1.67 0.92 7.1  39 1.38 0.95 4.5 

ASH: ash; CP: crude protein; EE: ether extract; NDF: neutral detergent fibre; ADF: acid detergent fibre; and ADL: acid detergent lignin. 499 

*Mathematical treatment describes the approach used for spectral analysis (stored as log(1/reflectance)). The first two numbers describe the 500 

derivative used, the third and fourth numbers indicate the degrees of primary and secondary smoothing performed on the derivative. Thus 2,4,4,1 501 

indicates that the second derivative was calculated with a gap size of 4 nm and that a maximal primary smooth but no secondary smooth was used. 502 

N: The number of samples in the calibration or validation set; SEC: standard error of calibration; R2c: coefficient of determination of calibration; 503 

SECV: standard error of the internal cross validation; 1-VR: coefficient of determination of the internal cross-validation; RPD: ratio of standard 504 

error of performance: standard deviation of calibration or validation; SEP: standard error of prediction; and R2v: coefficient of determination of 505 

validation.506 
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FIGURES 507 

 508 

Figure 1. Summary of the datasets, calibration and validation processes used in two calibration 509 

strategies: a global calibration that included all species and dedicated plant functional group 510 

calibrations that modelled C3 legumes, C3 grasses and C4 grasses separately. 511 
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 512 

Figure 2. Relationships between values measured in laboratory analysis and values predicted 513 

by NIRS in the external validation set using the global calibrations for nutritional parameters 514 

(ash, crude protein, ether extract, neutral detergent fibre, acid detergent fibre and acid detergent 515 

lignin), expressed as percentage of dry matter (% DM). Solid lines indicate ordinary least-516 

squares linear regressions, and dashed lines show a 1:1 relationship. 517 
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 518 

Figure 3. Relationships between values measured in laboratory analysis and values predicted 519 

by NIRS in the external validation set using the C3 grass functional group calibrations for 520 

nutritional parameters (ash, crude protein, ether extract, acid detergent fibre) of C3 grasses, 521 

expressed as percentage of dry matter (% DM). Solid lines indicate ordinary least-squares 522 

linear regressions and dashed lines show a 1:1 relationship. 523 
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