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Abstract1

The assessment of relative model performance using information criteria like AIC and BIC has2

become routine among functional-response studies, reflecting trends in the broader ecological lit-3

erature. Such information criteria allow comparison across diverse models because they penalize4

each model’s fit by its parametric complexity — in terms of their number of free parameters —5

which allows simpler models to outperform similarly fitting models of higher parametric complex-6

ity. However, criteria like AIC and BIC do not consider an additional form of model complexity,7

referred to as geometric complexity, which relates specifically to the mathematical form of the8

model. Models of equivalent parametric complexity can differ in their geometric complexity and9

thereby in their ability to flexibly fit data. Here we use the Fisher Information Approximation to10

compare, explain, and contextualize how geometric complexity varies across a large compilation11

of single-prey functional-response models — including prey-, ratio-, and predator-dependent for-12

mulations — reflecting varying apparent degrees and forms of non-linearity. Because a model’s13

geometric complexity varies with the data’s underlying experimental design, we also sought to14

determine which designs are best at leveling the playing field among functional-response mod-15

els. Our analyses illustrate (1) the large differences in geometric complexity that exist among16

functional-response models, (2) there is no experimental design that can minimize these differ-17

ences across all models, and (3) even the qualitative nature by which some models are more18

or less flexible than others is reversed by changes in experimental design. Failure to appreciate19

model flexibility in the empirical evaluation of functional-response models may therefore lead to20

biased inferences for predator–prey ecology, particularly at low experimental sample sizes where21

its impact is strongest. We conclude by discussing the statistical and epistemological challenges22

that model flexibility poses for the study of functional responses as it relates to the attainment23

of biological truth and predictive ability.24

Keywords: consumer-resource interactions, model comparison, model flexibility, structural25

complexity, nonlinearity, experimental design, mutual predator effects, Fisher information, pre-26

diction, statistical inference27
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Contribution to Field Statement28

The use of criteria like AIC and BIC for selecting among functional-response models is now29

standard, well-accepted practice, just as it is in the ecological literature as a whole. The generic30

desire underlying the use of these criteria is to make the comparison of model performance an31

unbiased and equitable process by penalizing each model’s fit to data by its parametric com-32

plexity (relating to its number of free parameters). Here we introduce the Fisher Information33

Approximation to the ecological literature and use it to understand how the geometric complex-34

ity of models — a form of model complexity relating to a model’s functional flexibility that is35

not considered by criteria like AIC and BIC — varies across a large compilation of 40 differ-36

ent single-prey functional-response models. Our results add caution against the simplistic use37

and interpretation of information-theoretic model comparisons for functional-response experi-38

ments, showing just how large an effect that model flexibility can have on inferences of model39

performance. We therefore use our work to help clarify the challenges that ecologists studying40

functional responses must face in the attainment of biological truth and predictive ability.41
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1 Introduction42

Seek simplicity and distrust it.43

Alfred North Whitehead, The Concept of Nature, 1919.44

The literature contains thousands of functional-response experiments (DeLong & Uiterwaal,45

2018), each seeking to determine the relationship between a given predator’s feeding rate and its46

prey’s abundance. In parallel, dozens of functional-response models have been proposed (Jeschke47

et al., 2002; Table 1), each developed to encapsulate aspects of the variation that exists among48

predator and prey biologies. The desire to sift through these and identify the “best” model on the49

basis of data is strong given the frequent sensitivity of theoretical population-dynamic predictions50

to model structure and parameter values (e.g., Aldebert & Stouffer, 2018; Fussmann & Blasius,51

2005). Information-theoretic model comparison criteria like the Akaike Information Criterion52

(AIC) and the Bayesian Information Criterion (BIC) have rapidly become the preeminent tool53

for satisfying this desire in a principled and quantitative manner (Okuyama, 2013), mirroring54

their increasing ubiquity across the ecological literature as a whole (Aho et al., 2014; Ellison,55

2004; Johnson & Omland, 2004). Generically, criteria like AIC and BIC make the comparison56

of model performance an unbiased and equitable process. For standard linear regression models57

(and most other models), increasing model complexity by including additional free parameters58

will always result in a better fit to the data. Therefore, by the principle of parsimony or because59

such increases in fit typically come at the cost of generality beyond the focal dataset, model60
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performance is judged by the balance of fit and complexity when other reasons to disqualify a61

model do not apply (Burnham & Anderson 2002; Höge et al. 2018; but see Evans et al. 2013;62

Coelho et al. 2019)63

While differing fundamentally in their underlying philosophies, motivations, and assumptions64

(Aho et al., 2014; Höge et al., 2018), both AIC and BIC implement the balance of fit and65

complexity in a formal manner by penalizing a model’s likelihood with a cost that depends on66

its number of free parameters. Specifically, for each model in the considered set of models,67

AIC = −2 lnL(θmle|y) + 2k (1)

and68

BIC = −2 lnL(θmle|y) + k ln(n) , (2)

with the model evidencing the minimum value of one or the other criterion being judged as69

the best-performing model. For both criteria, the first term is twice the model’s negative log-70

likelihood (evaluated at its maximum likelihood parameter values θmle) given the data y. This71

term reflects the model’s goodness-of-fit to the data. The second term of each criterion is a72

function of the model’s number of free parameters k. This term reflects a model’s parametric73

complexity. For AIC, a model’s complexity is considered to be independent of the data while74

for BIC it is dependent on the dataset’s sample size n; that is, BIC requires each additional75

parameter to explain proportionally more for datasets with larger sample size. The statistical76

clarity of the best-performing designation is typically judged by a difference of two information77

units between the best- and next-best performing models (Burnham & Anderson, 2002; Kass &78
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Raftery, 1995).79

An issue for criteria like AIC and BIC is that a model’s ability to fit data is not solely a80

function of its parametric complexity and mechanistic fidelity to the processes responsible for81

generating the data. This can be problematic because all models — whether it be due to their82

deterministic skeleton or their stochastic shell — are phenomenological to some degree in that83

they can never faithfully encode all the biological mechanisms responsible for generating data84

(see also Connolly et al., 2017; Hart et al., 2018). Consequently, a given model may fit data85

better than all other models even when it encodes the mechanisms or processes for generating86

the data less faithfully.87

One way in which this can happen is when models differ in their flexibility. A model’s88

flexibility is determined by its mathematical form and can therefore differ among models having89

the same parametric complexity. For example, although the models y = α + βx and y = αxβ90

have the same number of parameters and can both fit a linear relationship, the second model91

has a functional form that is more flexible in that it can also accommodate nonlinearities. In92

fact, the second model may fit some data better than the first even if the first is responsible for93

generating them. The chance of this happening will vary with the design of the experiment (e.g.,94

minimizing noise and maximizing the range of x) and decreases as sample size increases (i.e. as95

the ratio of signal to noise increases). Unfortunately, sample sizes in the functional-response96

literature are often not large (Novak & Stouffer, 2021), and the degree to which experimental97

design is important given the variation in mathematical forms that exists among functional-98
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response models has not been addressed.99

Here our goal is to better understand the contrasting flexibility of functional-response models100

and its impact on their ranking under the information-theoretic model-comparison approach. We101

quantify model flexibility by geometric complexity (a.k.a. structural complexity) as estimated102

by the Fisher Information Approximation (FIA; Rissanen, 1996). Doing so for an encompassing103

set of functional-response models across experimental designs varying in prey and predator104

abundances, we find that geometric complexity regularly differs substantially among models105

of the same parametric complexity, that differences between some models can be reversed by106

changes to an experiment’s design, and that no experimental design can minimize differences107

across all models. Although choices among alternative functional-response models should be108

informed by motivations beyond those encoded by quantitative or statistical measures of model109

performance and we do not here seek to promote the use of FIA as an alternative information110

criterion, our results add caution against interpreting information-theoretic functional-response111

model comparisons merely at face value.112

2 Materials and Methods113

2.1 Fisher Information Approximation114

The Fisher Information Approximation is an implementation of the Minimum Description115

Length principle (Rissanen, 1978) which Grünwald (2000) introduced as a means for making116

model comparisons (see Ly et al., 2017; Myung et al., 2006; Pitt et al., 2002; for details). The117

Minimum Description Length (MDL) principle considers the comparison of model performance118
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as a comparison of how well each model can compress the information that is present in data,119

with the best-performing model being the one that describes the data with the shortest code120

length. In the extreme case of random noise, no compression is possible. FIA is asymptotically121

equivalent to the normalized maximum likelihood which Rissanen (1996) derived to operational-122

ize the MDL principle, but is easier to implement (Myung et al., 2006). It is computed for each123

model as124

FIA = − lnL(θmle|y) +
k

2
ln
( n

2π

)
+ ln

∫
D

√
det I(θ) dθ , (3)

where the first term is the negative log-likelihood of the model given the data, the second term is125

a measure of a model’s parametric complexity that is dependent on the data via the sample size126

n (Fig. 1), and the third term is a measure of its geometric complexity (for which we henceforth127

use the symbol G). As described further in Box 1, FIA’s geometric complexity reflects a model’s128

ability to capture the space of potential outcomes that can be obtained given an experimental129

design. It thereby depends only on the model’s mathematical form and the structure underlying130

the observed data, but not on n. The contribution of geometric complexity to a model’s FIA131

value consequently decreases with increasing sample size relative to the contributions of the132

likelihood and parametric complexity. This makes the effect of geometric complexity of greatest133

importance for datasets with low sample sizes.134

For our purposes, because both parametric and geometric complexity are independent of135

the data beyond its sample size and experimental design, the potential importance of model136

flexibility to the information-theoretic ranking of models may be assessed by comparing their137
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Figure 1: The dependence of parametric complexity on data sample size as estimated by the

second term of the Fisher Information Approximation (FIA) for models with k = 1, 2, 3 and 4 free

parameters. The potential importance of model flexibility to the information-theoretic ranking

of functional-response models may be assessed by comparing their parametric and geometric

complexity values or by comparing the geometric complexity values of models having the same

parametric complexity because both measures of complexity are independent of the data beyond

its sample size and structure (see main text and Box 1). For context, n = 80 was the median

sample size of all functional-response datasets collated by Novak & Stouffer (2021).

parametric and geometric complexity values or by comparing the geometric complexity values of138

models having the same parametric complexity. Because FIA converges on half the value of BIC139

as n becomes large, a one-unit difference in geometric complexity reflects a substantial impact140

on the relative support that two models of the same parametric complexity could receive.141

Box 1. Unpacking the third term of the Fisher Information Approximation.
As described in greater detail in Ly et al. (2017), Myung et al. (2006), and Pitt et al.

(2002), the Fisher Information Approximation estimates the geometric complexity GM of
a model M as the natural log of the integration (over all parameters θ) of the square root
of the determinant of the model’s unit Fisher Information matrix IM (θ):

GM = ln

∫
DM

√
det IM (θ) dθ . (4)

The Fisher Information matrix IM (θ) is a k× k matrix comprising the expected values of
the second-order derivatives of the model’s negative log-likelihood function with respect
to each of its k parameters. It therefore reflects the sensitivities of the log-likelihood’s

10
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gradient with respect to those parameters. The unit Fisher Information matrix is the
expected value of these derivatives calculated across all potential experimental outcomes
weighted by those outcomes’ probabilities given the parameters θ. When an experimental
design consists of multiple treatments the expectation is averaged across these. IM (θ)
therefore represents the expectation for a single observation (i.e. with a sample size of
n = 1). For example, for a functional-response experiment having five prey-abundance
treatment levels N ∈ {10, 20, 30, 40, 50} and a single predator-density level, the expec-
tation is taken by associating a 1/5th probability to the unit Fisher Information matrix
evaluated at each treatment level. (See the Supplementary Materials for further details.)

The determinant of a matrix corresponds to its geometric volume. A larger deter-
minant of the unit Fisher Information matrix therefore corresponds to a more flexible
model that has higher gradient sensitivities for more of its parameters. Parameters that
share all their information — such as parameters that only appear in a model as a prod-
uct — result in matrix determinants of zero volume. Such non-identifiable models with
statistically-redundant parameters require re-parameterization. Models can also be non-
identifiable because of experimental design, such as when there is insufficient variation
in predictor variables. For example, all predator-dependent functional-response models
will be non-identifiable for designs entailing only a single predator abundance level (see
Fig. S1).

The domain DM of the integral reflects the range of values that the model’s parameters
could potentially exhibit. When a model is not over-specified, each location in parameter
space also corresponds to a unique set of predicted model outcomes. As such, the domain
of the integral reflects the space (volume) of potential experimental outcomes over which
geometric complexity is calculated. Three closely related issues are pertinent in this
regard:

First, a closed-form solution of the indefinite integral in Eq. (4) may not exist, and
when it does it is often divergent. This means that numerical integration methods are
necessary and that parameter ranges must typically be bounded (i.e. the domain DM must
be finite and some outcomes must be rendered “impossible”). However, how to specify
bounds on mathematical grounds is not always obvious. For example, for the ratio-
and consumer-dependent models such as the Hassell–Varley (HV) model, the interference
strength parameter is not mathematically limited but rather can take on any non-negative
value to infinity if the “attack rate” parameter is similarly unconstrained.

Second, for some experimental designs the range of parameter values may be more em-
pirically restricted than is mathematically or even biologically permissible. For example,
the handling time of the Holling Type II (H2) model (and all other models) is mathemat-
ically constrained only to be non-negative, and yet too large a handling time would mean
that no prey are ever expected to be eaten except for prohibitively long experimental
durations, an outcome few experimentalists would consider useful. Similarly, too large an
attack rate would prevent an experimentalist from differentiating among models without
the use of potentially intractable decreases in an experiment’s duration. Experimental
design thereby reduces the space of possible outcomes, particularly for designs in which

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2021. ; https://doi.org/10.1101/2021.07.31.454600doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.31.454600
http://creativecommons.org/licenses/by-nc-nd/4.0/


eaten prey are continually replaced.
Third, because a model’s geometric complexity reflects the range of parameter values

which are considered possible, two models can exhibit different relative geometric com-
plexities for different experimental designs. However, different parameterizations of the
same functional form must have the same geometric complexity for a given experimental
design when the permissible range of their parameters is limited equivalently (see Box 2).
This is an issue because recognizing that two models simply reflect alternative parame-
terizations is not always easy (e.g., contrast the original formulation of the Steady State
Satiation model by Jeschke et al. (2002) in Table S1 to our reformulation in Table 1).

In our analyses, we overcome these three issues by imposing parameter constraints in
a manner that is indirect and equitable across all models. We do so by imposing the same
minimum and maximum constraints on the expected number of prey eaten (thus limiting
the space of potential experimental outcomes) for all models, rather than on each model’s
parameters individually (see Methods: Parameter constraints).

Box 2. Imposing equitable integration limits.
Different parameterizations of the same functional form should always have the same

geometric complexity for a given experimental design. However, this will only be true
when the range of their parameter values over which the integration of Eq. (4) is performed
is limited equivalently, which can be challenging. This issue is irrelevant when solutions
may be obtained in closed-form, but is not irrelevant when this is not possible, as we
suspect is the case for almost all functional-response models applicable to experiments in
which eaten prey are continually replaced.

The challenge of determining equitable integration limits is well-demonstrated by a
comparison of the Holling and Michaelis–Menten Type II functional-response models
(Fig. 2). These are typically written as

FH2 =
aN

1 + ahN
and FMM =

αN

β +N
, (5)

the equivalence of which is demonstrated by substituting α = 1/h (the maximum feeding
rate equals the inverse of the handling time) and β = 1/(ah) (the abundance at which
half-saturation occurs is the inverse of the product of the attack rate and handling time).

By definition, all four parameters (a, h, α and β) are limited only in that they
must be non-negative; they could each, in principle, be infinitely large (i.e. DH2 =
{a ∈ [0,∞), h ∈ [0,∞)} and DMM = {α ∈ [0,∞), β ∈ [0,∞)}). If the integral in Eq. (4)
could then be computed analytically for the two models, we would always obtain
GH2 = GMM for any given experimental design.

However, because the integrals in Eq. (4) for the two models are divergent, finite
limits to DH2 and DMM must be applied. At first glance, it may seem intuitive to
impose these limits on the maximum parameter values. For example, we might consider
imposing a ∈ [0, amax] and h ∈ [0, hmax]. Because of their inverse relationships, doing so
means that the equivalent limits for the Michaelis–Menten model are α ∈ [1/hmax,∞] and

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2021. ; https://doi.org/10.1101/2021.07.31.454600doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.31.454600
http://creativecommons.org/licenses/by-nc-nd/4.0/


β ∈ [1/(amaxhmax),∞], which are not finite and hence cannot solve our problem. Naively,
we might therefore instead consider imposing both minima and maxima, a ∈ [amin, amax]
and h ∈ [hmin, hmax], so that α ∈ [1/hmax, 1/hmin] and β ∈ [1/(amaxhmax), 1/(aminhmin)].
This, however, does not solve a further problem in that the limits for β depend on the value
of α (i.e. 1/h). That is, we must also impose the additional constraint that β > α/amax
(Fig. 2), for only then will the computed GM of the two models be equal.

Problems such as these only compound for models entailing a greater number of pa-
rameters. As alluded to in Box 1, our approach to circumventing these model-specific
issues is to impose constraints on the expected number of eaten prey (Fig. 2), rather
than on the model parameters directly (see Methods: Parameter constraints). That is,
we require that the minimum expected number of eaten prey is no less than one prey
individual in the maximum prey abundance treatment(s) (i.e. 1 ≤ E[F (Nmax, P, θ)PT ]
for all P in the experimental design) and that the maximum expected number of eaten
prey is no greater than Nmax in any of the treatments (i.e. E[F (N,P, θ)PT ] ≤ Nmax for
all N × P combinations in the experimental design). Because of the mapping between
parameter space and predicted model outcomes, these constraints impose natural limits
for most (combinations of) parameters (e.g., the handling time or saturation parameters
of all models). For other parameters, it does not impose hard limits, but nonetheless
results in their contribution to GM tending asymptotically to zero as their value increases
(Fig. 2). This is most notably true for the “attack rate” parameter of all models.

2.2 Experimental designs142

We computed the geometric complexity of 40 different functional-response models across a range143

of experimental designs. We first describe the experimental designs we considered because144

aspects of these also determined our manner for equitably bounding the permissible parameter145

space of all functional-response models (Boxes 1 & 2).146

The experimental designs we considered exhibited treatment variation in prey N and preda-147

tor P abundances. All designs had at least five prey-abundance levels, a minimum prey-148

abundance treatment of three prey individuals, and a minimum predator-abundance treatment149

of one predator individual. The designs varied by their maximum prey and predator abun-150

dances (Nmax and Pmax) which we achieved by correspondingly varying the number of prey and151

13
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Figure 2: Alternative parameterizations of the same functional form should have the same

geometric complexity for any given experimental design, but this will only be true in practice

when their parameter domains D are equivalently constrained (see Box 2 for details). Top

row: Illustration of the functional equivalence and parameter interpretations of the Holling

(left column) and Michaelis–Menten (right column) models. Middle row: Direct constraints on

DH2 and DMM necessitate more than potentially arbitrary minimum and/or maximum limits,

but must also account for the confounded relationships among parameters. Bottom row: We

circumvent this challenge by imposing parameter constraints indirectly via the expected number

of eaten prey, E[F (N,P, θ)PT ]. Stars in the top row indicate these limits imposed on the

assumed experimental design. Colour-scale in bottom row reflects
√

det IM (θ) from dark blue

(low values) to orange (high values), but is re-scaled within each graph to visualize their contours

and thus cannot be compared quantitatively.
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predator treatment levels (LN and LP ); that is, by including higher abundance levels to smaller152

experimental designs. We specified the spacing between prey and predator abundance levels to153

follow logarithmic series. This follows the recommendation of Uszko et al. (2020) whose simula-154

tions showed that a logarithmic spacing of prey abundance levels performed well for the purpose155

of parameter estimation. We used the golden ratio (φ = 1.618 . . .) as the logarithmic base and156

rounded to the nearest integer to generate logistically-feasible abundance series that increase157

more slowly than typically used bases (e.g., log2 or log10). We thereby approximated the Fi-158

bonacci series (1, 1, 2, 3, 5, 8, . . .) on which φn converges for large n. We varied LN between 5 and159

10 levels and varied LP between 1 and 5 levels, thereby affecting Nmax and Pmax abundances160

of up to 233 prey and up to 8 predator individuals. We assumed balanced designs whereby161

all treatments are represented equally. All resulting designs are depicted in the Supplementary162

Materials.163

An important aspect of experimental design which we assumed throughout our analyses164

was that all eaten prey are continually replaced. The constancy of available prey allowed us165

to treat observations as Poisson random variates and hence use a Poisson likelihood to express166

each deterministic functional-response model as a statistical model. This was necessary because167

computing geometric complexity requires an inherently statistical perspective (see Box 1 and168

below).169
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2.3 Functional-response models170

The functional-response models we considered ranged from having one to four free parameters171

(Table 1). We included prey-, ratio-, and predator-dependent models that are commonly as-172

sessed in the functional-response literature, as well as many models that have received far less173

attention, such as those that encapsulate emergent interference, adaptive behavior, or both han-174

dling and satiation. We did not consider models that explicitly include more variables than175

just the abundances of a focal predator-prey pair. Given that our statistical framework was176

based on experimental designs within which eaten prey are continually replaced, we also did177

not include any models which explicitly account for prey depletion or reflect the selection of178

hosts by non-discriminatory parasitoids (e.g., Rogers, 1972). All but two of the considered179

models are previously published. The exceptions were a three-parameter model (AS) which180

represents an illustrative generalization of the adaptive behavior A1 model of Abrams (1990),181

and a four-parameter predator-dependent model (SN2) that extends the Beddington–DeAngelis182

and Crowley–Martin models and may be interpreted as reflecting predators that cannot interfere183

when feeding and can partially feed when interfering (see Stouffer & Novak, 2021).184

That said, we do not concern ourselves with the biological interpretation of the models as185

this has been discussed extensively throughout the functional-response literature. Rather, we186

focus on the models’ contrasting mathematical forms. Across the different models, these forms187

include rational, power, and exponential functions, as well as functions that are linear, sublinear,188

or superlinear with respect to prey or predator abundances. To highlight their similarities, we189
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reparameterized many models to “Holling form”, noting that different parameterizations of the190

same functional form have the same geometric complexity for a given experimental design (Box191

2). This included models that, as originally defined, had statistically-redundant parameters (e.g.,192

the models of Abrams, 1990), were written in “Michaelis-Menten form” (e.g., Sokol & Howell,193

1981), or were written with parameters affecting divisions (e.g., we replaced 1/c→ c). This also194

included the Steady State Satiation (SSS) model of Jeschke et al. (2002) for which GM could195

not be computed. Fortunately the SSS model can also be derived using the citardauq formula196

(rather than the quadratic formula) for which GM could be computed and which further reveals197

its similarity to the adaptive behavior A2 model of Abrams (1990) and the predator-dependent198

model of Ruxton et al. (1992). For simplicity and to further clarify similarities among models,199

we present all model parameters using the symbols a, b, c, and d for non-exponent parameters200

and u and v for exponent parameters, noting that their biological interpretations frequently201

differ among models.202
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2.4 Parameter constraints203

As mentioned above, we assumed a Poisson statistical model in computing the geometric com-

plexity of each deterministic functional-response model. In a context of fitting models to actual

data, the consequent log-likelihood function,

lnL(θ|y) = −
n∏
i=1

ln (yi!) +

n∑
i=1

(ln(λi)yi − λi) , (6)

expresses the log-likelihood of a model’s parameter values given the observed data, with λi =204

F (Ni, Pi, θ)PiT ; that is, the feeding rate of a predator individual in treatment i (as per the focal205

deterministic functional-response model) times the number of predators and the time period of206

the experiment, which we universally set to T = 1. In our context of quantifying GM , observed207

data is not needed because the first term of Eq. (6) drops out when taking derivatives with208

respect to model parameters and because IM (θ) involves the expected value across the space of209

potential experimental outcomes y (Box 1).210

Despite this independence from data, additional information is nonetheless necessary for211

computing the geometric complexity of models such as those we consider here (Box 1). This212

information entails the range of potential outcomes that could be obtained experimentally and213

hence the potential parameter values that a model could exhibit (i.e. its domain DM of inte-214

gration). Encoding this information in an equitable manner that does not bias the inferred215

geometric complexity of some models over others has several potential issues associated with it216

(Boxes 1 and 2), particularly because the nature of our assumed experimental design (i.e. eaten217
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prey are immediately replaced) means that the range of potential outcomes for a given model218

(i.e. the number of prey eaten) is theoretically infinite.219

To avoid these issues, we placed no direct constraints on the parameters themselves. Rather,220

we specified infinite domains on the parameters (i.e. {a, b, c, u, v} ∈ [0,∞) and d ∈ (−∞,∞))221

and instead placed constraints on them in an indirect manner by restricting the allowable out-222

comes predicted by the models. Specifically, we imposed the requirement that, over time-period223

T , the expected number of eaten prey in all maximum prey abundance treatments was no less224

than 1 (i.e. 1 ≤ E[F (Nmax, P, θ)PT ] across all P treatments) and that the expected number225

of prey eaten in any treatment was no greater than the number of prey made available in the226

maximum prey treatment level (i.e. E[F (N,P, θ)PT ] ≤ Nmax for all N × P treatment combi-227

nations). Under the assumed Poisson model, the lower bound corresponds to an expectation228

of observing zero prey being eaten in no greater than 37% of an experiment’s maximum prey229

abundance replicates (since P(E[F (Nmax, P, θ)PT ] = 1) = 0.37). The upper bound is similarly230

arbitrary in a mathematical sense but seems logistically feasible since researchers are unlikely231

to choose a prey abundance beyond which they could not continually replace consumed in-232

dividuals. For the SN1 and SN2 models, we imposed the respective additional requirement233

that bd ≤ 1/max[F (N,P, θ)PT ] and b ≤ 1/max[F (N,P, θ)PT ] for all treatments to maintain234

biologically-appropriate (non-negative) predator interference rates (Stouffer & Novak, 2021). We235

note that our placement of constraints on the expected number of eaten prey is similar to the236

use of Bayesian prior predictive checks with a joint prior distribution in that we restrict the237
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domain of permissible parameter values based on how their conditional inter-dependencies lead238

to predicted model outcomes.239

It is worth noting that some authors defined their models with parameters to be greater than240

1, rather than 0 as we did. For example, theoreticians often assume u ≥ 1 for the Hill exponent241

of the Holling–Real Type III (H3R) model, though Real (1977) did not do so. We consider242

non-negative values less than one to also be biologically and statistically possible (see discussion243

in Stouffer & Novak, 2021). Indeed, relaxing this constraint and redefining the statistically-244

redundant parameters of the original A3 model (Abrams, 1990) clarifies, for example, that it245

is mathematically equivalent to H3R with u = 0.5 (even if its assumed biological mechanism246

differs).247

2.5 Model comparisons248

Comparisons of geometric complexity can only be made across models of the same parametric249

complexity; it is in conjunction with its second term that FIA enables comparisons across models250

in general. Therefore, for each set of models (i.e. for models with k = 1, 2, 3 or 4 parameters),251

we first assessed how an experiment’s design determined the geometric complexity of a selected252

“baseline” model. Because their relationships to each other and most other models are readily ap-253

parent, we chose the Holling Type I (H1) model as the baseline for the k = 1 models, the Holling254

Type II (H2) model for the k = 2 models, the Holling–Real Type III (H3R) and the Beddington–255

DeAngelis (BD) models for the k = 3 models (H3R for the prey-dependent models and BD for256

the ratio- and predator-dependent models), and the Beddington–DeAngelis–Okuyama–Ruyle257
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(BDOR) model for the k = 4 models. We then compared the geometric complexity of the other258

models within a given set to the set’s baseline model(s) by calculating, for each experimental259

design, the difference between the two model’s geometric complexity values (e.g., GLR − GH1).260

This difference enables a direct evaluation of the degree to which a model’s flexibility influences261

its information-theoretic ranking because it has the same units of information as the likelihood262

and parametric complexity terms of the FIA criterion.263

2.6 Sensitivity to assumptions264

We evaluated the sensitivity of our inferences to three aspects of experimental design, repeating265

our analyses for designs that266

1. varied in the number of prey and predator levels (LN and LP ) but kept the maximum267

prey and predator abundances constant at Nmax = 233 and Pmax = 5 (based on results268

from the main analysis);269

2. used arithmetically-uniform (rather than logarithmic) series of prey and predator abun-270

dances; and that271

3. relaxed the constraint on either the minimum or the maximum expected number of eaten272

prey by an order of magnitude (i.e. E[F (Nmax, P, θ)PT ] ≥ 1/10 or E[F (N,P, θ)PT ] ≤273

10Nmax).274

All analyses were performed in Mathematica (Wolfram Research Inc., 2020) using the Local275

Adaptive integration method and with precision and accuracy goals set to 3 digits.276
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3 Results277

3.1 Baseline models & equivalent models278

The geometric complexity GM of all baseline models (H1, H2, H3R, BD and BDOR) increased279

with increasing Nmax and decreasing Pmax (Figs. 3–6). For these models, GM varied more280

greatly across the considered variation in Nmax than across the considered variation in Pmax,281

with at most a very weak interactive effect occurring between these. The difference in GM282

between the smallest and largest Nmax for a given Pmax varied from about 2 information units283

for the parametrically simplest H1 model to about 5 units for the parametrically most complex284

BDOR model, with the difference for the other baseline models being intermediate and roughly285

proportional to their number of free parameters.286

As expected (Box 2), alternative parameterizations of the same functional form had the287

same GM for all designs, with numerical estimation errors accounting for deviations from exact288

equivalence. This was demonstrated by H2 and MM as well as GI and GIA (Fig. 4), which differ289

only in the biological interpretation of their parameters. Likewise, all ratio-dependent models290

had the same GM as their “corresponding” Holling-type models when there was no variation in291

predator abundances (e.g., GLR ≈ GH1, GAG ≈ GH2 and GAGK ≈ GH3 when Pmax = 1; Figs. 3–5).292

3.2 One-parameter models293

For the one-parameter models (Fig. 3), both GLR and GBLW1 were always greater than GH1294

(excepting when Pmax = 1 for LR). The degree to which the linear ratio-dependent (LR) model295

was more flexible than the Holling Type I (H1) model decreased with increasing Nmax and296
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decreasing Pmax. This was also true for the ratio-dependent BLW1 model of Barbier et al.297

(2021) when Pmax ≥ 3, but for Pmax < 3 its difference to H1 increased with increasing Nmax.298

The most equitable designs capable of differentiating among all three models therefore consisted299

of only two predator levels (Pmax = 2), entailed a GM difference among models of about 0.2300

information units or more, and caused LR to be slightly more flexible for small Nmax and BWL1301

more so for large Nmax relative to H1. The least equitable design entailed large Pmax and small302

Nmax and caused the geometric complexity of LR and BWL1 to exceed that of H1 by more than303

1 and 0.8 information units, respectively.304

3.3 Two-parameter models305

There were four categories of two-parameter models qualitatively distinguished by whether they306

exhibited equivalent, higher, lower or a design-dependent GM relative to the H2 baseline model307

(Fig. 4):308

(i) MM was equivalent to H2 for all designs (as already mentioned above);309

(ii) H3, HT, GI, GIA, SH, AG, AGK, GB, CDAO and R were more flexible than H2 for all310

designs (had higher GM , excepting for Pmax = 1 where GAG ≈ GCDAO ≈ GH2);311

(iii) A0, A1 and A3 were less flexible than H2 for all designs (had lower GM ); and312

(iv) HV was more flexible than H2 for small Nmax designs and less flexible for large Nmax, with313

large and small Pmax designs respectively increasing and decreasing its relative flexibility314

more greatly.315
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure 3: First panel : The geometric complexity GH1 of the single-parameter (k = 1) base-

line Holling Type I (H1) model as a function of an experiment’s maximum prey and predator

abundances (Nmax and Pmax). Other panels: The difference in GM of the linear ratio-dependent

(LR) model and the square-root model of Barbier et al. (2021; BWL1) relative to the H1 model.

Positive differences reflect experimental designs for which a focal model’s mathematical flexi-

bility would result in it being favoured by information criteria like AIC and BIC that do not

consider this form of model complexity.
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H3 was the only model for which the difference from H2 was insensitive to experimental design,316

always being about 0.45 information units. For HT, GI, GIA, A0, A1 and A3, the difference317

to H2 was insensitive to Pmax, but while it increased with increasing Nmax for HT, GI, GIA318

and A0 (making small Nmax designs the most equitable), it decreased with increasing Nmax for319

A1 and A3 (making large Nmax designs the most equitable). The degree to which AG, AGK,320

GB, CDAO and R were more flexible than H2 decreased with increasing Nmax, but while it321

increased with increasing Pmax for AG, AGK, GB and CDAO (making large Nmax, small Pmax322

designs the most equitable), it decreased — albeit weakly — with increasing Pmax for R. For323

SH, the difference to H2 first increased from small to intermediate Nmax then slowly decreased324

from intermediate to large Nmax, but was always minimized by large Pmax. Small Nmax, large325

Pmax designs were therefore the most equitable for SH. Finally, for HV, which was either more326

or less flexible than H2 depending on design, the most equitable designs spanned Nmax ≈ 30 for327

Pmax = 2 to Nmax ≈ 120 for Pmax = 8. Overall, A0 and AGK exhibited the greatest potential328

disparity in flexibility relative to H2, respectively being less and more flexible by about 1.4329

information units under their least equitable design. The greatest potential disparity among all330

considered two-parameter models was about 2 information units and occurred between HV and331

A0 for small Nmax, large Pmax designs in favour of HV.332

3.4 Three-parameter models333

Noting that all predator-dependent models are non-identifiable for Pmax = 1 designs (Fig. S1),334

there were three categories of three-parameter models that were qualitatively distinguished by335
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure 4: As in Fig. 3 but for two-parameter (k = 2) functional-response models. First panel :

The geometric complexity GH2 of the baseline Holling Type II model (H2) as a function of an

experiment’s maximum prey and predator abundances (Nmax and Pmax). Other panels: The

difference in GM of all other two-parameter models relative to the H2 model. As a visual aid,

models with greater geometric complexity than H2 are coloured in blue while those with less

geometric complexity than H2 are coloured in orange.
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whether they exhibited higher, lower or a design-dependent GM relative to the two baseline336

models — H3R for prey-dependent models and BD for ratio- and predator-dependent models337

(Fig. 5):338

(i) FHM and BD were more flexible than H3R, and CM, W, SBB and AA were less flexible339

than BD, for all designs (excepting for Pmax = 2 where GAA ≈ GBD);340

(ii) A2, HLB, MH, AS, SSS and T were less flexible than H3R, and TTA and RGD were less341

flexible than BD, for all designs; and342

(iii) BWL2 was more flexible than BD for small Nmax, large Pmax designs and was less flexible343

for large Nmax, small Pmax designs.344

For the ratio- and predator-dependent models, differences to BD were more sensitive to variation345

in Pmax than to variation in Nmax. The degree to which CM, W, SBB and AA were more flexible346

than BD increased with increasing Pmax, reaching a difference in geometric complexity of 0.8347

information units at Pmax = 8. For these models, the most equitable design therefore entailed348

small Pmax regardless of Nmax, but for TTA and RGD, for which the difference to BD decreased349

with increasing Pmax, it was designs entailing large Pmax which reduced their lower geometric350

complexity the least (by no less than 1.4 and up to 2.9 information units). The degree to351

which the prey-dependent AS, SSS and T models were less flexible than H3R was also more352

sensitive to variation in Pmax than in Nmax, but the degree to which A2, HLB and MH were less353

flexible and the degree to which FHM was more flexible was relatively insensitive to variation354
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in Pmax. As Nmax increased, SSS and T became less flexible than H3R, A2, HLB, MH and AS355

became less inflexible relative to H3R, and FHM became more flexible than H3R. For BWL2,356

which could either be more or less flexible than H3R depending on design, the most equitable357

designs spanned those that had the largest considered Nmax when Pmax was large to those that358

had the smallest considered Nmax when Pmax was small. Overall, SSS and RGD exhibited the359

greatest potential disparity relative to their H3R and BD baselines, respectively differing in360

their geometric complexity by about 13 and almost 2.9 information units for the least equitable361

designs. The greatest potential disparity among all other considered three-parameter models362

was about 11 information units and occurred between SSS and CM for large Nmax, large Pmax363

designs in favour of CM.364

3.5 Four-parameter models365

Finally, among the four-parameter models, which exhibited the greatest amounts of numerical366

estimation noise (Fig. 6):367

(i) AAOR was more flexible than BDRO for all designs (had higher GM );368

(ii) SN1 and SN2 were less flexible than BDRO for all designs (had lower GM ); and369

(iii) CMOR tended to be more flexible for large Nmax, large Pmax designs and less flexible for370

small Nmax, small Pmax designs.371

For CMOR, AAOR and SN1, the difference to BDOR was less sensitive to variation in Nmax372

than to variation in Pmax, but the opposite was true for SN2. Further, while the degree to373
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure 5: As in Fig. 3 but for three-parameter (k = 3) functional-response models. First

and tenth panels: The geometric complexity GM of the baseline Holling–Real Type III (H3R)

and Beddington–DeAngelis (BD) models as a function of the experiment’s maximum prey and

predator abundances (Nmax and Pmax). Other panels: The difference in GM of the other three-

parameter prey-dependent (top two rows) and ratio- and predator-dependent (bottom two rows)

models relative to the baseline models. As a visual aid, models with greater geometric complexity

than H2 are coloured in blue while those with less geometric complexity than H2 are coloured

in orange.
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure 6: As in Fig. 3 but for four-parameter (k = 4) functional-response models. First panel :

The geometric complexity GBDOR of the Beddington–DeAngelis–Okuyama–Ruyle (BDOR)

model as a function of the experiment’s maximum prey and predator abundances (Nmax and

Pmax). Other panels: The difference in GM of all other four-parameter models relative to the

BDOR model. As a visual aid, models with greater geometric complexity than H2 are coloured

in blue while those with less geometric complexity than H2 are coloured in orange.

which AAOR was more flexible than BDRO was minimized by Pmax = 2 designs (to about 0.2374

information units), the degree to which SN1 was less flexible than BDRO was minimized by375

Pmax = 8 designs (to about 0.5 information units). SN2 was non-identifiable for designs having376

Pmax ≤ 3 (Fig. S1), but for Pmax > 3 designs it was less flexible by at least 1 information unit.377

The most equitable designs for CMOR and BDOR entailed intermediate predator abundances378

(Pmax = 3–5). Overall, the greatest potential disparity to the BDOR baseline model occurred379

for the SN2 model (about 2.5 information units) at the largest Nmax. The greatest potential380

disparity among all considered four-parameter models occurred for the SN2 and AAOR models381

(about 3.5 information units) for the largest Nmax, largest Pmax design in favour of AAOR.382
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3.6 Sensitivity analyses383

Fixing Nmax = 233 and Pmax = 5 and varying the number of prey and predator treatment384

levels (LN and LP ) to below the numbers used in our primary analysis showed that GM was385

relatively insensitive to variation in LN for most models (Figs. S2–S5). In contrast, the degree386

to which models were more or less flexible relative to their baseline model was far more sensitive387

to variation in LP . For most of the LP -sensitive models, decreasing LP increased their difference388

to the baseline model, but for an almost equal number the difference decreased. The largest389

effects of LP most often occurred when reducing from two predator levels (P ∈ {1, 2}) to only a390

single-predator level (or the corresponding reduction of three to two levels for the four-parameter391

models). Setting aside these last-mentioned and in some ways trivial changes to LP , the greatest392

effect of changing LN and LP was to change the relative geometric complexity of models and393

their baseline models by up to about 0.6 information units (excepting T and SSS for which394

changes of up to 2.5 units occurred).395

The use of designs with arithmetic rather than logarithmic spacings of prey and predator396

abundances also had little to no effect on the geometric complexity of models relative to their397

baselines (Figs. S6–S9). The notable exceptions included the manner in which (i) HV was more398

flexible than H2 (arithmetic spacings making HV invariably more flexible rather than more or399

less flexible depending on Nmax and Pmax), (ii) BD was more flexible than H3R (arithmetic400

spacings making it more flexible for large rather than small Nmax), and (iii) CMOR was more401

flexible than BDOR (arithmetic spacings making CMOR invariably less flexible rather than402
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more or less flexible depending on Nmax and Pmax).403

Finally, relaxing the indirect constraints we imposed on the range of potential experimental404

outcomes (i.e. model parameters) by changing the minimum or the maximum expected number405

of eaten prey by an order of magnitude had similarly little effect (Figs. S10–S17). The notable406

consequences were that increasing the maximum expected number of eaten prey across all treat-407

ments from Nmax to 10 Nmax caused (i) CDAO to become less rather than more flexible than408

H2, (ii) T and W to be more or less flexible than H3R and BD in a design-dependent rather409

than design-independent manner; (iii) CMOR to become more flexible than BDOR for a greater410

range of designs, and (iv) GSN1 and GSN2 to no longer be estimable, even after a month of411

computation on a high-performance computing cluster.412

4 Discussion413

The functional-response literature is replete with models, even among those that only consider414

variation in the abundances of a single predator-prey pair (Table 1, Jeschke et al., 2002). Each415

of these many deterministic models was proposed to encapsulate a different aspect of predator-416

prey biology, though frequently even very different biological processes lead to very similar or417

even the same model form (Table 1). Information-theoretic criteria, which balance model fit and418

complexity, represent the principal, most general, and most accessible means for comparing the419

statistical performance of these models when they are given a statistical shell and confronted420

with data (Okuyama, 2013). The primary contribution of our analyses is to show that existing421

models, independent of the biology they are meant to reflect, frequently also differ in their422
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flexibility to fit data, even among models having the same parametric complexity. Differences423

in model flexibility as assessed by the geometric complexity term G of the FIA criterion were424

frequently greater than 0.5 information units, spanned values up to 13 information units, and425

for several models were never below 1 information unit even for the most equitable of considered426

experimental designs. Secondarily, our analyses demonstrate just how dependent a model’s427

flexibility can be on the experimental design of the data (i.e. what the range and combinations428

of prey and predator abundances are). In some instances this design dependency was great429

enough to cause models that were less flexible than other models for some experimental designs430

to become more flexible than the same models for different designs.431

Our use of the FIA criterion allows us to contextualize the importance of this variation in432

flexibility in two rigorous and quantitative ways: First, we can compare G among models of433

the same parametric complexity for a given experimental design assuming their goodness-of-fit434

to a hypothetical dataset to be the same. In this scenario, the potential significance of model435

flexibility to the information-theoretic comparison of functional-response models is evidenced in436

a general manner by the fact that a 2-unit difference in AIC or BIC among competing models437

— equivalent to a 1-unit difference in FIA — represents “substantial” support (a weight-of-438

evidence of 2.7 to 1) for one model over another (Burnham & Anderson, 2002). (Such a difference439

reflects a probability of 0.73 that the first of only two competing models is “better” than the440

other.) Second, we can compare G to a model’s parametric complexity for hypothetical datasets441

of differing sample size assuming its goodness-of-fit to these data remains the same. In this442
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scenario, the potential significance of model flexibility to the inferences of functional-response443

studies performed in the past is evidenced by the fact that our estimated differences in G are444

comparable to the values of parametric complexity that are associated with the median and445

even maximum sample sizes seen in the large collection of datasets recently compiled by Novak446

& Stouffer (2021) (Table 2). That is, as feared by Novak & Stouffer (2021), sample sizes447

among existing empirical datasets are often sufficiently small that the likelihood and parametric448

complexity differences of many models is unlikely to have sufficiently out-weighed the influence449

of their functional flexibility in determining their information-theoretic rankings.450

Table 2: The value of FIA’s parametric complexity term (the second term of Eq. (3) depicted in
Fig. 1) for models of k = 1, 2, 3 and 4 parameters evaluated at the sample sizes of the smallest
(n = 10), median (n = 80), and largest (n = 528) sized datasets in the set of 77 functional-
response datasets having variation in both prey and predator abundances compiled by Novak
& Stouffer (2021). These values serve as reference for gauging the magnitude differences in
geometric complexity between models reported here and, thereby, for judging the likely influence
of model flexibility on prior inferences of relative model performance using AIC and BIC.

Sample size (n)
k 10 80 528

1 0.2 1.3 2.2
2 0.5 2.5 4.4
3 0.7 3.8 6.6
4 0.9 5.1 8.9

4.1 What makes models (in)flexible?451

Given that the influence of model flexibility on information-theoretic model comparisons of the452

past is likely substantial, that its influence will likely not change dramatically in the future453

given the logistical challenges of standard experimental approaches, and because there is no454

experimental design that can make the comparison of functional-response models universally455
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equitable with respect to their flexibility, an important question is: What aspects of their456

mathematical formulation make models more or less flexible for certain experimental designs?457

For the one-parameter models the answer is relatively accessible given the specifics of our458

analyses. The linear ratio-dependent (LR) model is more flexible than the Holling Type I (H1)459

model because the division of prey abundances by a range of predator abundances allows a460

greater range of parameter a (“attack rate”) values to satisfy the condition that the resulting461

expected numbers of eaten prey will lie within our specified minimum and maximum bounds462

(i.e. satisfying both E[F (Nmax, P, θ)PT ] ≥ 1/10 and E[F (N,P, θ)PT ] ≤ 10Nmax). Relative to463

H1 for which high Nmax and low Pmax maximize the potential range of attack rates that an464

individual predator could express in an experiment, having many predators “interfering” in a465

ratio-dependent manner enables each individual predator to express an even greater attack rate466

without all predators in total consuming too many prey. The effects on the maximum versus467

the minimum prey eaten are asymmetric in magnitude (i.e. the maximum potential value of a468

increases more than the minimum potential value of a) because division by P in LR has an469

asymmetric effect on the per predator number of prey eaten (relative to the multiplication by470

P that is common to all models); it is symmetric only on a logarithmic scale. The magnitude of471

this effect is dampened in the BWL1 model of Barbier et al. (2021) because it entails a ratio of472

the square roots of (is sublinear with respect to) prey and predator abundances, making BWL1473

more flexible than H1 but less flexible than LR.474

The same rationale applies to all other models and explains the varied (in)sensitivities that475
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their model flexibility has with respect to experimental design. That said, the situation is476

often more complicated for models with multiple parameters because of (i) the interdependent477

influences that parameters have on the number of prey that are eaten, and (ii) the fact that,478

for some models, the minimum and the maximum boundaries on the expected number of eaten479

prey come into play at different points in parameter- and species-abundance space.480

For example, for the Holling Type II (H2) model, requiring that at least one prey on average481

be eaten in the highest prey abundance treatments causes high handling times to impose a lower482

limit on each individual’s attack rates only if and when prey abundances are sufficiently high to483

affect saturation. The Holling Type III (H3) model experiences this same effect as well, hence484

its relative flexibility is insensitive to variation in maximum prey abundances. H3 is nonetheless485

more flexible than H2 because it is superlinear with respect to prey abundance (when handling486

times or prey abundances are low) and can therefore satisfy the minimum of one-prey-eaten-per-487

predator constraint for smaller attack rate values than can H2. Similarly, the exponential form488

of the Gause–Ivlev models (GI and GIA) makes them more flexible than H2 because they are489

superlinear with respect to prey abundance, while the A1 and A3 models of Abrams (1990) are490

less flexible than H2 because they are sublinear with respect to prey abundance. The insensitivity491

of the relative flexiblity of all these models to variation in predator abundances occurs because492

the total prey eaten they effect is determined by predator abundance in the same proportional493

manner as for H2. That is, just like most other two-parameter prey-dependent models, the494

relative flexibility of H2 and these models is similarly uninfluenced by the ratio of prey and495
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predator abundances, in contrast to the way that all ratio- and predator-dependent models are496

affected (as per the contrast of H1, LR and BWL1 discussed above).497

The prey-dependent Type IV model of Sokol & Howell (1981) (SH) represents an informa-498

tive exception to all other two-parameter prey-dependent models in that its relative flexibility is499

sensitive to predator abundance. Whereas all monotonically increasing prey-dependent models500

only ever come up against the maximum prey abundance constraint as predator abundances in-501

crease, increasing predator abundances additionally alleviate the constraint that SH experiences502

uniquely due to the eventual decline of its feeding rate at high prey abundance; high preda-503

tor abundances permit the total number of prey eaten to stay above the minimum-of-one-prey504

constraint for greater maximum prey abundances than is possible for low predator abundances505

given the parameter values.506

The dependence of model flexibility on predator abundance emerges among the prey-dependent507

three-parameter models for similar reasons. For example, although the feeding rates of neither508

the HLB model of Hassell et al. (1977) nor the A2 model of Abrams (1990) decline with respect509

to prey abundance, increasing their c parameter does make their denominators more sensitive to510

maximum prey abundances where the minimum of one-prey-eaten-per-predator constraint comes511

in to play. Therefore, just as for SH, increasing predator abundances increase the number of512

prey eaten to allow for larger values of c to satisfy the minimum-of-one-prey constraint. That is,513

although increasing predator abundance would limit the range of c due to the minimum-of-one-514

prey constraint if all else were to be held constant, all else is not constant. Rather, high predator515
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abundance enables a greater range of a values for a given value of c before the maximum-prey-516

eaten constraint is violated. This is also the reason why all predator-dependent models exhibit517

increasing relative flexibility as predator abundance increases even as the absolute flexibility of518

their respective baseline models decreases.519

4.2 Additional aspects of experimental design520

Our sensitivity analyses on the role of experimental design reinforce the inferences of our main521

analysis. They also speak to the likely generality of our results to additional aspects of ex-522

perimental design which we did not specifically address. For the two-parameter models whose523

relative flexibility was insensitive to the ratio of prey and predator abundances, using arith-524

metic rather than logarithmic designs had little or no qualitative influence because arithmetic525

spacings did not alter maximum prey abundances where the constraints on the number of prey526

eaten are incurred. By contrast, models for which changes to spacings or the prey-eaten con-527

straints did alter their relative flexibility were either ratio- or predator-dependent models, or528

were prey-dependent models whose additional (third) parameter made their flexibility sensitive529

to predator abundance. We conclude from this that the precise spacings of prey and predator530

abundances are less important from a model flexibility perspective than are their maxima and531

combinatorial range, but that these aspects of design become more important as the parametric532

complexity of the considered models increases.533

Nonetheless, searching for equitable experimental designs as we did is different from searching534

for optimal designs for model-specific parameter uncertainty, bias, or identifiability (e.g., Moffat535
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et al., 2020; Sarnelle & Wilson, 2008; Uszko et al., 2020; Zhang et al., 2018). A precedence of536

other motivations for an experiment, such as maximizing the precision of parameter estimates,537

may therefore lead to different and likely model-specific conclusions about which design aspects538

are important. Fortunately, given our results, some aspects of experimental design may be of539

little consequence. For example, independent of the maximum prey abundance used, the general540

utility of a logarithmic spacing of prey makes intuitive sense given that, for many models, most541

of the action that differentiates model form occurs at low prey abundances (i.e. their derivatives542

with respect to N are greatest at low values of N). Intuition likewise suggests that designs543

should preclude total prey consumption being overwhelmed by the overall effect of interference544

among predators and hence that predator abundances shouldn’t be high. In this regard our545

results indicate that just a little variation across a range of low predator abundances is often —546

though far from universally — best from a relative model flexibility standpoint, just as it would547

be expected to be best for parameter estimation.548

Our analyses did not consider questions regarding the treatment-specific distribution of ex-549

perimental replicates, important though these often are given logistical constraints. All of our550

analyses assumed uniformly-balanced designs, the effect of which future analyses could easily as-551

sess by changing the probability of each experimental treatment when computing the Expected552

unit Fisher Information matrix underlying G (see Box 1). We anticipate, however, that shifting553

replicates from lower prey and predator abundances to higher abundances will have a similar554

effect to that seen in the comparison of logarithmic to arithmetic spacings. Therefore, from a555
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model flexibility standpoint alone, we expect such a shift to have a greater effect for models of556

high parametric complexity.557

A final important aspect of experimental design that our analyses did not address was the558

assumed likelihood function connecting each deterministic functional-response model to an ex-559

periment’s design (i.e. the structure of the data). We assumed a Poisson likelihood and therefore560

that eaten prey are continually replaced, that the mean and variance of prey eaten are equal for561

a given combination of predator and prey abundances, and that all feeding events are indepen-562

dent. Model flexibility as assessed by geometric complexity may be different under alternative563

likelihoods such as the binomial likelihood (which would be appropriate for non-replacement de-564

signs) or the negative binomial likelihood (which allows for under- or over-dispersion). Indeed,565

for the binomial likelihood even the linear Holling Type I deterministic function response results566

in a non-linear statistical model (Novak & Stouffer, 2021), hence relative geometric complexity567

may be quite different for models that account for prey depletion (see Supplementary Materials568

for a comparison of Rogers’ random Type II and Type III predator models). That said, the569

maximum likelihood parameter estimators under Gaussian and log-Normal likelihoods are the570

same as under a Poisson likelihood for many — and possibly all — of the models we considered571

(Novak & Stouffer, 2021), so it is likely that our inferences would be little changed under these572

commonly assumed alternatives.573
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4.3 Model flexibility as problem and desirable property574

There are many perspectives on the purpose of models and why we fit models to data. Shmueli575

(2010) articulates two primary axes of motivation that align well to the functional-response576

literature: explanation (where the primary motivation is to infer biologically- and statistically-577

significant causal associations the nature of which models are meant to characterize) and predic-578

tion (where the primary motivation is to best describe as yet unseen out-of-sample data).1 The579

ability to satisfy both motivations converges as the amount of data and the range of conditions580

the data reflect increase, thereby mirroring the inferential convergence of information criteria581

as sample sizes increase and cause differences in goodness-of-fit to dominate measures of model582

complexity. Model flexibility, and with it our analyses, would thus be irrelevant if the sample583

sizes of functional-response experiments were sufficiently large. Instead, sample sizes for many584

studies are such that model flexibility — as well as other forms of statistical and non-statistical585

bias (Novak & Stouffer, 2021) — preclude the conclusion that models deemed to perform best586

on the basis of their information-theoretic ranking are also closest to biological truth.587

Empiricists fitting functional-response models to data must therefore make the explicit choice588

between explanation, for which criteria such as BIC and FIA are intended, and prediction,589

for which AIC(c), cross-validation, model-averaging, and most forms of machine learning are590

intended (Aho et al., 2014; Höge et al., 2018; Shmueli, 2010). If data is limited and explanation591

is the goal, then design-dependent differences in model flexibility represent a critical problem592

1A third axis, description, remains common in the functional-response literature and typically takes the form
of fitting “non-mechanistic” polynomial models to evaluate the statistical significance of various non-linearities.
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for commonly-used criteria like BIC because more flexible models will be conflated for the593

truth. In such contexts, it would be wise to identify the most equitable design for a specifically594

chosen subset of hypothesis-driven models (see also Burnham & Anderson, 2002), or, in lieu595

of a better reasoned solution, to use a design or multiple designs that stack the deck against596

leading hypotheses associated with the most flexible models. On the other hand, if data is597

limited and out-of-sample prediction is the goal, then model flexibility could be considered an598

advantage if it causes more-complex-than-true models to be selected because they are deemed to599

perform better, especially when the true model may not even be among those being compared600

(Höge et al., 2018). More generally, there are clearly contexts in which ecologists wish to have601

generic, flexible functional-response models that merely approximate aspects of the truth in a602

coarse manner, be it in more descriptive statistical contexts or in theoretical contexts where603

the potential role of these aspects in determining qualitatively different regimes of population604

dynamics is of interest (e.g., AlAdwani & Saavedra, 2020; Arditi & Ginzburg, 2012; Barbier605

et al., 2021). In these contexts, and since all models are phenomenological and hence agnostic606

with respect to precise mechanistic detail (as Table 1 underscores; see also Connolly et al., 2017;607

Hart et al., 2018), we consider the results of our analyses to be useful for making a priori choices608

among models given that more flexible models likely capture and exhibit a greater amount of609

biologically insightful variation in a more analytically tractable manner.610
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4.4 Conclusions611

Several syntheses evidence that there is no single model that can characterize predator functional612

responses in general (Novak & Stouffer, 2021; Skalski & Gilliam, 2001; Stouffer & Novak, 2021).613

This is consistent with the fact that, to a large degree, the statistical models of the functional-614

response literature characterize aspects of predator-prey biology for which there is evidence615

in data, not whether specific mechanisms do or do not occur in nature (see also Connolly616

et al., 2017). In light of the fact that functional-response data are hard to come by, our study617

demonstrates that a model’s functional flexibility should be considered when interpreting its618

performance. That said, we are not advocating for FIA as an alternative to more commonly-used619

information criteria; its technical nature and model-specific idiosyncrasies do not lend itself to620

widespread adoption or straightforward implementation (e.g., in software packages). Moreover,621

more fundamental issues exist that pertain to the explicit consideration of study motivation.622

Indeed, we submit that questions of motivation are ones that the functional-response literature623

as a whole needs to grapple with more directly. Even in the specific context of prediction, for624

example, functional-response studies rarely address explicitly what their study and their data625

are intending to help better predict (e.g., feeding rates or population dynamics). Valuable effort626

would therefore be expended in future work to consider the relationship of model flexibility to627

the parametric- and structural sensitivities of models when it comes to drawing inferences for628

population dynamics (e.g., Adamson & Morozov, 2020; Aldebert & Stouffer, 2018). Likewise,629

it would also be useful to clarify the relevance of model flexibility to the rapidly developing630
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methods of scientific machine learning, including the use of symbolic regression, neural ordinary631

differential equations, and universal differential equations for model discovery (e.g., Bonnaffé632

et al., 2021; Guimerà et al., 2020; Martin et al., 2018; Rackauckas et al., 2020).633
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