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Summary 

The basal ganglia (BG) play a critical role in a variety of functions that are essential for animal 

survival. Information from different cortical areas propagates through the BG in anatomically 

segregated circuits along the parallel direct and indirect pathways. We examined how the globus 

pallidus (GP), a central nucleus within the indirect pathway, encodes input from the motor and 

cognitive domains. We chronically recorded and analyzed neuronal activity in the GP of rats 

engaged in a novel environment exposure task. GP neurons displayed multidimensional 

responses to movement and contextual information. A model predicting single unit activity 

required many task-related variables, thus confirming the multidimensionality of GP neurons. In 

addition, populations of GP neurons, but not single units, reliably encoded the animals’ 

locomotion speed and the environmental novelty. We posit that the GP independently processes 

information from different domains, effectively compresses it and collectively conveys it to 

successive nuclei. 
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Introduction 

The basal ganglia (BG) are a group of subcortical nuclei that are known to be involved in a 

variety of functions spanning the limbic, associative and sensorimotor domains. Information 

from different areas in the neocortex reaches the BG's primary input structure, the striatum, 

where it is organized topographically and is processed by segregated circuits with minor overlap 

(Peters et al., 2021, Hintiryan et al., 2016, Alexander et al., 1986). From the striatum, the 

information is conveyed in the parallel direct and indirect pathways. Both pathways project to 

the output structures of the BG; however, information in the indirect pathway undergoes 

additional processing in the globus pallidus (GP) and the subthalamic nucleus (STN). The latter 

provides additional input to the BG.  

It has been shown anatomically that the segregated pattern of information flow described in the 

striatum is maintained in the GP (Foster et al., 2020) even though the number of striatal efferents 

is an order of magnitude larger than that of the GP (Oorschot, 1996). By contrast, single GP 

neurons have been shown to respond to a variety of motor and non-motor task attributes possibly 

because these neurons have a very large dendritic arbor which can branch across sub-regions and 

therefore integrate information from several functionally distinct areas (Sadek et al., 2007, Kita 

and Kitai, 1994). For example, these neurons are known to encode movement direction including 

the signaling of movement onset, the end of a movement in a movement sequence, and are 

affected by static and/or dynamic load (Dodson et al., 2015, Gu et al., 2020, Brotchie et al., 

1991a, Brotchie et al., 1991b, Mitchell et al., 1987, Arkadir et al., 2004). They also encode 

cognitive and limbic information such as the contextual setting, the relative difficulty of the task, 
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strategies for behavioral inhibition, reversal learning and reward probability and prediction (Saga 

et al., 2013, Schechtman et al., 2016, Joshua et al., 2009, Gu et al., 2020, Brotchie et al., 1991b, 

Arkadir et al., 2004, Bischoff-Grethe et al., 2015, Lilascharoen et al., 2021). However, it remains 

unclear whether the GP processes all the features encoded in the striatum, or whether it extracts a 

few relevant features, and whether, like the striatum, these features are encoded by segregated 

pathways, or alternatively, are integrated by single GP neurons.   

When exposed to an unfamiliar environment, animals typically initiate exploratory behavior; i.e., 

they engage in rapid movement throughout the environment, typically starting with its perimeters 

and then extending into the center. This behavior allows animals to gradually familiarize 

themselves with the environment. Two distinct processes are essential for successful task 

performance: (1) a cognitive distinction between familiar and unfamiliar environments, and (2) 

the planning and execution of the physical locomotion during the familiarization process. These 

components are dissociable because the internally generated locomotion undergoes habituation 

as the animal familiarizes itself with the environment, whereas the identity of the environment 

remains unchanged as long as the animal stays in a given space. Hence, the novel environment 

exposure (NEE) task is well suited for studying how the GP integrates and extracts information 

encompassing different domains.  

Previously, we showed that non-overlapping populations of striatal projection neurons – the 

medium spiny neurons – reliably encode the locomotion and environment identity during 

performance of the NEE task (Yamin et al., 2013). Here, we inquired whether during a similar 

task, GP neurons would encode either the animal’s actions or the environmental identity, or both. 

We chronically recorded and analyzed the activity from rat GP neurons with respect to 

locomotion, rearing up on the hind limbs, grooming and the different environments while the 
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animals performed the NEE task. We show that populations of GP neurons reliably encode the 

animals’ average locomotion and the environmental novelty. In contrast, single neurons encoded 

both attributes poorly even though the majority of the GP neurons (90 %) responded significantly 

to at least one task variable. The likelihood of a GP neuron to respond to a given task-related 

variable was independent of whether that neuron responded to other variables. Concomitantly, 

using generalized linear model, we found that many behavioral variables contributed to the 

prediction of single neurons’ firing rate traces during the task. These findings suggest that GP 

neurons integrate different types of task-relevant information, and distribute it independently 

across populations of single neurons.  

Materials and Methods 

Animals: All procedures were approved by the Bar Ilan University Institutional Animal Care and 

Use Committee and were performed in accordance with the National Institutes of Health 

guidelines. Data were collected from 7 Long Evans rats (3–7 months old). All animals were 

housed two in a cage, separated by a divider after surgery, on a 12/12 h light/dark cycle and had 

ad-libitum access to food and water. Experiments were performed during the light phase. 

Surgery: The surgical procedure has been described in detail elsewhere (Benhamou, Bronfeld et 

al. 2012). In brief, 7 adult male Long Evans rats weighing 460-545 gr (bred in-house) were 

initially sedated with 5% isoflurane and then injected intramuscularly with ketamine HCl and 

xylazine HCl (100 and 10 mg/kg, respectively). Supplementary injections of ketamine and 

xylazine were given as necessary. The skull surface was exposed and two 0.5 × 2 mm2 

craniotomies were made above the GP. Each craniotomy was shaped as a rectangle centered on 

(anterior-posterior: 1.65 mm; mediolateral: ± 4.1 mm; specific coordinates were: [-0.7, ± 3.7], [- 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454624doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454624
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

1.0, ± 3.3], [- 2.6, ± 4.5], [-2.3, ± 4.9] mm relative to Bregma; (Paxinos, 2013)). Custom made 

microwire electrodes (microwires of S-isonel-coated tungsten, California Fine Wire Company, 

50 µm in diameter arranged in a 2×8 array) were lowered from the surface of the brain while 

recording neural activity. The final placement of the electrodes was determined based on the 

measured coordinates from the surface of the brain (5.5-6.6 mm) and the quality of neural 

activity. Electrode placement in the GP was confirmed histologically after electrolytic lesioning, 

perfusion with 10% formalin, brain fixation with 20% sucrose, sectioning and 

acetylcholinesterase (AChE) staining. A protocol for AChE staining was obtained from 

neurosciencecourses.com and adjusted for perfused tissue. The rats were given at least 1 week to 

recover prior to recording. 

Novel Environment Exposure (NEE) task: 24 h prior to the task, each rat was individually housed 

in a clean cage (35 x 46 x 20 cm3) with a small amount of bedding to familiarize the animal with 

its cage. Then the cage lid was opened, and the rat was connected to the head stage for at least 30 

minutes before the beginning of the experiment to allow for habituation to the recording wires 

and the experimenter’s presence. Each recording session comprised 15 minutes of baseline 

activity in the home cage (BL), 15 minutes in the novel environment (NE) which was a clean 

cage identical to the home cage in size and amount of bedding but lacking familiar odors, and an 

additional 15 minutes back in the home cage (HC). The short transition periods between 

environments were removed from the analysis. Sessions were repeated once a week for up to 4 

consecutive weeks. The animals’ behavior was monitored by a digital camera synchronized with 

the recording system (30 frames/s, Cineplex, Plexon Inc.). 

Data acquisition: Neuronal activity was recorded throughout the performance of the NEE task. 

The activity was amplified, band-pass filtered at 0.5-8000 Hz and continuously sampled at 40 
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KHz using the OmniPlex data acquisition system (Plexon Inc). The broadband activity was band-

pass filtered for spiking activity (300-8000Hz). Offline sorting (offline sorter, Plexon Inc) was 

performed on all recorded units and only single neurons were taken for further analysis in Matlab 

(R2013b, MathWorks Inc., Natick, MA).  

Data analyses: 

Behavior analysis: The animals’ behavior was video recorded during the NEE task. First, the 

grooming and rearing up times were manually noted from the video. Then, for all other frames, 

the coordinates of the animal’s center of mass were extracted using CinePlex Studio recording & 

tracking software (Plexon inc), and convoluted with a 9 frame Gaussian window. The speed of 

the animal in each frame was calculated by measuring the distance travelled in two consecutive 

frames and dividing it by the inverse of the frame rate. The animal’s speed was averaged in 0.5 s 

bins. Bins in which the animal’s speed was above 5 cm/s were considered locomotion bins. Bins 

in which the animal’s speed was lower than 0.5 cm/s were considered quiet awake (QA) periods. 

Bins with intermediate speeds were marked as ‘others’.   

Exploratory behavior duration: The time the animals were engaged in exploratory behavior was 

measured from the time they were transferred to the NE / HC until identifying 15 s without 

locomotion or rearing up on hind limbs.  

Coefficient of variation (CV): The standard deviation of the interspike interval distribution 

divided by its mean. 

Action encoding neurons: For each neuron, the firing rate distribution in 0.5 s non-overlapping 

bins for each behavior (QA, grooming, rearing up and locomotion) was calculated for the whole 
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session. To determine whether a neuron significantly modulated its firing rate in response to any 

of these behaviors, the firing rate distributions of all behaviors were compared to its firing rate 

distribution calculated during QA using a 1-way unbalanced ANOVA (p < 0.01).  

Experimental condition encoding neurons: We calculated the firing rate distributions for each 

neuron in 0.5 s non-overlapping bins during the QA periods separately for each environmental 

condition (BL, NE and HC). To determine whether a neuron significantly changed its firing rate 

during any of the environments we compared its firing rate distributions during QA periods 

across environments using a 1- way unbalanced ANOVA (p < 0.01).  

Neurons showing a significant ANOVA (p < 0.01) after Bonferroni correction for multiple 

comparisons (n=156 comparisons for behaviors and environments) were tested post-hoc to 

determine which action and/or environment they responded to. A neuron that responded 

differently during NE as compared to BL and HC was considered a novel environment encoding 

neuron.   

Generalized Linear Model (GLM): To quantify the contribution of the different variables to 

neural activity, we used a GLM. We used the Matlab function stepwiseglm to fit the per trial 

neuronal firing rate in 5 sec bins during the NEE paradigm. stepwiseglm begins with an initial 

constant model and takes forward or backward steps to add or remove variables, until a stopping 

criterion is satisfied. We used a linear model without interaction terms and the Akaike 

information criterion to add or remove predictors and assumed a Poisson distribution of the firing 

rate. The predictors included continuous and categorical variables. The continuous variables 

quantified kinematics including speed and acceleration (calculated as the derivative of the 

speed). Both predictors were z-scored prior to modeling. The categorical variables were an 
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action vector corresponding to the per bin main activity of the animal (QA, grooming, rearing up, 

locomotion, or others as defined in the behavioral analysis), and an experimental condition 

vector corresponding to the per bin experimental condition (BL, NE or HC). The coefficient of 

determination, �2 was used as a measure of the models’ accuracy. To evaluate the significance 

of each model, we calculated the �2 of 25 shifted models, in which the predictors’ matrix was 

shifted forward in time by n bins of 5 s (n = 1, 2,..., 25 bins) relative to the firing rate which 

remained unchanged. The model was considered significant if its �2 exceeded the 95% 

confidence intervals of the �2 distribution of the shifted model (Harris, 2021).  

Linear regression analysis: Linear regression was calculated between the firing rates of one  

individual neuron at a time or for all the neurons (in 5 s bins) and a target vector – either the 

speed of a single trial (for single neurons) or the average speed over all trials (for the population 

of neurons) or the NE condition. The target vector for the NE condition contained ones at the 

times the animal was at the NE and zeroes at all other times (identically for single neurons and 

the population). The regression was estimated using the coefficient of determination �2. To 

control for the large number of degrees of freedom we compared the calculated �2 value to that 

of a bootstrap consisting of 100 different shuffles of each neuron’s firing rate. 

Cross Correlation: Cross-correlograms (CC) were calculated for ±1 s in 1 ms bins for all 

neuronal pairs that were not recorded from the same electrode (Bar-Gad et al., 2001). A total of 

147 CCs from 15 sessions were calculated and analyzed for significance. A CC was considered 

significant if 3 consecutive bins in the inner part of the CC (±100 ms) crossed the 95 % 

confidence intervals calculated from the outer parts of the CC ( > |±500ms|) (Nevet et al., 2007, 

Oliveira-Maia et al., 2012, Kopelowitz et al., 2014) 
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Statistical analysis: All the data are presented as mean ± SEM unless otherwise noted. All 

statistical tests were ANOVAs unless otherwise noted. All post-hoc corrections for multiple 

comparisons were Bonferroni corrections. 

Results 

Rats explore the novel environment by locomotion and rearing up on their hind limbs 

Seven male Long-Evans rats engaged in the NEE task (see Methods) once a week for up to four 

consecutive weeks. Each experimental session comprised 15 minutes in the home cage, defined 

as baseline activity (BL), after which the animal was transferred to the novel environment (NE), 

a cage identical to the home cage but lacking familiar odors or objects. After a period of 15 

minutes in the novel environment, the animal was transferred back to its home cage (HC) for an 

additional 15 minute period (Fig. 1A). Upon transition to the NE, the rats initiated exploratory 

movement that consisted primarily of locomotion and rearing up on their hind limbs and leaning 

against the cage wall (see example session in Fig. 1B). The exploration of the NE gradually 

ceased and the animals tended to select a preferred corner and remained motionless while 

sporadically initiating short epochs of exploratory behavior. When transferred back to their home 

cages the animals reinitiated exploratory behavior; however, the exploration time of the HC was 

significantly shorter than for the NE (326 ± 53 s and 475 ± 66 s for HC and NE, respectively, 

paired t-test, t = 2.37, df = 26, p = 0.026, see Methods). Along with the increased exploration 

time, the fraction of time the animals spent walking and rearing up was significantly higher in 

the NE as compared to the BL and the HC (Fig. 1C, locomotion: 5.5 ± 0.8 % , 9.9 ± 1.0 % and 

7.1 ± 0.8 % for BL, NE and HC, respectively; ANOVA, F = 7.06, df = 2, p = 0.0015; Fig. 1D, 

rearing up: 3.9 ± 0.8 %, 16.2 ± 2.4 %  and 7.1 ± 1.6 % for BL, NE and HC, respectively; 
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ANOVA, F = 13.08, df = 2, p = 1.8 x10-5, post-hoc testing with multiple comparison 

adjustments). These findings suggest that rats use a strategy of interleaved locomotion and 

rearing up on their hind limbs to explore the NE.   

As reported in mice (Yamin et al., 2013), the rats did not habituate to the task and displayed a 

similar pattern of locomotion speed in all sessions irrespective of the number of exposures (Fig. 

1E). Hence, locomotion speed was averaged across sessions (Fig. 1F). Movement speed was 

significantly higher in the NE and the HC as compared to BL (Fig. 1G; 10.4 ± 0.3 cm/s, 12.3 ± 

0.2 cm/s and 11.6 ± 0.3 cm/s for BL, NE and HC, respectively; ANOVA, F = 10.56, df = 2, p = 9 

x10-5, post-hoc testing corrected for multiple comparisons). The pattern of the average 

locomotion speed was similar to that previously reported in mice, suggesting that epochs of 

rearing up were cancelled out. 

Single GP neurons display multidimensional responses during the NEE task.     

We chronically recorded the activity of 78 neurons in the GP of 7 rats during performance of the 

NEE task (n = 27 sessions). The electrodes’ position in the GP was verified histologically for all 

recorded neurons (see Methods). During BL, GP neurons displayed an average firing rate of 5.37 

± 0.49 spikes/s and a CV of 0.96 ± 0.05. Throughout the task, the neurons displayed tonic firing 

with complex modulations (see two example neurons in Fig. 2A and 2B; see movie). 

Examination of these firing rate modulations with respect to different animal behaviors 

(locomotion, rearing up and grooming, denoted in the figure by different shades of green) 

indicated that the neuron shown in Fig. 2A increased its firing rate for locomotion and rearing up 

and decreased its firing rate during grooming as compared to its firing rate during the QA periods 

(Fig. 2C; see Methods). The neuron shown in Fig. 2B increased its firing rate during grooming 
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and rearing up but not during locomotion as compared to the QA periods (Fig. 2D). Examination 

of firing rates measured in these example neurons during the QA periods in the different 

environments showed that the neuron in Fig. 2A displayed a higher firing rate in the NE and the 

HC as compared to BL, whereas the neuron shown in Fig. 2B did not distinguish between 

environments (Fig. 2E and 2F, respectively). 

Quantification of firing rate alterations in the whole population during the different motor 

behaviors showed that the majority of GP neurons displayed significant firing rate alterations in 

response either to one (21.8 %), two (37.2 %) or three behaviors (23.1 %) whereas only a 

minority (17.9 %; Fig. 2G) of the neurons did not respond to any of these motor behaviors. To 

examine whether the likelihood of a GP neuron to encode one motor behavior co-varied with its 

likelihood to encode another behavior, we calculated the probability of GP neurons to encode 

different combinations of behaviors based on their marginal probabilities to encode single 

behaviors. The use of the marginal probabilities sufficed to predict the probabilities of GP 

neurons to encode a single behavior, two behaviors or three behaviors (Fig. 2H; �2 test for 

independence, �2 = 3.4, df = 4, p = 0.49). This indicates that the likelihood of a GP neuron to 

encode a given motor behavior was independent of whether or not it encoded other behaviors. 

That is, even though locomotion and rearing up are part of the exploration process and rearing up 

and grooming have a common body posture, their joint probability was similar to that expected 

from independent processes.  

Quantification of firing rate alterations of GP neurons during the QA periods in the different 

environments (experimental conditions; see Methods) showed that the majority (55%) of the 

neurons encoded information about the environment, out of which 46.5% (20/43) distinguished 

the NE from the other two environments. Only 8/78 (10.3 %) of the neurons did not respond to 
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any task attribute. We then examined whether the likelihood of a GP neuron to encode any of the 

tested motor behaviors co-varied with its likelihood to encode the NE. To that end, we calculated 

the likelihood of GP neurons to encode the NE and/or any motor behavior by using the marginal 

probabilities of the different behaviors and the NE. The marginal probabilities sufficed to predict 

the probability of the GP neurons to encode any behavior and/or the NE (Fig. 2I; �2 test for 

independence, �2 = 0.15, df = 1, p = 0.70, �2 = 0.23, df = 1, p = 0.63, �2 = 0.87, df = 1, p = 0.35, 

for grooming, locomotion and rearing up, respectively). Thus, single GP neurons appear to be 

able to encode multiple task-related variables, and the propensity to encode one variable is 

independent of the neuron’s propensity to encode other variables. 

Many behavioral predictors contribute to the activity of single GP neurons 

To directly assess the contribution of the different behavioral variables to the activity of single 

GP neurons, we examined whether the firing rate profile of each neuron could be predicted by a 

generalized linear model (GLM) which took into account a variety of task-related variables 

(Engelhard et al., 2019). The model included continuous and categorical variables (see Methods). 

The continuous variables were the speed and the acceleration of the animal’s center of mass. The 

categorical variables consisted of the type of behavior and the experimental conditions. The 

behavioral variables included bins tagged according to whether the animal was engaged in 

grooming, rearing up, locomotion or QA. The remaining bins were marked as ‘others’. The 

experimental condition variables were composed of bins tagged according to the environment in 

which the animal was located (i.e. BL, NE or HC). The variables were fed into the GLM to 

predict the firing of single GP neurons recorded during the NEE task (Fig. 3A). We used R2 as a 

metric to assess the model’s accuracy. The significance of each model was evaluated by testing 

whether its accuracy exceeded the confidence interval of an accuracy distribution calculated 
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from control models in which the neuron’s firing was predicted from the same behavioral data 

that were shifted forward in time (see Methods). The GLM of 40/78 (51.3 %) of GP neurons 

were significant. Two examples of the estimated firing traces (blue) overlaid on the actual firing 

traces of their corresponding GP neurons (black) are shown in Fig. 3B and 3C. Fig. 3D depicts 

the distributions of the R2 values of the significant (blue; range: 0.03 - 0.5) and non-significant 

(grey; range: 0.001 - 0.34) models.  

The number of contributing predictors to the significant GLMs was high (6.32 ± 0.28) 

considering that each model could potentially have a maximum of 9 variables. In the vast 

majority (33/40) of the significant models, the number of contributing predictors of the neurons’ 

firing rates was higher than that of the shifted models (Fig. 3E; 4.81 ± 0.07 predictors in the 

shifted models, KW test, H = 24.62, df = 1, p = 6.9 x 10-7). Thus, many task-relevant variables 

appeared to contribute to the firing of each GP neuron. This outcome is consistent with the result 

described in the previous section that GP neurons modulate their firing rate significantly in 

response to behavioral and environmental conditions.    

The animals’ locomotion and the environmental novelty are encoded by populations of GP 

neurons but not by single neurons. 

The fact that many task-relevant variables were required for successful modeling of single 

neuron activity implies that input about these variables may be distributed across the population 

rather than be encoded by single neurons. To investigate this possibility, we used a linear 

regression model to approximate two task attributes that were common to all animals: the 

average locomotion speed and the environmental novelty (see Methods). The population of GP 

neurons yielded high R2 values for the animals’ average speed (R2 = 0.77, Fig. 4A) and the 
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environmental novelty (R2 = 0.70, Fig. 4B). To control for the degrees of freedom, we randomly 

shuffled the firing rate of the neurons 100 times and recalculated the models’ accuracy (see 

Methods). The probability to achieve the population’s R2 values or higher using the shuffled data 

was 0 for both the locomotion speed and the environmental novelty (Fig. 4C & 4D, respectively) 

suggesting that the high performance of the regression model was not due to the number of 

predictors (n = 78 neurons). 

The high performance of the regression model on the population could have emerged either from 

a few single neurons that effectively predicted the two task attributes, or alternatively, that the 

minor contribution of many single neurons were summed. To distinguish between these 

possibilities, we applied linear regression models to single GP neurons to assess how well they 

encoded the animal’s speed and presence in the novel environment. Unlike the population, single 

neurons approximated both task attributes poorly (the best example models are shown in Fig. 4E 

and 4F, for speed and environmental novelty, respectively). Fig. 4G & 4H depict the R2 

distribution of single units (white bars) as compared to the population (blue bar), suggesting that 

each neuron by itself made a minor contribution to the population model. The gain in regression 

performance when taking into account the population as compared to single units could have 

emerged from averaging across correlated signals with random noise, thus enhancing the signal 

to noise ratio. To control for this possibility, we calculated the cross-correlograms (see Methods) 

of all simultaneously recorded pairs of GP neurons. We found that a minority of the tested pairs 

(12/147) were significantly correlated. This suggests that individual neurons may convey non-

overlapping idiosyncratic information. 
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Discussion 

This study explored the encoding of motor and cognitive attributes of the NEE paradigm by GP 

neurons. We showed that rats explored the novel environment by locomotion and rearing up on 

their hind limbs. Single GP neurons encoded behaviors performed by the rats such as grooming, 

rearing up and locomotion and also distinguished between environmental conditions including 

identifying the novel environment. The probability of a GP neuron to encode one or more of 

these task attributes was independent of whether the neuron encoded other attributes, and the 

activity of simultaneously recorded pairs of neurons was uncorrelated. Prediction of the single 

neuron firing rate by GLM demonstrated that many behavioral variables contributed to each 

model. Nevertheless, single GP neurons failed to approximate either the animal’s locomotion or 

the animal’s presence in the novel environment. By contrast, both task attributes were reliably 

encoded by a population of GP neurons. These data indicate that task-relevant information is 

distributed across GP neurons in a non-overlapping manner, and can therefore be extracted from 

the population, rather than from single GP neurons. 

It has been shown that single neurons in the globus pallidus external segment (GPe) of primates, 

which is homologous to the rodent GP, can encode more than one task-relevant variable. For 

example, GPe neurons were reported to encode the direction of reaching movement and reward 

during a probabilistic visuomotor task (Arkadir et al., 2004), and could encode effort and reward 

in a task where a different force was required to obtain different amounts of reward (Nougaret 

and Ravel, 2018). These task-relevant parameters were integrated linearly, suggesting their 

independent encoding by GP neurons (Arkadir et al., 2004). Moreover, GP neurons were 

reported to generate dynamic ensembles which at any given time encoded the most relevant 

information for best task performance (Nougaret and Ravel, 2018, Adler et al., 2012, Saga et al., 
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2013). Our results in the rodent GP are in agreement with those described in the primate GPe; 

and extend them by showing that single GP neurons encode different movements as well as the 

nature of the environment simultaneously and independently, thus encompassing both the motor 

and cognitive domains.  

During the NEE task, striatal MSNs encoded either the animal’s locomotion or the 

environmental novelty but not both (Yamin et al., 2013). The identity of MSN encoding each 

task attribute was not addressed. Hence, it remains unclear whether these task attributes were 

encoded selectively by MSNs from either the direct or the indirect pathway, or both. The fact 

that GP neurons responded to both task attributes indicates that MSNs from the indirect pathway 

contributed to task performance. Furthermore, it rules out the possibility that the GP processed 

these task attributes in segregated parallel pathways. It also remains unclear whether MSNs from 

the direct pathway also process the two task attributes, and whether the GP selects specific task- 

relevant features to maximize performance or optimally compresses all the converging data from 

the striatum using dimensionality reduction (Bar-Gad et al., 2000, Bar-Gad et al., 2003b). The 

NEE paradigm may be too simplistic to differentiate between these two alternatives because both 

the motor and the cognitive features are essential for task performance. Hence, deciphering 

whether GP neurons are tuned to extract functionally relevant features, or to compress all 

converging data from the striatum may require tasks utilizing more complex feature 

representations.  

A recent study of BG networks showed that the mouse GP faithfully follows the striatal 

topography and is characterized by a small percentage of converging inputs arising from 

different regions of the striatum (Foster et al., 2020). This regional specificity, which is more 

segregated than the coarse division into limbic, associative and sensorimotor domains, highlights 
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the expectation of a limited overlap in converging afferents onto the GP. Hence, it remains 

unclear how GP neurons display multidimensional, non-overlapping and uncorrelated encoding 

of task attributes in both primates and rodents. GP neurons have a large dendritic arbor extending 

across large portions of the GP volume that is aligned perpendicularly to MSN axons (Kita and 

Kitai, 1994, Park et al., 1982, Jaeger and Kita, 2011, Percheron et al., 1984). This anatomical 

organization may allow GP neurons to integrate information from relatively distant striatal 

domains but at the same time yield a substantial overlap of inputs in neighboring GP neurons. 

The high overlap in converging inputs is likely to generate interactions between the probabilities 

of GP neurons to encode different task attributes and enhance neuronal cross-correlations as 

shown here, and has been reported to be weak to nonexistent (Bar-Gad et al., 2003a). Two 

distinct scenarios may account for these phenomena: the first utilizes the high convergence ratio 

of 40:1 between MSNs to GP neurons (Oorschot, 1996). In this case, MSN projections onto GP 

neurons are highly selective so that despite the high spatial overlap, each GP neuron receives 

afferents from a distinct group of MSNs. The second scenario suggests that although overlap in 

GP afferents exists, their common input is cancelled out by other mechanisms such as the 

recurrent collateral axons of GP neurons (Kita et al., 2004) which have a complex spatial spread 

in the GP (Matsumura et al., 1995). Another possibility is the strong reciprocal connections 

between the GP and the subthalamic nucleus (STN) (Atherton et al., 2013, Baufreton et al., 2009, 

Magill et al., 2000). 

The encoding scheme utilized by GP neurons is substantially different from the one utilized by 

the striatal projection neurons, the MSNs: GP neurons display multidimensional responses 

whereas the MSNs respond typically to a single event by a short bursting activity (Fobbs et al., 

2020, Berke et al., 2009, Shidara et al., 1998, Atallah et al., 2014, Jog et al., 1999, Jin and Costa, 
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2010). Further research is needed to determine why the GP converts the temporally precise, 

highly specific information present in single MSNs into spatially distributed information where 

each component carries little information about the task. Additional experiments are required to 

determine how information from the striatum and the GP is integrated in the basal ganglia output 

structures, the entopeduncular nucleus (EP) and the substantia nigra pars reticulata (SNr), and 

which task attributes are represented in these structures.   
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Figure legends 

Figure 1. Rats explore the novel environment by locomotion and rearing up on their hind 

limbs 

A. Experimental timeline: rats spent 15 minutes in their home cage, defined as the baseline 

activity, then were transferred to a novel environment for 15 minutes, and finally 

transferred back to their home cage for another 15 minutes. 

B. A single animal’s trajectory (grey lines) and rearing up locations (circles) during BL 

(left), NE (center) and HC (right) of an example session. Rectangles represent the cage 

(35 x 46 cm2). 
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C. Boxplots of the fraction of time (in %) the animals spent in locomotion in each 

environment. In each box, the central mark indicates the median, and the bottom and top 

edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend 

± 2.7 SD. Grey dots denote individual sessions.  

D. Boxplots of the fraction of time (in %) the animals spent rearing up in each environment. 

Box plot conventions as in (C). 

E. Animals’ speed in 5 s bins averaged across sessions from the same exposure week (1 - 4). 

Grey scale denotes the exposure number. Black vertical lines represent transition times 

between experimental conditions. 

F. Animals’ speed in 5 s bins averaged across all sessions (black) and SEM (grey shading). 

Black vertical lines represent transition times between experimental conditions. 

G. Boxplots of the animals’ speed for each experimental condition. Box plot conventions as 

in (C). 

In all subplots, the star denotes an ANOVA, p < 0.01. 

Figure 2. Single GP neurons display multidimensional responses during the NEE task 

A. An example firing rate trace of a neuron (black) throughout the NEE task, calculated in 

0.5 s bins and smoothed using a Gaussian window of 40 bins. Background colors 

represent the activity of the animal and are denoted in the figure legend. Grey vertical 

lines represent transition times between experimental conditions. See also movie. 

B. Same as in (A) for a different neuron. 

C. The average firing rate of the neuron plotted in (A) while the animal was engaged in the 

different actions. Error bars are SEMs. Color scheme as in (A).  
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D. Same as (C) for the neuron plotted in (B). 

E. The average firing rate during quiet awake periods for the different experimental 

conditions. Same neuron as in (A). Error bars are SEMs.  

F. Same as (E) for the neuron plotted in (B). 

G. Pie chart of the proportion of neurons encoding different combinations of tested actions. 

H. The expected (dotted black line) and the observed (blue line) percentages of units 

encoding different possible combinations of actions. The expected value for these 

combinations was calculated from the marginal probabilities of the tested actions 

assuming independent processes. Grey rectangles represent two-way 99 % confidence 

intervals calculated from 10,000 repetitions of random draws of responses from the 

marginal probabilities of each action, and were plotted for demonstration sake only.  

I. The expected (dotted black line) and the observed (blue line) percentages of units 

encoding both the environmental novelty and any of the analyzed actions. The expected 

values were calculated from the marginal probabilities to encode an action and the NE 

assuming independent processes. Grey rectangles as in (H) but for the NE and the 

different actions. 

In all subplots the star denotes ANOVA, p < 0.01. 

Figure 3. Many behavioral predictors contribute to the activity of single GP neurons. 

A. Schematic illustration of the behavioral and environmental variables used by the GLM to 

predict single neuron’s firing rate. 

B. An example of a GLM fit (blue) to the actual firing rate trace of a single neuron (black). 

C. Same as (B) for a different neuron. 
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D. The distribution of R2 values for all GLMs. Blue and grey denote the significant and the 

non-significant models, respectively.  

E. The number of predictors in the true GLM (x axis) versus the mean ± SEM number of 

predictors in a set of shifted GLMs (y axis; see Methods). Only significant models are 

plotted.  

Figure 4. The animals’ locomotion and the environmental novelty are encoded by 

populations of GP neurons but not by single GP neurons. 

A. The animals’ speed in 5 s bins averaged across all sessions (black), and the estimated 

speed (blue) calculated by a linear regression model using the firing rate of all recorded 

neurons (n = 78). 

B. Same as (A) for NE identity.  

C. The distribution of R2 values of linear regression models applied to shuffled firing rates to 

predict the animals’ average speed (see Methods). Blue line is the R2 value of the true 

model. 

D. Same as (C) for estimating the NE identity. 

E. The best example of a linear regression model applied to a single GP neuron to estimate 

the animal’s speed. The estimated speed (orange) overlaid on the animal’s speed in 5 s 

bins (black).  

F. Same as (E) for estimating the NE identity. 

G. The distribution of R2 values of linear regression models applied to single units to predict 

the animal’s speed in a session. Blue line is the R2 value of the model using all neurons (n 

= 78). The example shown in E is marked by an orange arrowhead.  
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H. Same as (G) for estimating the NE identity. The example shown in F is marked by an 

orange arrowhead.  

Multimedia:  

Movie: Activity of an example neuron during different rat behaviors. Same neuron as in Fig. 2A. 

Related to Fig. 2 
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