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Abstract

Motivation: With the advancement of sequencing technologies, genomic data sets are constantly being
expanded by high volumes of different data types. One recently introduced data type in genomic science
is genomic signals, which are usually short-read coverage measurements over the genome. An example
of genomic signals is Epigenomic marks which are utilized to locate functional and nonfunctional elements
in genome annotation studies. To understand and evaluate the results of such studies, one needs to
understand and analyze the characteristics of the input data.

Results: SigTools is an R-based genomic signals visualization package developed with two objectives:
1) to facilitate genomic signals exploration in order to uncover insights for later model training, refinement,
and development by including distribution and autocorrelation plots. 2) to enable genomic signals
interpretation by including correlation, and aggregation plots. Moreover, Sigtools also provides text-based
descriptive statistics of the given signals which can be practical when developing and evaluating learning
models. We also include results from 2 case studies. The first examines several previously studied
genomic signals called histone modifications. This use case demonstrates how SigTools can be beneficial
for satisfying scientists’ curiosity in exploring and establishing recognized datasets. The second use case
examines a dataset of novel chromatin state features which are novel genomic signals generated by a
learning model. This use case demonstrates how SigTools can assist in exploring the characteristics and
behavior of novel signals towards their interpretation. In addition, our corresponding web application,
SigTools-Shiny, extends the accessibility scope of these modules to people who are more comfortable
working with graphical user interfaces instead of command-line tools.

Availability: SigTools source code, installation guide, and manual is available on http://github.
com/shohre73.

Contact: shohre_masoumi@sfu.ca

1 Introduction A genomic signal is a continuous variable across the genome indicating

Understanding the structure, behavior, and interactions of the DNA the presence of a biological activity such as protein interaction, DNA

contents of organisms is the fundamental motivation of Genomics science.
The hypotheses in genomics heavily rely on voluminous and diverse data

methylation, transcription sites, chromatin crosslinks, and regulatory
elements (ENCODE Project Consortium, 2012). To obtain a signal in
a lab, a high-throughput sequencing device selectively sequences DNA

extracted from the organism’s cell. Moreover, with the advancement of ) o
fragments which are then mapped back to the original genome.

sequencing technologies, genomic data is being generated at a high pace,

making the analysis phase the bottleneck of genomic studies (Navarro . ]
etal., 2019) of this mapping is recorded as a genomic signal. RNA-Seq,

Genomic coordinates associated with the coverage measurements

ChIP-seq and ATAC-seq are technologies specifically designed to
generate transcriptome, interactional, and chromatin accessibility signals
respectively. These signals are utilized in detecting the position of different
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elements on the genome and discovering the reason why different cell
types emerge from the same DNA material (Hoffman et al., 2012a; Jason
and Manolis, 2017), investigating gene regulation in cancer research (Gul,
2017), and understanding 3D genome architecture (Mishra and Hawkins,
2017). Hence, several visualization tools have been developed to leverage
the human visual system in explorations of genomic signals behaviors and
characteristics.

Many of these tools, namely genome browsers (e.g. WJ et al., 2002;
Buels et al., 2016; Zhou et al., 2011), preserve the sequential nature of
these signals by presenting them in a linear or circular layout, possibly
with parallel arrangements to enable comparison between signals (Nusrat
et al., 2019). Such tools are commonly used to investigate local behaviors
around specific regions, for example, to depict regulatory elements near
a particular gene (Gosselin et al., 2017) or displaying read numbers for
different signals at a specific locus (Sabari et al., 2018).

Other tools employ statistical procedures to illustrate the global
behavior of the signals. Accordingly, this class of tools usually work
with multi-sequence alignment data formats (SAM/BAM), rather than
continuous-valued data formats (WIG/bigWig/BED/bedGraph) which
contain the actual value of the signals at each position or bin.

deepTools (Ramirez et al., 2016) offers several modules for pattern
discovery and comparison of signal coverage and enrichment over multiple
genomic regions. Depicting DNA methylation average values over protein-
coding genes to investigate their role in organism development is an
example application of deepTools (Daccord et al., 2017). In addition to
average coverage plots, ngs.plot (Shen ez al., 2014) also includes a database
of genomic elements to facilitate region selection.

Segtools (Buske et al., 2011) promotes genomic signals analysis over
probabilistic generated genomic elements. As an example, it can be
employed to generate a heatmap of histone modification and obtained
genomic labels (Hoffman et al., 2012b). Furthermore, it encourages short-
read independent signal analysis by using genomedata (Hoffman et al.,
2010) as the input format for genomic signals.

Although the reviewed tools above offer a wide selection of processing
and visualization features for genomic signals analysis, we identified the
need for a set of tools that assists scientists in the early steps of genomic
signal analysis, such as the value range, variation, and covariation. Novel
genomic signals are being generated both in wet labs by biologists or
via learning models by computer scientists. When such researchers come
across a new signal, some common questions need to be discussed before
this signal could be introduced to the genomic society and be employed in
other studies: What numeric range does this signal cover? Does it contain
noise? If positive, how much noise is there in the data? How much data
variation does it have? Does it behave similarly to any previously studied
signal? How does it behave in general around specific genomic elements?

The objective of this project is to provide a cohesive package that
contains all the essential data analysis tasks for scientists who are working
with novel genomic signals and do not want to carry out additional coding
for their project. Furthermore, we also introduce SigTools-Shiny, a web-
based graphical user interface that includes all SigTools preprocessing and
visual modules as an alternative for users who want to eliminate command-
line interaction in their experience.

The following section, Section 2, reviews SigTools preprocessing
modules. The next section, Section 3, describes SigTools visualization
modules. Section 4 is dedicated to the Shiny App interface, data flow, and
interactivity. Section 5 includes two use cases to demonstrate SigTools
utility. The first use case examines several previously studied genomic
signals named histone modifications. This use case demonstrates how
SigTools can be beneficial for satisfying scientists’ curiosity in exploring
and establishing recognized datasets. The second use case examines
a dataset of novel chromatin state features which are novel genomic
signals generated by a learning model (Chen et al., 2019). This use case

demonstrates how SigTools can assist in exploring the characteristics and
behavior of novel signals towards their interpretation.

2 Data and Preprocessing Modules

Sequenced reads constitute the underlying data for genome-related studies.
To align these reads is to identify their overlaps, and it is the principal
method for reducing the size and complexity of their datasets. Mapping
these reads back to a reference sequence results in distinct coverage
measurements across its bases. Rather than aiming for uniform coverage,
some sequencing methods such as RNA-Seq, ChIP-seq, and ATAC-seq,
target specific DNA fragments that are bound to certain proteins and
generate a mass of short reads from these isolated regions. A genomic
signal contains the exact or normalized values of such coverage (Anders
and Huber, 2010; Bayat and Libbrecht, 2020).

Apart from visualization modules, SigTools includes the following
modules to process and perform optional changes to the available data:

esigtools_convertToMultiColBedg: this module converts
several bedGraph files with different bin sizes to a single mulColBedg
file at the desired resolution. Changing the resolution of genomic signals
data sets to a larger bin size is a beneficial strategy for reducing data
points particularly for visualizations that discuss an entire chromosome
or genome.

esigtools_sampling: besides increasing signals resolution,
choosing random stretches of signals is a technique that can be employed
to reduce signals’ file size. This approach is particularly useful for
obtaining quick results.

esigtools_concatenation: for a particular cell type, the signal
data for different chromosomes is usually stored in separate files. This
module appends multiple input files together and outputs a single large
.mulColBedy file that can be used for whole-genome or multiple cell-
type analysis. sigtools_sampling can optionally be incorporated
into this process, preventing the final file to become too large.

esigtools_stats: this module outputs a . csv containing the five-
number summary (min, lower quartile, median, mean, upper quartile,
max) of the present signalsina .mulColBedg file. Although SigTools
focuses on visual analytics, the text-based output of this module is
beneficial in pipeline and learning model development.

3 Visualization Modules

Exploratory Data Analysis (EDA) is an essential step in any data-dependent
study that highlights data anomalies, patterns, and provides a deeper
understanding of the data. SigTools visualization modules (listed below)
can be employed to explore the range, shape, variation, and covariation of
this data.

Genomic signals data sets generally contain a large population of
zeros. Hence, the mean value of a signal is a small number close to zero.
Blacklist (Amemiya et al., 2019) genomic regions have empirically shown
to only commit artifact data in next-generation sequencing. Accordingly,
the dismissal of these regions has proved to improve the result of several
genomic signal related studies. In SigTools, whenever the enrichment
parameter is set to be TRUE for a signal, given a blacklist input file, the
blacklist regions would be excluded, hence eliminating the bias that the
large zero population or redundant extreme values introduce to the mean
value, and then the input signal would be normalized by its mean value.

3.1 sigtools_distribution

This module offers three recognized distribution plots for depicting value
frequency: empirical cumulative distribution, kernel density plot, and
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Fig. 1: Screen-shots of the main tabs of SigTools Shiny App

boxplot. Depicting the value frequency of a variable is a quick approach
to get an estimation of its primary characteristics; namely the existence
of multiple local maxima, the overall range, and the outliers. Prominent
parameters for this module are:
epercentile: users can specify what percentile of the data they want
to work with. [default:100]
enozero: if set to TRUE, zero entries would be removed from the data.
ecnrichment: if set to TRUE, the plots would be generated with the
enriched values.

3.2 sigtools_autocorrelation

The autocorrelation plot is an orthogonal plot with x-axis presenting lags
(shift), and y-axis presenting the value of autocorrelation at each lag, which
is the correlation of the signal with itself when shifted lag times.

(€]

autoc(lag) = corr(sig, sigyiag)

sigtools_autocorrelation module generates a line plot of
the input signals’ autocorrelation. For each signal, this plot provides a
measure of the dependency among consecutive bins or adjacent elements
such as neighboring genes (Deng et al., 2010). Signals with higher
autocorrelation have smoother picks and valleys. A signal with little
variation indicates smaller active regions. The prominent parameters here
ismode. If setto "regions", another interval file would be required and
the autocorrelation would be calculated over adjacent specified regions.

3.3 sigtools_correlation

This module outputs a heat-map presenting the pair-wise correspondence
of two sets of different signals. A high correlation coefficient between two

signals indicates a high behavioral similarity in the sense that wherever
the value of one of the signals increases, an increase in the other signal’s
value should be observed.

3.4 sigtools_aggregation

This module illustrates the overall behavior of a signal over recurring
genomic elements. Answering questions such as "Does the signal have
a high value within gene regions?" "How does the signal behave over
enhancer regions?" "Does the signal have a distinguished behavior over
genes upstream or downstream?" could be most helpful for the signal’s
interpretation relative positions.

The primary information of the elements under examination —such as
the chromosome they are located on, their starting and ending coordinate,
and direction— should be supplied as a .bed or .gene_info file.
For a signal S, sigtools_aggregation computes an aggregation
matrix. For a specified element, an array of S’s value over that element is
retrieved. As the input elements vary in length, these arrays do not have
the same length, so unless they undergo an operation that unifies their
length, they can not be assembled into a matrix. The mode parameter is the
prominent parameter for this module which controls the length unification
process. If set to point, all retrieved arrays would be centrally aligned.
However, if set to region, the arrays’ length would be unified by smooth
interpolation.

4 SigTools-Shiny Web Application

Command-line packages are necessary for pipeline development yet a
large number of prompt parameters often discourage users to explore their
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data. Graphical user interfaces are ideal choices for users with limited
command-line experiences to interact with their data. Shiny is an R package
enabling the assembly of an interactive web-based user interface from R
scripts (RStudio, Inc, 2013). The increasing number of Shiny apps in data
visualization, particularly genomic data visualization (Yu et al., 2017;
Khan and Mathelier, 2017; Reyes et al., 2019; Yu et al., 2019), indicates the
effectiveness of this approach in enhancing the accessibility of developed
packages. All SigTools utilities are also embodied in an interactive Shiny
web application. Along with font size, image size, and axis labels, and
other figure customization options, easy change of data parameters in Shiny
App facilitates data exploration, selection, and filtering.

SigTools-Shiny is structured based on a Shiny dashboard which
consists of a vertical navigation bar and a main body. The navigation
bar provides access to SigTools-Shiny’s four pages: Data, Plots-static,
Plots-Interactive, and About. By clicking on each of these sidebar items,
their corresponding page appears in the main body.

The Data page contains several boxes, one for each data operation
discussed in Section 2 and one for data import controls. When a file is
uploaded, the five-number summary of its contents appears in a box on
the right side of the window, confirming that the uploading process was
successful. This summary file can be downloaded using the Download
button.

The Plots-Static page contains only one box named Canvas which
contains several tabs each for a specific plot: Boxplot, Impirical
Cummulative Distribution, Kernel Density Distribution, Autocorrelation,
Correlation, and Aggregation. Each tab has a sidebar and a main panel.
All the data and plot modification options are located on the sidebar panel.
The GO! button initiates the plot generation process and eventually the
plots is displayed on the main panel.

Much like the Plot - Static page, the Plot - Interactive page also consists
of only one canvas, with multiple tabs. Yet, the plots in this page offer
interactions such as zooming in and out and data selection. These plots
are generated by Plotly, an R package that enables creating interactive
web-based figures.

5 Results

The two case studies presented in this section demonstrate SigTools©
effectiveness in the interpretation and evaluation of genomic signals
data sets. The first case study explores several previously studied
genomic signals and concludes that SigTools accurately captures their
characteristics. The second case study investigates the attributes of a novel
set of genomic signals and exhibits how SigTools can reveal their associate
biological function.

5.1 Case Study 1 — exploratory analysis of known histone
modifications

Histones are proteins that play a crucial role in DNA structure and
chromosome organization. It is possible for these proteins to be modified
by connecting to a methyl group (methylation) or acetyl group (acetylation)
and these modifications heavily impact gene expression. Accordingly,
many studies have been focused on histone modification and what
particular activity they represent (Bannister and Kouzarides, 2011).

Our first dataset contains six modification signals of protein histone
H3 —-H3K4mel, H3K4me3, H3K9me3, H3K27ac, H3K27me3, and
H3K36me3— over chromosome 21 of the human genome. Table 1
displays the elements and their associated locations that each of these
signals represents (Kundaje et al., 2015; Creyghton et al., 2010; Rada-
Iglesias et al., 2011). The signals were downloaded from Roadmap
Epigenomic Data Portal (Kundaje et al., 2015) in indexed binary
format (bigWig) with single base-pair resolution. These files were

Table 1. The function and the location of the signals investigated in the first

case study.
Assay Location
H3K4mel Spatially close to the promoter, though it might lineary
be away from the gene.
H3K4me3 Found near the beginning of the gene.
H3K9me3 Contains very few genes.
H3K27ac  Commonly found near the transcription start site

(TSS).
H3K27me3 Found near the beginning of the gene.
H3K36me3 Gene bodies

processed into a multi-column bedGraph file with 200bp resolution using
sigtools_convertToMultiColBedg function.

The following mentioned analyses are subfigures of Fig 2, and in
this case, they were proposed to explore and acknowledge the already
established insights.

To obtain a quick grasp of the data distribution, we generated
an ECDF plot using the 99 percentile of the data (Fig 2a) using
sigtools_distribution function with ecdf option. We observe
that repeated zero values constitute almost 50 percent of all the signals,
which is not surprising since a great portion of human DNA is non-coding
sequences with largely unknown functionality, though some contain
regulatory elements (Anandakumar ef al., 2017). Next, we examine non-
zero values within the 99 percentile by generating a kernel density plot
(Fig 2b, sigtools_distribution function with curve option)
which uncovers that most of the remaining population rest within the (0, 2)
interval. Having an estimation of variable ranges is particularly necessary
when deciding whether to apply any normalization techniques on data
before directing it to a learning algorithm.

Having studied value variation, the autocorrelation plot indicates how
sudden or smooth the values shift in consecutive bins. Fig 2c¢ displays that
out of the six modifications, H3K4me3 has the sharpest picks and deepest
valleys, hence it has the smallest active regions. Accordingly, the signal
with the highest autocorrelation, H3K36me3, has the largest active regions
since not much value transformation is indicated.

To understand if there is a linear association between these value
variations, we generated the correlation plot, which uses two visual
variables (size and color) to encode Pearson correlation for all pairs
of given signals. In this case, Figure 2d displays a high correlation
between H3K27ac —indicator of active enhancers—and H3K4mel —a signal
representing all enhancers. Moreover, H3K27ac also demonstrates a high
correlation with H3k4me3 which is in accordance with the possible overlap
of enhancers and promoters.

The remaining subplots of Fig 2 discuss the average enriched behavior
of two of the mentioned histone modifications over gene bodies of
chromosome 21. H3K4me3 exhibits high values near the beginning of
genes as a promoter does (Fig 2e), and H3K36me3 shows high activity
over gene bodies (Fig 2f).

5.2 Case Study 2 — interpreting chromatin state feature

A recent study (Chen et al., 2019) proposes chromatin state features
for capturing genomic elements instead of discrete annotation. These
features are continuous genomic signals which are obtained from histone
modifications refined by a Kalman filter state-space model. We chose a
set of three features for this case study to demonstrate how SigTools can
assist in interpretation of novel genomic signals.

Since these features are to project characteristics of histone
modifications, it is expected when the ECDF plot (Fig 3a) of the 99
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Fig. 2: Exploratory analysis of histone modifications: H3K4mel, H3K4me3, H3K9me3, H3K27ac, H3K27me3, and H3K36me3 a) Empirical Cumulative
Distribution generated by sigtools_distribution withthe plot parametersettoecdf and percentile setto 99. A high population of zeros is
detected. b) Kernel Density Distribution generated by sigtools_distributionwiththe plot parametersetto curve, percentilesetto 99, and
nozeros setto TRUE. It demonstrates the shape and statistical range of the data. ¢) Autocorrelation plot generated by sigtools_autocorrealtion
with the 1ag parameter set to 50. The input file resolution is 200. This plot indicated that signal H3K4me3 has the most drastic changes among the six
discussed signals here. d) Correlation heat-map generated by sigtools_correaltion e) H3K4me3 aggregation over chromosome 21 gene regions.
Generated by sigtools_aggregation f) H3K36me3 aggregation over chromosome 21 gene regions. Generated by sigtools_aggregation.

percentile of feature data displays a large population of zeros in the dataset.
‘We can also obtain an estimation about the range of the data which is about
[0, 0.5) for all the signals.

Removing the zero population and the distribution curve plot (Fig 3b)
displays that out of the three features, featurel is denser within the range
of (0, 1). Despite this smaller variation, the autocorrelation plot (Fig 3c)
displays that featurel contains more sudden changes.

Fig 3d displays that featurel mainly correlates with H3K27ac,
H3K4mel and H3K4me3 which are responsible for transcription
Accordingly, these three assays drop the most in
autocorrelation. Plotting the average enrichment of this feature over gene

enhancement.

body regions (Fig 3e) make an even stronger argument that featurel also
represents enhancer activity.

6 Discussion and Conclusion

An ever-increasing number of genomic signals are being generated by next-
generation sequencing technologies and are being widely utilized in studies
such as genome annotation (ENCODE Project Consortium, 2012; Hoffman
etal.,2012a), cell development, and gene regulation. The analysis of these
signals is often associated with the analysis of short-read sequences or
genomic elements. However, in recent annotation studies (Chen et al.,
2019) theoretically generated signals have been promoted to be a direct
representative of biological activities. Regarding the importance and the

increasing number of genomic signals and their novel applications we
believe there is a growing need for refined tools that enable convenient
exploratory analysis and facilitate genomic signals’ interpretation and
assessment.

The primary contributions of this work are listed below:

eThe design, development, and implementation of an R-based data
analysis package, SigTools, to be used by biologists or computer
scientists who work with known and novel genomic signals. This
package includes several recognized statistical plots that are frequently
employed for exploratory data analysis in genomics and other fields.
Table 2 is an overview of SigTools visualization modules and their
availability in other genomic signal analysis tools. This table indicates
that no other tool offers a function for generating distribution and
correlation plots for this type of data, the correlation plot is offered
only by one other tool, and the aggregation plot is offered by all of
them.

e An aggregation plot is a powerful visualization that has been frequently
employed in genomic signals analysis (Fidel Ramirez, 2016; Ramirez
et al., 2016; Akalin et al., 2014). Table 2 displays that the aggregation
plot is incorporated in all locus-agnostic visualization tools discussed
in Section 1. In this work, we implement a novel visual encoding for
this plot. By introducing a shifted origin line to this plot, we aimed
to highlight the difference between high and low signal values and
enable comparison between different aggregation plots for one signal
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Fig. 3: Towards the interpretation of Chromatin State a) Empirical Cumulative Distribution generated by sigtools_distribution with the plot

parameter setto ecdf and percentile setto 99. b) Kernel Density Distribution generated by sigtools_distribution withthe plot parameter

set to curve, percentile setto 99, and nozeros set to TRUE. ¢) Autocorrelation plot generated by sigtools_autocorrealtion with the

lag parameter set to 50. The input file resolution is 200. d) Correlation heat-map generated by sigtools_correaltion e) Aggregation plot of

featurel over chromosome 21 gene bodies. Generated by sigtools_aggregation f) Aggregation plot of feature3 over chromosome 21 gene bodies.

Generated by sigtools_aggregation.

over different sets of elements, or multiple signals across the same
elements.

eOffering a web-based application, SigTools-Shiny. This graphical
user interface would be an additional option for users who prefer
to limit their interaction with a command-line environment and feel
more comfortable inspecting their data with different combinations
of plots and parameters through a GUI. SigTools-Shiny also includes
some interactive versions of SigTools visualizations, these interactive
Java-Script plots are generated by an R package named Plotly.

SigTools enables users who work with both experimental or statistical
generated genomic signals to obtain text-based or graphical statistical

Table 2. SigTools’ modules and their availability in other tools.

summary of their datasets, to understand what activities their novel signals
represent, and investigate the relation of their recently obtained signals with
previously studied signals.

As for working with any other extensive dataset, the large size of
genomic signals is a challenge that requires close consideration. For
obtaining faster results, SigTools offers two solutions: working with
modified data to a bigger resolution size, or working with a random subset
of the data. The file size can particularly cause issues in web applications
when users have to pause their analysis due to multiple uploads when
working with diverse datasets. To overcome this issue, some frameworks
such as GALAXY (Afgan et al., 2018) offer cloud workstations to their

Tools distibution correlation autocorrelation aggregation web-app
(summary)

SigTools v v

deepTools v

genomation v

ngs.plot v

SegTools v
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users, hence uploaded data is stored in the user’s account and it can be
accessed at any time. As a part of GALAXY, deepTools users benefit from
such an online work station. Being a stand-alone tool allowed SigTools to
have a flexible user interface design, yet finding a solution for reducing
the number of uploads should be included in SigTools future versions.
Future versions of SigTools will focus on including an additional number
of visualizations and enable comparison between continuous and discrete
genomic data.
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