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The Regulatory Circuits project is among the most recent and
the most complete attempts to identify cell-type specific regula-
tory networks in Human. It is one of the largest efforts of public
genomics data integration, based on data from the major con-
sortia FANTOM5, ENCODE and Roadmap Epigenomics. This
project is a main provider of biological data, cited more than
224 times (Google Scholar) and its resulting networks were used
in at least 42 other articles.
For such a general resource, reproducibility of both the outputs
(regulation networks) and methods (data integration pipeline)
is a major issue, since biological data are updated regularly. In
addition, users may want to introduce new data into the Regula-
tory Circuits framework to provide networks about previously
uncharacterized cell types or to add information about specific
regulators, which require to re-execute the whole pipeline on the
new data.
In this article, we analyze the various factors limiting repro-
ducibility of the Regulatory Circuits data and methods. Starting
from a factual description of our understanding of the methods
used in Regulatory Circuits, our contribution is two-fold: we
propose (1) a characterization of the different levels of reusabil-
ity, reproducibility and conceptual issues in the original work-
flow and (2) a new implementation of the workflow ensuring its
consistency with the published description and allowing for an
easier reuse and reproduction of the published outputs. Both
are applicable beyond the case of Regulatory Circuits.
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1. Introduction
Life science, and in particular health, is a major data pro-
ducer: for example the US healthcare system as reached 150
exabytes in 2010 (1), and this trend is expected to increase
over the next decade (2). In addition to the data quantity
challenge data heterogeneity is a second challenge. In (3) the
authors performed a review of different fields of data produc-
tion in health: from genomics, proteomics, metabolomics,
to imaging, clinical diagnosis, patient history and the recent
addition of personal devices information. Moreover, we are
confronted to the rise of multi-omics solutions (Genomics,
Epigenomics, Proteomics, Transcriptomics, Metabolomics,
etc...) in health and disease-related research (4, 5). Each
dataset’s size often requires to split the data into several files,
which adds another layer of integration and makes global
analysis all the more complicated (6).
Even in the specific domain of gene regulatory networks,

the data are large and heterogeneous. To understand the
regulation in a given biological context, one needs to per-
form diverse types of experiment spanning spanning whole
genomes, currently made possible by the recent advent of
high throughput sequencing. A gene regulation network en-
compasses the interactions either between regulators, or be-
tween a regulator and other entities in a cell to control genes
expression. For gene regulatory networks, regulators are spe-
cialized proteins called transcription factors (TF) which in-
teract with DNA, the molecular support of genetic informa-
tion. At the DNA level, a TF will bind to a definite sequence
(called a binding site) in a specific regulatory region, which
should be in an opened 3D conformation to allow the regu-
lation (7, 8), and which can be located close or far from its
target gene (9). This binding event will then initiate a cascade
of molecular events eventually leading to regulation (induc-
tion or inhibition) of the target gene’s expression.
A better characterization of gene regulatory networks allows
a better understanding of major processes such as cell dif-
ferentiation (how to obtain one or several effective cell types
from a common progenitor cell), cell identity (how gene ex-
pression is used to define a specific cell type) and cell trans-
formation (how altered gene expression can lead to cell death
or cancer) (10). Many gene regulatory network inference
methods have been published, but few of them apply to hu-
man data, and even fewer are able to take into account inputs
from gene expressions, regulatory regions activities and tran-
scription factor binding sites (11, 12). Among the latter, the
Regulatory Circuits project1 (13) is one of the largest effort
of genomics data integration in human cells. It consists of
several analyses on heterogeneous and multi-layer “omics”
data on 394 human cell lines and primary cells from tissues.
This project is a major provider of biological data, cited more
than 224 times (Google Scholar – 2021-06-30). Its resulting
networks were used in at least 42 other articles.
Despite being such a fundamental resource, this project has
not been updated since its publication in 2016. The Regu-
latory Circuits website gives access to unstructured, discon-
nected and diversely formatted tabulated files related either
to source biological data (FANTOM5 data, genes and re-
gions genomic coordinates, TFs binding sites occurrences...
divided in 26 files), to computation intermediate results (59
files), or to the results of in silico integrative analyses (394
files, one for each network). The outputs of the project are

1http://regulatorycircuits.org/
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Figure 1: Biological principles behind Regulatory Circuits. A transcription factor pro-
tein binds to a DNA region called enhancer or promoter depending on its distance to
a gene, which regulates the gene expression. Characterizing the relation between
a transcription factor and a gene requires to measure the quantity of transcription
factor, the opening of the 3D structure of DNA in the binding site, and the observed
quantity of the gene’s transcript.

only available as text files and no functional pipeline or soft-
ware is provided to perform new computations. This has
huge impact on i) the reproducibility of the results, ii) their
maintenance as they will need to be updated when newer or
additional data sources are released and iii) their reuse for
advancing other studies (which was the reason these results
were generated in the first place).

2. What is Regulatory Circuits: biological
model, input / output data and computational
concept
FIGURE 1 presents the biological principles behind regula-
tory circuits. The interaction between a TF and a gene is de-
termined as the ability of the TF to bind in a region close the
gene, and therefore to regulate (i.e. modify) its expression.
Two types of regulatory regions are described, depending on
their distance to the gene locus (its location on DNA): pro-
moters are immediately close to the gene and usually encom-
pass its transcription start site (TSS) whereas enhancers are
acting at long range, from several to hundreds of kbs. Genes
can be described by functional units called transcripts (or iso-
forms), which may be different for the same gene, depending
on alternative TSS usage or which exons (the informative or
"coding" pieces of a gene) are used to build a specific tran-
script. In Regulatory Circuits, the relations are computed be-
tween TF and transcripts, either considering the promoters or
the enhancers and then the relations are grouped by TF and
genes, giving unique TF-gene relations (see below).
The entry data used in Regulatory Circuits comes from sev-
eral independent projects: FANTOM5 (14) for measuring
transcription or regulatory activity (using CAGE-peak data
on the regulatory regions, 808 different samples having in-
formation for both enhancers and promoters), ENCODE (15)
for the prediction of transcription factor binding sites, and
GTex (16) and Roadmap Epigenomics (17) for validation
data.
Regulatory Circuits computes networks that are not derived
from a statistical analysis of biological measurements but
based on a set of computed correlations between regulatory
regions activities, gene expressions, and curated and scored
TF binding sites.
Published datasets encompass both input (raw data) and in-

termediary (authors- processed) data files, in the form of tab-
ulation or comma-delimited data files with various formats
and contents.
The output of the Regulatory Circuits study is a set of 394
scored tissue-specific regulatory interaction networks that
can be explored through text files, representing 9.1 GB. Each
file basically contains three columns: one for the TF, one for
the genes and one for the computed score of the relation.

3. What is Regulatory Circuits: Detailed
workflow
FIGURE 2 presents an overview of the Regulatory Circuits
workflow, each step is described in the following subsections,
as we understood it from a careful revision of the provided
methods and supplementary data.

3.1. Global formula. The score (wij(S)) of a relation be-
tween the TF (i) and the transcript (j) in the sample S is
based on the distance weight (djk) between the transcript and
the regulatory region (k), the confidence score of the binding
site of the TF in the given region (cik), the normalized ac-
tivity of the region (xk) and the normalized activity of the
transcript (yj). Giving the following formula:

wij(S) = cik×djk×
√

xk(S)×yj(S) (1)

Note that according to Regulatory Circuits, 0 ≤ djk ≤ 1 and
that djk decreases as the distance between the regulatory re-
gion and the gene increases, so djk is a normalized weight
that behaves like the inverse of the distance (see Section 3.4).
For Promoters, the distance weight is normalized to 1 -as the
promoter is adjacent to the transcript- and the transcript ac-
tivity is taken as its promoter activity. The previous formula
is then reduced to :

wij(S) = cik×xk(S) (2)

3.2. Normalized expression or activity of regions and
transcripts. As mentioned in the previous section, the activ-
ities of the different elements are normalized.
The choice of the normalization is important in such work-
flows as the value directly influences the score of the relation
between the TF and Genes in the resulting networks, a shown
by the equations 1 and 2.
In Regulatory Circuits the authors normalize the activities of
the different regions as a score between 0 and 1 computed el-
ement by element but do not provide the normalization func-
tion.

The weight of promoter-gene edges was defined
as the normalized activity level of the promoter
across all samples (normalization was done per
regulatory element because expression levels of
diverse enhancers and promoters might not be on
the same scale). Thus, if the promoter is not ac-
tive in a given cell type, the edge weight is 0 (i.e.,
the edge is not present), and if the promoter is
maximally active, the edge weight equals 1. (13)
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For the transcripts, the activity was based upon their promot-
ers:

The activity level of isoforms was defined as
the maximum activity level of their promoters
(which are usually few—the majority of iso-
forms have only one or two alternative promot-
ers). (13)

In the article, the normalization function used is not further
described.

3.3. Confidence score of the TF binding sites. In Regu-
latory Circuits, the authors consider 662 TF and their binding
motifs (position weight matrices) in the genome. They used
a curated collection of matrices and assigned a confidence
score to each binding site based on the conservation across
mammals using the works by Kheradpour et al. (18–20).
The binding sites were looked for in a 400 bp upstream to 50
bp downstream window of the considered promoter, and lim-
ited to the actual chromosomal coordinates of the enhancers.
If several binding sites of a same TF were found in the same
regulatory region, the maximum of their confidence scores
was assigned to the TF-region relation, regardless of the bind-
ing site location inside the region. The scores and relations
between TF and regions are compiled in the tf- - -promoter.
prec90.txt and tf- - -enhancer. prec90.txt files provided in
Regulatory Circuits supplementary data.

3.4. Distance weight of the regions. The weighting func-
tion for the distance only applies to enhancers For promoters
the weight of the distance is set to 1.
To normalize the distance between enhancer and transcript,
the authors used cis-eQTLs from RegulomeDB (21) and
computed their distance to the TSSs of target genes. The
weigh function is defined using a local polynomial regres-
sion fitting for the range 1 kb to 500 kb (in either direction
from the transcript), where 1 kb was normalized to 1 and 500
kb to 0. This is then applied to the enhancers considered in
the workflow.
This means that all enhancers further than 500 kb of the tran-
script were not considered for the remainder of the computa-
tion. The formula to compute the distance weight was pro-
vided in the workflow description.

3.5. From individual relations to networks. Up until this
point all relations are computed using the transcripts instead
of genes. To determine the TF-genes relations, all the rela-
tions between a TF and transcripts of a same gene are merged
into one and its score is the maximum of the scores of the TF-
transcripts relations.
Similarly, if a TF-gene relation exists using several promoters
or enhancers, the relation is kept using the maximal score
computed, for each type of regulatory region.

For each pair of edges forming a chain that con-
nects a TF to a promoter to an isoform [...]. If
several redundant edges between the same TF
and gene were found (via different promoters or

isoforms), they were merged and the maximum
edge weight was retained. A separate TF-gene
network encapsulating all regulatory interactions
via enhancers was created using the same ap-
proach. (13)

At this point, the Regulatory Circuits workflow gives two
ways of calculating a TF-gene relation and its associated
score: one using enhancers and the second using promoters.
In the resulting networks this distinction is not made and both
ways of computing have been combined to obtain the final
score of the TF-gene relation:

Both TF-gene networks thus had edge weights
ranging from 0 (absent edge) to 1 (highest con-
fidence), which were added to form a combined
TF-gene network including evidence from both
promoters and enhancers. (13)

4. Issues with Regulatory Circuits
While trying to run and understand the Regulatory Circuits
workflow we encountered multiple setbacks as summarized
in FIGURE 3.
Among them, we identified difficulties with understanding
the overall dependencies between the files as well as their
structure and content (Section 4.1). Moreover, the scripts
provided by Regulatory Circuits could not be used on the
project’s original files nor on other files (Section 4.2). We
also noted that some of the intermediary files were not pro-
vided (Section 4.3), which was a problem because we could
not validate the steps producing them (Section 4.4), i.e. com-
pare what we get when we re-implement the steps with the
original results. More generally, we identified problems with
Regulatory Circuits method that will hamper the method’s
reusability in similar biological contexts (Section 4.5). Even-
tually, the general implementation of Regulatory Circuits
relies on ad hoc technical choices that also limit both the
method and final results reusability (Section 4.6) and are not
on par with FAIR recommendations. As shown in FIGURE 3,
all these limitations occur multiple times over the Regulatory
Circuits workflow.

4.1. Understanding the files. We analyzed the 21 input or
intermediary files provided by Regulatory Circuits. TABLE 1
summarizes the files characteristics.
A first setback arose during the inspection of these files.
It was related to the difficulty to explore them and to ex-
tract the information they contain. Some of the files have
non explicit names regarding what they contain (e.g.: hg19.
cage_peak_tpm. osc. txt which contains the expression of
the promoters). All the files are not in the same format: some
were comma-separated, others, tabulation-separated. Fifteen
of the files had headers, while 6 did not. Moreover, two of the
files presenting header had misaligned header to data (miss-
ing column). Two of the 21 files start with some comments
before the data, ranging up to 1700 lines.
It was also difficult to link the data between two files as
the identifiers referring to the same entity were not consis-
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Table 1: Regulatory Circuits files’ review

type of file file name format header
lines

missformated
header

comment
lines

data
lines

nb
columns

Column(s)
with ID ID format Entities Source content

Input Data
for network
inference

hg19
_permissive
_enhancers
_expression

_rle _tpm.csv

csv (,) 1 0 43011 809 1 chr:start-end enhancer [1] [a]

permissive
_en-

hancers.bed

bed12
(tab-delim)

1 0 43011 12 4 chr:start-end enhancer [1] [b]

robust _en-
hancers.bed

bed12
(tab-delim)

1 0 38554 12 4 chr:start-end enhancer [1] [b]

hg19.cage
_peak

_tpm.osc.txt

tab-delim 3 893 184827 890 1 chr:start-end,strand promoter [2] [a]

hg19.cage
_peak _coord
_robust.bed

bed12
(tab-delim)

0 0 184827 12 4 chr:start-end,strand promoter [2] [b]

gene
_coord.bed

bed6
(tab-delim)

0 0 19125 6 4 GENE _SYMBOL gene [3] [b]

gene _ids.txt tab-delim 1 0 19125 3
1 ENSG00000000000 gene

[3] [c]2 GENE _SYMBOL gene
3 EntrezID gene

mhc
_genes.txt

tab-delim 1 0 184 1 1 GENE _SYMBOL gene [3] [c]

transcript
_coord.bed

bed6
(tab-delim)

0 0 53449 6 4 GENE _SYMBOL-000 transcript [3] [b]

transcript—
gene.txt

tab-delim 1 0 53449 4

1 GENE _SYMBOL-000 transcript

[3] [c]2 GENE _SYMBOL gene
3 ENSG00000000000 transcript
4 ENST00000000000 gene

tss
_coord.bed

bed6
(tab-delim)

0 0 53449 6 4 GENE _SYMBOL-000 gene [3] [b]

motif _defs.txt space-delim 0 1772 N/A N/A N/A N/A [4] [g]
motif _in-

stances.bed
bed6

(tab-delim)
0 0 124358159 6 4 TF _0 TF [4] [b]

tf _motif
_ids.txt

tab-delim 1 0 1792 3 1 TF TF [4] [g]2 TF_0 TF

Intermediary
files

enhancer
_expr.rank.txt

tab-delim 1 x 0 43011 809 1 e@chr:start..end enhancer [5]* [d]

enhancer—
transcript
.prec90.txt

tab-delim 1 0 950513 5
1 e@chr:start..end enhancer

[5]* [e]2 GENE _SYMBOL-000 transcript
5 GENE _SYMBOL gene

promoter
_expr.rank
.prec90.txt

tab-delim 1 x 0 59126 809 1 p@chr:start..end,strand promorer [5]* [d]

promoter—
transcript
.prec90.txt

tab-delim 1 0 123440 4
1 p@chr:start..end,strand promoter

[5]* [e]2 GENE _SYMBOL-000 transcript
4 GENE _SYMBOL gene

tf—enhancer
.prec90.txt

tab-delim 1 0 524816 3 1 TF TF [5]* [f]2 e@chr:start..end enhancer
tf—promoter

.prec90.txt
tab-delim 1 0 1169797 3 1 TF TF [5]* [f]2 p@chr:start..end,strand promoter

transcript
_expr.rank
.prec90.txt

tab-delim 1 x 0 43352 809 1 GENE _SYMBOL-000 trancript [5]* [d]

Sources: [1]http://enhancer.binf.ku.dk/Pre-defined_tracks.html, [2]
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/, [3] Ensembl biomart, [4] Pouya Kheradpour & [5]*

Regulatory Circuits: auto produced
Type of content: [a] Normalized activities, [b] Genomic coordinates, [c] Identifier, [d] Rank of normalized activities, [e] Distances, [f] Confidence score & [g]

TF motifs

tent among the files (e.g.: chr:start-end in file permissive
_enhancers. bed corresponds to e@chr:start-end in tf- - -
enhancer. prec90. txt) as shown in TABLE 1 column “ID
format”.

4.2. Regulatory Circuits scripts are not usable. The
computational scripts and algorithms provided as resources
are limited to the considered data-set. The given implemen-
tation was made using Java but is unusable as such as it lacks
explanation on the input files necessary and on how to run it.
Furthermore, there is a lack of documentation on the imple-
mentation, the wiki is still under construction2 and have not

2https://github.com/marbach/magnum-app/wiki

been updated since 2015. The project website3 has not been
updated and the last news on the project were from august
2016. As of June 2021 the website domain expired and the
site is therefore unavailable.
Moreover, we contacted the Regulatory Circuits’ authors in
July 2018 with solicitations about the methodology but we
did not get any feedback for the moment.

4.3. Intermediary files not present. While most of the
pre-processed data are present in the download folder, the au-
thors do not give any access to three intermediary steps of the
workflow. The intermediary networks obtained by different
type of regulatory regions (promoters or enhancers) are not

3http://regulatorycircuits.org/

6 | bioRχiv Louarn et al. | Reproducibility and reusability limitations in Regulatory Circuits

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454723doi: bioRxiv preprint 

http://enhancer.binf.ku.dk/Pre-defined_tracks.html
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/
https://github.com/marbach/magnum-app/wiki
http://regulatorycircuits.org/
https://doi.org/10.1101/2021.08.02.454723
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.5 Conceptual issues

provided, nor are the intermediary sample-specific networks.
This led to issues while trying to reverse-engineer the Regu-
latory Circuits workflow as we could not check the computed
intermediary scores before the last step.

4.4. Regulatory Circuits methodology could not be re-
produced.

Rank We ran into several issues with steps of the work-
flow while trying to understand it: the normalization function
used for the expression, the weight function for fitting the
enhancer-gene distance as well as the notion of ’addition’ of
enhancer and promoter network ("Both TF-gene networks[...]
were added to form a combined TF-gene network") were all
under-specified, and some steps were not performed as de-
scribed: the rank of the promoter was not computed element
by element. For some parts of the pipeline, we were never-
theless able to reverse-engineer part or all of the published
methodology.
We also found inconsistencies between the described
methodology and the result files. For the ranks of the pro-
moters the formula was not applied element by element as
described but on all the promoters of a same transcript at the
same time.
Using reverse engineering, we managed to find out
for the enhancer that the normalization is an ap-
plication of the rank function, this information was
given in the name of the transformed expression files:
enhancer_exp.rank.txt, promoter_expr.rank.prec90.txt and
transcript_expr. rank.prec90.txt.
For each enhancer the activities in the different samples are
ordered from the least expressed to the most expressed. Sev-
eral samples can have no expression and their ranks are set
to 0. The other samples ranks are computed as: Position in
which they appear after being ordered divided by the number
of samples expressed (expression strictly > 0). For an en-
hancer, the most expressed samples are therefore normalized
to 1.
For promoters, we realized when reverse-engineering the
ranks that they were not computed element by element (i.e.
promoter by promoter) in this step. Instead all promoters
were grouped based on the transcript they were preceding,
and the rank function was applied to the expression data of
all these promoters. Therefore, according to the Regulatory
Circuits method, if a transcript is preceded by n promoters,
the samples ranks should have been computed separately for
each promoter on the 808 samples (therefore, for each pro-
moter, the sample ranks span [0;1]). Instead, we observed
that the samples ranks were computed globally on the union
of the n promoters (therefore, for one promoter, the sample
ranks may span a sub-interval of [0;1]). FIGURE 4 illustrates
the differences between the expected and observed promoter
ranks for a transcript with eight promoters.
For the each transcript, its rank for a given sample was sup-
posed to be the maximum rank of its different promoters in
this sample, but it was not what we found in the intermediary
files. The transcripts’ ranks were computed as the means of
its promoters ranks weighted by a different constant for each

transcript. Therefore we could not undoubtedly compute the
transcript scores and abandoned our retro-engineering pro-
cess. This is one of the reasons why we chose to re-compute
the entire networks (see Section 5).

Distance relation Using the pre-computed file enhancer- -
-transcript. prec90.txt provided by Regulatory Circuits that
indicate the weighted distance, we were able to compute an
approximation of the polynomial regression and to apply it.

Overall scores When looking into the resulting networks
we found relations scored to values superior to 1. The ad-
dition operation described between the promoter weight and
the enhancer weight, was therefore not a max as for the en-
hancer - or promoter - weights across the samples constitut-
ing the tissue. We were not able to compare the intermediary
weight to the original one founds (as no files were given) and
therefore could not confirm the addition used.
When computed using a max relation between promoter and
enhancer weight, the overall scores we found were superior
to the ones found in the original study. Using a sum rela-
tion between those weights to compute the score would have
made the difference even greater as our score would have in-
creased.

Overall networks Eventually, we found discrepancies be-
tween the potential relations given in the output files and
what could be computed in simple case (mostly relations pro-
vided by Regulatory Circuits that we could not reproduce,
and occasionally relations that we predicted but did not ap-
pear in Regulatory Circuits final results). For example, in
the Myeloma cell line, the TF INSM1 could only regulate
the gene AMER1 through one specific promoter and with no
enhancer involved. The relation is scored (4.21371298E-03)
in the corresponding output file, but the confidence score of
the TF in this promoter is given at 0 and applying formula 2
would also yield a 0 global score. FIGURE 5 shows the dis-
parity between the relations found in the result files given by
Regulatory Circuits (union of all TF-gene relations across all
networks) and the relations we found by computing the rela-
tions between entities across all files (following the method-
ology and simple bash commands, like join, see section 5).

4.5. Conceptual issues. Regulatory Circuits stops at the
tissue level in the original computed networks, while some
users may want to look at finer levels such as samples of a
same tissue. The provided method therefore lacks flexibility
to have fine-grained / personalized networks.
The way of computing scores seems highly biased toward ac-
tivation, as the scores are computed by multiplying the max-
imums of several parameters (activities, confidence scores,
distance scores...). For the tissue-specific networks, the rela-
tions are therefore unsigned and potential inhibition are either
hidden or lost. For the same reasons, genes which are less ex-
pressed in one sample or tissue are more susceptible to be ex-
cluded from a network, disregarding their potential function
(for example, TF coding genes are known to be expressed at
low to moderate levels).
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(a) (b) (c)

Figure 4: Difference between the promoter ranks for a transcript with eight promoters observed in intermediary files (4a) and the promoter ranks computed according to the
method detailed in (13) (4b). 4c list the eight promoters of the transcript. Please note that in 4a, all ranks are aligned on one curve denoting the use of a union of promoters
to compute the transcript ranks, while on 4b each promoter has its own curve, ranging from 0 to 1.

Figure 5: Number of unique TF-genes relations found in results network (in green)
and number of relations found while using the files and the described method (red).
The relations in green but not in red can be explained by the the attribution of a
positive score to relations which should have been scored to 0, and by some mi-
nor changes in network topology. The relations in red but not in green could be
explained by relations wrongly scored to 0, probably because of the discrepancies
between the described and the actually used method, e.g. concerning the ranks.

Additionally, the rank function used for normalizing the ex-
pressions only takes their order into account not the distance:
for example, to samples with successive expressions of 0.1
and 0.6, or of 0.6 and 0.7 will have the same distance in
Rank (1/nb samples). It is not a fine grain normalization func-
tion. Removing or adding samples can drastically change the
rank distribution: focusing on a portion of Regulatory Cir-
cuits means that computed ranks will be different from the
ones provided by Regulatory Circuits, i.e. the latter are not
reproducible. We hypothesized that the ranks of two biolog-
ically close samples would be really similar among a lot of
other samples, and would be wrongly separated among very
few others, questioning the reuse of the Regulatory Circuits
methodology on limited numbers of samples (a few tenths at
most), a common setting in life and medical sciences and in
clinical settings.
Another issue with the methodology is that the networks as-
sume the TF to be expressed in the cell type, but the work-
flow never checks if it is really the case. All relations found
are assumed to be applicable but if a TF is not expressed in a
specific cell type, then the regulation involving this TF may
not exist.

4.6. FAIR-related problems with method and results
re-usability. The networks’ output format -Text files- makes
it impossible to explore and enrich the data by combining

them to additional knowledge on entities stored in LOD pub-
lic databases.
The workflow design makes it difficult both to extend Reg-
ulatory Circuits by adding new data or updating them, and
to reuse only part of Regulatory Circuits, as it requires to re-
compute all the ranks for all the entities and neither the pro-
vided programs nor the incompletely specified method allow
it. It is also difficult to enrich with new types of informa-
tion: adding gene expressions would mean defining a new
formula for scores, as the promoter can not be approximated
by the gene (several promoters of one transcript and several
transcripts for one gene).

5. Computing Regulatory Circuits networks
Regulatory Circuits is a general resource on regulatory net-
works. We wanted to use it on specific cells-types not in-
cluded in the published networks. To be able to run the Reg-
ulatory Circuits workflow on new data, we devised a new
bash-based implementation to compute the original regula-
tory networks, using most of the provided input and inter-
mediary files and strictly following the methods as described
and understood in Section 3.

5.1. A new way of computing Regulatory Circuits net-
works. For running Regulatory Circuits the first step was to
identify the necessary files and homogenize the identifiers for
all entities across the files.
We re-computed the ranks as described in Regulatory Cir-
cuits. We used the R rank function separately on each reg-
ulatory element as the principle is the same for both en-
hancers and promoters. For the transcripts, we took the
rank of their promoter and for each sample kept the high-
est rank across all promoters. The remainder of the steps
of the workflow are computed using the intermediary files
of the original study (confidence score, distance, relations
between entities, etc.). For the final steps - computing the
scores - we applied the formula provided in the paper, and
kept the maximum score for a TF-genre relation: the max-
imum between the score by promoter and by enhancer and
the maximum score in all the samples constituting the tissue.
All the scripts and necessary files are available at https:
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5.2 Comparing the original workflow to the new way to compute Regulatory Circuits networks

//gitlab.com/mlouarn/RegulatoryCircuits.
TABLE 2 compares the different steps of the original work-
flow and the new pipeline of calculating the resulting tissues-
specific networks.

Original network (1) re-computing Ranks (2)
Normalized expression

Regions
Using the given file Recomputing the ranks: Done

element by element.
Normalized expression

Transcript
Using the given file max(Rank (Promoters))

Confidence score Given file Given file
Distance

enhancer-transcript
Given file Given file

Link TF-region Given file Given file
Link region-transcript Given file Given file
Link transcript-gene Given file Given file

Score We, Wp ∅ Using formula (3.1 and 3.2)
Score by samples ∅ max(We,Wp)
Score by tissues Result files max(Samples)

Table 2: Comparison between the original Regulatory Circuits workflow and the
new pipeline. We: scores for sample-specific network using only enhancers, Wp:
scores for sample-specific network using only promoters

5.2. Comparing the original workflow to the new way
to compute Regulatory Circuits networks. We compared
two ways of obtaining Regulatory Circuits networks: the
original study using directly Regulatory Circuits output net-
work files (1) and our bash-based solution only using input
files and computing all the steps we could recompute (2).
For all tissues and samples, all relations between TFs and
genes found in the re-computed method were relations con-
served from the original study networks. However, we also
identified 1,185,048 TF-genes relations (36.5% of the origi-
nally published relations) that were not predicted by our im-
plementation. For all of these relations, at least one of the
weights was zero, which resulted in a final score of zero. We
have no explanation on why these relations had a strictly pos-
itive score in Regulatory Circuits.
For an in-depth analysis, the comparison was performed on
12 cells-types: B lymphoblastoid cell line, brain fetal, CD4+
T cells, CD8+ T cells, CD34+ stem cells-adult bone marrow
derived, colon adult, colon fetal, epitheloid cancer cell line,
pancreas adult, peripheral blood mononuclear cells, small in-
testine adult and small intestine fetal. We used 12 tissues on
which we had RNA-seq data (from Roadmap epigenomic) to
run similar validation of the networks as done in the original
paper.

5.2.1. Networks topology. In TABLE 3 we show the variabil-
ity of the regulatory networks depending on the two strate-
gies. In the computed networks, we lost an average of 50 TFs
in the result graphs but retained a similar number of genes
and lost nearly half of the relations in the final networks.

Type of Circuits Given as Result Re-Computed
min max mean min max mean

Nb of TF 643 643 643 593 596 594
Nb of Genes 11,911 14,850 13,067 11,881 14,812 12,933

Nb of Relations 407,056 1,796,098 1,042,839 239,049 1,010,008 581,711
% of complete graph 5.2 21.9 12.5 3.3 13.3 7.6

Table 3: Comparison between the obtained networks on 12 cells types. Our method
produce networks that are included in the original Regulatory Circuits networks.

Regulatory Circuits compared the genes regulated in the
tissue-specific networks to the expressed genes of the RNA-
seq of the Roadmap Epigenomics project. The authors con-

clude that, as expected, the highly expressed genes were
largely (more than 90%) recovered in the produced networks
and that the least expressed genes had no regulatory input
(less than 10% recovered).

We did the same analysis on the networks computed with the
two above-mentioned methods (FIGURE 7). We found that
the re-computed network had slightly lower level of recovery
of the genes, but not significantly (Wilcoxon rank sum test
between the two series of recall measures for 12 tissues).

5.2.2. Scores distributions. As presented in the previous sub-
section the re-computed networks have a different topology
from the original study, and are portions of the original net-
works. But the Regulatory Circuits results were not only the
relations but also the associated scores.

We looked at the score computed in the two versions of the
networks (FIGURE 8): the score found in the original Regu-
latory Circuits study are in average 10 times lower that the
re-computed scores.

This raised the issue of the combination of the enhancer and
promoter networks scores, as the original study has scores
greater than 1 and our method does not. We were once again
confronted to the methods section imprecision on the score
computation. As the intermediary files for the networks com-
puted by enhancers and promoters were not available, we
were not able to confirm the “added” notion and how the
scores are combined to produce the final networks (see 3.5).
However, by inspecting the networks published by Regula-
tory Circuits, we found relations with a score greater than
1, suggesting that the final scores were obtained by adding
the enhancer and promoter scores for each TF-gene relation.
With our re-computed scores, performing an addition on the
enhancers and promoters scores for a same TF-gene relation
could have yielded a result greater than 1. However, using
the addition would have resulted in even greater scores, there-
fore, we chose to keep the maximum of both scores, which
still resulted in scores greater than Regulatory Circuits and
was consistent with the other steps of the workflow, where
the authors always used the maximum as the merging factor
between redundant relations.

Since the score distribution seemed to vary between the orig-
inal networks and the recomputed one, we computed the cor-
relation between the scores. FIGURE 9 shows that there is a
correlation between the scores in the original study and in the
re-computed one (r > 0.5). This is also the case in the other
networks observed from r=0.556 in the Brain (adult) network
and r=0.785 in the Epitheloid Carcinoma network.

For each relation, we compared its score in the re-computed
network to its score in the original network of the same tissue.
We found that the conserved relations have significantly (p <
2.2e-16, Wilcoxon rank sum test) higher scores than the rela-
tions excluded in the recomputed networks (see FIGURE 10),
suggesting that conserved relations between the original Reg-
ulatory Circuits networks and our new computation were the
most probable ones.
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5.2 Comparing the original workflow to the new way to compute Regulatory Circuits networks

Figure 7: Percentage of genes from the RNA-seq related to the networks found
in the resulting networks. The RNA-seq genes are separated in three categories:
the top 10% most expressed, the middle 10% and the 10% least expressed. Each
color represent one way of computing the tissue-specific networks, blue the original
networks and red the recomputed ones. Analysis done on the 12 networks.

Figure 8: Distribution of the scores across the three methods of calculating Regu-
latory Circuits networks. Focus on B lymphoblastoid cell line. Scores in the original
network: min 2.82E-7, max 1.08 and mean 0.01. Scores when re-computing the
ranks: min 4.45E-6, max 0.9 and mean: 0.08

Figure 9: Correlation between the scores found in the original networks and the
scores found in the re-computed networks for the conserved relations. Focus on B
lymphoblastoid cell line. The re-computed rank networks have a r of 0.696.

Figure 10: Distribution of the scores across the two methods of calculating Reg-
ulatory Circuits networks, depending of the conservation of the relations from the
original network. Focus on B lymphoblastoid cell line. Score presented as log10 of
the computed scores.

6. Conclusion
Regulatory Circuits is a major biological resources provid-
ing cell type-specific regulatory networks in Human. It has
been extensively cited and reused in other studies. However,
it presents several reproducibility challenges that prevent its
evolution and extension, as well as reusability challenges.
The technical and methodological aspects of these challenges
may be also present in similar resources, which makes Regu-
latory Circuits a relevant use case for assessing reproducibil-
ity and reusability.
Our first contribution is an in-depth analysis of Regulatory
Circuits allowing the identification of the factors limiting its
reusability or reproducibility. We demonstrated how these
factors prevented the direct reuse of the data set, its replica-
tion by executing the workflow on the original primary files,
and its transposition by executing it on updated, extended or
limited primary files. We assume that these factors are also
applicable to most of the life science resources produced by
an analysis workflow.
Our second contribution is an analysis of some limitations
of the Regulatory Circuits method. They hamper reusability
from a biological perspective. Firstly, using a rank function
for normalization is not robust, as a noisy sample could influ-
ence the rank of the other samples. Secondly, the Regulatory
Circuits workflow does not check the expression of TFs in the
samples, meaning that some potentially absent TFs are given
regulatory impact in the regulatory networks. Eventually, the
activation relations are highly favored by the workflow, as
the highly expressed genes and active regions have a greater
weight in the score calculation, leading to poorly explained
regulation of lesser expressed genes.
Our third contribution is a new implementation of the Regu-
latory Circuits workflow. This was necessary because there
are eighteen java tools – across 3 folders – provided by Reg-
ulatory Circuits but no explanation about what each of them
does, about the parameters to provide nor about the order in

Louarn et al. | Reproducibility and reusability limitations in Regulatory Circuits bioRχiv | 11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454723doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454723
http://creativecommons.org/licenses/by-nc-nd/4.0/


which they should be executed. We developed a new imple-
mentation of the complete data analysis workflow based on
the available information on the methodology described in
the original article. This new implementation addresses the
reproducibility challenges as the dataset can now be recom-
puted. It revealed that 36.5% of the regulation relations of
the original dataset could not be explained.
Those issues are common in life science data and impair the
reproducibility and the reusability of many studies. Nonethe-
less, we believe that our implementation will support both
reproducibility and reusability of Regulatory Circuits.
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