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 376 
 377 
Figure 1: Modeling the genome-wide neutral somatic mutation rate and identifying cancer driver 378 
elements. a, Deep-learning scheme used to predict the expected number of somatic mutations along 379 
with the prediction uncertainty using high-resolution epigenetic profiles of healthy tissue from the 380 
Roadmap Epigenomics consortium and ENCODE. CNN: convolutional neural network; GP: Gaussian 381 
process. b, Genome-wide neutral somatic SNV map and the observed density of SNVs in 1Mb windows 382 
from the PCAWG pan-cancer cohort (n=2,279 samples). For clarity, only chromosomes 1, 3, and 5 are 383 
shown. Highlighted are regions of interest demonstrating the ability to estimate the neutral mutation 384 
distribution in any genomic locus. Inset shows a region on chromosome 1 modeled at 100kb resolution 385 
and 10kb resolution. The reported R-squared statistic between observed and expected SNV counts is 386 
calculated genome-wide for the associated resolution. c, The genome-wide neutral mutation map for a 387 
cancer of interest is integrated with (i) a dataset of somatic mutations from a cancer cohort and (ii) user-388 
defined genomic elements, using a probabilistic model to estimate a closed-form distribution over the 389 
expected number of neutral mutations in each element. Positive selection is then tested by calculating the 390 
likelihood of the observed mutation under the null hypothesis of this neutral mutation distribution. 391 
Genomic elements to test (indicated in red) can be any sets of contiguous or noncontiguous regions (e.g., 392 
coding sequence and regulatory regions), or sets of mutations occurring at specific base pairs. 393 

394 
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 395 

Figure 2: Evidence of positive selection on intronic cryptic splice SNVs in tumor suppressor 396 
genes. a, A schematic of the splice-altering SNVs considered in this analysis. Predicted impact on 397 
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splicing is measured by the SpliceAI Δ score (higher score corresponds to higher predicted impact). We 398 
further stratified predicted splice-altering SNVs by predicted impact on splicing: low predicted impact 399 
(0.2<Δ<0.5), medium predicted impact (0.5<Δ<0.8) and high predicted impact (0.8<Δ<0.1). b, Enrichment 400 
(with 95% confidence interval) of observed mutations compared to expected neutral mutations in tumor 401 
suppressor genes stratified by variant type and predicted impact on splicing. c, Known tumor suppressor 402 
genes per cancer with a significant burden (FDR<0.1) of predicted intronic cryptic splice SNVs. d, 403 
Predicted splicing impact (SpliceAI Δ score) for intronic cryptic splice SNVs observed in recurrently 404 
mutated TSGs (c) compared to those observed in genes not in the Cancer Gene Census (CGC) 405 
(bootstrapped P<3×10-4). e, Proportion of excess SNVs in TSGs contributed by each protein-altering 406 
SNV category. f, Distribution of distance to nearest exon boundary for the intronic cryptic splice SNVs 407 
observed in recurrently mutated TSGs. g, Pileup of RNA-seq reads in a Lymph-BNHL carrier of a 408 
predicted, deeply intronic cryptic splice SNV (labeled in red) in CIITA and a control Lymph-BNHL sample, 409 
showing the inclusion of a cryptic exon (gold) in the cryptic splice SNV carrier. Arc labels indicate the 410 
number of RNA-seq reads that support each exon junction. 411 

412 
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Figure 1: Enrichment of somatic mutations in the 5’ UTRs of TP53 and ELF3. a, Mutations observed 413 
within exon 1 of the 5’ UTR of the canonical TP53 transcript from the PCAWG and Hartwig Medical 414 
Foundation cohorts. The DNA sequence shown is from the GRCh37 reference genome (+ strand). 415 
Mutation types, relevant sequence and regulatory elements are indicated in the legend. b, Distribution of 416 
indel sizes observed within 5’ UTRs of genes other than TP53 and within the TP53 5’ UTR. P-value 417 
comparing median indel lengths, Mann-Whitney U-test. c, Mutation enrichment relative to the neutral 418 
mutation rate (observed / expected neutral mutations) within TP53 stratified by mutation type and 419 
location. Error bars, 95% CI. d, Distribution of mutations observed within the donor and acceptor splice 420 
regions (defined as the 20bp 3’ and 5’ of an exon, respectively) of the canonical TP53 transcript. 421 
Canonical splice SNVs and indels are defined as mutations that alter the two base-pairs immediately 422 
adjacent to an exon boundary; splice region SNVs and indels are defined as mutations that intersect the 423 
splice region but do not disrupt the canonical splice sites. The donor splice region of exon 1 of the 5’ UTR 424 
(shown in a) is bolded. The P-value of observing the distribution of canonical and splice region mutations 425 
in the donor splice region of exon 1 5’ UTR compared to all other TP53 splice regions was computed via 426 
a Fisher’s exact test. e, Expression of TP53 on standard deviation (s.d.) scale in carriers of TP53 5’ UTR 427 
mutations (n=6) and non-carriers (n=1,205), adjusted for tumor type and copy number. P-value via Mann-428 
Whitney U-test on adjusted and standardized expression values. f, SNVs overlapping ELF3 in the 429 
PCAWG and Hartwig Medical Foundation cohorts. Insets: zoom-in of the ELF3 5’ UTR region and 430 
mutational enrichments within this region.  431 

Figure  SEQ Figure \* ARABIC 3: TP53 is recurrently disrupted via mutation of its 5’ UTR. a, Mutations observed within 
exon 1 of the 5’ UTR of the canonical TP53 transcript. The DNA sequence shown is from the GRCh37 reference genome (+ 
strand). Observed somatic mutations are indicated in red. Relevant sequence and regulatory elements are indicated in the 
legend. b, Mutation enrichment relative to the neutral mutation rate (observed / expected neutral mutations) within TP53 
stratified by mutation type and location. Error bars, 95% CI. c, Distribution of indel sizes observed within 5’ UTRs excluding 
TP53 and within the TP53 5’ UTR. P-value comparing median of indels in all 5’ UTRs to indels in TP53 5’ UTR via Mann-
Whitney U-test. d, Distribution of mutations observed within the donor and acceptor splice regions (defined as the 20bp 3’ 
and 5’ of an exon, respectively) of the canonical TP53 transcript. Canonical splice SNVs and indels are defined as mutations 
that alter the two base-pairs immediately adjacent to an exon boundary; splice region SNVs and indels are defined as 
mutations that intersect the splice region but do not disrupt the canonical splice sites. The donor splice region of exon 1 of the 
5’ UTR (shown in a) is bolded. The p-value of observing the distribution of canonical and splice region mutations in the donor 
splice region of exon 1 5’ UTR compared to all other TP53 splice regions was computed via a Fisher’s exact test. e, 
Expression of TP53 on standard deviation (s.d.) scale in carriers of TP53 5’ UTR mutations (n=6) and non-carriers (n=XX), 
adjusted for tumor type and copy number. P-value via Mann-Whitney U-test on adjusted and standardized expression values.  
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 432 

Figure 4: Enrichment of protein-altering SNVs in “long-tail” genes reveal a shared landscape of 433 
common and rare driver genes a,b, Estimated rates of excess oncogenic SNVs in oncogenes (a) and 434 
predicted loss-of-function (pLoF) variants in TSGs (b) that were not previously associated with a given 435 
cancer (x-axis) in three large driver gene catalogues7,8,63. Stars indicate that the burden of oncogenic 436 
(pLoF) SNVs was significant in long-tail oncogenes (TSGs) in the cancer type. c,d, Oncogene-tumor pairs 437 
and TSG-tumor pairs with a significant burden of oncogenic or protein-truncating SNVs. Gene-tumor pairs 438 
previously reported by Dietlein et al.7, Bailey et al.8, or Martínez-Jiménez et al.63 are marked in grey. Pairs 439 
that are not present in those catalogues are marked in red with color intensity indicating significance of 440 
association. Marker size is proportional to the estimated rate of excess mutations after accounting for 441 
cancer-specific neutral mutation rates.  442 
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