Abstract
Single-cell RNA-sequencing (scRNA-seq) is valuable for analyzing cellular heterogeneity. Cell composition accuracy is critical for analyzing cell–cell interaction networks from scRNA-seq data. We developed terminator-assisted solid-phase cDNA amplification and sequencing (TAS-Seq) for scRNA-seq based on a terminator, terminal transferase, and nanowell/bead-based scRNA-seq platform; TAS-Seq showed high tolerance to variations in the terminal transferase reaction, which complicate the handling of existing terminal transferase-based scRNA-seq methods. In murine and human lung samples, TAS-Seq yielded scRNA-seq data that were highly correlated with flow-cytometric data, showing higher gene-detection sensitivity and more robust detection of important cell–cell interactions and expression of growth factors/interleukins in cell subsets than 10X Chromium v2 and Smart-seq2. Expanding TAS-Seq application will improve understanding and atlas construction of lung biology at the single-cell level.
Competing Interest Statement
Competing interests; S.S. reports advisory role for ImmunoGeneTeqs, Inc; stock for ImmunoGeneTeqs, Inc, S.U. reports advisory role for ImmunoGeneTeqs, Inc; stock for ImmunoGeneTeqs, Inc, IDAC Theranostics, Inc. H.A. reports stock for ImmunoGeneTeqs, Inc., K.M. reports consulting or advisory role for Kyowa-Hakko Kirin, ImmunoGeneTeqs, Inc; research funding from Kyowa-Hakko Kirin, and Ono; stock for ImmunoGeneTeqs, Inc, IDAC Theranostics, Inc., T.I. reports consulting or advisory role for ROHTO Pharmaceutical Co., Ltd; research funding from ROHTO Pharmaceutical Co., Ltd.
Footnotes
The manuscript was re-formatted in the standard manuscript style, including a sub-sectioned results section with more detailed explanation of each result. Most of figures and data were updated.