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ABSTRACT 

Background. While Neisseria gonorrhoeae poses an urgent public health threat because of 
increasing antimicrobial resistance, much of the circulating population remains susceptible to 
historical treatment regimens. Point-of-care diagnostics that report susceptibility could allow for 
reintroduction of these regimens, but development of such diagnostics has been limited to 
ciprofloxacin, for which susceptibility can be predicted from a single locus.  

Methods. We assembled a dataset of 12,045 N. gonorrhoeae genomes with phenotypic 
resistance data for tetracycline (n = 3,611) and penicillin (n = 6,935). Using conditional genome 
wide association studies (GWAS), we sought to define genetic variants associated with 
susceptibility to penicillin and tetracycline. We evaluated the sensitivity and specificity of these 
variants for predicting susceptibility and non-resistance in our collection of gonococcal 
genomes.  

Findings. In our conditional penicillin GWAS, the presence of a genetic variant defined by a 
non-mosaic penA allele without an insertion at codon 345 was significantly associated with 
penicillin susceptibility and had the highest negative effect size of significant variants (p = 5.0 x 
10-14, β = -2.5). In combination with the absence of blaTEM, this variant predicted penicillin 
susceptibility with high specificity (99.8%) and moderate sensitivity (36.7%). For tetracycline, the 
wild type allele at rpsJ codon 57, encoding valine, was significantly associated with tetracycline 
susceptibility (p = 5.6 x 10-16, β = -1.61) after conditioning on the presence of tetM. The 
combination of rpsJ codon 57 allele and tetM absence predicted tetracycline susceptibility with 
high specificity (97.2%) and sensitivity (88.7%).  

Interpretation. As few as two genetic loci can predict susceptibility to penicillin and tetracycline 
in N. gonorrhoeae with high specificity. Molecular point-of-care diagnostics targeting these loci 
have the potential to increase available treatments for gonorrhea. 
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Introduction. 

Gonorrhea, caused by infection with Neisseria gonorrhoeae, is the second most reported 
notifiable infection in the United States at a rate of 188.4 cases per 100,000 people in 20191 and 
increasing antibiotic resistance has made it an urgent public health threat.2 Treatment is empiric, 
and resistance has limited the recommended treatment in the US to ceftriaxone, an extended 
spectrum cephalosporin (ESC).3  

Despite the emergence of multidrug resistant strains,4,5 a large fraction of clinical isolates 
remain susceptible to multiple antibiotics.1 Data from the Gonococcal Isolate Surveillance 
Project (GISP), the US Centers for Disease Control and Prevention’s sentinel surveillance 
system for antibiotic resistance in N. gonorrhoeae, reported that in 2019 44.5% of clinical 
isolates were not resistant to any tested antibiotics, 64.6% were non-resistant to ciprofloxacin 
(MIC < 1 µg/mL), 72.2% were non-resistant to tetracycline (MIC < 2 µg/mL), and 87.2% were 
non-resistant to penicillin (MIC < 2 µg/mL).1 

Point-of-care diagnostics that inform on antibiotic susceptibility may help forestall the 
emergence and spread of resistance by enabling a shift from empiric to tailored treatment and 
expanding the number of antibiotics used to treat N. gonorrhoeae infections.6–8 The observation 
that ciprofloxacin susceptibility can be predicted with high specificity and sensitivity based on 
gyrA codon 91 has led to the development of molecular tests that query this locus; the SpeeDx 
ResistancePlus GC, for example, was recently approved for clinical use in Europe and granted 
‘breakthrough designation’ by the FDA.9–11 However, extension of this sequence-based 
approach to other antibiotics has been stymied, as they lack single locus determinants of 
susceptibility and resistance.  

Penicillin (PCN) and tetracycline (TET) were the recommended therapies for gonorrhea until the 
1980s, when the prevalence of high level resistance increased enough to prompt a switch in the 
empiric treatment regimen.12,13 Resistance to PCN and TET can be both chromosomal and 
plasmid mediated. Chromosomally-encoded resistance arises from mutations modifying the 
antibiotic targets—rpsJ for TET resistance and penA and ponA for PCN—and mutations in the 
porin porB and in the efflux pump mtr operon.14 The plasmid-borne beta lactamase blaTEM 
confers high level PCN resistance and the ribosome protection protein tetM confers TET 
resistance. Despite previously being first-line gonorrhea treatments for decades, molecular 
diagnostics for PCN and TET susceptibility have been less commonly studied. Proposed 
diagnostics or targets of molecular surveillance for PCN susceptibility have focused on 
blaTEM,

15,16 which performs poorly in the setting of chromosomally-encoded resistance, porB,17 
which neglects important target modifying mutations in penA, or resistance-associated penA 
alleles18 rather than susceptibility-associated alleles. Similarly, assays targeting tetM have been 
developed, but they have not incorporated chromosomally-encoded tetracycline resistance.16 

While there are multiple pathways to resistance for each drug,14 the key goal for sequence-
based diagnostics is to predict susceptibility—rather than resistance—with high specificity. 
Therefore, here we sought to identify a concise set of loci that are associated with PCN and 
TET susceptibility using genome wide association studies (GWAS) and evaluate their predictive 
performance in gonococcal clinical isolates.  
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Methods.  

Global and validation dataset assembly. We collected publicly available whole genome 
sequencing (WGS) data (n = 12,045) and PCN (n = 6,935) and TET MICs (n = 5,727) from 
clinical N. gonorrhoeae isolates.19–41 Genomes were assembled and resistance-associated 
alleles were called as previously described.42 Specifically, alleles at known resistance loci were 
identified from variant calls after mapping to a reference genome for rpsJ codon 57, encoding 
the RpsJ V57M mutation associated with tetracycline resistance, and BLASTN43 of de novo 
assemblies for accessory gene content using the sequences NG_068038.1 for blaTEM and 
MG874353.1 for tetM. penA alleles were typed according to the NG-STAR database,44 and the 
presence of insertions in penA were determined based on de novo assemblies. For 2116 
isolates, TET MICs were reported as ≤ 4 µg/mL or ≤ 8 µg/mL. These were excluded them from 
phenotype-based analyses, since we could not classify them as susceptible or resistant. 
Additionally, Our final global dataset included 12,049 genotyped isolates, 3,611 with TET MICs 
and 6,935 with PCN MICs. To validate our results, we additionally assembled 1479 genomes 
from CDC’s 2018 Gonococcal Isolate Surveillance Program (GISP) collection,45 representing 
the first five viable isolates collected each month from urethral specimens at sentinel 
surveillance sites across the United States. 

Genome wide association studies. To identify variants associated with PCN and TET 
susceptibility, we performed conditional GWAS46 incorporating the presence of high effect size 
plasmid-mediated resistance. The GWAS employed a linear mixed model and were run using 
Pyseer v 1.2.047 with default allele frequency filters on 124,070 unitigs (unique sequences 
representing SNPs, insertions, deletions, and changes in gene content) for the PCN GWAS and 
158,087 unitigs for the TET GWAS generated from GATB v 1.3.0. Most datasets reported PCN 
MICs within the range of 0.06 - 32 μg/mL. Isolates with PCN MICs reported as ‘>4’ or ‘>2’ were 
not included in the GWAS analysis since the precise MIC was unknown; the final PCN GWAS 
dataset size was 6220 isolates after excluding isolates with missing genotypic or phenotypic 
data. Similarly isolates with imprecise TET MICs were excluded (e.g. “≤ 4”, “≤ 8”); the final 
dataset size for the TET GWAS was 3,453 isolates after excluding isolates with missing 
genotypic or phenotypic data. The GWAS incorporated isolate dataset of origin, country of 
origin, and presence of plasmid-encoded resistance determinants (blaTEM,  tetM) as fixed effect 
covariates. We used a recombination-corrected phylogeny constructed with Gubbins v 2.3.448 to 
generate a similarity matrix, which was included as a random effect to correct for population 
structure. Unitigs from the GWAS were mapped and annotated using Pyseer 
annotate_hits_pyseer with the WHO_N genome49 (GCA_900087725.2), which encodes the β-
lactamase-encoding plasmid (African pblaTEM-1) and the tetM-encoding plasmid (Dutch), as 
the reference. The output was used to generate Manhattan plots in R v 4.0.3 with ggplot2.50  

Sensitivity, specificity, and validation. We evaluated the sensitivity and specificity of resistance 
alleles to predict PCN and TET susceptibility using CLSI breakpoints for susceptibility (PCN MIC 
≤ 0.06 µg/mL, TET MIC ≤ 0.25 µg/mL) and non-resistance (PCN MIC < 2 µg/mL, TET MIC < 2 
µg/mL) in both the global and validation datasets. We additionally used isolate metadata from 
the 2018 GISP collection to estimate the prevalence of isolates with susceptibility associated 
genotypes across patient groups (sexual behavior, race/ethnicity).  Statistical analyses were 
perfomed in R v 4.0.3 using infer v 0.5.4 (https://infer.tidymodels.org/). 
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Results.  

Since plasmid-encoded resistance determinants are known to contribute to high level resistance 
for both PCN and TET, we used conditional GWAS to identify additional variants contributing to 
susceptibility. Here, we focused on significant variants associated with increased susceptibility 
(i.e., negative effect size, β). We found that a unitig (penA_01) corresponding to non-mosaic 
penA alleles without the insertion at codon 345 was significantly associated with PCN 
susceptibility (Supplementary Figure 1A, p = 5.0 x 10-14, β = -2.5). After conditioning on the 
presence of tetM, we found that a unitig corresponding to the wild-type allele at rpsJ codon 57, 
encoding valine, was significantly associated with TET susceptibility (Supplementary Figure 1B, 
p = 5.6 x 10-16, β = -1.61). Significant unitigs also mapped to porB and a loss of function variant 
in mtrC for both antibiotics; however, effect sizes were lower than unitigs mapping to antibiotic 
targets. 

We used the presence of penA_01 combined with the absence of blaTEM to predict PCN 
susceptibility in our global dataset (Figure 1A). We found that this susceptibility-associated 
genotype predicted PCN susceptibility and non-resistance with high specificity but low sensitivity 
(Table 1). For TET susceptibility prediction, we identified isolates with the wild-type allele at rpsJ 
codon 57 combined with the absence of tetM (Figure 1B). This combination predicted TET 
susceptibility and non-resistance with high specificity and moderate sensitivity (Table 1). 

Since PCN and TET MICs were not reported for all isolates, we identified these mutations in our 
full genomic dataset: 2.1% had the PCN susceptibility-associated genotype, and 15.9% of 
isolates had the TET susceptibility-associated genotype. The prevalence of these genotypes 
varied across genomic epidemiology studies (Supplementary Table 1). 

To validate our observations in a relatively unbiased dataset from the United States, we 
assembled a recently published collection of N. gonorrhoeae genomes from CDC’s Gonococcal 
Isolate Surveillance Program45; in this collection, isolates were not selected for sequencing 
based on their susceptibility phenotypes. First, we verified that the penA sequence identified in 
the GWAS (penA_01) also identified isolates with non-mosaic penA alleles without the 345 
insertion in the validation dataset. In this dataset, 100% of isolates with the penA_01 encoded 
non-mosaic penA alleles without the insertion when the full length penA allele was examined.  

We also calculated sensitivity and specificity for prediction of PCN and TET susceptibility and 
non-resistance in the GISP collection (Figure 1, Table 1). Similar to results from the global 
collection, specificity was high for both antibiotics and CLSI cutoffs. Sensitivity increased for 
PCN prediction and decreased for TET prediction, reflecting different proportions of isolates 
falling into the susceptible and intermediate MIC categories in the global and validation 
datasets. 

Since PCN and TET MICs were not reported for all isolates, we identified these mutations in our 
full genomic dataset: 2.1% had the PCN susceptibility-associated genotype, and 15.9% of 
isolates had the TET susceptibility-associated genotype. The prevalence of these genotypes 
varied across genomic epidemiology studies (Supplementary Table 1). 

To validate our observations in a relatively unbiased dataset from the United States, we 
assembled a recently published collection of N. gonorrhoeae genomes from CDC’s Gonococcal 
Isolate Surveillance Program45; in this collection, isolates were not selected for sequencing 
based on their susceptibility phenotypes. First, we verified that the penA sequence identified in 
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the GWAS (penA_01) also identified isolates with non-mosaic penA alleles without the 345 
insertion in the validation dataset. In this dataset, 100% of isolates with the penA_01 encoded 
non-mosaic penA alleles without the insertion when the full length penA allele was examined.  

 

Figure 1. Penicillin and tetracycline MICs are lower in isolates with susceptibility associated 
genotypes in global and validation datasets. Dashed lines indicate CLSI breakpoints for 
susceptibility and resistance. A) Penicillin MICs of isolates with penA_01 and without blaTEM 
(S, dark blue) compared to isolates with one or more of these determinants (NS, light blue). B) 
Tetracycline MICs of isolates with wild-type rpsJ (57V) and without tetM (S, dark purple) 
compared to isolates with one or more of these determinants (NS, light purple).  

We also calculated sensitivity and specificity for prediction of PCN and TET susceptibility and 
non-resistance in the GISP collection (Figure 1, Table 1). Similar to results from the global 
collection, specificity was high for both antibiotics and CLSI cutoffs. Sensitivity increased for 
PCN prediction and decreased for TET prediction, reflecting different proportions of isolates 
falling into the susceptible and intermediate MIC categories in the global and validation 
datasets. 
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Table 1. Sensitivity and specificity of genotypes for predicting PCN and TET susceptibility 

Genotype Phenotype Global Dataset Validation Dataset  
(GISP 201845) 

Sensitivity Specificity Sensitivity Specificity 
penA_01 + 
absence of blaTEM 

PCN susceptible 
(MIC ≤ 0.06 µg/mL) 

36.7% 99.8% 63.6% 98.9% 

PCN non-resistant 
(MIC < 2 µg/mL) 

2.1% 100.0% 4.4% 100.0% 

rpsJ WT + 
absence of tetM 

TET susceptible 
(MIC ≤ 0.25 µg/mL) 

88.7% 97.2% 78.2% 94.9% 

TET non-resistant 
(MIC < 2 µg/mL) 

28.3% 99.7% 22.1% 99.5% 

 

In addition to antimicrobial resistance phenotypes, GISP reports information on patient 
characteristics for each isolate collected. To analyze the utility of these genotypic markers in 
different patient populations, we calculated the prevalence of the susceptibility-associated 
genotypes across patient groups. Susceptible genotypes were more common among men who 
have sex with women (MSW) compared to men who have sex with men (MSM) and men who 
have sex with men and women (MSMW) for both PCN (χ2 test, p = 0.0035) and TET (χ2 test, p < 
0.0001). The prevalence of the PCN susceptibility-associated genotype was 5.2%, 1.5%, and 
2.2%, in MSW, MSM, and MSMW, respectively. For TET, the susceptibility-associated genotype 
was 20.6% in MSW, 9.6% in MSM, and 9.9% in MSMW. Additionally, the susceptibility-
associated genotypes varied across race and ethnicity groups and were enriched in samples 
from Black men; however, prevalence of susceptibility-associated genotypes were not 
significantly different between race and ethnicity groups when MSM and MSW were considered 
separately (Supplementary Table 2). 

Discussion. Here, we have used conditional GWAS incorporating known, high effect size 
variants46 to identify targets for diagnostics addressing both plasmid and chromosomally 
mediated PCN and TET resistance. We found that the combination of penA_01, representing 
non-mosaic penA without an insertion at codon 345, and the absence of blaTEM predicts PCN 
susceptibility and that the combination of rpsJ codon 57 and the absence of tetM predicts TET 
susceptibility. These loci defined the most susceptible isolates in our dataset and predicted 
susceptibility (PCN MIC ≤ 0.06 µg/mL, TET MIC ≤ 0.25 µg/mL) with high specificity and 
moderate sensitivity in both our global dataset and an unbiased collection from the United 
States. The addition of other loci (e.g., mtr and porB) may be needed to increase sensitivity for 
the higher cutoff (MIC < 2 µg/mL) but with as yet unclear impact on specificity.  

These loci could additionally be used for culture-free molecular epidemiology and surveillance, 
as WGS directly from patient samples is not currently routine. Typing schemes such as NG-
STAR44 targeting resistance determinants have been developed; however, these schemes have 
not focused on loci specific to penicillin and tetracycline resistance.  

Utility of a diagnostic or molecular surveillance targeting these loci may vary in different patient 
populations. For example, the prevalence of susceptibility associated genotypes varied across 
genomic epidemiology studies included in our global dataset, reflecting both enrichment of 
antibiotic resistant isolates in some studies as well as variable selection pressure from antibiotic 
use in different regions. WGS data from N. gonorrhoeae isolated in the United States, Europe, 
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and Australia make up the majority of available genomic data, and the composition of the N. 
gonorrhoeae population in other regions is unknown. Similar to other studies of the association 
between N. gonorrhoeae antibiotic resistance and patient demographics, prevalence of these 
susceptibility-associated genotypes vary across patient groups defined by sexual behavior and 
race/ethnicity in isolates collected by GISP.34,37,39,51 In the United States, a diagnostic for PCN 
and TET susceptibility may be most useful in populations with higher prevalence of infection 
with susceptible isolates, such as MSW and women.  

The alleles identified here from genomic analyses are promising targets for the development of 
POC molecular diagnostics for N. gonorrhoeae susceptibility to penicillin and tetracycline. 
Diagnostics that evaluate as few as two loci per drug could allow for the reintroduction into 
clinical use of these gonococcal treatment regimens.   
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