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Abstract

The brain encodes the statistical regularities of the environment in a task-specific yet flexible and
generalizable format. Here, we seek to understand this process by converging two parallel lines
of research, one centered on sensorimotor timing, and the other on cognitive mapping in the
hippocampal system. By combining functional magnetic resonance imaging (fMRI) with a fast-
paced time-to-contact (TTC) estimation task, we found that the hippocampus signaled behavioral
feedback received in each trial as well as performance improvements across trials along with
reward-processing regions. Critically, it signaled performance improvements independent from
the tested intervals, and its activity accounted for the trial-wise regression-to-the-mean biases in
TTC estimation. This suggests that the hippocampus supports the rapid encoding of temporal
context even on short time scales in a behavior-dependent manner. Our results emphasize the
central role of the hippocampus in statistical learning and position it at the core of a brain-wide
network updating sensorimotor representations in real time for flexible behavior.
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Introduction1

When someone throws us a ball, we can anticipate its future trajectory, its speed and the time it2

will reach us. These expectations then inform the motor system to plan an appropriate action to3

catch it. Generating expectations and planning behavior accordingly builds on our ability to learn4

from past experiences and to encode the statistical regularities of the tasks we perform. At the5

core of this ability lies a continuous perception-action loop, initially proposed for sensorimotor6

systems (e.g. Wolpert et al. (2011)), which is now at the heart of many leading theories of brain7

function including active inference (Friston et al., 2016), predictive coding (Huang & Rao, 2011) and8

reinforcement learning (Daw & Dayan, 2014).9

Critically, the brain needs to balance three primary objectives to effectively guide behavior in a10

dynamic environment. First, it needs to capture the specific aspects of the task that inform the11

relevant behavior (e.g. the remaining time to catch the ball). Second, it needs to generalize from12

a limited set of examples to novel and noisy situations. This can be achieved by regularizing the13

currently encoded information based on past experiences (e.g. by inferring how fast previous balls14

flew on average). Third, the sensorimotor representations that guide the behavior need to be up-15

dated flexibly whenever feedback about our actions becomes available (e.g. whenwe catch ormiss16

the ball), or when task demands change (e.g. when someone throws us a frisbee instead). Herein,17

we refer to these objectives as specificity, regularization and flexibility. While these are all fun-18

damental principles underlying human cognition broadly, how the brain forms and continuously19

updates sensorimotor representations that balance these three objectives remains unclear.20

Here, we approach this questionwith a newperspective by converging twoparallel lines of research21

centered on sensorimotor timing and hippocampal-dependent cognitive mapping. Specifically, we22

test how the human hippocampus, an area implicated in memory formation on long time scales23

(days to weeks), may support the formation and flexible updating of sensorimotor representations24

even on short time scales (milliseconds to seconds). We do so by characterizing in detail the re-25

lationship between hippocampal activity and behavioral performance in a fast-paced timing task,26

which is traditionally believed to be hippocampal-independent. We propose that the capacity of27

the hippocampus to encode statistical regularities of our environment (Behrens et al., 2018; Mo-28

mennejad, 2020; Whittington et al., 2020) situates it at the core of a brain-wide network balancing29

specificity vs. regularization in real time as the relevant behavior is performed.30

An optimal behavioral domain to study these processes is sensorimotor timing (Gershman et al.,31

2014; Petter et al., 2018). This is because prior work suggested that timing estimates indeed rely on32

the statistics of prior experiences (Wolpert et al., 2011; Jazayeri & Shadlen, 2010; Acerbi et al., 2012;33

Chang & Jazayeri, 2018). Crucially, however, timing estimates are not always accurate. Instead, they34

directly reflect the trade-off between specificity and regularization, which is expressed in system-35

atic behavioral biases. Estimated intervals regress towards the mean of the distribution of tested36

intervals (Jazayeri & Shadlen, 2010), a well-known effect that we will refer to as the regression ef-37

fect (Petzschner et al., 2015). The regression effect suggests that the brain encodes a probability38

distribution of possible intervals rather than the exact information obtained in each trial (Wolpert39

et al., 2011). Timing estimates therefore depend not only on the interval tested in a trial, but also40

on the temporal context in which they were encountered (i.e., the intervals tested in all other trials).41

This likely helps to predict future scenarios, to adapt behavior flexibly and to generalize to novel or42

noisy situations (Jazayeri & Shadlen, 2010; Acerbi et al., 2012; Roach et al., 2017).43

Importantly, the hippocampusproper codes for time and temporal context on various scales (Howard,44

2017) and it has been shown to process behavioral feedback in decision-making tasks (Shohamy45
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& Wagner, 2008), pointing to a role in feedback learning. Moreover, the hippocampal formation46

has been implicated in encoding the latent structure of a task along with the individual features47

that were tested (Kumaran, 2012; Schlichting & Preston, 2015; Schapiro et al., 2017; Wikenheiser48

et al., 2017; Behrens et al., 2018; Schuck & Niv, 2019; Whittington et al., 2020; Peer et al., 2021),49

providing a unified account for its many proposed roles in navigation (Burgess et al., 2002), mem-50

ory (Schiller et al., 2015; Eichenbaum, 2017) and decision making (Kaplan et al., 2017; Vikbladh et51

al., 2019). We propose that a central function of the human hippocampus is to encode the tem-52

poral context of stimuli and behaviors rapidly, and that this process manifests as the behavioral53

regression effect observed in time estimation and other domains (Petzschner et al., 2015). This54

puts the hippocampus at the core of a brain-wide network solving the trade-off between specificity55

and regularization for flexible behavior by continuously updating sensorimotor representations in56

a feedback-dependent manner. Using functional magnetic resonance imaging (fMRI) and a senso-57

rimotor timing task, we here test this proposal empirically.58

Results59

In the following, we present our experiment and results in four steps. First, we introduce our task,60

which built on the estimation of the time-to-contact (TTC) between a moving fixation target and a61

visual boundary, as well as the behavioral and fMRI measurements we acquired. On a behavioral62

level, we show that participants’ timing estimates systematically regress towards the mean of the63

tested intervals. Second, we demonstrate that hippocampal fMRI activity and functional connec-64

tivity tracks the behavioral feedback participants received in each trial, revealing a link between65

hippocampal processing and timing-task performance. Third, we show that this hippocampal feed-66

back modulation reflects improvements in behavioral performance over trials. We interpret this67

activity to signal the updating of task-relevant sensorimotor representations in real time. Fourth,68

we show that these hippocampal updating signals were independent of the specific interval that69

was tested and reflected the magnitude of the behavioral regression effect in each trial.70

Notably, for each of the hippocampal main analyses, we also performed whole-brain voxel-wise71

analyses to uncover the larger brain network at play. We found that in addition to the hippocampus,72

regions typically associated with timing and reward processing signaled sensorimotor updating73

in our task, particularly the striatum. Follow-up analyses further revealed a striking distinction74

in TTC-specific and TTC-independent updating signals between striatal sub-regions. We conclude75

by discussing the potential neural underpinnings of these results and how the hippocampus may76

contribute to solving the trade-off between task specificity and regularization in concert with this77

larger brain network.78

Time-to-contact (TTC) estimation task79

We monitored whole-brain activity using fMRI with concurrent eye tracking in 34 participants per-80

forming a TTC task. This task offered a rich behavioral read-out and required sustained attention in81

every single trial. During scanning, participants visually tracked a fixation target, which moved on82

linear trajectories within a circular boundary. The targetmoved at one of four possible speed levels83

and in one of 24 possible directions (Fig. 1A, similar to Nau et al. (2018a)). The sequence of tested84

speeds was counterbalanced across trials. Whenever the target stopped moving, participants esti-85

mated when the target would have hit the boundary if it had continued moving. They did so while86

maintaining fixation, and they indicated the estimated TTC by pressing a button. Feedback about87

their performance was provided foveally and instantly with a colored cue. The received feedback88
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depended on the timing error, i.e. the difference between objectively true and estimated TTC (Figs.89

1B), and it comprised 3 levels reflecting high, middle and low accuracy (Fig. 1C). Because timing90

judgements typically follow the Weber-Fechner law (Rakitin et al., 1998), the feedback levels were91

scaled relative to the ground-truth TTC of each trial. This ensured that participants were exposed92

to approximately the same distribution of feedback at all intervals tested (Figs. 1C, S1B). After a93

jittered inter-trial interval (ITI), the next trial began and the target moved into another direction94

at a given speed. The tested speeds of the fixation target were counterbalanced across trials to95

ensure a balanced sampling within each scanning run. Because the target always stopped moving96

at the same distance to the boundary, matching the boundary’s retinal eccentricity across trials,97

the different speeds led to four different TTCs: 0.55, 0.65, 0.86 and 1.2 seconds. Each participant98

performed a total of 768 trials. Please see Methods for more details.99

Figure 1: Visual tracking and Time-To-
Contact (TTC) estimation task. A) Task
design. In each trial during fMRI scan-
ning, participants fixated a target (phase
1), which startedmoving at one of 4 possi-
ble speeds and in one of 24 possible direc-
tions for 10◦ visual angle (phase 2). After
the target stopped moving, participants
kept fixating and estimated when the fix-
ation target would have hit a boundary
5◦ visual angle apart (phase 3). After
pressing a button at the estimated TTC,
participants received feedback (phase 4)
according to their performance. Feed-
back was scaled relative to target TTC. B)
Task performance. True and estimated
TTC were correlated, showing that partic-
ipants performed the taskwell. However,
they overestimated short TTCs and un-
derestimated long TTCs. Their estimates
regressed towards the grand-meanof the
TTC distribution (horizontal dashed line),
away from the line of equality (diago-
nal dashed line). C) Feedback. On aver-
age, participants received high-accuracy
feedback on half of the trials (also see
Fig. S1B). BC) We plot the mean and SEM
(black dots and lines) as well as single-
participant data as dots. Feedback levels
are color coded.

Analyzing the behavioral responses revealed that participants performed the task well and that100

the estimated and true TTCs were tightly correlated (Fig. 1B; Spearman’s rho = 0.91, p = 2.2x10−16).101

However, participants’ responses were also systematically biased towards the grand mean of the102

TTC distribution (0.82 seconds), indicating that shorter durations tended to be overestimated and103

longer durations tended to be underestimated. We confirmed this in all participants by examin-104

ing the slopes of linear regression lines fit to the behavioral responses (Fig. S1C). These slopes105

differed from 1 (veridical performance; Fig. 1B, diagonal dashed line; one-tailed one-sample t test,106

t(33) = −19.26, p = 2.2x10−16, d = −3.30,CI : [−4.22,−2.47]) as well as from 0 (grand mean; Fig. 1B, hori-107

zontal dashed line; one-tailed one-sample t test, t(33) = 21.62, p = 2.2x10−16, d = 3.71,CI : [2.79, 4.72])108

and clustered at 0.5. Moreover, the slopes also correlated positively with behavioral accuracy109

across participants (Fig. S1D; Spearman’s rho = 0.794, p = 2.1x10−08), consistent with previous re-110
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ports (Cicchini et al., 2012). Notably, the regression effect we observed in behavior has been ar-111

gued to show that timing estimates indeed rely on the latent task regularities that our brain has112

encoded (e.g. Jazayeri & Shadlen (2010); Roach et al. (2017)). It may therefore reflect a key be-113

havioral adaptation helping to regularize encoded intervals to optimally support both current task114

performance and generalization to future scenarios. In support of this, participants’ regression115

slopes converged over time towards the value of 0.5, i.e. the slope value between veridical perfor-116

mance and the grand mean (Fig. S1E; linear mixed-effects model with task segment as a predictor117

and participants as the error term, F(1) = 8.172, p = 0.005, ε2 = 0.08,CI : [0.01, 0.18]). Visualizing118

the timing error over task segments and trials further showed that participants’ task performance119

improved over time (Fig. S1F; linear mixed-effects model with task segment as a predictor and par-120

ticipants as the error term, F(1) = 15.127, p = 1.3x10−4, ε2 = 0.06,CI : [0.02, 0.11]), which suggests they121

were learning over the course of the experiment.122

Behavioral feedback predicts hippocampal activity123

Importantly, sensorimotor updating is expected to occur right after the value of the performed124

action became apparent, which is when participants received feedback. As a proxy, we therefore125

analyzed how activity in each voxel reflected the feedback participants received in the previous126

trial. Using a mass-univariate general linear model (GLM), we modeled the three feedback levels127

with one regressor each (high, medium, low) plus additional nuisance regressors (see methods128

for details). We then contrasted the beta weights estimated for high-accuracy vs. low-accuracy129

feedback and examined the effects on group-level averaged across runs.130

In both our regions-of-interest (ROI) analysis and a voxel-wise analysis, we found that hippocam-131

pal activity could indeed be predicted by the feedback participants received in the past trial (Figs.132

2A, B). Higher-accuracy feedback resulted in overall stronger activity in the anterior section of133

the hippocampus (Figs. 2B, S2A; two-tailed one-sample t tests: anterior HPC, t(33) = −3.80, p =134

5.9x10−4, p f we = 0.001, d = −0.65,CI : [−1.03,−0.28]; posterior HPC, t(33) = −1.60, p = 0.119, p f we =135

0.237, d = −0.27,CI : [−0.62, 0.07]). Moreover, the voxel-wise analysis revealed similar feedback-136

related activity in the thalamus and the striatum (Fig. 2A), and in the hippocampus when the feed-137

back of the current trial was modeled (Fig. S3). Note that there was no systematic relationship138

between subsequent trials on a behavioral level (Fig. S1A; two-tailed one-sample t test; t(33) =139

1.03, p = 0.312, d = 0.18,CI : [−0.17, 0.52]; see methods for details) and that the direction of the140

effects differed across regions (Fig 2A), speaking against potential feedback-dependent biases in141

attention. Instead, these results are consistent with the notion that hippocampal activity signals142

the updating of task-relevant sensorimotor representations in real time.143

Feedback-dependent hippocampal functional connectivity144

Having established that hippocampal activity reflected feedback in the TTC task, we reasoned that145

its activity may also show systematic co-fluctuations with other task-relevant brain regions as well.146

To test this, we estimated the functional connectivity of a 4 mm radius sphere centered on the147

hippocampal peakmain effect (x=-32, y=-14, z=-14) using a seed-based psychophysiological interac-148

tion (PPI) analysis (seemethods). We reasoned that larger timing errors and therefore low-accuracy149

feedback would result in stronger updating compared to smaller timing errors and high-accuracy150

feedback, a relationship that should also be reflected in the functional connectivity between the151

hippocampus and other regions. We specifically tested this using the PPI analysis by contrasting152

trials in which participants performed poorly compared to those trials in which they performed153

well.154
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Figure 2: Feedback on the previous trial (n-1) modulates network-wide activity and hippocampal connectivity in subsequent
trials (n). A) Voxel-wise analysis. Activity in each trial was modeled with a separate regressor as a function of feedback re-
ceived in the previous trial. Insert zooming in on hippocampus added. B) Independent regions-of-interest analysis for the
anterior (ant.) and posterior (post.) hippocampus. We plot the beta estimates obtained for the parametric modulator mod-
eling trial-wise activity as a function of feedback in the previous trial. Negative values indicate that smaller errors, and
higher-accuracy feedback, led to stronger activity. Depicted are the mean and SEM across participants (black dot and line)
overlaid on single participant data (coloureddots). Activity in the anterior hippocampus ismodulated by feedback received in
previous trial. Statistics reflect p<0.05 at Bonferroni-corrected levels (*) obtained using a group-level two-tailed one-sample
t-test against zero. C) Feedback-dependent hippocampal connectivity. We plot results of a psychophysiological interactions
(PPI) analysis conducted using the hippocampal peak effects in (A) as a seed. AC) We plot thresholded t-test results at 1mm
resolution overlaid on a structural template brain. MNI coordinates added. Hippocampal activity and connectivity is modu-
lated by feedback received in the previous trial.

We found that hippocampal activity co-fluctuated with activity in the primary motor cortex, the155

parahippocampal gyrus and medial parietal lobe as well as the cerebellum (Fig. 2C). These co-156

fluctuations were stronger when participants performed poorly in the previous trial and therefore157

when they received low-accuracy feedback. Combined with the previous analysis, this means that158

the absolute hippocampal activity scaled positively (Fig. 2A, B) and functional connectivity scaled159

negatively (Fig. 2C) with feedback valence.160

Hippocampal activity explains accuracy and biases in task performance161

Two critical open questions remained. First, did the observed feedback modulation actually re-162

flect improvements in behavioral performance over trials? Second, was the information that was163

learned specific to the interval that was tested in a given trial, likely serving task specificity, or was164

independent of the tested interval, potentially serving regularization? To answer these questions165

in one analysis, we used a GLMmodeling activity not as a function of feedback received in the pre-166

vious trial (Fig. 2), but as a function of the difference in feedback between trials (Fig. 3). Specifically,167

we modeled with two separate parametric regressors the improvements in TTC task performance168

across subsequent trials (regressor 1: TTC-independent updating) as well as the improvements169

over subsequent trials in which the same TTC interval was tested (regressor 2: TTC-specific updat-170

ing). We again accounted for nuisance variance as before, and we contrasted trials in which partic-171

ipants had improved versus the ones in which they had not improved or got worse (see methods172
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for details).173

Figure 3: Distinct cortical and subcortical networks signal the updating of TTC-specific and TTC-independent task information.
A) Left panel: Visual depiction of parametric modulator design. Two regressors per run modeled the improvement in behav-
ioral performance since the last trial independent of the tested TTC (Regressor 1: TTC-independent) or the improvement since
the last trial when the same target TTC was tested (Regressor 2: TTC-specific). Right panel: Voxel-wise analysis results for
TTC-specific and TTC-independent regressors. We plot thresholded t-test results at 1mm resolution at p < 0.05 whole-brain
Family-wise-error (FWE) corrected levels overlaid on a structural template brain. Insert zooming in on hippocampus andMNI
coordinates added. B) Independent regions-of-interest analysis for the anterior (ant.) and posterior (post.) hippocampus.
We plot the beta estimates obtained for TTC-independent in orange and TTC-specific regressors in blue. Depicted are the
mean and SEM across participants (black dot and line) overlaid on single participant data as dots. Statistics reflect p<0.05 at
Bonferroni-corrected levels (*) obtained using a group-level one-tailed one-sample t-test against zero.

We found both TTC-specific and TTC-independent activity throughout cortical and subcortical re-174

gions. Distinct areas engaged in either one or in both of these processes (Figs. 3A, S4). Crucially,175

we found that hippocampal activity signaled behavioral improvements independent of the TTC in-176

tervals tested. This effect was localized to the posterior section of the hippocampus (Fig. 3B, S2A;177

one-tailed one-sample t tests; TTC-independent: anterior HPC, t(33) = 0.36, p = 0.360, p f we = 1, d =178

0.06,CI : [−0.28, 0.40], posterior HPC, t(33) = 2.81, p = 0.004, p f we = 0.017, d = 0.48,CI : [0.12, 0.85];179

TTC-specific: anterior HPC, t(33) = 0.57, p = 0.285, p f we = 1, d = 0.10,CI : [−0.24, 0.44], posterior HPC,180

t(33) = 1.29, p = 0.103, p f we = 0.413, d = 0.22,CI : [−0.12, 0.57]). We then again estimated the functional181

connectivity profile of the hippocampal main effect using a PPI analysis (sphere with 4mm radius182

centered on the peak voxel at x=-30, y=-24, z=-18), revealing co-fluctuations in multiple regions183

including the putamen and the thalamus that were specific to behavioral improvements (Fig. S5).184

These results suggest that the hippocampus updates information that is independent of the target185

TTC. This may support generalization performance by means of regularizing the encoded inter-186

vals based on the temporal context in which they were encoded. In our task, an efficient way of187

regularizing the encoded information is to bias one’s TTC estimates towards the mean of the TTC188

distribution, which corresponds to the regression effect that we observed on a behavioral level189

(Figs. 1B, S1C). Given the hippocampal feedback modulation and updating activity we reported190

above, we hypothesized that hippocampal activity should therefore also reflect the magnitude of191

the regression effect in behavior. To test this in a final analysis, wemodeled the activity in each trial192

parametrically either as a function of performance (i.e. the absolute difference between estimated193

and true TTC) or as a function of the strength of the regression effect in each trial (i.e. the absolute194

difference between the estimated TTC and the mean of the tested intervals). Voxel-wise weights195

for these two regressors were estimated in two independent GLMs (see methods for details).196

Our analyses showed that trial-wise hippocampal activity increased with better TTC-task perfor-197

mance (Figs. 4A, B; two-tailed one-sample t tests; anterior HPC, t(33) = −4.85, p = 2.9x10−5, p f we =198

5.8x10−5, d = −0.83,CI : [−1.24,−0.44]; posterior HPC, t(33) = −2.88, p = 0.007, p f we = 0.014, d =199

−0.49,CI : [−0.86,−0.14]), and consistently also with the valence of the feedback received in the200

current trial (Fig. S3). In addition, however, and as predicted, it also reflected the trial-wise mag-201
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nitude of the behavioral regression effect (Figs. 4A, B; two-tailed one-sample t tests; anterior HPC,202

t(33) = −5.55, p = 3.6x10−6, p f we = 1.1x10−5, d = −0.95,CI : [−1.37,−0.55]; posterior HPC, t(33) =203

−1.06, p = 0.295, p f we = 0.886, d = −0.18,CI : [−0.53, 0.16]). Activity in the anterior hippocampus was204

stronger in trials in which participants’ TTC estimates were more biased towards the mean of the205

sampled intervals (indicated by a negative beta estimate). Notably, similar effects were observed206

in prefrontal and posterior cingulate areas (Fig. 4A).207

Figure 4: TTC-task performance vs. behavioral regression effect. A) Voxel-wise analysis. We plot thresholded F-test results
for the task-performance regressor and the regression-to-the-mean regressor at 1 mm resolution overlaid on a structural
template brain. MNI coordinates added. Distinct networks reflect task performance and the magnitude of the regression
effect. B) Independent regions-of-interest analysis for the anterior (ant.) and posterior (post.) hippocampus. We plot the
beta estimates obtained for each participant for each of the two regressors. Negative values indicate a linear increase be-
tween hippocampal activity and either task performance (left, Performance) or themagnitude of the regression effect (right,
Regression effect). Depicted are themean and SEMacross participants (black dot and line) overlaid on single participant data
(colored dots). Statistics reflect p<0.05 at Bonferroni-corrected levels (*) obtained using a group-level two-tailed one-sample
t-test against zero.

Eye tracking: no relevant biases in viewing behavior208

To ensure that our results could not be attributed to systematic error patterns in viewing behavior,209

we analyzed the co-recorded eye tracking data of our participants in detail. After data cleaning (see210

methods), we used Kruskal-Wallis tests to control for differences in fixation accuracy across speed211

levels (Fig. S6A; χ(2) = 0.61, p = 0.895, ε2 = 0.005,CI : [0.00, 0.06]) and received-feedback levels (Fig.212

S6B; χ(2) = 0.190, p = 0.909, ε2 = 0.002,CI : [0.00, 0.10]). Moreover, we examined the relationship213

of the fixation error with TTC-task performance (Fig. S6C; Spearman’s rho = 0.17, p = 0.344) as well214

as with the behavioral regression effect (Fig. S6C; Spearman’s rho = 0.26, p = 0.131). None of these215

control analyses suggested that biased patterns in viewing behavior could hinder the interpretation216

of our results.217

Discussion218

This study investigated how the brain extracts the statistical regularities of a sensorimotor timing219

task in a feedback-dependent manner. We specifically focused on the hippocampus, due to its220

known role in temporal coding and learning, asking how hippocampal processing may support221

behavioral flexibility, specificity and regularization. Moreover, we explored the larger brain-wide222

network involved in balancing these objectives. To do so, we monitored human brain activity with223

fMRI while participants estimated the time-to-contact between amoving target and a visual bound-224

ary. This allowed us to analyze brain activity as a function of task performance and as a function225

of the improvements in performance over time. We found that hippocampal activity as well as226

functional connectivity reflected the feedback participants received during this task, and its activ-227
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ity followed the performance improvements in a temporal-context-dependent manner. It signaled228

sensorimotor updating independent of the specific intervals tested, and its activity reflected trial-229

wise behavioral biases towards the mean of the sampled intervals. In what follows, we discuss our230

results in the context of prior work on timing behavior and on hippocampal spatiotemporal cod-231

ing. Moreover, we elaborate on the domain-general nature of hippocampal-cortical interactions232

and on the sensorimotor updating mechanisms that potentially underlie the effects observed in233

this study.234

Spatiotemporal coding in the hippocampus235

The hippocampus encompasses neurons sensitive to elapsed time (Paton & Buonomano, 2018;236

Eichenbaum, 2014; Umbach et al., 2020). These cells might play an important role in guiding tim-237

ing behavior (Nobre & van Ede, 2018), which potentially explains why hippocampal damage or238

inactivation impairs the ability to estimate durations in rodents (Meck et al., 1984) and humans239

(Richards, 1973). Our results are in line with these reports, showing that hippocampal fMRI activity240

also reflects participants’ TTC estimation ability (Fig. 4). They are also in line with other human neu-241

roimaging studies suggesting that the hippocampus bridges temporal gaps between two stimuli242

during trace eyeblink conditioning (Cheng et al., 2008), and that it represents duration within event243

sequences (Barnett et al., 2014; Thavabalasingamet al., 2018, 2019). Our results speak to the above-244

mentioned reports by revealing that the hippocampus is an integral part of a widespread brain net-245

work contributing to sensorimotor updating of encoded intervals in humans (Figs. 2,3,4,S3,S4,S5).246

Moreover, they demonstrate a direct link between hippocampal activity, the feedback participants247

received and the behavioral improvements expressed over time (Fig. 3), emphasizing its role in248

feedback learning. Critically, the underlying process must occur in real-time when feedback is pre-249

sented, suggesting that it plays out on short time scales. Notably, the human hippocampus is250

neither typically linked to sensorimotor timing tasks such as ours, nor is its activity considered to251

reflect temporal relationships on such short time scales. Instead, human hippocampal process-252

ing is often studied in the context of much longer time scales (Schiller et al., 2015; Eichenbaum,253

2017), which showed that it may support the encoding of the progression of events into long-term254

episodic memories (Deuker et al., 2016; Montchal et al., 2019; Bellmund et al., 2021) or contribute255

to the establishment of chronological relations between events in memory (Gauthier et al., 2019,256

2020). Intriguingly, the mechanisms at play may build on similar temporal coding principles as257

those discussed for motor timing (Yin & Troger, 2011; Eichenbaum, 2014; Howard, 2017; Palombo258

& Verfaellie, 2017; Nobre & van Ede, 2018; Paton & Buonomano, 2018; Bellmund et al., 2020, 2021;259

Shikano et al., 2021; Shimbo et al., 2021).260

Our task can be solved by estimating temporal intervals directly, but also by extrapolating themove-261

ment of the fixation target over time, shifting the locus of attention towards the target boundary262

(Fig. 1). The brain may therefore likely monitor the temporal and spatial task regularities in parallel.263

Participants’ TTC estimates were further informed exclusively by the speed of the target, which in-264

herently builds on tracking kinematic information over time, which may explain why TTC tasks also265

engage visual motion regions in humans (de Azevedo Neto & Amaro Júnior, 2018). While future266

studies could tease apart spatial and temporal factors explicitly, our results are in line with both267

accounts. For example, the hippocampus and surrounding structures represent maps of visual268

space in primates, which potentially mediate a coordinate system for planning behavior, integrat-269

ing visual information with existing knowledge and to compute vectors in space (Nau et al., 2018;270

Bicanski & Burgess, 2020). These visuospatial representations are perfectly suited to guide atten-271

tion and therefore the relevant behaviors in our task (Aly & Turk-Browne, 2017), which could be272
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tested in the future akin to prior work using a similar paradigm (Nau et al., 2018a).273

The role of feedback in timed motor actions274

Importantly, our results neither imply that the hippocampus acts as an "internal clock", nor do we275

think of it as representing action sequences or coordinating motor commands directly. Rather,276

its activity may indicate the feedback-dependent updating of encoded information more generally277

and independent of the task that was used. The hippocampal formation has been proposed as a278

domain-general learning system (Kumaran, 2012; Schlichting & Preston, 2015; Chersi & Burgess,279

2015; Schapiro et al., 2017; Wikenheiser et al., 2017; Behrens et al., 2018; Vikbladh et al., 2019;280

Geerts et al., 2020; Momennejad, 2020), which may encode the structure of a task abstracted away281

from our immediate experience. In contrast, the striatum was proposed to encode sensory states282

or actions, supporting the learning of task-specific (egocentric) information (Chersi & Burgess, 2015;283

Geerts et al., 2020). Together, the two regions may therefore play an important role in decision284

making in general also in other non-temporal domains.285

Consistent with these ideas, we observed that striatal and hippocampal activity was modulated286

by behavioral feedback received in each trial (Figs. 2, S3). Similar feedback signals have been pre-287

viously linked to learning (Schönberg et al., 2007; Cohen & Ranganath, 2007; Shohamy & Wagner,288

2008; Foerde & Shohamy, 2011;Wimmer et al., 2012) and the successful formation of hippocampal-289

dependent long-termmemories in humans (Wittmann et al., 2005). Moreover, hippocampal activity290

is known to signal learning in other tasks (Doeller et al., 2008; Foerde & Shohamy, 2011; Dickerson291

&Delgado, 2015; Wirth et al., 2009; Schapiro et al., 2017; Kragel et al., 2021). Here, we show a direct292

relationship between hippocampal activity and ongoing timing behavior, and we show that receiv-293

ing behavioral feedbackmodulates widespread brain activity (Figs. 2, S3), which potentially reflects294

the involvement of these areas in the coordination of reward behavior observed earlier (LeGates295

et al., 2018). These regions include those serving sensorimotor functions, but also those encoding296

the structure of a task or the necessary value functions associated with specific actions (Lee et al.,297

2012).298

The present study further demonstrates that activity in the hippocampus co-fluctuates with activity299

in other likely task-relevant regions in a task-dependentmanner. We observed such co-fluctuations300

in the striatum and cerebellum, often associated with reward processing and action coordination301

(Bostan & Strick, 2018; Cox & Witten, 2019), the motor cortex, typically involved in action planning302

and execution, as well as the parahippocampal gyrus and medial parietal lobe, often associated303

with visual-scene analysis (Epstein & Baker, 2019). This may indicate that behavioral feedback also304

affects the functional connectivity profile of the hippocampus with those domain-selective regions305

that are currently engaged in the ongoing task. In the present report, this included the motor306

cortex, the parahippocampal gyrus, the medial parietal lobe and the cerebellum. This may also307

relate to previous reports of the cerebellum contributing temporal signals to cortical regions during308

similar tasks as ours (O’Reilly et al., 2008). Interestingly, we observed that hippocampal functional309

connectivity scaled negatively (Fig. 2C) with feedback valence, unlike its absolute activity, which310

scaled positively with feedback valence (Fig. 2A,B).311

What might be the neural mechanism underlying sensorimotor updating signals in our task? Prior312

work has shown that hippocampal, frontal and striatal temporal receptive fields scale relative to313

the tested intervals, and that they re-scale dynamically when those tested intervals change (Mac-314

Donald et al., 2011; Gouvêa et al., 2015; Mello et al., 2015; Wang et al., 2018). This may enable315

the encoding and continuous maintenance of optimal task priors, which keep our actions well-316
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adjusted to our current needs. We speculate that such receptive-field re-scaling also underlies the317

continuous updating effects discussed here, which likely build on both local and network-wide re-318

weighting of functional connections between neurons and entire regions. Consistent with this idea319

and the present results, receptive-field re-scaling can occur on a trial-by-trial basis in the hippocam-320

pus (Shikano et al., 2021; Shimbo et al., 2021) but also in other regions such as the striatum (Mello321

et al., 2015; Gouvêa et al., 2015; Wang et al., 2018).322

A trade-off between specificity and regularization?323

So far, we discussed how the brain may capture the temporal structure of a task and how the324

hippocampus supports this process. However, how do we encode specific task details while still325

forming representations that generalize well to new scenarios? In other words, how does the brain326

encode the probability distribution of the intervals we tested optimally without overfitting? Our be-327

havioral and neuroimaging results suggest that this trade-off between specificity and regularization328

is governed by many regions, updating different types of task information in parallel (Fig. 3A). For329

example, hippocampal activity reflected performance improvements independent of the tested in-330

terval, whereas the caudate signaled improvements specifically over those trials in which the same331

TTC was tested. In the putamen, we found evidence for both processes (Fig. S4B). This suggests332

that different regions encode distinct task regularities in parallel to form optimal sensorimotor333

representations to balance specificity and regularization.334

Notably, our results make a central prediction for future research. We anticipate that participants335

with stronger updating activity in the hippocampus should be able to generalize better to new sce-336

narios, for example when new intervals are tested. While we could not test this prediction directly337

in our study, we did test for a link to a related phenomenon, and that is the regression effect we338

observed on the behavioral level. We found that TTC estimates regressed towards the mean of the339

sampled intervals in all participants (Figs. 1B, S1C), an effect that is well known in the timing litera-340

ture (Jazayeri & Shadlen, 2010) and other domains (Petzschner & Glasauer, 2011; Petzschner et al.,341

2015). This regression effect likely reflects regularization in support of generalization (Roach et al.,342

2017), because time estimates are biased towards the mean of the tested intervals, and because343

the mean will likely be close to the mean of possible future intervals. We therefore hypothesized344

that this effect is grounded in the activity of the hippocampus, because it plays a central role in gen-345

eralization in other non-temporal domains (Kumaran, 2012; Schlichting & Preston, 2015; Schapiro346

et al., 2017; Momennejad, 2020). Our analyses revealed that this was indeed the case. We found347

that hippocampal activity followed the magnitude of the regression effect in each trial (Fig. 4), po-348

tentially reflecting the temporal-context-dependent regularization of encoded intervals toward the349

grand mean of the tested intervals (Jazayeri & Shadlen, 2010).350

In addition, our voxel-wise results showed that striatal subregions only tracked how accurate partic-351

ipants’ responses were, not how strongly they regressed towards the mean (Fig. 4A). This dovetails352

with literature on spatial-navigation (Doeller et al., 2008; Chersi & Burgess, 2015; Goodroe et al.,353

2018; Gahnstrom & Spiers, 2020; Geerts et al., 2020; Wiener et al., 2016), showing that the striatum354

supports the reinforcement-dependent encoding of locations relative to landmarks, whereas the355

hippocampusmay help to encode the structure of the environment in a generalizable andmap-like356

format. This matches the functional differences observed here in the time domain, where caudate357

activity reflects the encoding of individual details of our task such as the TTC intervals (Figs. 3A, S4A,358

B), while the hippocampus generalizes across TTCs to encode the overall task structure (Figs. 3A,359

B, S4A).360
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Conclusion361

In sum, we combined fMRI with time-to-contact estimations to show that the hippocampus sup-362

ports the formation of task-specific yet flexible and generalizable sensorimotor representations363

in real time. Hippocampal activity reflected trial-wise behavioral feedback and the behavioral im-364

provements across trials, suggesting that it supports sensorimotor updating even on short time365

scales. The observed updating signals were independent from the tested intervals, and they ex-366

plained the regression-to-the-mean biases observed on a behavioral level. This suggests that the367

hippocampusmay encode temporal context in a behavior-dependentmanner, and that it supports368

finding an optimal trade off between specificity and regularization. We show that it does so even369

in a fast-paced timing task typically considered to be hippocampal-independent. Our results show370

that the hippocampus supports rapid and feedback-dependent updating of sensorimotor repre-371

sentations, making it a central component of a brain-wide network balancing task specificity vs.372

regularization for flexible behavior in humans.373

Acknowledgements374

We thank RaymundoMachado de Azevedo Neto for helpful comments on an earlier version of this375

manuscript. This work is funded by the European Research Council (ERC-CoG GEOCOG 724836376

awarded to CFD). CFD’s research is further supported by the Max Planck Society, the Kavli Founda-377

tion, the Jebsen foundation, the Centre of Excellence scheme of the Research Council of Norway –378

Centre for Neural Computation (223262/F50), The Egil and Pauline Braathen and Fred Kavli Centre379

for CorticalMicrocircuits and theNational Infrastructure schemeof the Research Council of Norway380

– NORBRAIN (197467/F50). RK’s research is supported by a CIDEGENT grant (CIDEGENT/2021/027)381

from the Valencian Community’s program for the support of talented researchers.382

Author Contributions383

MN, IP andCFDdeveloped the research questions. MN conceived the experimental idea. IP andMN384

designed the experimental paradigm, visualized the results and embedded them in the literature385

with help from RK, VW and CFD. IP implemented the experimental code and acquired and analyzed386

the data with close supervision and help fromMN.MNwrote themanuscript with help from IP. CFD387

secured funding. RK, VW and CFD provided critical feedback and all authors discussed the results388

and edited the final manuscript. IP and MN are shared-first authors.389

Declaration of interest390

The authors declare no conflicts of interest.391

Data and code availability392

Source data and analysis code will be shared upon publication. Raw data are available from the393

authors upon request.394

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2021.08.03.454928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454928
http://creativecommons.org/licenses/by-nc-nd/4.0/


13

Methods395

Participants396

We recruited 39 participants for this study (16 females, 19-35 years old). Five participants were397

excluded: one participant did not comply with the task instructions; one was excluded due to a fail-398

ure of the eye-tracker calibration; three participants were excluded due to technical issues during399

scanning. A total of 34 participants entered the analysis. The study was approved by the regional400

committee formedical and health research ethics (project number 2017/969) in Norway and partic-401

ipants gave written consent prior to scanning in accordance with the declaration of Helsinki (World402

Medical Association, 2013).403

Task404

Participants performed two tasks simultaneously: a smooth pursuit visual-tracking task and a time-405

to-contact estimation task. The visual tracking task entailed fixation at a fixation disc thatmoved on406

predefined linear trajectories with one of four speeds: 4.2◦/s, 5.8◦/s, 7.5◦/s and 9.1◦/s. Upon reach-407

ing the end of such a linear trajectory, the dot stoppedmoving until the second task was completed.408

This second task was a time-to-collision (TTC) estimation task in which participants indicated when409

the fixation target would have hit a circular boundary if it had continued moving. This boundary410

was a yellow circular line surrounding the target trajectory with 10◦ radius. Participants gave their411

response by pressing a button at the anticipated moment of collision. They performed this task412

while still keeping fixation, and the individual linear trajectories were all of the same length (10◦413

visual angle), leading to four target TTC durations of 1.2s, 0.88s, 0.67s and 0.55s tested in a counter-414

balanced fashion across trials. After the button press, participants received feedback for 1 second415

informing them about the accuracy of their response. When participants overestimated the TTC,416

half of the fixation disc closest to the boundary changed color (orange or red) as a function of re-417

sponse accuracy (medium or low, respectively). When participants underestimated the TTC, half of418

the fixation disc further away from the boundary changed color. When participants were accurate,419

two opposing quadrants of the fixation disc would turn green. This allowed us to present feedback420

at fixation while keeping the number of informative pixels matched across feedback levels. To cal-421

ibrate performance feedback across different TTC durations, the precise response window widths422

of each feedback level scaled with the speed of the fixation target. The following formula was used423

to scale the response window width: d ± ((k ∗ d)/2) where d is the target TTC and k is a constant424

proportional to 0.3 and 0.15 for high and medium accuracy, respectively. This ensured that partici-425

pants received approximately the same feedback for tested TTCs despite the known differences in426

absolute performance between target TTCs due to inherent scalar variability (Gibbon, 1977). When427

no response was given, participants received low-accuracy feedback (two opposing quadrants of428

the fixation dot turned red) after a 4 seconds timeout. After the feedback, the disc remained in its429

last position for a variable inter-trial interval (ITI) sampled randomly from a uniform distribution430

between 0.5 seconds and 1.5 seconds. Following the end of the ITI, the dot continued moving in a431

different direction. In the course of 768 trials, each target TTC was sampled 192 times. We sampled432

eye-movement directions with 15◦ resolution, leading to an overall trajectory that was star-shaped,433

similar to earlier reports (Nau et al., 2018a). The full trajectory was never explicitly shown to the434

participants.435
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Behavioral analysis436

Participants indicated the estimated TTC in each trial via button press. In line with previous work437

(Jazayeri & Shadlen, 2010), participants tended to overestimate shorter durations and underesti-438

mate longer durations (Fig. 1B). In order to quantify this behavioral effect we extracted the slope439

value of a linear regression line fit between estimated and target TTCs separately for each partici-440

pant. A slope of 1 would indicate that participants performed perfectly accurately for all intervals.441

A slope of 0 would indicate that participants always gave the same response independent of the442

tested interval, fully regressing to the mean of the sampled intervals. Two separate one-tailed443

one-sample t tests (against 1 or 0) were performed to corroborate that participants’ slope values444

regressed towards the mean of the sampled TTCs (Fig. S1C). A Spearman’s rank-order correlation445

tested if slope values correlatedwith the percent of high accuracy trials (Fig. S1D), to further demon-446

strate that participants relied to different degrees on both, the target TTCs and the mean of the447

sampled TTCs, in order to achieve an optimal performance tradeoff. As the TTC task progressed,448

it would be expected that participants adjusted their TTC estimates in order to find the best trade-449

off. Thus, we tested if the slope converged over time towards the value of 0.5 (the slope value450

between veridical performance and the mean of the sampled TTCs) by using a linear mixed-effects451

model with task segment as a predictor, the absolute difference between the slope and the value452

of 0.5 as the dependent variable and participants as the error term (Fig. S1E). As a measure of453

behavioral performance, we computed the absolute TTC-error defined as the absolute difference454

in estimated and true TTC for each target-TTC level. Participants received feedback after each trial455

corresponding to the absolute TTC error of that trial. On average, 46.9% (σ = 9.1) of trials were of456

high accuracy, 31.2% (σ = 3.9) were of medium accuracy and 21.1% (σ = 9.8) were of low accuracy457

(Fig. 1C). Moreover, we found that this feedback distribution was indeed similar across target-TTC458

levels as planned (Fig. S1B). To control that there was no systematic and predictable relationship459

between subsequent trials on a behavioral level, we estimated the n-1 Pearson autocorrelation be-460

tween feedback values received on each trial and then performed a two-tailed one-sample t-test461

on group level against zero using the extracted correlation coefficients from each participant (Fig.462

S1A). To further test participants’ performance improvements over time, we used a linear mixed-463

effects model with task segment as predictor, absolute TTC-error as the dependent variable and464

participants as the error term (Fig. S1F).465

Imaging data acquisition & preprocessing466

Imaging data were acquired on a Siemens 3T MAGNETOM Skyra located at the St. Olavs Hospi-467

tal in Trondheim, Norway. A T1-weighted structural scan was acquired with 1mm isotropic voxel468

size. Following EPI-parameters were used: voxel size=2mm isotropic, TR=1020ms, TE=34.6ms, flip469

angle=55◦, multiband factor=6. Participants performed a total of four scanning runs of 16-18 min-470

utes each including a short break in the middle of each run. Functional images were corrected for471

head motion and co-registered to each individual’s structural scan using SPM12 (www.fil.ion.ucl472

.ac.uk/spm/). We used the FSL topup function to correct field distortions based on one image ac-473

quired with inverted phase-encoding direction (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup).474

Functional images were then spatially normalized to the Montreal Neurological Institute (MNI)475

brain template and smoothed with a Gaussian kernel with full-width-at-half-maximum of 4 mm476

for regions-of-interest analysis or with 8 mm for whole-brain analysis. Time series were high-pass477

filtered with a 128 s cut-off period. The results of all voxel-wise analyses were overlaid on a struc-478

tural T1-template (colin27) of SPM12 for visualization.479
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Regions of interest definition and analysis480

Regions-of-interest masks for different brain areas were generated for each individual participant481

based on the automatic parcellation derived from FreeSurfer’s structural reconstruction (https://482

surfer.nmr.mgh.harvard.edu/). The ROIs used in the present study include the Hippocampus483

as main area of interest (Fig. S2A) as well as the Caudate Nucleus, Nucleus Accumbens, Thala-484

mus, Putamen, Amygdala and Globus Pallidum (Fig. S2B). The hippocampal ROI was manually seg-485

mented following previous reports into its anterior and posterior sections based on the location486

of the uncal apex in the coronal plane as a bisection point (Poppenk et al., 2013). We did this be-487

cause prior work suggested functional differences between anterior and posterior hippocampus488

with respect to their contributions tomemory-guided behavior (Poppenk et al., 2013). All individual489

ROIs were then spatially normalized to theMNI brain template space and re-sliced to the functional490

imaging resolution using SPM12. All ROI analyses were conducted using 4mm spatial smoothing.491

All ROI analyses described in the following were conducted using the following procedure. We492

extracted beta estimates estimated for the respective regressors of interest for all voxels within493

a region in both hemispheres, averaged them across voxels within that region and hemispheres494

and performed one-sample t-tests on group level against zero as implemented in the software R495

(https://www.R-project.org).496

Brain activity as a function of performance feedback on the previous trial497

To examine how feedback modulates activity in the subsequent trial, we used a mass-univariate498

general linear model (GLM) analysis to model the activity of each voxel and trial as a function of499

feedback received in the previous trial. The GLM included three regressors modeling the feedback500

levels, one for ITIs, one for button presses and one for periods of rest, which were all convolved501

with the canonical hemodynamic response function of SPM12. In addition, the model included the502

six realignment parameters obtained during pre-processing as well as a constant term modeling503

the mean of the time series. On the group level, we then contrasted the weights obtained for the504

low error vs. high error regressors and tested for differences using t-tests implemented in SPM12505

(Fig. 2A).506

Additionally, we again conducted ROI analyses for the anterior and posterior sections of the hip-507

pocampus (Fig. S2A) following the sameprocedure as described earlier (section "Regions of interest508

definition and analysis"). Here, we tested beta estimates obtained in the first-level analysis for the509

feedback-in-previous-trial regressor of interest (Fig. 2B).510

Hippocampal functional connectivity as a function of previous-trial performance feedback511

We conducted a psychophysiological interactions (PPI) analysis to examine whether hippocampal512

functional connectivity with the rest of the brain depended on the participant’s performance on513

the previous trial. To do so, we centered a sphere onto the group-level peak effects within the514

HPC using main-effect GLM described in the previous section. The sphere was 4mm in radius515

and was centered on the following MNI coordinates: x=-32, y=-14, z=-14. The GLM included a PPI516

regressor, a nuisance regressor accounting for the main effect of past-trial performance, and a517

nuisance regressor explaining variance due to inherent physiological signal correlations between518

theHPC and the rest of the brain. The PPI regressorwas an interaction term containing the element-519

by-element product of the task time course (effects due to past-trial performance) and the HPC520

spherical seed ROI time course. The estimated beta weight corresponding to the interaction term521

was then tested against zero on the group-level using a t-test implemented in SPM12 (Fig. 2C). This522
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revealed brain areas whose activity was co-varying with the hippocampus seed ROI as a function523

of past-trial performance (n-1).524

Brain activity as a function of current-trial performance feedback525

We used a GLM to analyze the time courses of all voxels in the brain as a function of feedback526

received at the end of each trial. The model included one mean-centered parametric modulator527

per run with three levels reflecting the feedback received in each trial. The feedback itself was a528

function of TTC error in each trial (high accuracy = 0, medium accuracy = 0.5 and low accuracy =529

1). In addition, we added three nuissance regressors per run modeling ITIs, button presses, and530

periods of rest. These regressors were convolved with the canonical hemodynamic response func-531

tion of SPM12. Moreover, the realignment parameters and a constant term were again added. We532

estimated weights for all regressors and conducted a t-test against zero using SPM12 for our feed-533

back regressors of interest on the group level (Fig. S3A). Importantly, positive t-scores indicate a534

positive relationship between fMRI activity and TTC error and hence with poor behavioral perfor-535

mance. Conversely, negative t-scores indicate a negative relation between the two variables and536

hence better behavioral performance.537

In addition to the voxel-wise whole-brain analyses described above, we conducted independent538

ROI analyses for the anterior and posterior sections of the hippocampus (Fig. S2A). Here, we tested539

the beta estimates obtained in our first-level analysis for the feedback regressor of interest (Fig.540

S3B). See section "Regions of interest definition and analysis" for more details.541

Brain activity as a function of improvements in behavioral performance across trials542

We used a GLM to analyze activity changes associated with behavioral improvements across tri-543

als. One regressor modelled the main effect of the trial and two parametric regressors modeled544

the following contrasts: trials in which behavioral performance improved vs. trials in which behav-545

ioral performance did not improve or got worse relative to the previous trial. These regressors546

modeled the behavioral improvements either relative to the previous trial, and therefore indepen-547

dently of TTC (likely serving regularization), or relative to the previous trial in which the same target548

TTC was presented (likely serving specificity). These two regressors reflect the tests for target-TTC-549

independent and target-TTC-specific updating, respectively. Improvement in performance was de-550

fined as receiving feedback of higher valence than in the corresponding previous trial. The same551

nuisance regressors were added as in the other GLMs and all regressors except the realignment552

parameters and the constant termwere convolvedwith the canonical hemodynamic response func-553

tion of SPM12. On the group level, we tested the two parametric regressors of interest against zero554

using a t-test implemented in SPM12, effectively contrasting trials in which behavioral performance555

improved against trials in which behavioral performance did not improve or got worse relative to556

the respective previous trials (Fig. 3A). All runs were modeled separately.557

Moreover, we again conducted ROI analyses for the anterior and posterior sections of the hip-558

pocampus (Fig. S2A) following the same procedure as described earlier (see section "Regions of559

interest definition and analysis"). Here, we tested beta estimates obtained in the first-level analysis560

for the TTC-specific and TTC-independent updating regressors using one-tailed one-sample t-tests561

(Fig. 3B). In addition, to test which specific subcortical regions were involved in these processes, we562

conducted post-hoc ROI analyses for subcortical regions after the whole-brain results were known563

(Fig. S4B; one-tailed one-sample t tests; TTC-specific: caudate: t(33) = 5.95, p = 5.6x10−7, p f we =564

3.4x10−6, d = 1.02,CI : [0.61, 1.45], nucleus accumbens: t(33) = 4.41, p = 5.2x10−5, p f we = 3.1x10−4, d =565
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0.76,CI : [0.38, 1.15], globus pallidus: t(33) = 7.05, 2.3x10−8, p f we = 1.4x10−7, d = 1.21,CI : [0.77, 1.67],566

putamen: t(33) = 8.07, p = 1.3x10−9, p f we = 7.7x10−9, d = 1.38,CI : [0.92, 1.88], amygdala: t(33 = 1.78, p =567

0.042, p f we = 0.255, d = 0.30,CI : [−0.04, 0.66], thalamus: t(33) = 2.61, p = 0.007, p f we = 0.007, d = 0.45,CI :568

[0.09, 0.81]; TTC-independent: caudate: t(33) = −0.67, p = 0.746, p f we = 1, d = −0.11,CI : [−0.46, 0.23],569

nucleus accumbens: t(33) = 1.82, p = 0.039, p f we = 0.235, d = 0.31,CI : [−0.04, 0.66], globus pal-570

lidus: t(33) = 7.06, p = 2.2x10−8, p f we = 1.3x10−7, d = 1.21,CI : [0.77, 1.68], putamen: t(33) = 6.21, p =571

2.6x10−7, p f we = 1.6x10−6, d = 1.06,CI : [0.65, 1.50], amygdala: t(33) = 4.25, p = 8.3x10−5, p f we =572

4.9x10−4, d = 0.73,CI : [0.35, 1.12], thalamus: t(33) = 4.05, p = 1.5x10−4, p f we = 8.9x10−4, d = 0.69,CI :573

[0.32, 1.08]). The subcortical ROIs (Fig. S2B) were based on the FreeSurfer parcellation as described574

in the section "Regions of interest definition and analysis".575

Hippocampal functional connectivity as a function of TTC-independent updating576

To examine which brain regions whose activity co-fluctuated with the one of the hippocampus dur-577

ing TTC-independent updating, we again conducted a PPI analysis similar to the one described ear-578

lier. A spherical seed ROI with a radius of 4 mmwas centered around the hippocampal group-level579

peak effect (x=-30, y=-24, z=-18) observed for the TTC-independent updating regressor described580

above. The GLM included a PPI regressor and two nuisance regressors accounting for task-related581

effects from our contrast of interest (Behavioral improvements vs. no behavioral improvements)582

as well as physiological correlations that could arise due to anatomical connections to the hip-583

pocampal seed region or shared subcortical input. On the group-level, we then tested the weights584

estimated for our PPI regressor of interest against zero using a t-test implemented in SPM12. This585

revealed areas whose activity co-fluctuated with the one of the hippocampus as a function TTC-586

independent updating (Fig. S5A).587

Moreover, we conducted independent ROI analyses for subcortical regions as described in the588

section "Regions of interest definition and analysis". Here, we tested the beta estimates obtained589

for the hippocampal seed-based PPI regressor of interest (Fig. S5B; one-tailed one-sample t tests:590

caudate: t(33) = 1.06, p = 0.149, p f we = 0.894, d = 0.18,CI : [−0.16, 0.53], putamen: t(33) = 2.79, p =591

0.004, p f we = 0.026, d = 0.48,CI : [0.12, 0.84], globus pallidus: t(33) = 2.52, p = 0.008, p f we = 0.050, d =592

0.43,CI : [0.08, 0.79], amygdala: t(33) = 2.60, p = 0.007, p f we = 0.041, d = 0.45,CI : [0.09, 0.81], nucleus593

accumbens: t(33) = −1.14, p = 0.869, p f we = 1, d = −0.20,CI : [−0.54, 0.15], thalamus: t(33) = 2.71, p =594

0.005, p f we = 0.032, d = 0.46,CI : [0.11, 0.83]).595

Brain activity as a function of behavioral performance and as a function of the behavioral596

regression effect597

To examine the neural underpinnings governing specificity and regularization in timing behavior598

in detail, we analyzed the trial-wise activity of each voxel as a function of performance in the TTC599

task (i.e. the absolute difference between estimated and true TTC in each trial) and as a function of600

the regression effect in behavior (i.e. the absolute difference between the estimated TTC and the601

mean of the sampled intervals, which was 0.82 s). To avoid effects of potential co-linearity between602

these regressors, we estimated model weights using two independent GLMs, which modeled the603

time course of each trial with either one of the two regressors. In addition, we again accounted604

for nuisance variance as described before, and all regressors except the realignment parameters605

and the constant term were convolved with the canonical HRF of SPM12. After fitting the model,606

we used the weights estimated for the two regressors to perform voxel-wise F-tests using SPM12,607

revealing activity that was correlated with these two regressors independent of the sign of the608

correlation (Fig. 4A). In addition, we again performed ROI analyses using two-tailed one-sample609
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t-tests for the anterior and posterior hippocampus (Figs. S2A, 4B).610

Eye tracking: Fixation quality does not affect the interpretation of our results611

We used an MR-compatible infrared eye tracker with long-range optics (Eyelink 1000) to monitor612

gaze position at a rate of 500 hz during the experiment. After blink removal, the eye tracking data613

was linearly detrended, median centered, downsampled to the screen refresh rate of 120 hz and614

smoothed with a running-average kernel of 100 ms. Kruskal-Wallis tests were used in order to test615

for potential biases in fixation error across speeds (Fig. S6A) or across feedback levels (Fig. S6B).616

Moreover, we tested if differences in fixation error could either explain individual differences in617

the regression effect, or individual differences in absolute TTC error in behavior using Spearman’s618

rank-order correlations (Fig. S6C).619
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Supplementary Material793

Figure S1: Behavioral analyses. A) No autocorrelation in the behavioral feedback over trials. The feedback in one trial did not
predict feedback in the following trial. Displayed values correspond to the Pearson n-1 correlation coefficient. B) Feedback
distributions for all speed levels. Participant’s received approximately the same feedback for all speed levels/target TTCs.
C) Behavioral regression effect. We plot linear regression-line slopes predicting estimated TTCs as a function of target TTCs
for each participant. A slope of 1 indicates perfect performance. A slope of 0 indicates that participants always gave the
same response independent of the target TTC. We found that the slope coefficients clustered at around 0.5, suggesting that
participants’ responses were biased towards themean of the sampled intervals. ABC) Depicted are themean and SEM across
participants (black dot and line) overlaid on single participant data (dots). D) Performance trade-off between the regression
effect and TTC accuracy. Participants with higher TTC accuracy exhibited a weaker regression effect, reflected in larger
regression-line slopes (same data as in C). Each dot represents a single participant. Regression line (black) and SEM (gray
shade) were added. E) Behavioral regression effect over time. Participants’ slope coefficients converged towards the value
of 0.5 as they progressed through the task. Each dot represents a single participant. Mean (black and white dot) and SEM
(gray shade) were added. ACDE) Participants were color coded. F) TTC task performance over time. Left panel: Across-trial-
average performance over task segments. Right panel: task performance over trials. We plot the mean (black line) and SEM
(shaded area) across participants. Run identity color coded. Participants’ task performance improved over time.
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Figure S2: Regions of interest (ROIs). A) Anterior and posterior hippocampal ROIs. B) Subcortical regions-of-interest (ROIs)
for the nucleus accumbens, the amygdala, the thalamus, the caudate, the putamen and the pallidum. AB) ROIs shown for a
sample participant superimposed onto the skull-stripped structural T1-scan of that participant. These masks were created
using FreeSurfer’s cortical and subcortical parcellation.
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Figure S3: Brain regions signalling behavioral feedback in current trial. Activity in each trial was modeled parametrically as
a function of the feedback received at the end of the trial. A) Voxel-wise analysis. We plot thresholded t-test results at 1 mm
resolution overlaid on a structural template brain. MNI coordinates and insert zooming in on the hippocampus added. A
large network of regions signalling TTC performance included the hippocampus, striatum and cerebellum. B) Independent
regions-of-interest analysis for the anterior (ant.) and posterior (post.) hippocampus. We plot the beta estimate obtained
for the parametric modulator modeling trial-wise activity as a function of task performance. Negative values indicate that
smaller errors, and higher-accuracy feedback, led to stronger activity. Depicted are the means and SEM across participants
(black dot and line) overlaid on single participant data (coloured dots). Statistics reflect p < 0.05 at Bonferroni-corrected
levels (*) obtained using a group-level two-tailed one-sample t-test against zero.
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Figure S4: Distinct networks support TTC-specific and TTC-independent updating. A) Voxel-wise mass-univariate GLM results
for TTC-independent and TTC-specific parametric regressors. We plot thresholded t-test results at 1mm resolution. Activity
maps were overlaid on a structural template brain. Positive t-scores indicate a relationship between brain activity and the
updating of either TTC-specific or TTC-independent information respectively. B) ROI-analysis results for subcortical regions
for TTC-independent (orangedots) and TTC-specific regressors (blue dots). Depicted are themeanand SEMacross participants
(black dot and line) overlaid on single participant data. Statistics reflect p<0.05 at Bonferroni-corrected levels (*) obtained
using a group-level one-tailed one-sample t-test against zero.
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Figure S5: TTC-independent hippocampal connectivity. A) Regions of interest analysis for subcortical regions estimated us-
ing a Psychophysiological-interactions (PPI) analysis conducted using the hippocampal effect in Fig. 3A as a seed. Positive
beta estimates indicate that functional connectivity between each ROI and the hippocampal seed depended on how much
participants TTC-task performance improved across trials. Depicted are the mean and SEM across participants (black dot
and line) overlaid on single participant data for the nucleus accumbens, the amygdala, the caudate, the globus pallidum, the
putamen and the thalamus. Statistics reflect p<0.05 at Bonferroni-corrected levels (*) obtained using a group-level one-tailed
one-sample t-test against zero. B) Whole-brain voxel-wise t-test results for the TTC-independent hippocampal connectivity
overlaid on a structural template brain at 1mm resolution. MNI coordinates added.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2021.08.03.454928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454928
http://creativecommons.org/licenses/by-nc-nd/4.0/


28

Figure S6: Eye tracking analyses. A) Fixation error over speed. There were no significant differences in fixation error across
speed levels/target TTC’s. B) Fixation error over TTC-task accuracy. There were no significant differences in fixation error
across TTC-task accuracy levels. C) No correlation of the behavioral regression-to-the-mean effect or TTC-task performance
with fixation error. Fixation quality does not affect the interpretation of the imaging results presented in this study. Each
dot represents a single participant. Participants were color coded. Regression line (black) and standard error (gray shade).
AB) Group-level mean and SEM depicted as black dot and line overlaid on single participant data.
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