
Bi-modal Variational Autoencoders for Metabolite Identification Using Tandem
Mass Spectrometry

Svetlana Kutuzova1, Christian Igel2, Mads Nielsen2, Douglas McCloskey*1

1Technical University of Denmark, Novo Nordisk Foundation Center for Biosustainability,
Denmark
2University of Copenhagen, Department of Computer Science, Denmark

Corresponding author: Douglas McCloskey, domccl@biosustain.dtu.dk

Other contact information: Svetlana Kutuzova svegal@biosustain.dtu.dk, Christian Igel
igel@di.ku.dk, Mads Nielsen madsn@di.ku.dk

Abstract

A grand challenge of analytical chemistry is the identification of unknown molecules
based on tandem mass spectrometry (MS/MS) spectra. Current metabolite annotation
approaches are often manual or partially automated, and commonly rely on a spectral
database to search from or train machine learning classifiers on. Unfortunately, spectral
databases are often instrument specific and incomplete due to the limited availability of
compound standards or a molecular database, which limits the ability of methods
utilizing them to predict novel molecule structures. We describe a generative modeling
approach that can leverage the vast amount of unpaired and/or unlabeled molecule
structures and MS/MS spectra to learn general rules for synthesizing molecule
structures and MS/MS spectra. The approach is based on recent work using
semi-supervised deep variational autoencoders to learn joint latent representations of
multiple and complex modalities. We show that adding molecule structures with no
spectra to the training set improves the prediction quality on spectra from a structure
disjoint dataset of new molecules, which is not possible using bi-modal supervised
approaches. The described methodology provides a demonstration and framework for
how recent advances in semi-supervised machine learning can be applied to overcome
bottlenecks in missing annotations and noisy data to tackle unaddressed problems in
the life sciences where large volumes of data are available.

Introduction

Compound identification from tandem mass spectrometry (MS/MS) spectra is one of the
grand challenges in analytical chemistry. Automated pipelines support high-throughput
projects in various applications, such as clinical diagnostics, natural products discovery
and environmental studies 1–6. However, with the undeniable progress in the untargeted
metabolomics allowing to process large amounts of samples with high resolution and
sensitivity7, a large share of metabolites in the majority of projects remain unidentified,
often referred to as metabolomics dark matter 8. The share of identified metabolites is
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commonly estimated to only be around 2% 8–10. Our goal is to develop a scalable
machine learning based system for predicting compounds from mass spectra and vice
versa that is able to exploit both annotated and unannotated spectra and chemical
structures during training.

The availability of high quality and well annotated (i.e., including complete metadata
such as instrument, collision energy, etc.) mass spectra is critical to improving
compound annotation coverage. Dedicated data collection projects, as well as
implementation of FAIR data principles 11 in metabolomics, lead to higher increments in
the amounts of accessible data. The number of annotated tandem mass spectra in open
source libraries (GNPS 12, MassBank 13, HMDB 14, MassBank of North America
(MoNA)1) is growing every year as efforts of the collective community have generated
millions of publicly available spectra. The larger the data volumes are, the more
emphasis there is on computational tools capable of handling big data challenges.
Current computational approaches to small molecule identification from mass spectra
can be generally categorized as the following: 1) spectrum-to-molecule where molecule
structure is predicted given a spectrum, or 2) combinatorial in-silico spectra prediction
where a spectral database is populated with predicted in-silico spectra derived from
molecule structures and then searched for the most likely candidate.

Most of the spectrum-to-molecule methods rely on molecule structural fingerprints 15–17,
where a multilabel classification problem is solved for predicting if a pre-defined
substructure is present, followed by a molecular database search for the most similar
fingerprint 18–20. Some methods also rely on fragmentation trees 21 and spectral trees 22

for explicit structural interpretation of spectral data 18,19,23,24. The fragmentation tree
objects are commonly used for defining kernel functions for kernel-based machine
learning methods, e.g. support vector machines 25.

Combinatorial in-silico spectra prediction approaches such as CFM-ID 9, MetFrag 26, FiD
27 iterate through possible chemical bonds to identify which cleavage events have more
probability to result in the observed set of spectral peaks. Other methods are rule-based
and rely on pre-defined physical laws, e.g., 28, Mass Frontier™ (ThermoFisher, CA;
HighChem, Bratislava, Slovakia).

The choice of a numerical representation of a molecule is a key component of method
design. While structural fingerprints have an advantage of being human interpretable,
the spaces of most common distance metrics between the fingerprints tend to be ill
suited for visualisation and exploration of chemical space 29. Samanta et al.30 describe
numerical representations constructed by deep learning that can overcome these
limitations.

Deep neural networks have recently been used to convert from structural fingerprints to
spectrum 31 and from a spectrum to structural fingerprints 20. While demonstrating solid
predictive power, the methods still rely on structural fingerprints for the molecule
numerical representation, only allowing the deep networks to learn from the predefined
molecule substructures. Huber et al.32 suggests an adaption of the word2vec algorithm

1 https://mona.fiehnlab.ucdavis.edu/
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33, which was developed for natural language processing, for mass spectra
representation, allowing for more efficient search in the spectral space with no use of
information on the molecules structures. To fully utilise the advantages of deep learning
approach, we aimed to combine the efficient numerical representations of both spectra
and molecules.

Autoencoders 34 are a class of generative algorithms for unsupervised machine
learning, where a high dimensional input is transformed into a vector of smaller
dimension using deep neural networks as an encoder and a decoder. Variational
autoencoders (VAEs) 35,36 enforce a Gaussian-like distribution of latent space vectors,
allowing for easy sampling of realistic looking reconstructions 37–39. Multi-modal
autoencoders 40–44 combine several encoded inputs (modalities) into a coherent joint
latent space. Several of them, like SVAE (that was developed for the task of compound
identification from mass spectra, thus called SpectraVAE)44, allow for missing modalities
during training.

We have developed a deep generative approach for furthering efforts towards enabling
accurate and robust metabolite identification from MS/MS spectra. The model was
based on recent work using semi-supervised deep VAEs to learn joint latent
representations of multiple and complex modalities. Conceptually, the model design was
based on three main principles: 1) scalability to enable the processing of a growing
volume of open access MS/MS spectra; 2) utilisation of both annotated and
unannotated spectra and chemical structures; and 3) bidirectional predictions of both
spectra to structures and structures to spectra. This functionality was implemented with
a multi-modal variational autoencoder model where the modalities included MS/MS
spectra and molecular structures.

In this study, we define a paired sample as an MS/MS spectrum with an annotated
molecule structure; An unpaired sample was considered an MS/MS spectrum without
an annotated molecule structure or a molecule structure without an MS/MS spectrum.
The SVAE model allowed for constructing a joint latent representation of MS/MS spectra
and molecules structures using paired and unpaired samples. We hypothesized that the
millions of unpaired samples available in MS/MS spectra and molecular structures in
publicly available databases and datasets could be leveraged to improve the quality of
the joint latent space, thus improving the ability of the model to reconstruct MS/MS
spectrum and molecules structures even with missing input data (i.e., either the MS/MS
spectrum or the molecule structure).

To the best of our knowledge, the presented model is the first to apply semi-supervised
generative learning to the compound identification problem, as well as the first algorithm
to bidirectionally make predictions of molecule structures given the spectra and of
spectra given the molecule structures. We compared SVAE to another bi-modal
VAE-based model, proving SVAE’s better predictive power. We studied the effect of
adding unpaired molecules to the training set and demonstrated the superiority of the
semi-supervised approach. Different numerical representations of molecules were
analysed, one-hot encoded SMILES strings and structural fingerprints. The structural
fingerprints models were benchmarked against other methods on Critical Assessment of
Small Molecule Identification (CASMI2017) 45 dataset.
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Methods

Multi-modal variational autoencoders

A variational autoencoder (VAE) 35 is an unsupervised machine learning algorithm,
where a latent representation of an observed variable is generated using the model𝑧 𝑥

. The intractable posterior and the conditional distribution𝑝(𝑥, 𝑧) = 𝑝(𝑧)𝑝(𝑥|𝑧) 𝑞(𝑧|𝑥)
are approximated by neural networks using the loss function:𝑝(𝑥|𝑧)

𝐿 = 𝐸
𝑞(𝑧|𝑥)

[𝑙𝑜𝑔(𝑝(𝑥|𝑧))] −  𝐾𝐿(𝑞(𝑧|𝑥)||𝑁(0, 𝐼) ) 

where is Kullback-Leibler divergence, a measure of how similar the distributions are,𝐾𝐿
and is a standard normal distribution.𝑁(0, 𝐼)

For the purpose of multi-modal learning, the variational autoencoder framework is
extended to have an encoder and decoder network for each modality. The main
problem is how to enforce the latent representations derived for each modality to be
coherent, so one modality can be used to reconstruct another. In 44 we derived an SVAE
model, which takes the form:
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networks. See Supplementaries A for the full definition of ELBO-type loss for this model.

In the current study we compared SVAE to JMVAE 40, the approach that scored among
the top for fully supervised (all the samples are paired) bi-modal computer vision
datasets. The JMVAE model approximates , and with three𝑞(𝑧|𝑥
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A graphical explanation for SVAE and JMVAE models is provided in Figure 1.
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Figure 1. (A) Schematic architecture overview of compared bi-modal VAEs. SVAE 44 can process both
paired and unpaired samples, allowing for semi-supervised learning. JMVAE 40, can only process paired
samples. Each triangle stands for an individual neural network, the network colors indicate the different
modalities. (B) An example of input and output data during testing. The bottom part of reconstructions
shows input data, a spectrum (in green) and a molecule. The upper part shows the reconstructions for a
spectrum (in blue) and a molecule. (left) Example reconstructions where only the spectrum was provided
as an input; (right) Example reconstructions where only the molecule was provided as an input. Cosine
similarity was calculated between input and output spectra, and fingerprint similarity was calculated
between input and output molecules.
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In 44 we also benchmarked VAEVAE against the SVAE model on the metabolite
identification task with the supervised dataset. SVAE performed better, so we did not
include VAEVAE in an evaluation used in this paper.

Dataset

Following Fan et el.20 we used the same homogeneous tandem mass spectra dataset.
The spectra were acquired from Mass Bank of North America (MoNA)2 and NIST3

libraries. The selected spectra are recorded in positive ion mode with collision cell or ion
trap instruments with a mass range from 100 to 1100 Da. The full list of spectra IDs can
be found at https://github.com/sgalkina/svae_spectra. Spectra were binned with the bin
size Da, intensities of the peaks that ended up in the same bin were summed. The0. 1
resulting vector of length was further processed using the function𝑣 11000

. was an input to the spectral modality encoder.𝑣
𝑙

= 𝑙𝑜𝑔(1 + 𝑣) 𝑣
𝑙

A common strategy for building datasets for molecular structure predictions is to sum all
the spectra collected for the same structure (InChiKey) to one. Our dataset was
assembled from both summed and original spectra.

The unpaired molecule structure dataset consisted of around 2 million biomolecules, a
subset of which was used as one of the built-in databases by SIRIUS software 18. The
biomolecules were from similar compound classes as the spectral dataset. The
fingerprints for the spectra-fingerprints experiment (the section ”Spectra and structural
fingerprints”) were calculated for the same dataset. The full list of SMILES can be found
at https://github.com/sgalkina/svae_spectra. Unpaired spectra were not used in this
study, see the explanation in Supplementaries C.

Encoders and decoders architectures

We showed two approaches for metabolite identification: reconstructing a SMILES
string (Section ”Spectra and SMILES”) and reconstructing a molecule structural
fingerprint (Section ”Spectra and structural fingerprints”). The detailed description of all
the network architectures is in Supplementaries E.

Both approaches used the same encoder and decoder networks for the spectrum
modality. The spectrum encoder consisted of several fully connected layers with batch
normalisation. The decoder was symmetrical to the encoder. See also Supplementaries
C for an alternative architecture that used TreeLSTM 46 to process fragmentation trees
21.

Constructing meaningful latent representations of a molecule structure using the VAE
framework is ongoing research 47–51. In this study, we used a string-based model 52 that
works directly with SMILES strings. The latent space constructed by this model was
also tested as a molecule similarity metric 30.

3 https://chemdata.nist.gov/

2 https://mona.fiehnlab.ucdavis.edu/
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For the structural fingerprints encoder and decoder we used symmetrical networks
consisting of 4 fully connected layers.

Results

To demonstrate the effect of training a bi-modal VAE on unpaired molecules we
compared SVAE trained on paired and unpaired data to SVAE trained only on paired
data. As a baseline, we considered the JMVAE 40 model which can only be trained on
paired data and showed good results in this setting when compared to other bi-modal
VAEs in label prediction tasks 42.

To benchmark bi-modal VAEs against the current metabolite identification methods and
against a supervised multilabel classification model, we used structural fingerprints as a
second modality and evaluated the results on the CASMI challenge.

To evaluate the quality of reconstructed spectra, we used the SIRIUS algorithm as an
independent oracle (see Section “Predicting spectra”).

Spectra and SMILES

The bi-modal variational autoencoder model design allowed for missing inputs at test
time. We tested the quality of four reconstructions: SMILES to SMILES, spectrum to
spectrum, SMILES to spectrum, and spectrum to SMILES. A SMILES to SMILES and a
spectrum to spectrum reconstruction tested the model capacity for building latent
representations for an individual modality. A spectrum to SMILES and a SMILES to
spectrum tested the predictive power across the two modalities.

Here, semi-supervised SVAE represented the SVAE model trained on both 36 thousand
paired samples and 2 million unpaired molecules. Supervised SVAE represented the
SVAE model only trained on the paired samples. The JMVAE training set was the same
as for supervised SVAE.

The evaluations were performed using a structure-disjoint test set of 1000 spectra for
950 unique molecules (772 unique InChiKeys). The molecules were not a part of the
unpaired molecule training set.

The aggregation of quantitative results is presented in the Tables 1-4 and the Figure 3.
The source code can be found at https://github.com/sgalkina/svae_spectra.

Predicting molecules

Following Gomez-Bombarelli et al.52 we used 1000 attempts to generate a valid
molecule from a test set sample. The percentage of the resulting valid molecules was
one of the evaluation metrics. Each reconstructed molecule was compared to the
corresponding original molecule by RDKit topological fingerprint similarity. Additionally,
the set of reconstructed molecules was compared with the set of original molecules by
its degree, cluster and orbit similarity metrics 48 for the reconstruction of a wide range of
graphs.
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It is important to notice that during the early epochs of training the output of the network
molecule decoder is a string of C letters of the length similar to the length of the original
SMILES. The same kind of output was observed in cases when a trained network failed
to reconstruct a molecule (see the reconstructions examples in the Supplementaries).
These reconstructions, however non-informative, are valid SMILES strings and
therefore contribute to the overall percentage of valid reconstructions. It explains why
the reconstruction from the spectrum results in a higher share of valid molecules for all
the models than a less complicated task of reconstructing a SMILES string given a
SMILES string. We called the strings of C letters of the same length as the original
SMILES a “trivial molecule” and include the evaluation of the trivial molecules set as a
baseline for all the metrics in the Tables 1-2.

The evaluation results for the basic variational autoencoder for SMILES string with the
same SMILES encoder and decoder architecture as the bi-modal network is shown in
Figure 3. The quality of the individual modality reconstruction became worse than from
a one-modality VAE, since performing cross-modality learning and bi-directional
reconstructions may interfere with more specialised one modality reconstruction
learning.

Predicting spectra

Cosine similarity is a common metric for quantitative evaluation of spectra similarity.
While it is a meaningful metric for the spectra-to-spectra reconstruction, it does not
capture the quality of SMILES-to-spectra reconstruction for our models. The models
were trained on the tandem mass spectra of the same ionisation mode, but different
collision energies, including the spectra for which all the available collision energies
were merged into one spectrum. Besides the fact that a probabilistic model will have
variance in the output, the current model is not conditioned on a specific collision
energy, which means that the spectra reconstructed from SMILES strings form a
distribution over all the collision energies the model is trained on.

To overcome the limitations of cosine similarity metrics for SMILES-to-spectra
reconstruction, we evaluated how well the reconstructed spectra can predict molecular
structures using SIRIUS software as an independent oracle. 100 spectra were
independently reconstructed for each of the random 100 SMILES strings from the
structure disjoint test set. Each of these spectra was given to both the same SVAE
model and the SIRIUS software as an input. SIRIUS also requires a precursor m/z value
as an input, so the corresponding value associated with the original data entry was
added. One candidate molecule was predicted by SIRIUS and SVAE per each
spectrum, resulting in 100 candidate molecules per one input molecule. For SIRIUS, the
molecule is the top candidate, and for SVAE it is the first valid reconstruction from 1000
attempts. Mean fingerprint similarity between all the candidates for each input molecule
is reported in Figure 2D-1, and the distribution of corresponding variances for the
SIRIUS algorithm is in Figure 2D-2.

For 95% of input molecules the standard deviation of a fingerprint similarity estimate
does not exceed 0.25 (Figure 2D-2). With the sample size of 100 for reconstructed
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spectra the standard deviation for mean fingerprint similarity does not exceed 0.025,
making the distribution of sample means (Figure 2D-1) a reliable estimate.

Figure 2. A. A molecule from the training set. B. 3 examples of training spectra for this molecule. The
training spectra for this molecule have different collision energies ranging from 10 to 50eV. C. 3
independent reconstructions of the spectrum given the same unpaired molecule as input. Because the
training set spectra were different, the generated reconstructed spectra may differ as well resulting in low
values for the similarity metrics between one original spectrum and the reconstruction from the
corresponding SMILES. To evaluate the spectra with an independent oracle method, we predicted
molecule structures for the generated spectra using SIRIUS. The top candidates do not always match the
exact molecule structure, but have structural resemblance. The number below the molecules indicate the
fingerprint similarity (FP sim.) between an original molecule and the SIRIUS top candidate molecule for
the predicted spectrum. D. 1) The distribution of fingerprint similarities of the molecules predicted by the
reconstructed spectra for a test set of 100 molecules. The test set consisted of structure-disjoint
molecules. Each point on the distribution represents the fingerprint similarity averaged across molecule
predictions for 10 spectra. If a spectrum did not have hits by the SIRIUS software, it was not included in
the statistics. “SIRIUS top candidate” distribution provides predictions made by the SIRIUS software, and
“SVAE semi-supervised” provides predictions of molecules made by the semi-supervised SVAE model
from the reconstructed spectra. 2) The distribution of variances for fingerprint similarities of 100
candidates per each input molecule. The variance histogram and the selected number of candidates
suggest a reliable estimate of a mean fingerprint similarly per input molecule.
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Figure 3. Distributions of similarity metrics for each possible reconstruction. A. Distributions of fingerprint
similarities between an original molecule and a reconstruction from the SMILES string. Semi-supervised
SVAE shows the strongest performance. Basic SMILES-to-SMILES variational autoencoder trained on
2mil biomolecules (same as semi-supervised SVAE, but no spectral modality) results are presented for
the reference and show that bi-direction learning decreases the quality of one modality reconstruction. B.
Distributions of fingerprints similarities between an original molecule and a reconstruction from the
spectrum. The performance ranking between the models was the same as for the SMILES-to-SMILES
reconstruction. C. Distributions of cosine similarities between an original spectrum and a reconstruction
from the SMILES. This metric was not the most optimal for the current composition of the training set as
discussed in the Section “Predicting spectra''. D. Distributions of cosine similarities between an original
spectrum and a reconstruction from the spectrum. Since both supervised and semi-supervised SVAE
were trained on the same spectral dataset, both SVAE models show similar results, outperforming the
JMVAE model.

CASMI2017

We evaluated the models on the CASMI2017 challenge. Since all the training spectra
were collected in positive ion mode, we only considered the positive spectra for the
evaluation. All the predicted molecule structure were ranked by the fingerprint similarity
with the original molecule, 10 predicted molecule structures with the highest fingerprint
similarity are shown on Figure 4A. The predicted molecules with lower scores than top
10 resemble “trivial” molecules more than original ones.

The setup of the CASMI2017 challenge was that a method must provide a scored list of
candidate molecules, with a higher non-negative score indicating the better candidate.
Our method was not able to provide the scoring for the given list of candidates because
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our method did not involve a molecule database search. To benchmark bi-modal
variational autoencoders against other methods we evaluated it on a different
representation of a molecule, a structural fingerprint, see the Section ”Spectra and
structural fingerprints”.
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Figure 4. A. CASMI2017, positive ion mode challenges, top 10 molecule reconstructions from the
spectrum sorted by the fingerprint similarity between the true molecule and the molecule, reconstructed
from the spectrum. The molecules with the reconstruction quality below the top 10 resemble trivial
molecules and do not have meaningful structural information. B. CASMI2017 leaderboard with
fingerprints. The x-axis represents the number of top candidates, the y-axis represents how many of 112
positive ion mode spectra the correct molecule was among top candidates. kai_iso,𝑘
IOKRtransferAvgScore, yuanyuesimple, metfrag_plus and yuanyuelogsum were the competing
algorithms. FC, supervised was a deep learning network that predicts a structural fingerprint from a
spectrum. SVAE, semi-supervised, SVAE, supervised and JMVAE were the bi-modal VAEs.

Spectra and structural fingerprints

A one-hot encoded SMILES string is not the only way to numerically represent a
molecule structure. A different numerical representation requires different encoder and
decoder architectures, which can be easily integrated to the bi-modal VAE network. One
of the most common ways to numerically represent molecules is via structural
fingerprints, which are a bit string where each bit stands for the presence of a
predefined molecule substructure 15,16. A combination of several fingerprints 53 has
proven to be an efficient instrument for the molecule identification task.

Often, the molecule identification workflow 18,20 includes steps for predicting structural
fingerprints and searching for the best fingerprint match in the structure database. The
quality of the molecule structure prediction thus depended on the size of the candidates
molecular database. For example, the latest published evaluation of SIRIUS algorithm
showed that when searching in the full PubChem database the correct identification rate
for a test set was 40.4%, but after narrowing the search to only the biomolecule set of
0.5 million molecules, the rate was 74.0% 18.

In order to evaluate the quality of fingerprint predictions, we chose the CASMI
challenge category with the candidate structures provided. Here, a method returned a
sorted list of candidates. The scoring was performed by the cross entropy loss between
the predicted fingerprint and the candidate fingerprint. The rank of the correct molecule
was its place in the sorted list. We showed for how many of the positive mode112
spectra the correct candidate has the rank of , for in Figure 4B. The top𝑘 0 ≤ 𝑘 ≤ 20
performing algorithm is shown for each participating team.

Duhrkop et al.18 demonstrated that the chemical formula can be predicted from a
tandem mass spectrum with 93.8% accuracy. Following Fan et al.20, we assumed the
molecule formula was known for each spectrum. This allowed us to filter out candidates
with the incorrect molecule formula. The remaining candidates were ranked by log loss
between their fingerprint and the predicted one. As a baseline method, we picked a
random candidate for each spectrum among the candidates with the same molecule
formula (shown in Figure 4B as random_formula).

We also tested a simpler feed forward deep learning network (FC, supervised on Figure
4B). The architecture conceptually resembles Fan et al.20, though it was not exactly the
same in terms of features, the number and size of hidden layers and which structural
fingerprint was predicted (see Supplementaries E for the details). FC, supervised had
the 2nd best result. The bi-modal VAEs performed worse, returning the results
comparable to the 3rd best method. It showed that if a modality is a simple object, like a
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bit vector in this case, it is more beneficial to train a specialised multilabel classifier
instead of a bi-directional VAE: the bi-direction VAE is more useful in applications
involving complex and noisy modalities (an observation supported by Wu et al.41, where
a supervised classifier performed better for predicting the label for a labeled image
dataset than a bi-modal VAE with the label as one of the modalities). Semi-supervised
SVAE showed better performance compared with the supervised VAE models.

Figure 5. Examples of lipid molecules and spectra reconstructions from semi-supervised SVAE trained
with no lipid-like spectra.

Discussion

We developed a semi-supervised machine learning approach for the metabolite
identification task. In order to avoid using molecular databases to search for the
molecule candidates we used a molecule structure generative model. It is integrated
with a bi-modal VAE-based model and designed to perform training on both paired and
unpaired samples of molecules and MS/MS spectra. The bi-modal setup also allowed
for the generation of in-silico mass spectra from molecule structures. To the best of our
knowledge, the suggested method was the first to perform bi-directional predictions.

The test set molecules are selected to be structure-disjoint ("novel" for the algorithm).
Benchmarking of two different bi-modal VAE architectures (SVAE vs JMVAE) showed
that SVAE performs better on a fully paired dataset. SVAE was also trained in a
semi-supervised setting, with 2 million molecules from similar compound classes, and
performed better than supervised SVAE.

To benchmark against other algorithms, we used a different numerical representation of
a molecule, a structure fingerprint. The results for the CASMI challenge data suggest
that bi-modal VAEs with the basic architectures perform far from the state-of-the-art (3rd
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best result), while a more specialised multiclass classification neural network shows the
2nd best result, highlighting the need for future model architecture optimization. The
suggested bi-modal framework allows for easy testing of the different encoder
architectures.

A major challenge in using publicly available MS/MS spectra databases to annotate
unknown MS/MS spectra or infer similar MS/MS spectra is the large heterogeneity of
MS/MS spectra derived from the same compound. The heterogeneity in MS/MS spectra
is due to the influence of the sample (i.e., sample matrix and solvent), instrumentation
factors (e.g., source design, collision cell, detector technology, etc.), and instrument
parameters (e.g., carrier gases, collision energy, declustering potential, acquisition rate,
etc.) In the work presented, training data was limited to positive ion mode and a single
type of instrument, but we did not control for instrument parameters which meant that
every compound could have a different set of paired MS/MS spectra. The use of
multiple MS/MS spectra acquired using different instrument parameters for each
annotated molecule structure improves the diversity of training data, which has been
shown to be beneficial to training deep learning models 54, but complicates the
validation of predicted MS/MS spectra because the generation of MS/MS spectra
follows a probability distribution of likely spectra over a range of different instrument
parameters. We overcame the challenge of annotating generated MS/MS spectra
through the use of an independent Oracle (i.e., Sirius).

Future work will address the ability to explicitly include sample, instrumentation factors,
and instrument parameters as input and output. In the case of a current dataset, it
would mean including instrument parameters (e.g., collision energy) as an additional
input to stylize the spectra accordingly. With the current SVAE architecture, instrument
parameters as input can be a third modality. SVAE successfully scales to three
modalities 44. Another approach would be to disentangle the factors that influence the
generation of the MS/MS spectra in the latent space directly. Previous works 35,55,56

describe various VAE approaches to condition and disentangle VAE latent
representations into independent discrete and continuous factors. Integrating
disentangled representations into a multi-modal semi-supervised VAE would allow to
generate customised in-silico spectra and will likely lead to better hidden representation
and better predictive performance.

Performance of the presented model depends on many factors including the encoder
and decoder architectures, loss functions, and input and output representations. In this
work, we sought to demonstrate the feasibility and utility of multi-modal and
semi-supervised learning leveraging unannotated MS/MS spectra and molecular
structures to improve compound identification accuracy from MS/MS experiments.
Future work will seek to optimize and tune the model itself. Current deep learning
methods that predict information from the mass spectra use binned spectra and process
them with multilayer perceptrons 20,31, word2vec algorithm inspired by natural language
processing 32 or a transformer architecture 57. A binned spectrum has an obvious
drawback of reducing resolution of the original spectrum, losing sensitivity provided by
the latest generation of mass spectrometers. An architecture that is able to utilise the
exact m/z values and a varied input size, f.e. a recurrent network or another
NLP-inspired algorithm, can be easily integrated to the presented bi-modal network.
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Another possible optimization is integrating fragmentation or spectral trees to the
spectra encoder architecture. See Supplementaries C describing a possible use of
TreeLSTM 58 networks for adding fragmentation trees.

The same applies to the molecule structure encoding task. Numerically encoding a
molecule structure is a subject of ongoing research. The relevant methods can be
roughly divided into string based 52,59 and graph based 47,48,60–63. State-of-the-art methods
generate a very high share of valid molecules or are designed to generate only valid
molecules (e.g. JTNN ). Unlike the SMILES string based method, graph based
algorithms can parse and process the underlying semantic structure of a molecule
graph object. Graph based methods demonstrated an ability to predict molecule
properties from the latent space, so integrating such a method to the bi-modal
framework will be beneficial.

Conclusion

We proposed a bi-modal variational autoencoder model capable of learning from data
with missing annotations. The developed method was the first demonstration of
semi-supervised learning applied towards metabolite identification from MS/MS spectra.
The developed model was also the first bi-directional prediction tool to predict molecule
structures from MS/MS spectra and MS/MS spectra from molecular structures. We
demonstrated the predictive power of the algorithm with multiple experiments that
included well established benchmark datasets. The resulting numerical representation
of molecules and spectra as encoded in the latent space can also be used in different
applications, e.g. molecule property predictions. Future work would also include
optimizing encoder and decoder architectures and learning disentangled latent
representations of the spectra and molecule objects for better tuning of the in-silico
spectra generation process. The developed model provides a general framework for
tackling life science problems where large volumes of unannotated, complex, and noisy
data are available for training.
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Tables
Table 1. Quantitative evaluation of molecule reconstructions given a spectrum and a
SMILES string on a test set of 1000 molecules. Percentage of valid SMILES is
calculated for 1000 attempts to reconstruct a molecule. Fingerprint similarity is Tanimoto
distance between the Daylight fingerprints calculated with RDKit, the metrics is from 0 to
1 with 1 showing the most similarity. Other metrics are calculated as Maximum Mean
Discrepancy (MMD) between input and output molecule graphs distributions: graph
degree (Degree), clustering coefficient (Cluster) and an average orbit counts statistics,
the number of occurrences of all orbits with nodes (Orbit). The lower the distance is,𝑘
the more similar the distributions are.

From the spectrum
% of valid
SMILES

Fingerprint similarity
(mean / std)

Degree Cluster Orbit

JMVAE 99.6 0.096/0.095 0.140 0.0003 0.011
SVAE, supervised 97.5 0.131/0.116 0.125 0.0003 0.009
SVAE, semi-supervised 95.2 0.185/0.160 0.059 2.716-05 0.005

Baseline, trivial molecules 100 0.044/0.043 0.235 0.0005 0.013

Table 2. Quantitative evaluation of molecule reconstructions given a spectrum and a
SMILES string on a test set of 1000 molecules. Percentage of valid SMILES is
calculated for 1000 attempts to reconstruct a molecule. Fingerprint similarity is Tanimoto
distance between the Daylight fingerprints calculated with RDKit, the metrics is from 0 to
1 with 1 showing the most similarity. Other metrics are calculated as Maximum Mean
Discrepancy (MMD) between input and output molecule graphs distributions: graph
degree (Degree), clustering coefficient (Cluster) and an average orbit counts statistics,
the number of occurrences of all orbits with nodes (Orbit). The lower the distance is,𝑘
the more similar the distributions are.

From SMILES
% of valid
SMILES

Fingerprint similarity
(mean / std)

Degree Cluster Orbit
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JMVAE 90.9 0.118/0.130 0.132 0.0002 0.009
SVAE, supervised 77.7 0.179/0.158 0.072 0.0001 0.005
SVAE, semi-supervised 72.9 0.310/0.257 0.017 0.0005 0.001
Baseline, trivial molecules 100 0.044/0.043 0.235 0.0005 0.013

Table 3. Quantitative evaluation of spectra reconstructions given a spectrum and a
SMILES string on a test set of 1000 molecules. Because all the spectra vectors are
positive, cosine similarity here is a metrics from 0 to 1 with 1 showing the most similar
spectra.

From spectrum
Cosine similarity (mean / std)

JMVAE 0.348 / 0.241
SVAE, supervised 0.596 / 0.253
SVAE, semi-supervised 0.584 / 0.270

Table 4. Quantitative evaluation of spectra reconstructions given a spectrum and a
SMILES string on a test set of 1000 molecules. Because all the spectra vectors are
positive, cosine similarity here is a metrics from 0 to 1 with 1 showing the most similar
spectra.

From SMILES
Cosine similarity (mean / std)

JMVAE 0.314 / 0.225
SVAE, supervised 0.307 / 0.207
SVAE, semi-supervised 0.272 / 0.212
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