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One sentence summary: Large transcriptional differences exist within a wheat spike and are associated with 

rudimentary basal spikelet development, resulting in the characteristic lanceolate shape of wheat spikes.  

 

Abstract 

Spikelets are the fundamental building blocks of Poaceae inflorescences and their development and branching 

patterns determine the various inflorescence architectures and grain yield of grasses. In wheat, the central 

spikelets produce the most and largest grains, while spikelet size gradually decreases acro- and basipetally, 

giving rise to the characteristic lanceolate shape of wheat spikes. The acropetal gradient correlates with the 

developmental age of spikelets, however the basal spikelets are developed first and the cause of their small 

size and rudimentary development is unclear. Here, we adapted G&T-seq, a low-input transcriptomics 

approach, to characterise gene expression profiles within spatial sections of individual spikes before and after 

the establishment of the lanceolate shape. We observed larger differences in gene expression profiles between 

the apical, central and basal sections of a single spike than between any section belonging to consecutive 

developmental timepoints. We found that SVP MADS-box transcription factors, including VRT-A2, are 

expressed highest in the basal section of the wheat spike and display the opposite expression gradient to 

flowering E-class SEP1 genes. Based on multi-year field trials and transgenic lines we show that higher 

expression of VRT-A2 in the basal sections of the spike is associated with increased numbers of rudimentary 

basal spikelets. Our results, supported by computational modelling, suggest that the delayed transition of basal 

spikelets from vegetative to floral developmental programmes results in the lanceolate shape of wheat spikes. 

This study highlights the value of spatially resolved transcriptomics to gain new insights into developmental 

genetics pathways of grass inflorescences. 
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Introduction 

The arrangement of flowers in individual plants of the same species is highly conserved and follows a 

systematic and rhythmic pattern. This systematic appearance of flowers is not surprising, as floral architectures 

are determined by the regular initiation of flower primordia on the flanks of the apical meristem and their rate 

of initiation and developmental fate are under strong genetic control (Prusinkiewicz et al., 2007). The unifying 

feature of floral architecture in grasses (Poaceae) is the formation of all flowers (termed florets) within 

spikelets (Kellogg et al., 2013). Spikelets are the fundamental building blocks of grass inflorescences and their 

development and branching patterns determine the various inflorescence architectures of grasses (e.g., spikes, 

panicles). Wheat (Triticum aestivum) forms a spike shaped inflorescence, in which sessile spikelets are directly 

attached to the inflorescence axis (or rachis) in a distichous phyllotaxis (Koppolu and Schnurbusch, 2019). 

Upon floral transition, the vegetative meristem ceases to initiate leaf primordia and transitions into the 

inflorescence meristem (IM). During the Double Ridge stage (DR) of wheat spike development, the IM 

initiates a lower leaf ridge and an upper spikelet ridge (or primordia) during each iteration. Within the 

inflorescence the upper ridges differentiate into spikelet meristems, while the lower ridges are suppressed upon 

flowering (Bommert and Whipple, 2018). DR initiation will continue at the IM until the terminal spikelet stage, 

when IM forms a final spikelet (Koppolu and Schnurbusch, 2019). Spikelet initiation and development has 

been extensively studied in wheat and other monocot crops, such as rice (Oryza sativa), maize (Zea mays), and 

barley (Hordeum vulgare), as the number of spikelets per spike is a major determining factor for grain number 

and thus yield per spike.  

Not all spikelets across the wheat spike, however, produce the same amount of grains. The central spikelets 

produce the most and largest grains, while spikelet size gradually decreases acro- and basipetally. Within a 

single spike, the most apical and basal spikelets might produce no or only one grain while the central spikelets 

of the same spike set 3-5 grains. Bonnett (1966) documented that this distinct lanceolate shape of the wheat 

spike is first established during the Glume Primordia (GP) stage (just after the DR stage). This asynchronous 

development among the spikelets is maintained throughout the development of the spike. The gradual decrease 

in spikelet size from the central to apical section of the spike can be explained by the continuous development 

of new spikelet ridges from the apical inflorescence meristem: the most apical spikelets are the youngest and 

had the least time to develop. However, basal spikelets are initiated first and it is unclear why they remain 

smaller than their central counterparts. In the mature spike the most basal one or two spikelets are often only 

formed in a rudimentary manner, with small glumes present but all floral structures remaining immature. 

Efforts to understand the genetics of wheat spikelet initiation and development have focused on members of 

the MADS-box transcription factor (TF) family, which play central roles in the flowering gene models (Zhao 

et al., 2006). Li et al. (2019) showed that MADS-box genes of the SQUAMOSA-clade, VERNALISATION1 

(VRN1), FRUITFULL2 (FUL2) and FRUITFULL3 (FUL3), have overlapping functions in controlling the 

timing of the transitions from the vegetative to IM as well as the formation of the terminal spikelet. In vrn1ful2-

null mutants, the IM remained indeterminate causing the mutants to form more spikelets per spike. However, 

all lateral spikelets were replaced by leafy shoots in the vrn1ful2 double and vrn1ful2ful3 triple mutants (Li et 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.03.454952doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454952
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

al., 2019). These mutants had increased expression of genes belonging to the SHORT VEGETATIVE PHASE 

(SVP) family of MADS-box genes, including VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2). 

Subsequent studies determined that overexpression of VRT2 led to reversion of basal spikelets to spikes and 

the downregulation of other MADS-box genes required for floral development, including members of the 

SEPALLATA1 (SEP1) clade (Li et al., 2020). Together, these studies exemplify the importance of the temporal 

sequence of flowering gene expression for the correct development of the wheat spike. 

Attempts to unravel the genetic network controlling wheat spike development have focused on these temporal 

changes in expression patterns across consecutive developmental stages. For example, Li et al. (2018) and 

Feng et al. (2017) performed transcriptome profiling using pooled samples of multiple complete spikes from 

six (vegetative to floret differentiation) and four (double ridge to young floret) developmental stages, 

respectively. In a few cases, studies have examined the expression patterns of individual genes (via qRT-PCR) 

and found gene expression gradients along the spike. For example, Debernardi et al. (2017) demonstrated that 

APETALA2 (AP2) is expressed higher in the apical section of wheat spikes than in central or basal sections. 

This AP2 expression gradient was associated with morphological changes along the same spike. This study 

alongside work in barley (Youssef et al., 2017), suggests that gene expression gradients within individual 

developmental stages could be important to further unravel the genetic control of spike development. However, 

despite its potential biological significance, spatial transcriptome profiles along the spike have yet to be 

investigated in wheat. 

In this study, we aimed to characterise gene expression profiles along the spike during the establishment of the 

lanceolate shape of the wheat spike from DR to GP. We adapted G&T-seq, a low-input sequencing approach 

to sequence the transcriptome of the sections. Recently, Giolai et al. (2019) adapted the protocol to identify 

expression differences across single leaves of Arabidopsis (GaST -seq). We sequenced the apical, central, and 

basal sections of individual spikes before (DR) and after (GP) the establishment of the lanceolate shape. Gene 

expression profiles differed most strongly between spatial sections of the same spike, as opposed to temporal 

sections (any two sections from different timepoints). Members of the SVP gene family were expressed most 

highly in the basal sections with expression decreasing acropetally, while members of the SEP1 gene family 

showed the opposite expression pattern, i.e. most highly expressed in apical sections, with expression 

decreasing basipetally. The increased number of rudimentary basal spikelets due to VRT-A2 misexpression 

supports the hypothesis that high expression levels of SVPs in the basal section delays spikelet establishment, 

leading to their rudimentary shape in the mature spike. This study highlights that spikelets within the same 

spike experience significantly different flowering signals due to their consecutive development and spatial 

position within the spike. Acknowledging these differences can help us gain a better understanding of the 

genetic flowering pathway of grass inflorescences. 
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Results 

Low-input sequencing enables spatial analysis of the wheat spike transcriptome  

To investigate transcriptional differences between the apical, central, and basal section of developing wheat 

spikes, we adapted the low-input G&T sequencing (G&T-seq) method for RNA-seq of small plant tissue 

sections. G&T has been developed for single-cell RNA and DNA sequencing of mammalian systems 

(Macaulay et al., 2015) and was previously adapted for Arabidopsis thaliana (GaST-seq; Giolai et al., 2019). 

We collected four individual developing wheat (cv Paragon) spikes at both the double ridge (DR) and glume 

primordia (GP) stage and hand-dissected them into apical, central, and basal sections (Figure 1A). 

 

Figure 1: (A) Summary diagram of low-input G&T tissue collection and sequencing approach. Grey circles 

indicate the 24 individual libraries prepared for sequencing from each individual tissue section dissected from 

individual spikes. (B) Reads per library after trimming and quality controls (see Methods). Stacked bars 

indicate the number of reads aligned (blue) and not aligned (red) by HISAT to the RefSeqv1.0 genome. (C) 

Number of expressed genes (>10 read counts) per library based on tissue section and Waddington 

developmental stage (DR: Double Ridge; GP: Glume Primordia). 

 

On average, samples had 28,799,626 reads (coefficient of variation (CV) 43%), of which 90% (CV 8.5%) 

aligned to the genome post adaptor trimming (Figure 1B, Table 1). Furthermore, the number of aligned reads 

and the number of expressed genes per library was largely homogenous among the spatial sections and 

Waddington stages (Table 1). On average, 47,313 genes per library were expressed (>10 read counts) and we 

found no difference (P > 0.56) in the number of expressed genes across spatial (apical, central, basal) or 

between temporal (DR, GP) conditions (Figure 1C). We excluded three libraries with low average number of 
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expressed genes (difference greater than five times the standard deviation; Figure 1C, Supplemental Table S1) 

and two libraries because they were strong outliers in the principal component analysis (PCA; Supplemental 

Figure S1A). In total, 19 RNA-seq libraries (DR: 3 apical, 4 central, 3 basal; GP: 2 apical, 3 central, 4 basal) 

passed our selection criteria and were used in the subsequent analyses. We identified 91,646 genes being 

expressed across these 19 libraries. 

 

Table 1: Average number of reads aligned to the RefSeqv1.0 genome and expressed genes (>10 read counts) 

in the three tissue sections and two Waddington developmental stages (DR: Double Ridge; GP: Glume 

Primordia) (n = 4 biological replicates per tissue section * developmental stage). 

 Reads aligned  Genes expressed 

 DR GP  DR GP 

Apical 26,342,934 23,913,657  44,488 41,152 

Central 29,823,023 25,854,540  45,913 50,074 

Basal 25,174,482 23,627,494  49,513 52,740 

 

 

Transcriptome-wide differences are largest between the apical and basal sections of the spike 

To investigate global differences among the 19 RNA-seq libraries, we performed a principal component 

analysis (PCA; Figure 2A). The first two PCs explained 19% and 16% of the overall variance present in the 

libraries. We observed that the two PCs separated libraries by the spatial position (apical, central, basal) rather 

than developmental stage (DR, GP). There was a clear separation between libraries originating from apical and 

basal spike sections, while libraries from central sections were dispersed between these two clusters (Figure 

2A). We investigated PC1 to PC6 and found that none of these combinations clustered libraries by 

developmental stage (Supplemental Figure S1B). Given that we sequenced developing spike sections of single 

plants, as opposed to the more commonly employed pooling of multiple biological samples, we found as 

expected some degree of heterogeneity between samples from the same location and stage (Figure 2A).  
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Figure 2: (A) Principal component analysis (PCA) on the 19 transcriptome libraries from apical (blue), central 

(yellow) and basal (green) sections of Double Ridge (circles) and Glume Primordia (triangles) spikes. Black 

bordered triangle is plant 8 (GP) in which the basal section clustered closer with central-GP sections than the 

other basal-GP sections. (B) UpSet plot showing the number of differentially expressed genes (DEGs) between 

spatial sections and Waddington stages. Black border indicates Plant 8, which is an outlier of basal GP 

replicates. 

 

To investigate this variation further, we quantified changes in gene expression across biological replicates by 

calculating CVs for each gene (see Methods). The median CV for a gene across the biological replicates was 

39% (Supplemental Figure S2) with a Q1-Q3 interquartile range between 24% and 62%. We also calculated 

the CV per gene for published datasets from Li et al (2018) and Feng et al (2017). Both studies sequenced 

developing wheat spikes at similar developmental stages, pooling many spikes per sample. Li et al. (2018) 

pooled between 100 to 200 spikes of winter wheat (KN9204) per sample, while Feng et al. (2017) reported 

pooling of 10 to 50 spikes (cv. Chinese Spring) per sample. In both studies the median CV of a gene was lower 

(14% and 21%, respectively) than in our study. The larger CVs in our data could be explained by the biological 

variation that exists between individual plants, which may have been reduced by the pooling of many spikes 

in both Li et al. (2018) and Feng et al. (2017).  
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We first analysed differentially expressed genes (DEGs) between the DR and GP stage and between apical, 

central and basal sections across the two Waddington developmental stages. The number of DEGs between 

DR and GP (215 genes) was smaller than the number of DEGs identified between the spatial positions, which 

ranged from 280 DEGs between central and apical sections to 914 DEGs between the apical and basal sections 

(Figure 2B). Next, we compared the apical, basal and central sections within each Waddington developmental 

stage. We identified more DEGs by comparing the spatial sections within either Waddington stage individually 

than in the combined analysis. The number of DEGs between apical and basal sections at each stage (DR: 

2,438; GP: 1,315) were similar to the number of DEGs between central and basal sections (DR: 2,022; GP: 

1,186). The number of DEGs between these sections at DR, however, was nearly double the number of DEGs 

at GP. In contrast, the number of DEGs between apical and central sections was similar at both stages (DR: 

1,296; GP: 1,118), suggesting that the basal section of the spike is most different in the earlier developmental 

stage. Only 11% of the DEGs were shared between DR and GP in the apical to basal comparison, 7% between 

the central to basal DEGs, and 5% between apical to central DEGs. In total, we identified 5,353 unique genes 

as differentially expressed between any of the three sections at either Waddington stage (Supplemental Table 

S2). Overall, the number of DEGs was largest between the apical and basal sections, reflecting the strong 

spatial clustering observed in the PCA graph, but most genes that were differentially expressed across the spike 

did not maintain this gradient over the two developmental stages. In summary, despite the high biological 

variation in gene expression in our data compared to previous pooled whole-spike studies, we could detect 

transcriptome wide differences between the spatial sections of developing wheat spikes. 

 

The SVP MADS-box transcription factors have opposing expression profiles to flowering E-class genes 

To further investigate the differences in expression across the spike and to identify genes with similar 

expression patterns, we performed hierarchical and k-means clustering. We restricted the clustering to the 

5,353 genes identified as differentially expressed across the spike at either one or both Waddington stages 

(Figure 3A). We identified seven non-redundant clusters, each containing between 8% to 21% of the 5,353 

DEGs (Figure 3A, Supplemental Figure 3A). Both hierarchical and k-means clustering produced highly similar 

results (Supplemental Figure S3B). We identified 1,894 genes (35% of DEGs) to be more highly expressed in 

the apical section, either across both timepoints (503 genes, cluster 1), or only at DR (751 genes, cluster 7) or 

GP (640 genes, cluster 3). In the central section, 1,362 genes (25%) had higher relative expression at either 

DR (917 DEGs, Cluster 5) or GP (445 DEGs, Cluster 6). In the basal section, we observed 2,097 genes (39%) 

being more highly expressed. Cluster 4 contained the most DEGs (1,170) and was characterized by an 

upregulation of expression in the basal section at both Waddington stages, although this upregulation was 

higher at the DR stage. Another 927 genes were upregulated in the basal section, but only at the GP stage 

(cluster 2).  
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Figure 3: (A) Normalized expression matrix and K-means clustering of the 5,353 genes differentially 

expressed across the spike at either one or both Waddington stages. Colours (blue to red) show relative log2 

expression of genes after normalisation. (B) Expression pattern of the 1,170 genes allocated to Cluster 4 (left), 

and of MADS-box transcription factors in the same cluster (right). Colours indicate how well the gene 

expression pattern fits the average expression pattern (black line). Red = best fit, Blue = least good fit. (C) 

Expression pattern of the 640 genes and MADS-box transcription factors of Cluster 3 as arranged in B. Norm 

= normalized and scaled gene expression. RefSeq1.1 gene IDs and raw expression values of genes shown in 

the right-hand panels are presented in Supplemental Table S2. 

 

To further characterize the clusters, we independently tested for enrichment of TF families and gene ontology 

(GO)-terms (all GO-terms and TF families in Supplemental Table S3 and S4, respectively). Genes that were 

more highly expressed in the apical section were enriched for the GO terms “reproductive structure 

development” (GO:0048608) and “floral organ development” (GO:0048437; cluster 1) as well as for HD-

Zip_IV and SRS TF families (P < 0.0001; cluster 1). In cluster 3 (highly expressed in the apical section at GP; 

Figure 3B) we found no significant enrichment of GO-terms (P < 0.03), but a significant enrichment of 

MADS_II TFs (P = 0.013). For clusters defined by an increased expression in the central sections (clusters 5 

and 6) we detected an enrichment for GO-terms related to polyphosphate processes (GO:0006797/0006779), 

but a significant enrichment of the C2C2_CO-like TFs at DR (P = 0.036; cluster 5). Genes with higher 

expression in the basal section of the spike (cluster 4; Figure 3C) were enriched for a number of GO terms 

related to photosynthesis, (e.g. GO:0015979) and “negative regulation of flower development” (GO:0009910), 

as well as for MADS_II TFs (P = 0.084). Cluster 2, which was characterized by higher expression in the basal 

section only at GP, was enriched for “Jasmonic acid response” (GO:0009753) and Tify and C2C2_CO-like 

TFs (P < 0.04).  

We were interested in further characterizing the expression patterns of the MADS-box TFs as they were 

significantly enriched in two of the seven clusters and are important in floral transition and development 

(Becker and Theißen, 2003; Feng et al., 2017). We detected 14 differentially expressed MADS-box TFs in our 

study, five of which were more highly expressed in the apical section, four of these only at GP stage (cluster 
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3) and one being consistently expressed across both Waddington stages (cluster 1). In contrast, five MADS-

box TFs were more highly expressed in the basal section at both Waddington stages (cluster 4) and another 

two were more highly expressed in the basal section only at GP (cluster 2). An additional two MADS-box 

genes were part of the remaining clusters (Supplemental Table S4). 

In the apical/GP cluster 3 we noticed that all MADS-box genes belonged to the Triticum aestivum 

SEPALLATA1 (TaSEP1) group (Figure 3C). All three homoeologs of TaSEP1-4 (TraesCS7A02G122000, 

TraesCS7B02G020800, TraesCS7D02G120500) and the D-genome copy of TaSEP1-5 

(TraesCS7D02G120600) were part of this cluster. The SEP genes were expressed at relatively low levels at 

DR (Supplemental Table S2), but were significantly upregulated at GP, with their transcript levels being 

highest in the apical section. The increased expression of TaSEP1-4 at GP was in agreement with their 

previously reported expression patterns in tetraploid wheat by Li et al. (2020). 

In the contrasting cluster 4 (upregulation in basal sections), we noticed the presence of multiple MADS-box 

genes belonging to the SVP family (Figure 3B, right-hand panel), which consists of three genes in wheat (SVP1, 

VRT2 and SVP3). Members of this family are important for the transition from vegetative to floral meristem 

identity in cereals (Trevaskis et al., 2007). All three homoeologs of VRT2 (TraesCS7A02G175200, 

TraesCS7B02G080300, TraesCS7D02G176700) and the B-genome copy of SVP1 (TraesCS6B02G343900) 

were present in cluster 4. The cluster also contained TaFLC-A1 (TraesCS7A02G260900), although it was 

expressed higher in DR-central sections compared to the SVPs and had a linear expression gradient at GP. All 

SVPs had very similar expression patterns, being strongly expressed in basal sections only. Expression of SVPs 

was higher in all DR sections compared to the equivalent section in GP. Constitutive over-expression of SVP-

family members in wheat and barley has been shown to delay or even reverse floral development (Trevaskis 

et al., 2007; Li et al., 2020). This led to hypothesis that the rudimentary development of basal spikelets was 

associated with an increase in VRT2 expression levels. 

 

SVP expression is higher in basal and peduncle sections and increased across all sections in T. polonicum 

VRT-A2b isogenic lines 

To validate the expression pattern of VRT2 in the individual spike analysis, we performed quantitative reverse 

transcription (qRT)-PCR on independently collected, pooled spike sections from cv Paragon, carrying the 

wildtype VRT-A2a allele (Figure 4A, blue curves). We included a later timepoint, Terminal Spikelet (TS), 

which is about 10 days after GP to study how VRT2 expression changes in later stages. We also included a 

small part of the peduncle (stem) section just below the spike as an additional spatial section. We focused the 

expression analysis on the A-genome homoeolog, VRT-A2, as its’ role in spike, glume and grain development 

of wheat was recently characterised (Adamski et al., 2021; Liu et al., 2021). 
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Figure 4: Relative expression of VRT-A2 in the different sections of the spike across three timepoints in near 

isogenic lines (NILs) carrying either the wildtype VRT-A2a (blue) or the VRT-A2b allele from Triticum 

turgidum ssp. polonicum (orange). The data are shown as mean ± SE of VRT-A2 expression compared with 

control gene Actin. N = 3 biological replicates (See Supplemental Table S5 for expression data and 

Supplemental Table S6 for statistical analysis of VRT-A2 expression differences. 

 

We identified a significant interaction effect between Waddington stage and spatial section; we thus analysed 

the three Waddington stages separately (Figure 4). At DR, we were limited to dissecting the spike into apical, 

basal and peduncle sections, as the small size of the spike meristem did not allow precise dissection of the 

central section when using multiple (pooled) spikes. At DR, we found VRT-A2 marginally expressed, with 

significantly lower expression levels in the apical section compared to the basal (P = 0.003) and peduncle 

sections (P = 0.001). Although expression in the peduncle was higher than in the basal section at DR, this was 

not significant (P = 0.116). At GP, VRT-A2 expression was borderline detectable in the apical, central and 

basal sections, but expression was significantly higher in the peduncle with respect to the three spike tissues 

(P < 0.001 for all three comparisons). Lastly, VRT-A2 expression at TS stage was just detectable and 

significantly different between all sections (P = 6.6E-06). Overall, expression decreased significantly from DR 

to GP/TS Waddington stages in the apical (P = 0.00015), basal (P = 0.0074), and peduncle (P = 0.012) sections 

consistent with the previously reported strong downregulation of VRT-A2 in the early spike development (Li 

et al., 2020; Adamski et al., 2021; Liu et al., 2021). As observed in the low-input RNA-seq data, the qRT-PCR 

data confirmed the strong basipetal gradient in VRT-A2 expression across the spike at DR and revealed that its 

expression was even higher within the peduncle.  
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We hypothesised that the higher expression in the basal section of the wheat spike compared to the central and 

apical sections is associated with the rudimentary development of the basal spikelets. To test the effect of 

higher VRT-A2 expression on basal spikelet development, we analysed the effect of the Triticum turgidum ssp. 

polonicum VRT-A2b allele on the expression gradient of VRT-A2 and spike morphology. Adamski et al. (2021) 

showed that VRT-A2 in T. polonicum, a tetraploid subspecies of wheat, carries a sequence re-arrangement in 

its first intron. This results in the higher expression of the T. polonicum VRT-A2b allele, with respect to the 

wildtype VRT-A2a allele, during early spike development. We performed qRT-PCR on a cv Paragon NIL 

carrying the VRT-A2b allele and compared VRT-A2 expression against the Paragon wildtype NIL described 

above (Figure 4). Consistent with the results of Adamski et al. (2021), we detected significantly higher 

expression of VRT-A2b compared to the wildtype allele across most of the tissue sections (see Supplemental 

Table S6 for individual comparisons), and a progressive decrease in VRT-A2b expression over time (P = 0.031). 

In contrast to the wildtype NILs, ANOVA did not identify a significant interaction effect between spatial 

section and Waddington stage in VRT-A2b NILs (P = 0.18). We thus examined the overall expression patterns 

and found that across all three developmental stages VRT-A2b expression differences were significant (P < 

0.0001). These results suggest that the basipetal expression gradient in the spike is maintained in the NILs with 

the T. polonicum VRT-A2b allele. 

 

Misexpression of VRT-A2b in T. polonicum increases rudimentary basal spikelet numbers 

To evaluate if the higher expression of VRT-A2 in basal spikelets affects their development, we examined the 

VRT-A2 NILs (BC4 and BC6) sown as winter crops in four environments. In each field trial, we evaluated the 

number of rudimentary basal spikelets (RBS), that is spikelets which are reduced in size and do not contain 

mature grains (Figure 5A). The number of RBS was significantly increased in NILs carrying the VRT-A2b 

allele in all four environments (P < 0.0001, except Morley 2017 P < 0.01; Figure 5B; Supplemental Table S7). 

The VRT-A2a NILs and the recurrent parent Paragon had on average 1.85 RBS, whereas VRT-A2b NILs 

produced on average 2.91 RBS. A similar difference in RBS between the NILs was observed in glasshouse 

conditions (VRT-A2b effect of +1.6 RBS; Supplemental Table S8; Figure 5C).  
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Figure 5: Phenotypic difference between VRT-A2a (blue) and VRT-A2b (orange) on rudimentary basal spikelet 

numbers (RBS). (A) Mature spikes from the field (left) and dissected basal spikelets at anthesis (right) from 

the glasshouse. Numbers indicate position along the spike starting at the base. Scale bar = 1 cm. (B) Number 

of RBS per spike from 10-ear samples collected in the field at maturity at Morley (2017, 2019 and 2020) and 

Church Farm (CF, 2020). (C) Number of RBS recorded in the glasshouse for the NILs (left panel) and for 

seven critical recombinant lines (R1-R4, R6-R8; see Supplemental Table S8 for graphical genotype of these 

lines from Adamski et al. (2021). (D) RBS per spike recorded for the transgenic lines carrying zero, low (1-5) 

or high (9-35) copy-number insertions of VRT-A2b in cv. Fielder. In B-D, the box represents the middle 50% 

of data with the borders of the box representing the 25th and 75th percentile. The horizontal line in the middle 

of the box represents the median. Whiskers represent the minimum and maximum values, unless a point 

exceeds 1.5 times the interquartile range in which case the whisker represents this value and values beyond 

this are plotted as single points (outliers). P values: o ≤0.1; ** ≤ 0.01; *** ≤ 0.001.  

 

Furthermore, we also recorded the number of RBS in seven homozygous BC6 recombinant lines used to fine-

map VRT-A2b by Adamski et al. (2021). The RBS phenotype was mapped in complete linkage with the 50.3 

kbp interval containing VRT-A2 (Figure 5C; Supplemental Table S8). This genetic and phenotypic data 

suggests that the increase in RBS is a pleiotropic effect of the T. polonicum VRT-A2b allele and supports the 

hypothesis that misexpression of VRT-A2 negatively affects spikelet development in the base of the spike. In 

Paragon, the first (sometimes second) rudimentary basal spikelet fully develops the floral organs of florets one 

and two (e.g. lemma, palea, stamen, and ovary), however these are severely reduced in size and delayed in 

development compared to the florets of central spikelets just before flowering (~Waddington stage 8-10; 

Supplemental Figure S4). At this stage, the further growth and development of these basal florets is stopped 

and in the mature spike only the glumes of RBS are visible. In NILs carrying the VRT-A2b allele the 

development of the most basal spikelet is very similar to the wildtype. However, the second, third and 

sometimes fourth spikelet also display similar signs of reduced development, leading to the larger number of 

rudimentary basal spikelets (Figure 5B, C; Supplemental Figure S4). 

To validate the phenotypic effect of VRT-A2, we analysed transgenic wheat lines transformed with the 

complete genomic T. polonicum VRT-A2b sequence (including the native promoter and the intron 1 re-

arrangement). Transgenic T1 lines were classified based on the transgene copy number which was previously 
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shown by Adamski et al. (2021) to be highly correlated with VRT-A2 expression levels in multiple tissues. We 

phenotyped lines with zero (n = 2 independent events; 5 plants each), low (1-5 transgene copies; n = 4 

independent events; 5 plants each) and high (9-35 transgene copies, n = 2 independent events; 5 plants each) 

transgene copy number. We identified a significant and stepwise increase in the number of RBS with transgenic 

copy number, from 0.8 RBS (zero copy) to 1.6 RBS (low copy; P = 0.078 vs zero copy) and to 4.3 RBS (high 

copy; P < 0.0001 vs zero copy) (Figure 5D; Supplemental Table S9). The low copy number lines had an 

average increase of 0.8 RBS with respect to the zero copy number lines, equivalent to the average difference 

between the VRT-A2a and VRT-A2b NILs in the field (VRT2-A2b effect of +1.1 RBS). The high copy number 

lines produced on average 4.3 RBS, which is higher than the VRT-A2b NILs and similar to the number of RBS 

observed in T. polonicum (3.75 ± 0.62 RBS; n = 16 spikes). The dosage-dependent effects observed in the 

transgenic lines provide further evidence that elevated expression of VRT-A2 leads to increased number of 

rudimentary basal spikelets in polyploid wheat. 

 

DISCUSSION 

 

High-resolution spatial transcriptomics in crops 

Wheat spikes are characterised by their lanceolate shape, which can be first observed during early spike 

meristem development at the glume primordia stage (Bonnett, 1966). We hypothesised that the establishment 

of this shape could be manifested in gene expression differences between the apical, central and basal sections 

of a developing spike, as has been shown using qRT-PCR for individual genes in wheat (AP2; Debernardi 

(2017)) and barley (VRS2, Youssef et al. (2017)). However, currently available transcriptome data (e.g., Li et 

al. (2018) and Feng et al. (2017)) lack the spatial resolution within each individual developmental stage to 

answer this question. This focus on ‘between stage’ comparisons (as opposed to within a single stage) is 

perhaps related to the technical challenges of dissecting and sectioning young meristems. Given the relatively 

small size of these spike meristems (0.2 mm length at Transition Stage; 3 mm length at Terminal Spikelet 

stage), RNA-seq methods require bulking of multiple individuals (usually between 30 and 50 different plants) 

to accumulate enough tissue for a single RNA-seq sample. If one sought to further section each meristem, this 

would require even further bulking. While laborious, this is achievable; however, under this scenario, the 

challenge is to properly stage ~100 plants to an equivalent developmental stage. Furthermore, it can be 

technically challenging to section these young spikes each time into the exact same apical, central and basal 

sections. Consequently, the spatial resolution in gene expression within a wheat spike at individual 

developmental stages has remained largely uncharacterised to date.  

To address this challenge, we adapted the G&T method for micro-scale spatial-transcriptomics workflow 

(Macaulay et al., 2015; Giolai et al., 2019), to conduct RNA-seq of the apical, central and basal sections of 

individual, hand-dissected wheat spikes. This highly-automated workflow requires low tissue input and 

allowed us to combine 24 Nextera libraries into a single Illumina NovaSeq lane. For 19 out of the 24 samples 
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the method worked successfully, determined by >20,000 expressed genes per library and the clustering among 

biological replicates. We found that the number of expressed genes per library was on average similar to the 

number of genes reported for bulked whole spike RNA-seq samples (Feng et al., 2017; Li et al., 2018). This is 

consistent with the fact that the hand-dissected sections are composed of a large mixture of different tissues 

(e.g., rachis, spikelet, and floret primordia) and cell types, which in the equivalent maize ears have distinct 

expression profiles (Xu et al., 2021). Compared to previous bulk RNA-seq studies in developing wheat spikes, 

the variation observed here (measured as CV) was high among biological replicates (Supplemental Figure S2). 

This variation is likely caused by both biological variation (e.g., inherent variation of individual plants) and 

technical variation (e.g. inaccuracies in sectioning and in the developmental staging of the plant/spike) as well 

as the number of replicates in our analysis. A minimum of six replicates has been proposed for bulked RNA-

seq (Schurch et al., 2016). Our results suggest that the RNA-seq from these small sections would benefit from 

a higher number of biological replicates, which should be feasible considering the high-throughput method 

employed for RNA extraction and library preparation, the low tissue input requirement, and the possibility to 

pool multiple biological replicates per sequencing lane. Despite some limitations, we could identify over 5,000 

DEGs between the spatial sections for subsequent functional analysis.   

In addition to G&T-Seq, several other technologies have been proposed for obtaining high resolution 

transcriptional profiles of plant tissues, for example, single cell RNA-seq (McFaline-Figueroa et al., 2020; 

Rich-Griffin et al., 2020), fluorescence-activated cell sorting (FACS), and the isolation of nuclei tagged in 

specific cell types (INTACT). These methods, however, are not spatially resolved as the complete tissue is 

dissolved into single cells for barcoding or selection (Rich-Griffin et al., 2020). Thus, these current 

methodologies do not allow, for example, to investigate whether the cell type composition of spikelets differs 

across the inflorescence. This would only be possible if spikelets were ‘harvested’ individually, for example 

through laser capture microdissection (LCM). Thiel et al. (2021) recently combined LCM followed by RNA-

seq of the distinct lower/leaf ridge and upper/spikelet ridge of barley spikes. This allowed them to identify 

precise spatio-temporal expression patterns of many genes related to architecture and yield in barley spikes 

with unprecedented resolution. Looking ahead, increased resolution of Spatial Transcriptomics (currently 55 

µm; (Giacomello et al., 2017)), which quantifies full transcriptomes while maintaining tissue integrity, offers 

the true prospect of direct localisation and quantification of gene expression. Our results argue strongly for the 

need of these transcriptome-wide and spatially resolved approaches to advance our biological understanding 

of fundamental developmental processes in plants. 

 

Delayed transition of basal spikelets from vegetative to floral developmental programmes 

Early morphological studies of wheat spike development described that the stronger elongation of central 

spikelets during their initial establishment (GP stage) first causes the lanceolate shape of the wheat spike 

(Bonnett, 1966). The continuous formation of primordia at the tip of the spike means that at any given growth 

stage, spikelets in different developmental stages will be present across the spike, up until the Terminal 

Spikelet stage (Bonnett, 1966). In this study, we detected more differentially expressed genes between the 
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three spatial sections of the spike (apical, central and basal) than between the two investigated developmental 

stages (Double Ridge and Glume Primordia). We identified 215 DEGs between the two developmental stages, 

consistent with Li et al. (2018) who identified 206 DEGs between consecutive stages across a time course of 

six inflorescence development stages. Feng et al. (2017) identified 753 DEGs between the Double Ridge and 

Floret Primordia stage, which are further apart in development than the stages used in this study. They also 

detected fewer DEGs when comparing early stages than between more developed spikes. By contrast, we 

identified 1,315 and 2,438 unique genes to be differentially expressed between the apical and basal section at 

DR and GP, respectively. The higher number of DEGs between spatial sections could be due to the 

developmental gradients occurring in the three spatial sections, which are revealed by the spatial sampling. 

These differences would be blurred when comparing whole inflorescences between stages due to the mixture 

of tissue types and spikelets at different developmental stages. A possible improvement for future 

transcriptome studies could be the collection of only central sections of the developing spikes or complete 

spatial sampling as conducted here. 

The composite nature of the inflorescence tissues has been acknowledged by studies in maize (ears and tassels), 

where new meristems are initiated in a step-wise manner. Leiboff and Hake (2019) quantified the meristematic 

tissue composition of maize and sorghum tassels. For example, maize tassels in the second stage are mainly 

composed of spikelet pair meristems, but also contain some meristems in spikelet and inflorescence state. They 

concluded that the changes in these tissue compositions over time correlated well with the independently staged 

transcriptional changes of the tassels. Eveland et al. (2014) showed that the range of developmental ages across 

the maize ear, if acknowledged, can be used as an advantage in RNA-seq studies. They sequenced the tip, 

middle, and basal sections of 10-mm long ears independently, aiming to analyse the expression patterns in 

specific developmental meristem types enriched in these sections (inflorescence, spikelet, and floral 

meristems, respectively). The dissection of the ear therefore allowed them to study gene expression specifically 

for each meristematic tissue type rather than for all meristem types in intact ears. In this study, we observed 

that apically expressed genes are enriched for GO-terms related to “shoot system development” and 

“maintenance of floral organ identity”. This is consistent with the hypothesis that the apical part of the 

inflorescence is younger and undergoing early phases of spikelet development initiation compared to the 

central inflorescence section. 

We detected transcriptional gradients across the spike, with the basal section deviating most strongly from the 

rest of the spike. We noticed that both SVP and CENTRORADIALIS (CEN) genes remained highly expressed 

in the basal section of the spike, whereas their expression was lower in the central and apical sections. In 

contrast, SEP1-4 and SEP1-5 genes were expressed in the opposite gradient and showed the strongest 

expression in apical and central sections of the spike at Glume Primordia stage. Recent studies allow us to 

interpret these gradients in the context of the early steps of vegetative to floral growth transition in wheat (Li 

et al., 2020; Adamski et al., 2021; Liu et al., 2021), rice (Sentoku et al., 2005; Lee et al., 2008), and barley 

(Trevaskis et al., 2007), SVPs have been characterised to be associated with vegetative growth and are 

downregulated upon floral transition. Their overexpression causes floral reversion, glume elongation, and tiller 
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formation instead of spikelet development while the double SVP mutants vrt2svp1 display the formation of 

axillary inflorescences (Li et al., 2020; Adamski et al., 2021; Liu et al., 2021). Similarly, overexpression of 

CEN-D2 (TaTFL1-2D) in wheat extends the duration of the Double Ridge stage (Wang et al., 2017), whereas 

loss-of-function mutations in barley CEN suggest they repress floral development under short-day conditions 

(Bi et al., 2019). Double knockout mutants of the MADS-box SQUAMOSA genes vrn1ful2 highlighted that 

these two genes act as transcriptional repressors of SVP and CEN genes in early wheat spike development (Li 

et al., 2019). Furthermore, through a series of genetic and biochemical studies, Li et al. (2020) showed that the 

downregulation of SVP genes is necessary for the formation of flowering promoting MADS-box protein 

complexes including VRN1, FUL2 and SEP proteins. Hence the coordinated downregulation of SVPs, and 

possibly CEN genes, along with the upregulation of SEP genes is required for normal floral transition and 

spikelet development in wheat.  

Based on our results, the floral developmental programme across the wheat spike appears to be most advanced 

in its apical and central sections, while being delayed in the basal sections. We hypothesise that this is due to 

elevated VRT2 expression at the base of the spike, which hinders the progression of the flowering programme 

via SEP class flowering genes. Likewise, the higher expression levels of the wheat CEN2 and CEN5 homologs 

at the base are consistent with a delay in floral transition that could interfere with the development of the 

spikelet primordia. Therefore, although the basal spikelet primordia are initiated first chronologically, their 

developmental age in terms of the floral programme is delayed with respect to the more recently formed central 

and apical spikelet primordia. This could explain in part why the spikelet primordia in the basal region of the 

spike elongate less and develop slower than central spikelets despite being initiated first (Bonnett, 1966). 

The finding that the expected downregulation of SVPs and CENs does not follow the chronological age of the 

tissues suggests that other gradients across the spike might influence spikelet development. Debernardi et al. 

(2017) showed that in tetraploid wheat AP2-5 and miR172 have consistent and opposing expression gradients 

across the spike at three consecutive developmental stages. The persistent expression gradient of AP2-5 

supports the idea that expression patterns across the spike, beyond the ones caused by age differences of 

spikelets, exist. Furthermore, they proposed a model illustrating that the phenotypic effect of mutants across 

the spike differs due to the existing gradient of expression of this gene across the spike (Debernardi et al., 

2017). Other examples of mutants with different phenotypic effects across an inflorescence include vrn1ful2 

(Li et al., 2019) in wheat, tassel sheath1 (tsh1, (Whipple et al., 2010)) and ramosa2 (ra2, (Bortiri et al., 2006)) 

in maize as well as many noded dwarf1 (mnd1, (Walla et al., 2020)), frizzy panicle (Poursarebani et al., 2015), 

and vrs2 in barley, which was also found to be consistently differentially expressed across the spike (Youssef 

et al., 2016). VRS2 has been shown to maintain a basal to apical expression pattern across three, post awn 

initiation developmental timepoints in barley (Youssef et al., 2016). The study of vrs2 mutants revealed that 

VRS2 is furthermore engaged with the basal-apical patterns of auxin, cytokinin, and gibberellin across the 

spike. While hormonal gradients across the spike in early development have not been studied in great detail in 

wheat, they have been shown to play crucial roles in floral induction and development in Arabidopsis 
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(Reinhardt et al., 2000). Their patterns across the spike should be investigated in future studies addressing 

developmental differences across the spike. 

 

Prolonged expression of VRT-A2 increases rudimentary basal spikelet numbers 

The increased expression of SVPs and CENs at the base of the inflorescence meristem is indicative of a delayed 

transition from vegetative to floral growth, which we hypothesise interferes with early spikelet ridge 

establishment, thus causing the small, rudimentary developed basal spikelets. The genetic and phenotypic 

analysis of the T. polonicum VRT-A2b allele supports this, whereby increased expression of VRT-A2 does 

indeed negatively affect spikelet development in a dosage-dependent manner. This idea is also consistent with 

the development of axillary spikes in vrt2svp1 knockout mutants, demonstrating that the SVP clade genes play 

a role in axillary meristem suppression pre-flowering (Li et al., 2021). Recently, Meir et al. (2021) proposed 

that in shoot apical meristems of tomato, similarly to processes during embryonic development, transient 

programmes are required to inhibit a preceding setup (i.e. vegetative growth), before a new developmental 

program (flowering) can be initiated. We propose that the altered gene expression and development of the 

basal spikelets could be a consequence of their initiation during the transient phase between vegetative and 

floral network shifts and thus being exposed to mixed signals of development. Upon floral transition, the lower 

(leaf) ridge is supressed, while the growth of spikelet ridges from the previously supressed axillary meristems 

is activated. Development of lower ridges subtending all branching events is suppressed in grass inflorescences 

upon flowering transition (Whipple et al., 2010). Li et al. (2019) noticed that this suppression was disrupted in 

the double vrn1ful2 and triple vrn1ful2ful3-null mutants, which fail to down-regulate SVP genes. In these 

mutants, the upper spikelet meristems generate vegetative structures resembling tillers that are subtended by 

bracts or leaves originating from the lower leaf ridge. In contrast, double SVP mutants (vrt2svp1) favour the 

outgrowth of the axillary meristem in internodes (Li et al., 2021). Taken together, these results suggest that 

SVPs play a crucial role in the suppression of upper/axillary meristem development during vegetative growth.  

  

A model for the regulation of leaf and spikelet ridge outgrowth in the base of the spike 

We observed that genes that were highly expressed in the basal section of the inflorescence (cluster 4) have 

previously been shown to be expressed specifically in the lower/bract ridge and before or at vegetative to floral 

transition. This is also supported by the GO-term enrichment of photosynthesis related terms in cluster 4. Our 

tissue sections do not allow us to distinguish lower and upper ridge tissues, however, the two ridges have been 

separately collected and sequenced via LCM in barley (Thiel et al., 2021). In this barley dataset, we found a 

higher expression of HvVRT2 (HORVU7Hr1G036130) and FLOWERING LOCUS C (HvFLC; 

HORVU7Hr1G054320) in the lower ridge compared to the upper ridge, whereas HvSVP1 

(HORVU6Hr1G077300) was also marginally more highly expressed (Supplemental Figure S5). Furthermore, 

the barley MND1 gene (HORVU7Hr1G113480) has recently been shown to be expressed in leaf primordia and 

during the Double Ridge stage in the basal region of the spike in barley (Walla et al., 2021), while it is most 
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highly expressed in the vegetative meristem and lower/leaf ridge in the LCM data (Thiel et al 2021). We 

observed that in our data, the wheat MND1 orthologs (TraesCS7A02G506400, TraesCS7B02G413900, 

TraesCS7D02G494500) were significantly more highly expressed in the basal section than the apical section 

at both DR and GP stage (Supplemental Table S2). The suppressed leaf ridge (or bract) has been proposed to 

act as a signalling centre, regulating the fate of the upper spikelet meristem ridge (Whipple, 2017). Insufficient 

bract suppression during the formation of the basal spikelets might therefore negatively affect initiation and 

development of spikelets.  

At DR, the widest point of the spike is indeed as expected the base and not the central section (Figure 1A). 

The lower ridge is however much less developed in the central section and can be hardly seen in the apical 

ridges. Interestingly, mutants failing to repress the lower ridge growth, such as third outer glume1 (trd1), the 

barley ortholog of maize tsh1, develop large bracts from the lower ridge in basal spikelets, unlike apical 

spikelets, which do not develop bracts from their lower ridges regardless of the absence of TRD. This is 

reminiscent of the gradient in the strength of the phenotypic effects observed from the top to the base of the 

inflorescence in multiple Poaceae mutants (discussed above). We therefore hypothesise that the basal 

meristems develop into smaller spikelets and larger bract primordia due to a slow suppression of “vegetative 

growth signals” (e.g., SVPs) and a concomitant slow upregulation of “floral growth signals” (e.g., SEPs) upon 

floral transition. To investigate how a change from vegetative to floral signalling might affect the development 

of individual meristems, we modelled the genetic interaction of SVPs and SEPs, as proposed by Li et al. (2020), 

in the spatial context of a growing spike. Under the assumptions that SVP supresses SEP expression, SVP 

expression is downregulated upon flowering, and that SEP promotes spikelet outgrowth, the model could 

recapitulate (a) the observed opposing gradients in expression of SVPs and SEPs along the spike, and (b) the 

formation of a lanceolate shaped wheat spike with reduced spikelet elongation and stronger bract growth in 

the most basal spikelets. Thus, whilst this hypothesis will require further investigation and testing, modelling 

supports its plausibility.  
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Materials and Methods 
 

Plant materials 

Hexaploid wheat (Triticum aestivum) germplasm used in this study includes wildtype hexaploid wheat cultivar 

Paragon and P1/VRT2 germplasm described in Adamski et al. (2021) including P1 NILs, recombinants, and 

T1 transgenic lines carrying the T. polonicum VRT-A2b copy under the native promoter. T. polonicum accession 

T1100002 was obtained from the John Innes Centre Germplasm Resources Unit 

(https://www.seedstor.ac.uk/search-infoaccession.php?idPlant=27422). For field experiments, we used 

between two to four sibling BC4/ BC6 NILs differing for the VRT-A2b allele. 

 

Low input RNA sequencing 

Paragon seedlings were grown in a single batch in a controlled environment growth chambers in 24-cell seed 

trays under long-day (16 h light/8 h dark) photoperiods at 300 µmol m–2 s–1, with a day temperature of 20 °C 

and a night temperature of 15 °C. Inflorescences for Double Ridge (DR) stage were collected 18 days after 

sowing, while inflorescences for Glume Primordia (GP) stage were collected 22 days after sowing. All plants 

were grown in “John Innes Cereal Mix” (40% Medium Grade Peat, 40% Sterilized Soil, 20% Horticultural 

Grit, 1.3 kg·m−3 PG Mix 14-16-18 + Te Base Fertiliser, 1 kg·m−3 Osmocote Mini 16-8-11 2 mg + Te 0.02% B, 

Wetting Agent, 3 kg·m−3 Maglime, 300 g·m−3 Exemptor). 

Four individual spikes per developmental stage (DR and GP) were dissected into apical, central, and basal 

sections (1:1:1 ratio) using a stereo microscope (Leica MZ16). Sections were immediately placed into 96-well 

plates (on ice) containing 10 μL of RLT plus (Qiagen, Hilden, Germany). All instruments and surfaces were 

cleaned with 80% ethanol, RNAse-free water and lastly RNAse-out solution after each sample to reduce cross-

contamination and RNA degradation. Samples were stored at -80 °C until cDNA preparation, using the G&T-

seq method as previously described (Macaulay et al., 2015).  cDNA was normalised to 0.2 ng/ μL before 

Nextera (Illumina, San Diego, CA, USA) library preparation using a Mosquito HV liquid handler (STP, 

Royston, UK) in a total reaction volume of 4 μL as described in Mora-Castilla et al. (2016). Libraries were 

pooled by volume and sequenced on a single lane of a NovaSeq 6000 (NVS200S2 flow cell, 100 bp paired-

end reads). 

 

Bioinformatic analysis 

For the RNA-seq analysis, we used the RefSeqv1.0 genome assembly and the RefSeqv1.1 gene annotation 

(https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/; IWGSC et al. (2018)). 

Reads were trimmed and adapters were removed using trim-galore v.0.4.2 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with settings: “--paired --fastqc --a 

GGTATCAACGCAGAGT --clip_R1 20 --clip_R2 20 --trim-n”. Minimum length of reads retained was set to 

50 bp. Reads were aligned to the RefSeqv1.0 genome assembly using HISAT2 v. 2.1.0 
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(https://daehwankimlab.github.io/hisat2/; Kim et al. (2019)) with the following parameters: “--pen-

noncansplice 20 --mp 1,0 --rna-strandness RF”. Alignment files were converted to BAM format, sorted, 

indexed, filtered, and purged of all none-primary alignments (0x100 flag) using samtools (v. 1.9; Li et al. 

(2009)). HTSeq v.0.6.1 (https://htseq.readthedocs.io/en/master/; Anders et al. (2015)) was used to count the 

read numbers mapped to the RefSeqv1.1 gene models. 

HT-read count normalization and differential expression analyses were performed using the DESeq2 v.1.28.1 

R packages (https://bioconductor.org/packages/release/bioc/html/DESeq2.html; Love et al., 2014; RStudio 

1.2.5001). Genes with an average expression below 10 HT-count, and which were not expressed (i.e. ≤ 10 HT 

counts) in at least three libraries, were removed from the analysis. Correlation between expressed genes and 

Waddington stage and/or section was tested by ANOVA.  Raw read data from Li et al. (2017) and Feng et al. 

(2018) were pseudo-aligned using Kallisto Sleuth pipeline 

(https://scilifelab.github.io/courses/rnaseq/labs/kallisto) and the coefficient of variation was calculated for 

each gene (by condition) using R (RStudio 1.2.5001) ddply (plyr 1.8.6). Differentially expressed genes (DEGs) 

between the two Waddington stages (DR and GP) were calculated with the design “~plant + section”, while 

DEGs between the three sections (apical, central, basal) were determined using the design “~section + 

waddington:plant  + waddington”. DEGs among the sections within each Waddington stage were determined 

with the design “~plant + section”. For each gene, an adjusted P-value was computed by DESeq2 (using the 

using the Benjamini and Hochberg method (Benjamini and Hochberg, 1995)), and those with an adjusted P-

value of ≤ 0.05 were considered differentially expressed. DeSeq2 also computed Log2FoldChanges as well as 

the associated uncertainty (lfcSE, see Love et al. (2014) for further detail). The “contrast” function was used 

to determine pairwise comparison P-values. The full set of expression data and comparisons is presented in 

Supplemental Data Set S1. Enrichment of GO-terms was performed using the online tool “PLAZA” 

(https://bioinformatics.psb.ugent.be/plaza; Van Bel et al. (2017)) using the recommended settings, and all 

enriched GO-terms of Biological function (BF) and Cellular Compartment (CC) were retained. In brief, 

PLAZA determines the overrepresentation of a certain GO-term in a gene set compared to the genome-wide 

background frequency (= all expressed genes in this experiment; submitted manually). The significance of 

over- or underrepresentation is determined using the hypergeometric distribution and the Bonferroni method 

is applied to correct for multiple testing. Note that enrichment folds are reported in log2 fold scale. Enrichment 

of TF families (Genes that were annotated as TFs were obtained 

from https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-

Transcriptome-Landscape/data/data_tables/ (Ramirez-Gonzalez et al., 2018)) and MADS-box TFs (based on 

Schilling et al. (2020)) was performed in R using the phyper() function from stats package v.4.0.1 to test for 

Hypergeometric Distribution. All DEGs were scaled and centred using R-base function “scale”. All cluster 

analysis was performed on scaled data using R (stats) functions kmeans and hclust, followed by visualisation 

through pheatmap v.1.0.12 (https://cran.rstudio.com/web/packages/pheatmap/index.html). Correlation to 

centroid cluster shape of each gene expression pattern was calculated using the “cor” function from R stats. 
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Quantitative real-time PCR analysis 

P1 NILs were grown in controlled growth chambers in 24-cell seed trays under the same conditions as used in 

the low input RNA-seq experiment (see above). For each biological replicate, we pooled 30 inflorescences for 

DR stage, 15 for GP stage, and nine for Terminal Spikelet stage (n = 4 biological replicates per stage). 

Inflorescences from NILs were dissected using a stereo microscope (Leica MZ16). Inflorescences were 

dissected into apical, central, basal and peduncle sections (1:1:1:1 ratio). At Double Ridge stage, inflorescences 

were only dissected into apical, basal and peduncle section as the inflorescences were too small to be accurately 

dissected into four sections for all 30 plants per biological replicate. Each section was immediately placed into 

1.5-mL tubes on dry ice and tubes were snap frozen in liquid nitrogen as soon as all plants for the sample were 

collected. Samples were stored at −80°C until needed. Inflorescences were collected within 2-3 hours, 9 hours 

after the lights came on in the growth chamber. Tissue was homogenized in a TissueLyser II (Cat No.: 85300, 

QIAGEN) using 3-mm steel beads (Cat No.: 69997, Qiagen); tubes were shaken for 20-s at 28 Hz with dry 

ice.  

All RNA extractions were performed using the RNeasy Plant Mini Kit (Cat No.: 74904, Qiagen) with RLT 

buffer according to the manufacturer’s protocol followed by RNA ethanol precipitation 

(https://projects.iq.harvard.edu/files/hlalab/files/ethanol-precipitation-of-rna_hla.pdf). DNA digestion was 

performed using the RQ1 RNase-free DNase set (Cat No.: M6101, Promega) according to the manufacturer’s 

protocol. RNA was reverse transcribed using M-MLV reverse transcriptase (Cat No.: 28025013, 

Thermofisher) according to the manufacturer’s protocol. For the qRT-PCR reactions, LightCycler 480 SYBR 

Green I Master Mix (Roche Applied Science, UK) was used according to the manufacturer’s protocol. The 

reactions were run in a LightCycler 480 instrument (Roche Applied Science, UK) under the following 

conditions: 10 min at 95 °C; 40 cycles of 10 sec at 95 °C, 15 sec at 62 °C, 30 sec at 72 °C; dissociation curve 

from 60 °C to 95 °C to confirm primer specificity. All reactions were performed with three technical replicates 

per sample and using TaActin as the reference gene (Uauy et al., 2006). Relative gene expression was 

calculated using the 2−ΔΔCt method (Livak and Schmittgen, 2001) with a common calibrator so that values are 

comparable across genes, tissues, and developmental stages. All primers used in qRT-PCR came from 

Adamski et al., 2021 can be found in Supplemental Table S10. 

All qRT-PCR data was normalised using a log2 transformation. A three-way ANOVA including Waddington 

stage, section, and genotype yielded significant two-way interactions. The differences between sections of the 

genotypes were therefore further analysed individually for each Waddington stage and genotype. For each of 

the two genotypes we individually performed Tukey multiple comparison tests to determine differences 

between the sections within each developmental stage by Tukey multiple comparison test. Differences between 

the two genotypes were also analysed individually for each Waddington stage. Furthermore, the differences 

between the genotypes were investigated individually for each section within the Waddington stage if the 

interaction term was significant (in GP and TS). For all analysis see Supplemental Table S6. 
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Field experiments and phenotyping 

VRT-A2 NILs were evaluated in four field experiments. Three trials were located at The Morley Agricultural 

Foundation trials site, Morley St Botolph, UK (52°33'15.1"N 1°01'59.2"E) in 2017, 2018 and 2020 and one 

trial was sown in 2020 at the John Innes Experimental trials site in Norwich, UK (52°37'50.7"N 1°10'39.7"E). 

In Morley (2017) we analysed two BC4 lines of VRT-A2a and three BC4 lines of VRT-A2b. In Morley (2019) 

we analysed two BC6 and one BC4 line per VRT-A2 allele and in Morley and Church Farm 2020 we analysed 

two BC6 and two BC4 lines for each VRT-A2 allele. All experiments were drilled as yield-scale plots (6 m x 1.2 

m) and sown by grain number for comparable plant densities aiming for 275 seeds m−2. The trials were arranged 

in a randomised complete block design (RCBD) with five replicates per sibling line per location. 

Developmental and plant architecture traits were evaluated throughout the growing period. A 10-ear grab 

sample was collected from each plot pre-harvest for the assessment of rudimentary basal spikelet (RBS) 

numbers and other phenotypes (recorded in Adamski et al. 2021). RBS were defined as spikelets carrying no 

grain at maturity and counted for each spike individually. To determine the differences between 

the P1POL and P1WT NILs, we performed analysis of variance (ANOVA) on the multiple field trials phenotypic 

data. For the analysis of individual trials, we used a two-way ANOVA including Genotype + Block performed 

in R (‘car’ package version 3.0-10; RStudio 1.2.5001).  

 

Glasshouse phenotyping 

We evaluated the BC4 NILs and BC6F3 recombinant lines, as well as T. polonicum accession T1100002, under 

standard glasshouse conditions. 18-20 plants per genotype were grown in 1 L pots containing John Innes Cereal 

Mix under long day conditions (16 h light, 8 h dark). The genotypes of all plants were confirmed using KASP 

marker SP1Pol (Adamski et al., 2021).We counted the number of rudimentary basal spikelets (RBS) for all 

tillers of all biological replicates at maturity. To evaluate the differences in RBS between genotypes, we 

performed a two-way ANOVA analysis and post-hoc multi-pairwise comparisons Sidak test (‘car’ package 

version 3.0-10; RStudio 1.2.5001). 

 

Phenotyping of transgenic lines 

T1 lines from Adamski et al. (2021) differing for the copy number of the VRT-A2b transgenic construct (zero 

= 0 copies; low = 1-5 copies; high = 9-35 copies) were grown in 1 L pots with John Innes Cereal Mix under 

16 h light at 20°C and 8 h dark at 15°C in controlled environment growth chambers. We measured RBS number 

for the main tiller of all plants at maturity. To determine differences in RBS between the three transgenic 

classes, we performed analysis of variance (two-way ANOVA; ‘car’ package version 3.0-10). We performed 

Dunnett tests to compare the low and high copy lines against the zero copy number controls (RStudio 

1.2.5001). 
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Modelling 

The computational model of wheat spike shape formation was developed using the multi-agent programming 

language and modelling environment, Netlogo (Wilensky, 1999).  Gene interactions were modelled as 

previously described (Li et al., 2020). The model can be accessed via the interactive web-version of the 

model (Supplemental File S1).  

In brief, both spikelets and leaves are initiated with rates that depend on the levels of SEP. Leaf initiation rates 

are suppressed by SEP, whereas spikelet initiation requires SEP. The maximum initiation rates are the same 

for both spikelets and leaves but different before (rvegetative) and after (rflowering) flowering. Once initiated, the 

leaves and spikelets grow at a rate defined by the parameters rleaf and rspikelet, respectively. Leaf growth does 

not depend on SVP or SEP levels, whereas spikelets only increase in size every iteration if their SEP level is 

above a given threshold (SEPgrowth_threshold). Expression of both SVP and SEP only occurs at meristem initiation. 

After this, the levels of SVP and SEP cannot increase, although SEP is degraded. SVP is not degraded, solely 

because at this point, nothing is dependent on SVP levels, whilst spikelet growth depends upon SEP levels.  

SVP expression rates start to decrease, once flowering is triggered, according to: 

𝑟𝑆𝑉𝑃(𝑡 + 1) =  𝑟𝑆𝑉𝑃(𝑡)𝑓𝑟𝑒𝑑 

where 𝑟𝑆𝑉𝑃(𝑡) is the rate of SVP expression at that time step, and fred is a rate reduction factor.  

SEP expression depends upon the levels of SVP in the meristem in which the initiation points are located, 

depending on a Hill function (Alon, 2007), 

𝑟𝑆𝐸𝑃(𝑆𝑉𝑃) = 𝑟𝑆𝐸𝑃,𝑚𝑎𝑥 (
𝐾𝐷

𝑛

𝐾𝐷
𝑛+𝑆𝑉𝑃𝑛), 

where 𝑟𝑆𝐸𝑃,𝑚𝑎𝑥  is the maximum rate of SEP expression, KD is the binding constant, and n is the Hill coefficient. 

The resulting curves for SVP and SEP expression are shown in Supplemental Figure S6. 

SVP levels are initiated with the current value of rSVP. SEP levels are initiated using rSEP, and reduce by 

degradation rate, 𝛿𝑆𝐸𝑃, following 

𝑑𝑆𝐸𝑃

𝑑𝑡
= 𝑆𝐸𝑃 ∙ 𝛿𝑆𝐸𝑃 . 

 

Data Availability  

The raw RNA-seq read libraries used in this study are available from NCBI BioProject PRJNA749586.  
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