Research Article

¹ Modulating D1 rather than D2 receptor-expressing spiny-projec-

² tion neurons corresponds to optimal antipsychotic effect

Seongsik Yun, Ben Yang, Madison M. Martin, Nai-Hsing Yeh, Anis Contractor, & Jones G.
Parker

5

6 Abstract

Overactive dopamine transmission in psychosis is predicted to unbalance striatal output via D1-7 and D2-dopamine receptor-expressing spiny-projection neurons (SPNs). Antipsychotic drugs are 8 9 thought to re-balance this output by blocking D2-receptor signaling. Here we imaged D1- and D2-SPN Ca²⁺ dynamics in mice to determine the neural signatures of antipsychotic effect. Ini-10 tially we compared effective (clozapine and haloperidol) antipsychotics to a candidate drug that 11 failed in clinical trials (MP-10). Clozapine and haloperidol normalized hyperdopaminergic D1-12 SPN dynamics, while MP-10 only normalized D2-SPN activity. Clozapine, haloperidol or 13 chemogenetic manipulations of D1-SPNs also normalized sensorimotor gating. Given the sur-14 prising correlation between clinical efficacy and D1-SPN modulation, we evaluated compounds 15 that selectively target D1-SPNs. D1R partial agonism, antagonism, or positive M4 cholinergic 16 17 receptor modulation all normalized the levels of D1-SPN activity, locomotion, and sensorimotor gating. Our results suggest that D1-SPN activity is a more relevant therapeutic target than D2-18 SPN activity for the development of effective antipsychotics. 19

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

20 Main

21	Antipsychotic drugs have been used to manage the symptoms of psychotic disorders for over half
22	a century. Very early on, it was recognized that excess dopamine might contribute to psychosis ¹ ,
23	and that antipsychotic drugs may act on the dopamine system ² . A close association between D2-
24	like dopamine receptor binding and antipsychotic effect bolstered this idea ³ and a dopamine hy-
25	pothesis for psychotic disorders like schizophrenia or the mechanistic basis of the drugs for these
26	disorders ⁴ . Since that time, intense therapeutic development efforts have sought to further fine
27	tune D2-like receptor signaling. These efforts yielded compounds with lower D2 receptor (D2R)
28	binding affinities ⁵ , selectivity for specific D2-like receptors ⁶ , partial agonists that 'stabilize' D2R
29	signaling ⁷ , functionally selective D2R ligands ⁸ , and compounds that target signaling pathways
30	downstream from D2Rs9. Despite these remarkable pharmacological advances, comparatively
31	little progress has been made in terms of the real-world efficacy of antipsychotic treatments.
32	Given this discrepancy, there is an immediate need to understand the effects of these drugs on
33	the function of intact neural circuits that are thought to underlie psychosis.
34	In schizophrenia, increased dopamine transmission is thought to imbalance the rates of
35	activity in the striatum's principal output neurons, the D1R- and D2R-expressing spiny projec-
36	tion neurons (SPNs) ¹⁰ . Specifically, activation of $G\alpha_s$ -coupled D1Rs and $G\alpha_i$ -coupled D2Rs is
37	predicted to increase D1- and decrease D2-SPN activity ¹¹ . D1- and D2-SPNs input to the direct
38	and indirect basal ganglia pathways, respectively, which converge to modulate basal ganglia out-
39	put to the thalamus. In theory, treatments that normalize the activity of either or both SPN types
40	could normalize basal ganglia output. However, the receptor pharmacology of antipsychotic
41	drugs predicts that they preferentially normalize D2-SPN activity. However, whether increased

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

42	dopamine unbalances D1- and D2-SPN activity and whether antipsychotic drugs normalize this
43	imbalance through selective effects on D2-SPNs has never been directly tested in vivo.
44	Using a miniature microscope to image D1- and D2-SPN Ca ²⁺ activity in vivo, we and
45	others showed that D1- and D2-SPNs co-activate in spatially clustered ensembles and scale their
46	levels of activity with locomotor speed in a balanced manner ^{12, 13} . Conditions modeling parkin-
47	sonism and dyskinesia disrupt both the levels and spatially clustered dynamics of D1- and D2-
48	SPN activity ¹² . Importantly, the extent to which mainstay or candidate treatments for Parkinson's
49	disease normalize these dynamics is more predictive real-world efficacy than behavioral
50	measures in an animal model of parkinsonism ¹² . Given the great number of neurological and
51	psychiatric diseases for which striatal dysfunction is implicated ¹⁴⁻²⁰ , the ability to examine how
52	these dynamics are disrupted in other disease states and normalized by their treatments is a pow-
53	erful tool for understanding brain pathophysiology and therapeutic effect.
55	errar toor for understanding orani pathophysiology and therapeatic erreet.
54	In the present study, we recorded D1- and D2-SPN Ca^{2+} activity in the dorsomedial stria-
54	In the present study, we recorded D1- and D2-SPN Ca ²⁺ activity in the dorsomedial stria-
54 55	In the present study, we recorded D1- and D2-SPN Ca ²⁺ activity in the dorsomedial stria- tum (DMS) to determine how antipsychotic drugs modulate their dynamics under normal and hy-
54 55 56	In the present study, we recorded D1- and D2-SPN Ca ²⁺ activity in the dorsomedial stria- tum (DMS) to determine how antipsychotic drugs modulate their dynamics under normal and hy- perdopaminergic conditions. Initially we sought to use this readout to determine whether we
54 55 56 57	In the present study, we recorded D1- and D2-SPN Ca ²⁺ activity in the dorsomedial stria- tum (DMS) to determine how antipsychotic drugs modulate their dynamics under normal and hy- perdopaminergic conditions. Initially we sought to use this readout to determine whether we could distinguish between antipsychotic drugs or drug candidates with varying clinical efficacies
54 55 56 57 58	In the present study, we recorded D1- and D2-SPN Ca ²⁺ activity in the dorsomedial stria- tum (DMS) to determine how antipsychotic drugs modulate their dynamics under normal and hy- perdopaminergic conditions. Initially we sought to use this readout to determine whether we could distinguish between antipsychotic drugs or drug candidates with varying clinical efficacies and side-effect profiles. Specifically, we compared two effective antipsychotics (clozapine and
54 55 56 57 58 59	In the present study, we recorded D1- and D2-SPN Ca ²⁺ activity in the dorsomedial stria- tum (DMS) to determine how antipsychotic drugs modulate their dynamics under normal and hy- perdopaminergic conditions. Initially we sought to use this readout to determine whether we could distinguish between antipsychotic drugs or drug candidates with varying clinical efficacies and side-effect profiles. Specifically, we compared two effective antipsychotics (clozapine and haloperidol) and one ineffective antipsychotic drug candidate (MP-10) ^{9, 21} . Presently, the differ-
54 55 56 57 58 59 60	In the present study, we recorded D1- and D2-SPN Ca^{2+} activity in the dorsomedial stria- tum (DMS) to determine how antipsychotic drugs modulate their dynamics under normal and hy- perdopaminergic conditions. Initially we sought to use this readout to determine whether we could distinguish between antipsychotic drugs or drug candidates with varying clinical efficacies and side-effect profiles. Specifically, we compared two effective antipsychotics (clozapine and haloperidol) and one ineffective antipsychotic drug candidate (MP-10) ^{9, 21} . Presently, the differ- ent efficacies and side-effect propensities of antipsychotic drugs are best understood by their dif-

р. З

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

parkinsonism and dyskinesia. Likewise, clozapine's greater affinity for serotonin receptors may
underlie its superior antipsychotic efficacy.

Although this taxonomical approach is extremely useful, D2 and the other receptors 66 bound by antipsychotic drugs are widely distributed throughout the brain, making it difficult to 67 link a specific drug's receptor interactions to its specific therapeutic profile. MP-10 exemplifies 68 the limitations of linking specific disease symptoms to receptor signaling pathways in this way. 69 MP-10 inhibits PDE10A, a striatally enriched enzyme whose inhibition increases the levels of 70 the second-messenger cAMP in the striatum²³. Because D2R signaling inhibits cAMP produc-71 tion¹¹, MP-10 effectively recapitulates D2R antagonism with specificity for the striatum. Given 72 73 the strong linkage between striatal D2R binding and antipsychotic effect, MP-10 was predicted to be antipsychotic, with possibly fewer of the adverse effects associated with brain-wide D2R 74 antagonism. Although this prediction is logical within a receptor-symptom conceptual frame-75 work, MP-10 had no antipsychotic effect in patients with schizophrenia⁹. 76

77 In terms of behavior, clozapine, haloperidol, and MP-10 all suppressed basal locomotion and attenuated hyperlocomotion following treatment with the dopamine releaser amphetamine. A 78 79 drug's ability to suppress of amphetamine-driven locomotion in rodents is a common indicator of antipsychotic potential. However, not every drug that attenuates amphetamine-driven locomotion 80 also has antipsychotic activity. MP-10 is one of many such examples that underscore the limited 81 predictive value of this assay, particularly when behavior is the primary readout. In terms of neu-82 83 ral activity, we found that amphetamine treatment increased D1- and decreased D2-SPN activity levels, and differentially altered their spatiotemporal dynamics. Despite their similar effects on 84 locomotion, clozapine, haloperidol and MP-10 each had distinct effects on these hyperdopamin-85 86 ergic ensemble dynamics. Surprisingly, the selective normalization of D1-, rather than D2-SPN

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

87	dynamics was associated with clinical antipsychotic effect, and the ineffective drug candidate
88	(MP-10) actually exacerbated amphetamine's effects on D1-SPN activity. Thus, by examining
89	the neural, rather than behavioral correlates of antipsychotic drug effect, we could retrospectively
90	distinguish between three drugs known to have different clinical efficacies.
91	Given the correlation between D1-SPN modulation and clinical antipsychotic effect, we
92	asked whether D1-SPN modulation was sufficient to normalize amphetamine-driven changes in
93	behavior. Chemogenetic inhibition of D1-SPNs in the DMS was sufficient to normalize amphet-
94	amine-driven hyperlocomotion and deficits in sensorimotor gating, another common behavioral
95	measures of antipsychotic drug potential. Next we tested whether compounds targeting receptors
96	enriched in D1-SPNs might be therapeutically active for dopamine-driven psychosis. Three com-
97	pounds targeted to either D1Rs (SKF38393 and SCH23390) or M4 cholinergic receptors
98	(VU0467154) ²⁴ all normalized hyperdopaminergic D1-SPN dynamics and behavioral measures
99	of antipsychotic drug potential.
100	Taken together, our results highlight the power of a neural ensemble imaging approach
101	for distinguishing between treatments for brain diseases like psychosis and for uncovering the
102	mechanistic basis for their efficacy. This approach has uncovered the surprising finding that tar-
103	geting D1-SPNs may provide greater therapeutic benefit than traditional D2R-based antipsy-
104	chotic treatments. This new perspective and its underlying technical advances provide a frame-
105	work for developing novel and potentially more comprehensive treatments for psychosis.
106	

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

107 **Results**

108 D1- and D2-SPN dynamics under normal and hyperdopaminergic condi-

109 tions

110	To record D1- or D2-SPN	activity in vivo.	we used a virus to	conditionally ex	press the fluores-

111 cent Ca²⁺ indicator GCaMP7f in the DMS of $Drd1a^{Cre}$ (D1-Cre) or $Adora2a^{Cre}$ (A2A-Cre) mice,

respectively. We implanted an optical guide tube and microendoscope into the DMS and

mounted the mice with a miniature fluorescence microscope (Fig. 1a and Extended Data Fig.

114 **1a**). This approach allowed us to monitor Ca^{2+} activity in hundreds of individual D1- or D2-

SPNs as mice freely explored an open field arena (Fig. 1b; 233 ± 11 D1-SPNs over 189 imaging

sessions and 161 ± 10 D2-SPNs over 172 sessions; mean \pm s.e.m). D1- and D2-SPNs had similar

117 event rates and similarly increased their levels of activity with locomotor speed (Fig. 1c "Vehi-

118 cle" and **Extended Data Fig. 1b**). Under control conditions, Ca^{2+} event rates were 0.5 ± 0.05

events \cdot min⁻¹ for D1-SPNs and 0.6 ± 0.08 events \cdot min⁻¹ for D2-SPN during periods of rest (loco-

120 motor speed $< 0.5 \text{ cm} \cdot \text{s}^{-1}$). During periods of movement (speed $>= 0.5 \text{ cm} \cdot \text{s}^{-1}$) D1-SPNs had

rates of 1.6 ± 0.07 events min⁻¹ and D2-SPNs had rates of 1.8 ± 0.1 events min⁻¹ (P = 0.5 for rest

and P = 0.2 for movement; N = 11 D1-Cre and 10 A2A-Cre mice; Wilcoxon rank-sum test).

123 Consistent with previous findings, D1- and D2-SPNs both exhibited spatiotemporally coordi-

124 nated patterns of activity, whereby proximal pairs of cells (separated $25-125 \mu m$) had more tem-

porally overlapped Ca^{2+} events than distal cell pairs (**Extended Data Fig. 1c**)¹². In contrast to the

126 overall levels of D1- and D2-SPN activity, this co-activity among proximal cell pairs decreased

127 with increased locomotor speed (Extended Data Fig. 1d). To account for the relationship be-

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

128	tween locomotor speed and these parameters of D1- and D2-SPN activity, we performed all sub-
129	sequent analyses as a function of each mouse's running speed.

130	To determine how the increased striatal dopamine release in diseases such as psychosis,
131	may affect these D1- and D2-SPN ensemble dynamics, we treated mice with amphetamine,
132	which induces an efflux of cytoplasmic dopamine through dopamine transporter ²⁵ . Consistent
133	with excitatory D1R and inhibitory D2R activation, amphetamine treatment (2.5 mg·kg ⁻¹) in-
134	creased D1- and decreased D2-SPN activity levels (Fig. 1c). These effects were dependent on
135	locomotor speed, with greater D1-SPN activation during periods of rest and more D2-SPN sup-
136	pression during movement (Fig. 1c-e). Amphetamine treatment also differentially altered the
137	spatiotemporal dynamics of D1- and D2-SPNs in a speed-dependent manner (Fig. 1f). Ampheta-
138	mine disruption of proximal D1-SPN co-activity and augmentation of proximal D2-SPN co-ac-
139	tivity were most pronounced during periods of rest and movement, respectively (Fig. 1f-h).
140	Taken together, amphetamine treatment diametrically altered the levels and spatiotemporal dy-
141	namics of D1- and D2-SPN ensembles.
142	The neural ensemble correlates of antipsychotic drug efficacy
143	Next we asked whether we could use these dynamics to distinguish between three antipsychotic
144	drugs with different clinical efficacies and side-effect profiles. We compared clozapine, a highly
145	efficacious antipsychotic with few motor side effects, to haloperidol, a moderately efficacious
146	antipsychotic with a high motor side effect propensity, and MP-10, an antipsychotic drug candi-
147	date that recently failed in a clinical trial for schizophrenia ^{26, 27} .

We monitored behavior and recorded D1- or D2-SPN Ca²⁺ activity following treatment
with vehicle or a low/high dose of each drug followed by amphetamine (Fig. 2a). Under normal
conditions, during 15-min before amphetamine treatment, both high and low doses of all three

Yun et al. (2021)

drugs inhibited locomotor activity (Fig. 2b and Extended Data Fig. 2a). Despite their similar
effects on locomotion under normal conditions, the profiles of each drug's effects on D1- and
D2-SPN activity levels differed. Clozapine treatment selectively increased D1-SPN activity,
haloperidol increased both D1- and D2-SPN activity at the higher dose, while MP-10 only increased D2-SPN activity (Fig. 2c, d). By contrast, all three drugs had similarly negligible effects
on the degree of spatiotemporally coordinated D1- and D2-SPN activity at either dose (Extended Data Fig. 3a, b).

Under hyperdopaminergic conditions, both doses of all three drugs diminished ampheta-158 159 mine-driven hyperlocomotion (Fig. 2b and Extended Data Fig. 2a). Despite their comparable 160 effects on behavior, the drugs differentially reversed the altered levels and spatiotemporal dynamics of D1- and D2-SPN activity. Both clozapine and haloperidol normalized the spatiotem-161 162 porally de-correlated D1-SPN hyperactivity after amphetamine, while MP-10 exacerbated D1-SPN hyperactivity and had no effects on proximal D1-SPN co-activity (Fig. 3a, b). By compari-163 son, MP-10 completely normalized the hyper-correlated D2-SPN hypo-activity with ampheta-164 mine, while haloperidol selectively normalized D2-SPN hypoactivity, and clozapine had no ef-165 166 fects on the hyperdopaminergic ensemble dynamics of D2-SPNs (Fig. 3c, d). Taken together, our results show that the two clinically efficacious drugs normalized D1-SPN dynamics, while 167 the inefficacious drug MP-10 only normalized D2-SPN dynamics under hyperdopaminergic con-168 ditions (Fig. 3e). Moreover, the most clinically efficacious drug clozapine exclusively normal-169 170 ized D1-SPN activity.

Given their disparate effects on D1- and D2-SPN activity but equivalent effects on amphetamine-driven locomotion, we next asked whether another behavioral assay might differentiate these three drugs treatment. In addition normalizing amphetamine-driven hyperlocomotion,

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

174	antipsychotic drugs also normalize the disruption of sensorimotor gating as measured in rodents
175	by pre-pulse inhibition (PPI) ²⁸ . We pretreated mice with vehicle or a high dose of each antipsy-
176	chotic drug followed by vehicle or amphetamine and measured PPI (Fig. 3f). Amphetamine
177	treatment disrupted PPI at all pre-pulse intensities, but only clozapine and haloperidol, which re-
178	versed amphetamine's effects on D1-SPN activity, also normalized PPI (Fig. 3g, h).
179	Chemogenetic D1-SPN inhibition normalizes amphetamine-induced loco-
180	motion and PPI deficits
181	Given that clozapine and haloperidol normalized D1-SPN hyperactivity but the clinically inef-
182	fective drug MP-10 did not, we next asked whether modulating D1-SPNs is sufficient to sup-
183	press amphetamine-driven changes in locomotion and PPI (Fig. 2b and Fig. 3g). To do this, we
184	used viruses to express an inhibitory DREADD (DIO-hM4D(Gi)-mCherry) or a control fluoro-
185	phore (DIO-mCherry) in the DMS of D1-Cre mice ²⁹ (Fig. 4a and Extended Data Fig. 4a). The
186	highly selective and brain penetrant DREADD agonist deschloroclozapine ³⁰ (DCZ) suppressed
187	current-induced D1-SPN spiking in brain slices from experimental mice (Extended Data Fig.
188	4b–d). DCZ treatment (10 μ g·kg ⁻¹) also attenuated amphetamine-driven hyperlocomotion and
189	deficits in PPI in experimental, but not control mice (Fig. 4b, c). These effects were less pro-
190	nounced than systemic clozapine or haloperidol treatment, which may reflect the fact that our vi-
191	rus injections were only in the DMS and did not transduce every D1-SPN (Extended Data Fig.
192	4a). These results imply that counteracting the effects of a hyperdopaminergic state by modulat-
193	ing the activity of D1-SPNs is sufficient to modulate these behaviors in a manner that is con-
194	sistent with antipsychotic effect.

195 Therapeutically targeting D1-SPNs normalizes their dynamics and behavior

р. 9

Yun et al. (2021)

196	Given that the selective modulation of hyperdopaminergic D1-SPN dynamics was associated
197	with optimal antipsychotic effect, we investigated other therapeutic strategies for targeting these
198	dynamics. Specifically, we focused on three drugs that we predicted would decrease D1-SPN
199	activity under hyperdopaminergic conditions. (1) VU0467154 is a positive allosteric modulator
200	of inhibitory $G\alpha_i$ -coupled M4 muscarinic acetylcholine receptors (M4-PAM) which are specifi-
201	cally expressed in D1-, but not D2-SPNs ^{24, 31} , (2) SCH23390 is a selective antagonist of excita-
202	tory $G\alpha_s$ -coupled D1Rs, and (3) SKF38393 is a D1R partial agonist that we predicted would se-
203	lectively suppress D1-SPN activity under hyperdopaminergic conditions. We used the same im-
204	aging and drug administration procedures to determine how each of these drugs affects D1- and
205	D2-SPN activity under normal and hyperdopaminergic conditions (Fig. 5a).
206	Under normal conditions, both doses of VU0467154 and SCH23390 decreased, while
207	SKF38393 increased locomotor speed (Fig. 5b and Extended Data Fig. 2b). Despite reducing
208	locomotion, VU0467154 treatment had no effect on the rates of D1- or D2-SPN activity during
209	either rest or movement. By contrast, the high dose of SCH23390 decreased D1- and increased
210	D2-SPN activity, and the higher SKF38393 dose increased activity levels in both SPN types
211	(Fig. 5c, d). Despite the different profiles of their effects on SPN activity levels and locomotion,
212	none of the drugs affected the degree of proximal D1- or D2-SPN activity (Extended Data Fig.

213 **3c**, **d**).

Under hyperdopaminergic conditions, pre-treatment with all three drugs dose-dependently reduced hyperlocomotion (Fig. 5b and Extended Data Fig. 2b). Likewise, all three
compounds normalized D1-SPN hyperactivity following amphetamine treatment, though only
VU0467154 and SCH23390 also normalized the degree of proximal D1-SPN co-activity (Fig.

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

218	6a, b). The low dose of SCH23390 was the only treatment that normalized D2-SPN hypoactiv-
219	ity, and none of the compounds had any effects on the spatiotemporal coordination of activity in
220	D2-SPNs (Fig. 6c, d). In summary, the three compounds had similar effects on amphetamine-
221	driven hyperlocomotion and the levels of D1-SPN activity, but varied in their profile of effects
222	on other D1- and D2-SPN ensemble dynamics (Fig. 6e).
223	Given that D1-SPN suppression was associated with the normalization of PPI under hy-
224	perdopaminergic conditions (Fig. 4c), we predicted that all three of the D1-SPN-targeted com-
225	pounds tested here would normalize amphetamine-driven deficits in PPI. Consistent with this
	Former reserves and the second method and the second second methods and the second sec
226	prediction, pretreating mice with VU0467154, SCH23390, or SKF38393 all prevented the dis-
226 227	
	prediction, pretreating mice with VU0467154, SCH23390, or SKF38393 all prevented the dis-

230 Discussion

For decades we have known that dysfunctional dopamine signaling contributes to psychosis and 231 that the efficacy of antipsychotic drugs depends upon their effects on the dopamine system. 232 233 However, the lack of appropriate tools has hindered our understanding of how dopamine dysfunction and antipsychotic drug treatment affect the function of neural circuits within the dopa-234 mine system. Here we applied advanced Ca²⁺ imaging and analysis approaches to define how an-235 236 tipsychotic drugs affect D1- and D2-SPN dynamics in vivo, under normal and hyperdopaminergic conditions. Monitoring neural ensemble activity allowed us to differentiate between antipsy-237 chotic drugs, even when their effects on mouse behavior were comparable. Further, this approach 238 239 allowed us to retrospectively identify the neural correlates of known antipsychotic drug efficacy.

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

240 Remarkably we found that, despite the longstanding view that antipsychotic drugs work by normalizing D2R signaling and D2-SPN activity, their clinical efficacy was better explained 241 by their ability to normalize D1-SPN activity. This observation led us to explore the therapeutic 242 potential of directly targeting abnormal D1-SPN dynamics. Chemogenetic and directed pharma-243 cological experiments combined with Ca^{2+} imaging confirmed this potential, which has largely 244 been overlooked as a target for therapeutic development. In addition, our imaging results pro-245 duced other unexpected findings that challenge our understanding of how specific dopamine re-246 ceptors modulate intact striatal circuit function. These additional findings also unveiled differ-247 248 ences between each compound with implications for therapeutic development that warrant further consideration. 249

250 Hyperdopaminergic striatal ensemble dynamics

251 Our study provides the first detailed analysis of how amphetamine alters the neural ensemble dy-252 namics of D1- and D2-SPNs. Amphetamine treatment predictably enhanced D1- and suppressed D2-SPN activity levels, consistent with earlier studies reporting heterogeneous effects of am-253 phetamine on unidentified SPN activity levels³². Unexpectedly these effects were dependent on 254 locomotor state. These state-dependent effects may coincide with earlier reports of dose-depend-255 ent amphetamine treatment effects on SPN activity, whereby lower doses increase and higher 256 doses suppress SPN activity levels³³. Given the correlations between amphetamine treatment 257 dose, dopamine transmission levels and locomotor speed, the selective increase in D1-SPN activ-258 ity at lower speeds and decrease in D2-SPN activity at higher speeds may reflect differences in 259 260 striatal dopamine levels at different locomotor states (Fig. 1c–e).

Amphetamine treatment also differentially altered the degree of spatially coordinated D1-

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

262	and D2-SPN co-activity (Fig. 1f-h). We previously observed de-correlated D1-SPN hyperactiv-
263	ity during L-DOPA-induced dyskinesia, which is intriguing given that dyskinesia and disor-
264	ganized behavior also occur in schizophrenia, even in drug-naïve patients ^{12, 34} . These observa-
265	tions suggest that the neural substrates of psychosis and dyskinesia may both result from excess
266	dopaminergic modulation of intrinsic excitability or synaptic strength in D1-SPNs. By contrast,
267	D2-SPNs increased their spatiotemporal coordination following amphetamine treatment. This
268	was a novel signature of striatal network dysfunction that was not observed in our earlier stud-
269	ies ¹² . This heightened co-activation may reflect the diminution of lateral inhibition between D2-
270	SPN cell pairs, possibly via axon-terminal D2R activation ³⁵ . While this neural ensemble signa-
271	ture was unique to this study, the fact that neither haloperidol nor clozapine altered proximal D2-
272	SPN co-activity following amphetamine treatment argues against a causal role of these dynamics
273	in psychosis.

274 The neural ensemble correlates of antipsychotic drug efficacy

We tested two efficacious antipsychotic drugs (clozapine and haloperidol) and one inefficacious 275 276 drug candidate (MP-10). Under hyperdopaminergic conditions, clozapine only affected D1-SPNs, haloperidol affected both SPN types, and MP-10 normalized D2- but exacerbated hy-277 perdopaminergic D1-SPN dynamics (Fig. 3e). Clozapine's superior clinical efficacy and favora-278 ble side-effect profile have long been recognized, but incompletely understood. Clozapine is the 279 280 prototype of the atypical antipsychotic drugs, which are distinguished by their lower D2 and higher 5-HT2 receptor family affinities³⁶. This pharmacological profile is thought to permit anti-281 psychotic effect with a lower level of D2R engagement, precluding the adverse (e.g., motor) ef-282 fects associated with first-generation antipsychotics like haloperidol^{37, 38}. In addition, this unique 283

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

284	pharmacology is thought to underlie clozapine's superior efficacy for psychosis, including its
285	treatment-resistant manifestations ^{39, 40} . This complex pharmacology, including the fact that
286	clozapine binds to D1Rs <i>in vivo</i> ⁴¹ , made it difficult to predict but less of a surprise that clozapine
287	only affected hyperdopaminergic D1-SPN dynamics. Likewise, although haloperidol's greater
288	specificity for D2Rs explains its effects on D2-SPN activity, its normalization of hyperdopamin-
289	ergic D1-SPN dynamics was also surprising. However, D2 and other brain receptors bound by
290	haloperidol are located throughout the cortico-basal ganglia-thalamic circuit, including in local
291	striatal interneurons, which could indirectly contribute to haloperidol's effects on D1-SPN activ-
292	ity ⁴²⁻⁵⁰ .

293 Perhaps even more surprising than clozapine and haloperidol's effects on D1-SPN activ-294 ity was the fact that the clinically non-efficacious drug MP-10 completely normalized hyperdopaminergic D2-SPN dynamics (Fig. 3c, d). At face value, this finding implies that normalizing 295 D2-SPN activity is not sufficient to produce an antipsychotic effect. However, both D1- and D2-296 SPNs express PDE10A, the enzyme inhibited by MP-10⁵¹. Still, previous reports suggest that 297 PDE10A inhibition preferentially affects D2-SPNs^{52, 53}. Consistent with this idea, MP-10 in-298 299 creased D2-, but not D1-SPN activity levels under normal conditions (Fig. 2c, d). However, MP-300 10 treatment exacerbated the D1-SPN hyperactivity observed under hyperdopaminergic condi-301 tions (Fig. 3a). Therefore, one possible explanation for MP-10's lack of antipsychotic effects in 302 patients is that its effects on D1-SPN activity counteracts any of its therapeutic effects on D2-303 SPN dynamics. Future experiments determining whether other effective antipsychotics exclu-304 sively act on D2-SPNs under hyperdopaminergic conditions will be necessary to demonstrate 305 whether solely modulating D2-SPNs is associated with clinical therapeutic effect of D2-SPN

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

306	modulation. Nevertheless, our current results suggest that normalizing D1-SPN dynamics is suf-
307	ficient for antipsychotic effect, and that selectively doing so may be optimal.
308	Therapeutically targeting hyperdopaminergic D1-SPN dynamics
309	Given the apparent link between normalizing D1-SPN dynamics and antipsychotic effect, we
310	next asked whether we could selectively target these dynamics therapeutically. Chemogenet-
311	ically inhibiting D1-SPNs in the DMS was sufficient to normalize amphetamine-driven changes
312	in locomotion and sensorimotor gating. Likewise, three D1-SPN-targeted compounds all normal-
313	ized D1-SPN hyperactivity, locomotion, and sensorimotor gating following amphetamine treat-
314	ment. The first of these compounds was VU0467154, positive allosteric modulator (PAM) of
315	$G_{i/o}$ -coupled M4 cholinergic receptors, which are expressed in D1-, but not D2-SPNs ³¹ .
316	VU0467154 or other M4-PAMs are known to have antipsychotic-like effects on behavior in ani-
317	mal models related to psychosis ^{24, 54, 55} . In our neural ensemble readout of drug efficacy,
318	VU0467154 was the most similar to clozapine, in that it selectively normalized de-correlated D1-
319	SPN hyperactivity following amphetamine treatment, but had no effect on D2-SPNs (Fig. 6e).
320	The second drug we tested, the D1R partial agonist SKF38393, also only affected hyperdopa-
321	minergic D1-SPN activity levels, but in contrast to VU0467154 it failed to normalize the spatio-
322	temporal dynamics of D1-SPN activity. By contrast, the D1R antagonist SCH23390 was most
323	similar to haloperidol, in that it normalized the hyperdopaminergic dynamics of both D1- and
324	D2-SPNs.
325	Over the past decade, much of the focus on D1Rs in schizophrenia has been on augment-
326	ing their signaling to promote cognition ⁵⁶⁻⁵⁹ . This idea is largely based on foundational work

327 showing that, in schizophrenia, dopamine transmission is decreased within the prefrontal cortex,

Yun et al. (2021)

where D1Rs are enriched and their signaling is crucial for cognitive function^{60, 61}. This results in regional imbalance in dopamine signaling between cortex and striatum that poses a challenge to therapeutic development for schizophrenia. For example, attenuating dopamine signaling may be crucial for treating psychosis, but treatments that do so may exacerbate the cognitive symptoms of schizophrenia. Likewise, augmenting dopamine signaling might improve cognition, but our results suggest that doing so, particularly at D1Rs, could also worsen the cardinal symptoms of psychosis.

Dopamine stabilizers, such as the partial D2R agonist aripiprazole, are considered to be a 335 336 possible solution to this problem, by exerting state-dependent effects on dopamine receptor signaling^{62, 63}. Specifically, aripiprazole is thought to act as a D2R agonist under conditions of low 337 dopamine (*i.e.*, in cortex) and antagonist under high dopamine conditions (*i.e.*, striatum). Given 338 339 the importance of cortical D1R signaling for cognition and the association between normal D1-SPN dynamics and antipsychotic effect uncovered here, we reasoned that a D1R partial agonist 340 might better stabilize dopamine signaling across cortex and striatum and in different dopaminer-341 gic states. Consistent with this idea, SKF38393 exhibited dopamine agonist-like effects on D1-342 SPN activity under normal conditions, but suppressed D1-SPN activity following amphetamine 343 344 treatment, similar to the D1R antagonist SCH23390 (Fig. 5c; Fig. 6a).

345 SCH23390 normalized more of the amphetamine-driven changes in D1- and D2-SPN en-346 semble dynamics than the other two D1-SPN-targeted drugs, but exerted clear D1R antagonist 347 effects on D1-SPN activity levels under normal conditions (**Fig. 5c**; **Fig. 6a–c**). Given that an an-348 tagonist is predicted to block D1R signaling at both low/normal as well as high dopamine condi-349 tions, D1R antagonism may have limited utility for treating regional dopamine dysfunction in

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

350	schizophrenia. Consistent with this idea, D1R antagonism does not appear to be an effective ther-
351	apeutic strategy for psychosis ⁶⁴ . By contrast, modulating M4Rs provides a possible approach to
352	stabilize D1R signal transduction in the striatum without specifically counteracting D1R signal-
353	ing under normal or low dopamine conditions. Consistent with this idea, VU0467154 had no ef-
354	fect on D1- or D2-SPN under normal conditions, but completely normalized D1-SPN dynamics
355	following amphetamine treatment (Fig. 5c, d; Fig. 6a, b). Taken together, our results suggest
356	that M4 positive allosteric modulation and possibly D1R partial agonism might provide similar
357	therapeutic effects to clozapine, with the minimal motor side effects and the potential for the re-
358	gional stabilization of brain dopamine function. Intriguingly, D1R agonism is predicted to im-
359	prove cognitive function under hypodopaminergic conditions in the cortex, and an M4-PAM has
360	been shown to have pro-cognitive effects in animal models related to schizophrenia ⁵⁴ .

361 Neural ensemble correlates of adverse drug effects

Although we primarily considered efficacy in terms of each drug's effects under hyperdopamin-362 ergic conditions, each drug's effects on D1- and D2-SPN ensemble dynamics under normal con-363 ditions is another important therapeutic consideration. In schizophrenia patients, fluctuations in 364 striatal dopamine are thought to drive psychotic episodes, and dopamine transmission is normal 365 in patients with stable symptoms⁶⁵. Taking this into consideration, the ideal treatment would 366 minimally affect striatal activity under normal conditions, but block the effects of excess dopa-367 mine transmission during psychotic episodes. Of particular relevance to antipsychotic drugs is 368 their propensity for adverse motor effects, such as parkinsonism. We recently used this approach 369 to characterize the D1- and D2-SPN ensemble correlates of parkinsonism following the chemical 370 lesion of dopamine neurons¹². Specifically, we found that the loss of dopamine decreases D1-371

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

and increases D2-SPN activity levels. Among the drugs tested here, clozapine and VU0467154
were the only ones that did not increase D2-SPN activity levels under normal conditions.
SCH23390 additionally reduced D1-SPN activity under normal conditions, suggesting D1R antagonism may have a particularly high propensity for adverse motor effects (Fig. 3d; Fig. 5c, d).
These parkinsonism-associated dynamics may underlie the different motor side-effect propensities of drugs like haloperidol and clozapine, and help predict the side-effect propensities of other
candidate treatments.

379 Overall, the neural ensemble approach described here is a powerful tool for understanding the mechanisms underlying brain diseases and their effective treatment. We demonstrated the 380 381 utility of this approach for predicting the different efficacies and side-effect propensities of three 382 antipsychotic drugs. Our results suggest that the optimal therapy for psychosis specifically normalizes D1-SPN dynamics under hyperdopaminergic conditions and minimally perturbs D1- and 383 D2-SPN activity under normal conditions. We found that normalizing D1-SPN hyperactivity is 384 385 sufficient to rescue amphetamine-driven disruption of antipsychotic responsive behaviors, and 386 we adjudicate three potential therapeutic strategies for targeting aberrant D1-SPN dynamics. 387 These findings have the potential to inform the development of novel treatments for psychosis 388 with fewer adverse effects and greater overall efficacy.

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

389 Methods

390 Mice

391	All mice were housed and handled according to guidelines approved by the Northwestern Uni-
392	versity Animal Care and Use Committee. We used both male and female mice for all experi-
393	ments. For Ca ²⁺ imaging and DREADD experiments, we used GENSAT Drd1a (FK150) or
394	Adora2a (KG139) BAC transgenic Cre-driver mouse lines from the Mutant Mouse Research &
395	Resource Centers (<u>www.mmrrc.org</u>), backcrossed to a C57BL/6J background (Jax # 000664).
396	For PPI experiments with amphetamine + antipsychotic drug treatment, we used C57BL/6J mice.
397	All mice were 12-24 weeks at the start of experimental testing, with the exception of the mice
398	used for slice electrophysiology, which were aged 7-8 weeks at the time of testing.
399	Virus injections
400	For all surgeries, we anesthetized mice with isoflurane (2% in O ₂) and stereotaxically injected
401	virus at a rate of 250 nL·min ⁻¹ into the DMS using a microsyringe with a 33-gauge beveled tip
402	needle. All anterior-posterior (AP) and medial-lateral (ML) coordinates are reported from
403	bregma, while all dorsal-ventral (DV) coordinates are reported from dura. For all DV coordi-
404	nates, we went 0.5-mm past the injection target, and then withdrew the syringe back to the target
405	for the injection. After each injection, we left the syringe in place for five min, withdrew the sy-
406	ringe 0.1 mm and waited five more min before slowly withdrawing the syringe completely. Fol-
407	lowing virus injection we sutured the scalp, injected analgesic (Buprenorphine SR; 1 mg·kg ⁻¹),
408	and allowed the mice to recover for a week before implanting an optical guide tube.
409	For Ca ²⁺ imaging experiments, we injected 500 nL of AAV2/9-Syn-FLEX-GCaMP7f

410 $(1.6 \times 10^{12} \text{ GC} \cdot \text{mL}^{-1}; \text{ AP: } 0.8 \text{ mm}, \text{ ML: } 1.5 \text{ mm} \text{ and } \text{DV: } -2.7 \text{ mm})$. To transduce a wider range

"The neural correlates of antipsychotic effect"

411	DMS neurons for DREADD behavioral experiments, we injected 650 nL of AAV2/9-hSyn-DIO-
412	hM4Di-mCherry ($5.0 \times 10^{12} \text{ GC} \cdot \text{mL}^{-1}$) or AAV2/9-hSyn-DIO-mCherry ($1.15 \times 10^{12} \text{ GC} \cdot \text{mL}^{-1}$)
413	bilaterally at two sites in each hemisphere (AP: 0.4 mm, ML: ± 1.5 mm and AP: 1.2 mm, ML:
414	± 1.25 , both DV: -2.8 mm). For sparser transduction in our DREADD electrophysiology experi-
415	ments, we injected 650 nL of AAV2/9-hSyn-DIO-hM4Di-mCherry ($1.25 \times 10^{12} \text{ GC} \cdot \text{mL}^{-1}$) bilat-
416	erally at two sites in each hemisphere (AP: 0.4 mm, ML: ± 1.5 mm and AP: 1.2 mm, ML: ± 1.1
417	mm, both DV: -2.5 mm). We obtained all viruses from AddGene.
418	Implant surgeries
419	We constructed optical guide tubes by using ultraviolet (UV) liquid adhesive (Norland #81) and
420	a UV spot curing system (Electro-Lite) to fix a 2-mm-diameter disc of #0 glass (TLC Interna-
421	tional) to the tip of a 3.8-mm-long, 18-gauge, extra-thin stainless steel tube (Ziggy's Tubes and
422	Wires). We ground off any excess glass using a polishing wheel (Ultratec).
423	To prepare mice for Ca ²⁺ imaging, we anesthetized virus-injected mice with isoflurane
424	(2% in O ₂) and a 1.4-mm-diameter drill bit was used to create a craniotomy (AP: 0.8 mm; ML:
425	1.5 mm) for implantation of the optical guide tube. We used a 0.5-mm diameter drill bit to drill
426	four additional small holes at spatially distributed locations for insertion of four anchoring skull
427	screws (Antrin miniature specialties). We aspirated cortex down to DV: -2.1 mm from dura by
428	using a 27-gauge blunt-end needle and implanted the optical guide tube at DV: -2.35 mm from
429	dura. After placing the guide tube, we applied Metabond (C&B Metabond) to the skull, and then
430	used dental acrylic (Coltene) to fix the full assembly along with a stainless steel head-plate (La-
431	ser Alliance) for head-fixing mice during attachment and release of the miniature microscope.
432	We injected analgesic (Buprenorphine SR; 1 mg·kg ⁻¹) and allowed the mice to recover for 3–4
433	weeks before mounting the miniature microscope.

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

434 Miniature microscope mounting

- 435 We head-fixed each guide-tube implanted mouse by its headplate on a running wheel and in-436 serted a gradient refractive index (GRIN) lens (1-mm diameter; 4.12-mm length; 0.46 numerical aperture; 0.45 pitch; Inscopix Inc.) into the optical guide tube. We then assessed GCaMP7f ex-437 pression in the DMS using a commercial two-photon fluorescence microscope (Ultima Investiga-438 439 tor, Bruker). We then anesthetized mice with substantial GCaMP7f expression with isoflurane 440 (2% in O₂), placed them back into the stereotaxic frame, and glued the GRIN lens in the guide 441 tube with UV light curable epoxy (Loctite 4305). Next, we used the stereotaxic manipulator to lower the miniature microscope with its attached base plate (nVistaHD, Inscopix Inc.) toward the 442 443 GRIN lens until the fluorescent tissue came into focus. We then created a structure of blue-light curable resin (Flow-It ALC; Pentron) on the dental acrylic skull cap around the base plate, then 444 attached the structure to the miniature microscope base plate using UV curable epoxy (Loctite 445 446 4305). Finally, we coated the epoxy/resin with black nail polish to make it opaque.
- 447 In vivo pharmacology

448 We administered all drugs via subcutaneous injection ($10 \text{ mL} \cdot \text{kg}^{-1}$ injection volume) on sequen-

tial days at the escalating dosages and order depicted in Fig. 2a and Fig. 5a. All mice received

450 one day off between treatments with the different drugs. We dissolved clozapine (2 or $3.2 \text{ mg} \cdot \text{kg}^{-1}$

451 ¹) and haloperidol (0.1 or 0.32 mg·kg⁻¹) in 0.3% tartaric acid. We dissolved SCH23390 (0.032 or

452 $0.1 \text{ mg} \cdot \text{kg}^{-1}$) and D-Amphetamine hemisulfate (2.5 or 10 mg \cdot \text{kg}^{-1}) in saline (0.9% NaCl). We

453 dissolved MP-10 (1 or 3.2 mg·kg⁻¹) in 5% 2-Hydroxypropyl-β-cyclodextrin in saline,

- 454 VU0467154 (1 or 10 mg·kg⁻¹) in 10% Tween 80, SKF38393 (10 or 100 mg·kg⁻¹) in water, and
- 455 DCZ ($10 \ \mu g \cdot kg^{-1}$) in 2% DMSO. We obtained VU0467154 from the Vanderbilt Center for Neu-
- 456 roscience and Drug Discovery, DCZ from MedChemExpress, and all other drugs from Sigma.

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

457	To examine the effects of vehicle or antipsychotic drugs under normal and hyperdopa-
458	minergic states, we injected each drug or its corresponding vehicle and waited 10 min before re-
459	cording open field behavior $+ Ca^{2+}$ activity for 15 min. We then injected amphetamine (2.5
460	$mg \cdot kg^{-1}$) and waited 10 min before recording behavior + Ca^{2+} activity for 45 min (Fig. 2a and
461	Fig. 5a). For PPI experiments, we administered the higher of the two doses of each drug or their
462	corresponding vehicle 25 min before amphetamine injection ($10 \text{ mg} \cdot \text{kg}^{-1}$) and measured PPI 25
463	min after amphetamine treatment (Fig. 3f and Fig. 6f). For chemogenetic experiments in the
464	open field, we administered DCZ or its vehicle 10 min before recording behavior for 15 min,
465	then administered amphetamine (2.5 $mg \cdot kg^{-1}$) and waited 10 min before recording behavior for
466	45 min. For chemogenetic experiments during PPI, we administered DCZ 25 min before amphet-
467	amine injection (10 mg·kg ⁻¹) and measured PPI 25 min after amphetamine treatment.

468 In vivo Ca²⁺ imaging

We habituated mice to a circular open field arena (30.48-cm diameter) for three days (1 h per 469 day), during which time we also habituated the mice to two subcutaneous injections of saline and 470 one injection of amphetamine (2.5 mg·kg⁻¹). Just before each Ca^{2+} imaging session, we briefly 471 head fixed the mouse by its implanted head plate on a running wheel. We then attached the min-472 iature microscope, adjusted its focal plane, and then released the mouse after securing the micro-473 474 scope. After 20 min habituation in the open field, we injected mice with vehicle or drug, waited 10 min and recorded Ca²⁺ activity for 15 min, then injected amphetamine, waited 10 min, and 475 recorded Ca²⁺ activity for 45 min as described in **Pharmacology** (Fig. 2a and Fig. 5a). We used 476 an illumination power of 50–200 µW at the specimen plane and a 20-Hz image frame-acquisition 477 478 rate.

479 **PPI.** We placed mice into a plexiglass cylinder $(10 \times 20 \times 10 \text{ cm})$ on a platform equipped with a

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

480	piezoelectric transducer inside of a larger, sound-attenuating chamber with 65 dB of continuous
481	background noise (SR-Lab; San Diego Instruments). Mice received 2×30 min habituation ses-
482	sions on two consecutive days. During experimental testing, we treated mice with vehicle, drug,
483	or DCZ + amphetamine (as described in Pharmacology) and placed them into the startle cham-
484	ber. Evaluation of PPI consisted of 5 min acclimation followed by five priming acoustic stimulus
485	pulses (120 dB; 40 ms) then 20 trial blocks of pseudo-randomly presented trials of no-stimulus
486	pulse or pre-pulse (0, 4, 8, or 16 dB above background; 20 ms) 100 ms before the acoustic startle
487	stimulus (120 dB; 40 ms) (Fig. 3f and Fig. 6f). The intertrial interval (ITI) averaged 17 s (range
488	10–25 s). We calculated the levels of PPI at each pre-pulse intensity as 100 - [100 \times (response
489	amplitude for each pre-pulse stimulus with startle stimulus) / (response amplitude for 0 dB pre-
490	pulse with startle stimulus)]. Mean % PPI was calculated by averaging levels of PPI at each pre-
491	pulse intensity level.

492 Histology

493 After all behavioral, Ca^{2+} imaging, and PPI experiments, we euthanized and intracardially per-

494 fused the mice with phosphate buffered saline (PBS) and then a 4% solution of paraformalde-

495 hyde in PBS. We sliced 80-µM-thick coronal sections from the fixed-brain tissue using a vi-

496 bratome (Leica VT1000s). For immunostaining, we used an anti-GFP antibody (1:1000, Invitro-

497 gen, A11122) and a fluorophore-conjugated secondary antibody (1:500, Jackson Immu-

498 noresearch 711-546-152), then mounted the sections with DAPI-containing fluoromount (South-

499 ernBiotech, 0100-20). We imaged slices using a fluorescent microscope (Keyence BZ-X800)

500 with a 10x objective.

501 Slice electrophysiology

502	We anesthetized and transcardially perfused mice with ice-cold, carbogen-saturated cutting solu-
503	tion (185 mM sucrose, 2.5 mM KCl, 25 mM NaHCO ₃ , 1.25 mM NaH ₂ PO ₄ , 0.5 mM CaCl ₂ , 10
504	mM MgCl ₂ , and 25 mM glucose, pH 7.3 [315–320 mOsm·L ⁻¹]). Following perfusion, we decapi-
505	tated the mice, rapidly removed the brain and sectioned it in an ice-cold carbogen-saturated cut-
506	ting solution using a vibratome (VT1000S, Leica Microsystems). We then incubated coronal
507	slices (220 μ m) in carbogen-saturated artificial cerebrospinal fluid (ACSF) containing 93 mM
508	NMDG, 93 mM HCl, 2.5 mM KCl, 30 mM NaHCO ₃ , 1.2 mM NaH ₂ PO ₄ , 20 mM HEPES, 5 mM
509	Na-ascorbate, 3 mM Na-pyruvate, 2 mM thiourea, 0.5 mM CaCl ₂ , 10 mM MgSO ₄ , and 25 mM
510	glucose, pH 7.3 (315–320 mOsm·L ⁻¹) at 32–34°C for 10 min, then in carbogen-saturated ACSF
511	containing 125 mM NaCl, 2.5 mM KCl, 25 mM NaHCO ₃ , 1.25 mM NaH2PO ₄ , 2 mM CaCl ₂ , 1
512	mM MgCl ₂ , and 25 mM glucose, pH 7.3 (315–320 mOsm L^{-1}) at room temperature for at least 1
513	hr before electrophysiological recordings. We transferred the brain slices to a small-volume (<
514	0.5 ml) recording chamber mounted on a fixed-stage, upright microscope. We performed all
515	electrophysiological recordings at 32-34°C. The chamber was superfused with carbogen-satu-
516	rated ACSF (SH-27B with TC-324B controller, Warner Instruments). We performed conven-
517	tional whole-cell patch-clamp recordings on visually identified (60 X, 0.9 NA water-immersion
518	objective) D1-SPNs expressing mCherry. Recording electrodes had tip resistances of 3-8 $M\Omega$
519	when filled with internal recording solution containing (in mM): 125 KMeSO4, 5 KCl, 5 NaCl,
520	0.02 EGTA, 11 HEPES, 1 MgCl, 10 phosphocreatine-Na2, 4 Mg-ATP, 0.3 Na-GTP, adjusted to
521	pH 7.2, 300 mOsm·L ⁻¹ . We made all recordings using MultiClamp 700B amplifiers and filtered
522	all signals at 2 kHz and digitized at 10 kHz. We discarded data if the input resistance changed
523	>20% over the time course of the experiment. For drug treatment, we perfused vehicle (0.2%)
524	DMSO), DCZ (100 nM or 1 μ M) or 10 μ M of clozapine-N-oxide (CNO) for 1 mL·min ⁻¹ .

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

525 Behavioral tracking

526 We used a TTL-triggered video camera with IC Capture 2.4 software (The Imaging Source) with

- 527 a varifocal lens (T3Z2910CS; Computar) to record 20-Hz videos of freely moving mouse behav-
- 528 ior. We used software written in ImageJ and part of the CIAtah analysis suite (https://ba-
- 529 <u>hanonu.github.io/ciatah/</u>) to track each mouse's position in an open field arena. Briefly, we used
- this software to identify the mean location of the largest, and darkest contiguous pixel group (*i.e.*,
- the mouse) in each movie frame, then computed the mouse's locomotor speed from the trajectory
- of its centroid location across movie frames. We then applied a 1-s median filter to the resulting
- speed trace and down-sampled the trace by a factor of 4 to match the temporal resolution of our

534 5-Hz Ca²⁺ recordings. We classified each 5-Hz time bin of the speed trace as one in which the

mouse was either 'resting' or 'moving', according to whether its instantaneous speed was below

or above 0.5 cm \cdot s⁻¹, respectively. If the mouse was 'moving' in two time bins separated by <1 s,

537 we classified the intervening time bins as ones in which the mouse was 'moving'.

538 Ca²⁺ movie pre-processing

We used the CIAtah analysis suite to 1) down-sample the acquired Ca²⁺ movies in space using 2 × 2 bi-linear interpolation, 2) reduce background fluorescence by applying a Gaussian low-pass spatial filter to each movie frame and dividing each frame by its low-pass filtered version, 3) motion correct using the TurboReg algorithm, 4) normalize each movie by subtracting the mean fluorescence value for each pixel in time and dividing each pixel by the same mean fluorescence $[(F(t) - F_0)/F_0]$, and 5) temporally down-sample the resulting $\Delta F/F$ movies by a factor of 4 using linear interpolation to a frame rate of 5 Hz.

546 Active neuron identification

Yun et al. (2021)

547	We used Constrained Nonnegative Matrix Factorization for microendoscopic data (CNMF-E) ⁶⁶
548	to extract putative neurons from the processed $\Delta F/F$ movies. We then visually inspected and
549	manually classified candidate cells in 12% of the Ca ²⁺ imaging sessions (42 of 361 total imaging
550	sessions) based on their size, shape, and Ca ²⁺ activity trace. We then used these manually sorted
551	data to train a machine-learning based classifier (using the CLEAN module in CIAtah) for auto-
552	mated sorting of the entire data set. This automated classifier categorized candidate cells based
553	on the evaluation of 21 features of the CNMF-E spatial filters, their Ca ²⁺ activity traces, and the
554	$\Delta F/F$ movies. Parameters included: the 1) diameter 2) area and 3) perimeter of the cellular filter;
555	(4) proportion of the pixels in the convex hull that were also in the spatial filter; the (5) skewness
556	and (6) kurtosis of the statistical distribution of intensity values in the spatial filter; (7) mean
557	value of the signal-to-noise ratio (SNR), averaged over all Ca ²⁺ transients within the candidate
558	cell; number of Ca^{2+} transients greater than (8) 1, (9) 3, and (10) 5 times the s.d. of the noise fluc-
559	tuations within the candidate cells; (11) mean ratio of the peak rise and decay slopes of the Ca^{2+}
560	transients; (12) mean full-width half max value of the Ca^{2+} transients; (13) mean amplitude of the
561	Ca^{2+} transients; the (14) skewness and (15) kurtosis of the statistical distribution of intensity val-
562	ues of the full Ca ²⁺ activity trace for each candidate cell; (16) mean amplitude variance at each
563	time point in a 16-s-window around each Ca ²⁺ transient waveform; (17) mean correlation coeffi-
564	cient of all Ca ²⁺ transient waveforms; (18) the mean correlation coefficient between the CNMF-E
565	image and, at most, 10 images taken from frames temporally aligned to Ca ²⁺ event transients in
566	the movie and cropped to a 20×20 pixel region centered on the CNMF-E image centroid; (19)
567	the same as (18) but using a binarized image (all pixels below 40% of the maximum value set to
568	zero, all above set to one); (20) the same as (18) but using only the maximum correlation coeffi-
569	cient from all CNMF-E-movie frame image comparisons; and (21) the same as (19) but using

Yun et al. (2021)

only the maximum correlation coefficient from all CNMF-E movie frame image comparisons.
After computing these parameters for every candidate cell identified by CNMF-E, we used
MATLAB's *Statistics and Machine Learning* and *Deep Learning* software toolboxes to train
support vector machine (SVM), general linear model (GLM), and neural network (nnet) classifiers
ers to automatically classify neurons in our data set.

575 Ca²⁺ event detection

After extracting all individual cells and their time traces of Ca^{2+} activity, we evaluated the indi-576 vidual Ca²⁺ events in each cell's time trace using a threshold-crossing algorithm⁶⁷. Noise and re-577 duced fluctuations in baseline fluorescence were removed by averaging over a 600 ms (3 frame) 578 sliding window, then subtracting a median-filtered version (40 s sliding window) of the trace 579 from the smoothed version. We calculated the standard deviation (s.d.) of the resulting trace and 580 identified any peaks that were ≥2.5 s.d. above baseline noise while enforcing a minimum inter-581 event time of >1.6 s. We determined the initiation time of each Ca²⁺ event as the temporal mid-582 point between the time of each event's fluorescence peak and the most recent preceding trough 583 in fluorescence. All subsequent data analyses of neural activity used the resulting 5-Hz binarized 584 event trains in which a '1' indicated the initiation of a Ca^{2+} event. To generate the illustrative 585 Ca²⁺ activity traces in **Fig. 1b**, for each example cell we set to zero all pixels of the cell's spatial 586 filter with weights <50% of the maximum value in the filter, and then applied the truncated filter 587 to the $\Delta F/F$ movie to generate a Ca²⁺ activity trace. 588

589 Analysis of pairwise cell co-activity

590 To identify correlated Ca^{2+} activity within each frame, we evaluated the fraction of all Ca^{2+}

events in the two cells in each frame. This fraction is equivalent to a Jaccard index, J, of the two

Yun et al. (2021)

cells' correlated activity ($J = |T_1 \cap T_2| / |T_1 \cup T_2|$), where T_1 and T_2 are the binarized rasters of 592 Ca²⁺ events for the two cells¹². We plotted for all cell pairs the Jaccard index as a function of an-593 atomical separation between the two cells' centroids. To control for any effects of time-varying 594 Ca²⁺ event rates on the Jaccard indices, we also computed the Jaccard indices for datasets in 595 which the binarized Ca^{2+} event trace for each cell was circularly permuted in time by a randomly 596 chosen temporal displacement. We did this for 1000 different randomly permutated datasets. We 597 then normalized the Jaccard index values in the real data by those obtained from the shuffled da-598 tasets. We defined 'proximal cell co-activity' as the mean Jaccard index for cell pairs within 25-599 600 125 µm, normalized by the corresponding value of the shuffled datasets (Extended Data Fig. 1c). To examine the relationship between proximal cell co-activity and locomotor speed, we sub-601 divided the shuffle-normalized proximal jaccard indices into bins corresponding to locomotor 602 speeds ranging from 0.5–14 cm·s⁻¹. The bin sizes ranged from 0.5 cm·s⁻¹ bins at lowest speeds to 603 $6 \text{ cm} \cdot \text{s}^{-1}$ bins at highest speeds, for which the statistical sampling was sparse (Fig. 1f; Extended 604 605 **Data Fig. 1d**). To compare drug effects to vehicle, we normalized the values in each speed bin to the corresponding values following vehicle or vehicle + amphetamine treatment, then averaged 606 the speed bins during periods of rest and movement (locomotor speeds < 0.5 cm·s⁻¹ and >= 0.5607 cm·s⁻¹, respectively; Fig. 1h; Fig. 3b, d; Fig. 6b, d; Extended Data Fig. 3a–d). 608

609 Analysis of event rates

We used the binarized Ca²⁺ event traces of each cell's activity to compute each cell's Ca²⁺ event rate as a function of locomotor speed using the same speed bins described above (**Fig. 1c**; **Extended Data Fig. 1b**). As with the proximal cell co-activity, we normalized the values in each speed bin to the corresponding values following vehicle or vehicle + amphetamine treatment, then averaged the speed bins during periods of rest and movement (**Fig. 1e**; **Fig. 2c**, **d**; **Fig. 3a**, **c**;

"The neural correlates of antipsychotic effect"

615 **Fig. 5c**, **d**; **Fig. 6a**, **c**).

616 Data analysis and statistical tests

- 617 We performed data analysis using custom software written in MATLAB and ImageJ. We used
- 618 Prism (GraphPad) to perform statistical tests. We used two-tailed, non-parametric statistical tests
- to avoid assumptions of normal distributions and equal variance across groups. For paired tests,
- 620 we used Wilcoxon signed-rank tests or one-way repeated measures ANOVA. For drug \times dose
- 621 comparisons, we used two-way repeated measures ANOVA. In some cases, individual doses
- 622 were missing due to errors in the recording on those days. In those cases, we used a mixed ef-
- 623 fects model to evaluate drug × dose comparisons. For post hoc tests, we used a Holm-Sidak cor-
- 624 rection for multiple comparisons. *P* and *N*-values for the statistical tests are provided in Supple-
- 625 mentary Table 1.

626 Data availability

- 627 The software code used to process our Ca^{2+} movies are freely available (<u>https://ba-</u>
- 628 <u>hanonu.github.io/ciatah/</u>). The data and any custom scripts that support our findings are available
- 629 upon request to the corresponding author.

630 Acknowledgements

- 631 We thank Dr. Biafra Ahanonu for his assistance in data processing and Dr. P. Jeffrey Conn for
- 632 providing VU0467154.

633 Author information

- 634 Affiliations
- **Department of Neuroscience, Northwestern University, Chicago IL 60611**

"The neural correlates of antipsychotic effect"

636 Seongsik Yun, Ben Yang, Madison M. Martin, Nai-Hsing Yeh, Anis Contractor, & Jones G. Par-637 ker

638 Contributions

- 639 S.Y. performed all imaging, behavior experiments, and histological experiments. B.Y. performed
- 640 surgeries and assisted with imaging experiments. M.M.M. performed mouse surgeries and over-
- saw mouse breeding. N-H.Y. & A.C. conducted electrophysiology experiments. S.Y. and J.G.P.
- 642 designed all experiments, performed all data analysis, and wrote the manuscript with input from
- 643 the co-authors.
- 644 Corresponding author
- 645 Correspondence to Jones G. Parker (jones.parker@northwestern.edu)

646 Ethics declarations

- 647 The authors declare no competing interests.
- 648

649 **References**

Snyder, S.H., Banerjee, S.P., Yamamura, H.I. & Greenberg, D. Drugs, neurotransmitters, and
 schizophrenia. *Science* 184, 1243-1253 (1974).
 Carlsson, A. & Lindqvist, M. EFFECT OF CHLORPROMAZINE OR HALOPERIDOL ON FORMATION

653 OF 3METHOXYTYRAMINE AND NORMETANEPHRINE IN MOUSE BRAIN. *Acta Pharmacol. Toxicol.* 654 (*Copenh.*) **20**, 140-144 (1963).

- 655 3. Creese, I., Burt, D.R. & Snyder, S.H. Dopamine receptor binding predicts clinical and
- 656 pharmacological potencies of antischizophrenic drugs. *Science* **192**, 481-483 (1976).
- Matthysse, S. Dopamine and the pharmacology of schizophrenia: the state of the evidence. *J. Psychiatr. Res.* 11, 107-113 (1974).
- Meltzer, H.Y., Matsubara, S. & Lee, J.C. Classification of typical and atypical antipsychotic drugs
 on the basis of dopamine D-1, D-2 and serotonin2 pKi values. *J Pharmacol Exp Ther* 251, 238-246 (1989).
- 661 6. Kramer, M.S., Last, B., Getson, A. & Reines, S.A. The effects of a selective D4 dopamine receptor
- antagonist (L-745,870) in acutely psychotic inpatients with schizophrenia. D4 Dopamine Antagonist
 Group. Arch. Gen. Psychiatry 54, 567-572 (1997).

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

664 7. Davies, M.A., Sheffler, D.J. & Roth, B.L. Aripiprazole: a novel atypical antipsychotic drug with a 665 uniquely robust pharmacology. CNS drug reviews 10, 317-336 (2004). 666 Allen, J.A., et al. Discovery of beta-arrestin-biased dopamine D2 ligands for probing signal 8. 667 transduction pathways essential for antipsychotic efficacy. Proc. Natl. Acad. Sci. U. S. A. 108, 18488-668 18493 (2011). 669 9. Menniti, F.S., Chappie, T.A. & Schmidt, C.J. PDE10A Inhibitors-Clinical Failure or Window Into 670 Antipsychotic Drug Action? Front. Neurosci. 14, 600178 (2020). 671 McCutcheon, R.A., Abi-Dargham, A. & Howes, O.D. Schizophrenia, Dopamine and the Striatum: 10. 672 From Biology to Symptoms. Trends Neurosci. 42, 205-220 (2019). 673 Missale, C., Nash, S.R., Robinson, S.W., Jaber, M. & Caron, M.G. Dopamine receptors: from 11. 674 structure to function. Physiol Rev 78, 189-225 (1998). 675 Parker, J.G., et al. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. 12. 676 Nature 557, 177-182 (2018). 677 13. Klaus, A., et al. The Spatiotemporal Organization of the Striatum Encodes Action Space. Neuron 678 96, 949 (2017). Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of basal ganglia disorders. *Trends* 679 14. 680 Neurosci. 12, 366-375 (1989). 681 15. DeLong, M.R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 682 13, 281-285 (1990). 683 Jenner, P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat. Rev. Neurosci. 9, 665-677 16. (2008). 684 685 17. Lobo, M.K., et al. Cell Type–Specific Loss of BDNF Signaling Mimics Optogenetic Control of 686 Cocaine Reward. Science 330, 385-390 (2010). 687 Schwartz, N., et al. Chronic pain. Decreased motivation during chronic pain requires long-term 18. 688 depression in the nucleus accumbens. Science 345, 535-542 (2014). 689 19. Francis, T.C., et al. Nucleus accumbens medium spiny neuron subtypes mediate depression-690 related outcomes to social defeat stress. Biol. Psychiatry 77, 212-222 (2015). 691 Moore, H., West, A.R. & Grace, A.A. The regulation of forebrain dopamine transmission: 20. 692 relevance to the pathophysiology and psychopathology of schizophrenia. Biol. Psychiatry 46, 40-55. 693 21. Huhn, M., et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute 694 treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. 695 The Lancet 394, 939-951 (2019). 696 Roth, B.L., Sheffler, D.J. & Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-22. 697 selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3, 353-359 (2004). 698 23. Schmidt, C.J., et al. Preclinical Characterization of Selective Phosphodiesterase 10A Inhibitors: A 699 New Therapeutic Approach to the Treatment of Schizophrenia. Journal of Pharmacology and 700 Experimental Therapeutics 325, 681-690 (2008). 701 24. Foster, D.J., et al. Antipsychotic-like Effects of M4 Positive Allosteric Modulators Are Mediated 702 by CB2 Receptor-Dependent Inhibition of Dopamine Release. Neuron 91, 1244-1252 (2016). 703 Kahlig, K.M., et al. Amphetamine induces dopamine efflux through a dopamine transporter 25. 704 channel. Proc. Natl. Acad. Sci. U. S. A. 102, 3495-3500 (2005). 705 26. DeMartinis, N., 3rd, et al. A Proof-of-Concept Study Evaluating the Phosphodiesterase 10A 706 Inhibitor PF-02545920 in the Adjunctive Treatment of Suboptimally Controlled Symptoms of 707 Schizophrenia. J. Clin. Psychopharmacol. 39, 318-328 (2019). 708 27. Menniti, F.S., Chappie, T.A. & Schmidt, C.J. PDE10A Inhibitors—Clinical Failure or Window Into 709 Antipsychotic Drug Action? Front. Neurosci. 14 (2021).

Yun et al. (2021)

710 28. Geyer, M.A., Krebs-Thomson, K., Braff, D.L. & Swerdlow, N.R. Pharmacological studies of 711 prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. 712 *Psychopharmacology (Berl.)* **156**, 117-154 (2001). 713 29. Roth, B.L. DREADDs for Neuroscientists. Neuron 89, 683-694 (2016). 714 30. Nagai, Y., et al. Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid 715 neuronal and behavioral modulations in mice and monkeys. Nat. Neurosci. 23, 1157-1167 (2020). 716 Ince, E., Ciliax, B.J. & Levey, A.I. Differential expression of D1 and D2 dopamine and m4 31. 717 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27, 357-366 718 (1997). 719 32. Wiltschko, A.B., Pettibone, J.R. & Berke, J.D. Opposite effects of stimulant and antipsychotic 720 drugs on striatal fast-spiking interneurons. Neuropsychopharmacology 35, 1261-1270 (2010). 721 33. Rebec, G.V., White, I.M. & Puotz, J.K. Responses of neurons in dorsal striatum during 722 amphetamine-induced focused stereotypy. Psychopharmacology (Berl.) 130, 343-351 (1997). 723 34. Fenton, W.S. Prevalence of spontaneous dyskinesia in schizophrenia. J. Clin. Psychiatry 61 Suppl 724 4, 10-14 (2000). 725 Dobbs, L.K., et al. Dopamine Regulation of Lateral Inhibition between Striatal Neurons Gates the 35. 726 Stimulant Actions of Cocaine. Neuron 90, 1100-1113 (2016). Meltzer, H.Y. Update on typical and atypical antipsychotic drugs. Annu. Rev. Med. 64, 393-406 727 36. 728 (2013). 729 Kapur, S., Zipursky, R., Jones, C., Remington, G. & Houle, S. Relationship between dopamine D(2) 37. 730 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. 731 Am. J. Psychiatry 157, 514-520 (2000). 732 38. Kapur, S., Zipursky, R.B. & Remington, G. Clinical and theoretical implications of 5-HT2 and D2 733 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am. J. Psychiatry 156, 734 286-293 (1999). 735 39. Kane, J., Honigfeld, G., Singer, J. & Meltzer, H. Clozapine for the treatment-resistant 736 schizophrenic. A double-blind comparison with chlorpromazine. Arch. Gen. Psychiatry 45, 789-796 737 (1988). 738 40. Hagger, C., et al. Improvement in cognitive functions and psychiatric symptoms in treatment-739 refractory schizophrenic patients receiving clozapine. Biol. Psychiatry 34, 702-712 (1993). 740 Tauscher, J., et al. Equivalent occupancy of dopamine D1 and D2 receptors with clozapine: 41. 741 differentiation from other atypical antipsychotics. Am. J. Psychiatry 161, 1620-1625 (2004). 742 42. Li, P., Snyder, G.L. & Vanover, K.E. Dopamine Targeting Drugs for the Treatment of 743 Schizophrenia: Past, Present and Future. Curr. Top. Med. Chem. 16, 3385-3403 (2016). 744 43. Yan, Z., Song, W.J. & Surmeier, J. D2 dopamine receptors reduce N-type Ca2+ currents in rat 745 neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive 746 pathway. J. Neurophysiol. 77, 1003-1015 (1997). Straub, C., Tritsch, N.X., Hagan, N.A., Gu, C. & Sabatini, B.L. Multiphasic modulation of 747 44. 748 cholinergic interneurons by nigrostriatal afferents. J Neurosci 34, 8557-8569 (2014). 749 Centonze, D., et al. Receptor subtypes involved in the presynaptic and postsynaptic actions of 45. 750 dopamine on striatal interneurons. J Neurosci 23, 6245-6254 (2003). 751 46. Lacey, M.G., Mercuri, N.B. & North, R.A. Dopamine acts on D2 receptors to increase potassium 752 conductance in neurones of the rat substantia nigra zona compacta. J. Physiol. 392, 397-416 (1987). 753 47. Bamford, N.S., et al. Heterosynaptic dopamine neurotransmission selects sets of corticostriatal 754 terminals. Neuron 42, 653-663 (2004). 755 Hersch, S.M., et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in 48. 756 the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 15, 757 5222-5237 (1995).

"The neural correlates of antipsychotic effect"

758 49. Bevan, M.D., Booth Pa Fau - Eaton, S.A., Eaton Sa Fau - Bolam, J.P. & Bolam, J.P. Selective 759 innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. (1998). 760 50. Hoover, B.R. & Marshall, J.F. Molecular, chemical, and anatomical characterization of globus 761 pallidus dopamine D2 receptor mRNA-containing neurons. Synapse 52, 100-113 (2004). 762 Seeger, T.F., et al. Immunohistochemical localization of PDE10A in the rat brain. Brain Res. 985, 51. 763 113-126 (2003). 764 52. Polito, M., et al. Selective Effects of PDE10A Inhibitors on Striatopallidal Neurons Require 765 Phosphatase Inhibition by DARPP-32. eNeuro 2 (2015). Wilson, J.M., et al. Phosphodiesterase 10A inhibitor, MP-10 (PF-2545920), produces greater 766 53. 767 induction of c-Fos in dopamine D2 neurons than in D1 neurons in the neostriatum. *Neuropharmacology* 768 99, 379-386 (2015). 769 Bubser, M., et al. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-54. 770 801-induced behavioral impairments and enhances associative learning in rodents. ACS Chem Neurosci 771 5, 920-942 (2014). 772 Byun, N.E., et al. Antipsychotic drug-like effects of the selective M4 muscarinic acetylcholine 55. 773 receptor positive allosteric modulator VU0152100. Neuropsychopharmacology 39, 1578-1593 (2014). 774 Arnsten, A.F., Girgis, R.R., Gray, D.L. & Mailman, R.B. Novel Dopamine Therapeutics for Cognitive 56. 775 Deficits in Schizophrenia. Biol. Psychiatry 81, 67-77 (2017). 776 Kozak, R., et al. Characterization of PF-6142, a Novel, Non-Catecholamine Dopamine Receptor 57. 777 D1 Agonist, in Murine and Nonhuman Primate Models of Dopaminergic Activation. Front. Pharmacol. 778 11, 1005 (2020). 779 Svensson, K.A., Hao, J. & Bruns, R.F. Positive allosteric modulators of the dopamine D1 receptor: 58. 780 A new mechanism for the treatment of neuropsychiatric disorders. Adv. Pharmacol. 86, 273-305 (2019). 781 59. Desai, A., et al. Phase 1 randomized study on the safety, tolerability, and pharmacodynamic 782 cognitive and electrophysiological effects of a dopamine D1 receptor positive allosteric modulator in 783 patients with schizophrenia. *Neuropsychopharmacology* **46**, 1145-1151 (2021). 784 60. Williams, G.V. & Goldman-Rakic, P.S. Modulation of memory fields by dopamine D1 receptors in 785 prefrontal cortex. Nature 376, 572-575 (1995). 786 Weinstein, J.J., et al. Pathway-Specific Dopamine Abnormalities in Schizophrenia. Biol. Psychiatry 61. 787 81, 31-42 (2017). 788 Stahl, S.M. Dopamine system stabilizers, aripiprazole, and the next generation of antipsychotics, 62. 789 part 1, "Goldilocks" actions at dopamine receptors. J. Clin. Psychiatry 62, 841-842 (2001). 790 Lieberman, J.A. Dopamine partial agonists: a new class of antipsychotic. CNS Drugs 18, 251-267 63. 791 (2004). 792 Karlsson, P., et al. Lack of apparent antipsychotic effect of the D1-dopamine receptor antagonist 64. 793 SCH39166 in acutely ill schizophrenic patients. Psychopharmacology (Berl.) 121, 309-316 (1995). 794 65. Laruelle, M. & Abi-Dargham, A. Dopamine as the wind of the psychotic fire: new evidence from 795 brain imaging studies. Journal of psychopharmacology (Oxford, England) 13, 358-371 (1999). 796 Zhou, P., et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic 66. 797 video data. eLife 7, e28728 (2018). 798 67. Corder, G., et al. An amygdalar neural ensemble that encodes the unpleasantness of pain. 799 Science 363, 276-281 (2019).

800

"The neural correlates of antipsychotic effect"

801 Figure 1

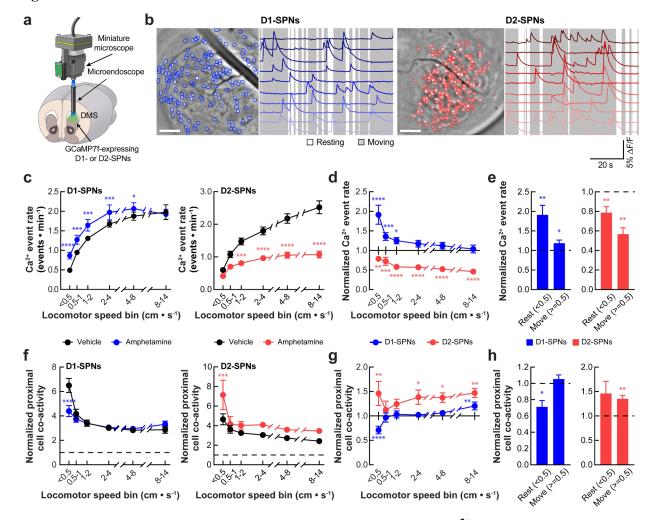


Fig. 1: Effects of amphetamine treatment on D1- and D2-SPN Ca²⁺ activity in freely behav-802 ing mice. a, We used a miniature microscope and microendoscope to image Ca²⁺ activity in D1-803 and D2-SPNs by expressing GCaMP7f in the dorsomedial striatum. b, Cell centroid locations 804 overlaid on the mean fluorescence images of dorsomedial striatum and example Ca^{2+} activity 805 traces from D1-SPNs and D2-SPNs in representative D1- (left) and A2A-Cre (right) mice. Scale 806 bar: 100 μ m. **c**, Effects of vehicle or amphetamine on Ca²⁺ event rates in D1- and D2-SPNs 807 across increasing locomotor speed bins. d, Ca^{2+} event rates in D1- and D2-SPNs following am-808 phetamine treatment, normalized values following vehicle only treatment across different speed 809 bins. e, Effects of amphetamine on Ca^{2+} event rates in D1- and D2-SPN during resting (< 0.5 810 $cm \cdot s^{-1}$) and moving (>= 0.5 cm \cdot s^{-1}) speed bins, normalized to mean values following vehicle 811 only treatment. f, Co-activity of proximal D1- and D2-SPN pairs (25-125 µm separation) across 812

"The neural correlates of antipsychotic effect"

- 813 different speed bins, normalized to temporally shuffled comparisons following vehicle or am-
- phetamine treatment. g, Co-activity of proximal D1- and D2-SPN pairs at different speed bins
- after amphetamine treatment, first normalized to temporally shuffled comparisons and then to the
- 816 mean, shuffle-normalized values following vehicle only treatment. **h**, Effects of amphetamine on
- 817 co-activity of proximal D1- and D2-SPN pairs during resting and moving speed bins, normalized
- to temporally shuffled comparisons and then to values observed following vehicle only treat-
- 819 ment. Data are expressed as mean \pm s.e.m. (N = 11 D1-Cre and N = 10 A2A-Cre mice; ****P <
- 820 0.0001, ***P < 0.001, **P < 0.01 and *P < 0.05 comparing amphetamine to vehicle treatment;
- Holm-Sidak's multiple comparison test for **c**, **d**, **f**, and **g**; Wilcoxon signed-rank test for **e** and **h**).

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

822 **Figure 2**

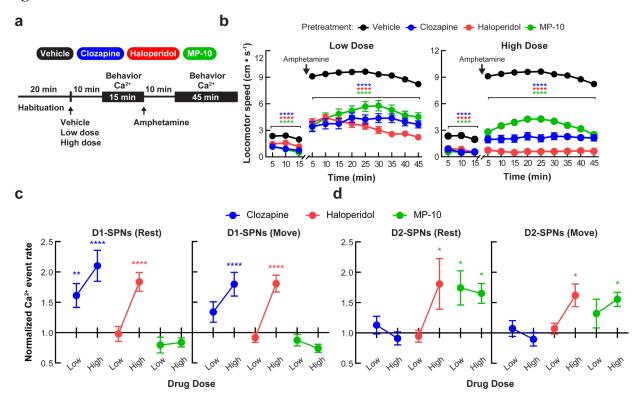


Fig. 2: Effects of antipsychotic drugs on normal D1- and D2-SPN activity levels and sponta-823 **neous or amphetamine-driven locomotion. a**, To record behavior and Ca²⁺ activity, we habitu-824 ated the mice to the open field arena for 20 min before drug injection. After administering vehi-825 cle or a dose of antipsychotic drug, we recorded behavior and Ca^{2+} activity for 15 min, adminis-826 tered amphetamine, and recorded Ca^{2+} activity for an additional 45 min. All recordings began 10 827 min after vehicle, antipsychotic, or amphetamine treatment. We administered different antipsy-828 chotic drug doses on consecutive days and gave the mice a day off between the different drugs. 829 **b**, Locomotor activity during the first 15 min recording period following vehicle or antipsychotic 830 drug treatment and the 45 min recording period after amphetamine treatment (N = 31 mice; 831 ****P < 0.0001 comparing drug to vehicle and drug + amphetamine to vehicle + amphetamine 832 treatment; Holm-Sidak's multiple comparison test). c, d, Ca^{2+} event rates in D1-SPNs (c) and 833 834 D2-SPNs (d) after low or high dose of antipsychotic drug treatment during rest and movement, normalized to event rates following vehicle only treatment. Data are expressed as mean \pm s.e.m. 835 (N = 11 D1-Cre and N = 10 for A2A-Cre mice; ****P < 0.0001, **P < 0.01 and *P < 0.05 com-836 paring drug dose to vehicle treatment; Holm-Sidak's multiple comparison test). 837

838

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

839 Figure 3

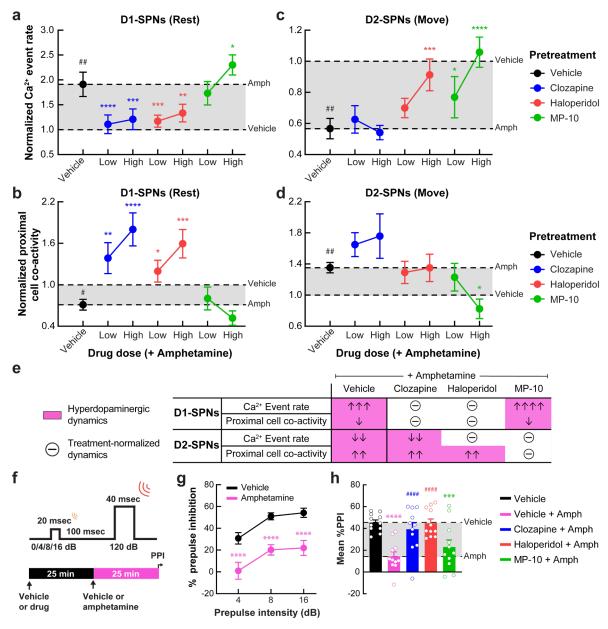


Fig. 3: Differential effects of antipsychotic drugs on D1- and D2-SPN dynamics and sen-840 sorimotor gating under hyperdopaminergic conditions. \mathbf{a} , \mathbf{b} , Ca^{2+} event rates (\mathbf{a}) and proxi-841 mal co-activity (**b**) of D1-SPNs during periods of rest (locomotor speed < 0.5 cm·s⁻¹) following 842 vehicle or drug + amphetamine treatment, normalized to values following vehicle only treatment. 843 c, d, Ca^{2+} event rates (c) and proximal co-activity of D2-SPNs (d) during periods of movement 844 (locomotor speed ≥ 0.5 cm·s⁻¹) following vehicle or drug + amphetamine treatment, normalized 845 to values following vehicle only treatment (N = 11 D1-Cre and N = 10 A2A-Cre mice; ${}^{\#}P < 0.05$ 846 and $^{\#}P < 0.01$ comparing amphetamine to vehicle treatment; ****P < 0.0001, ***P < 0.001, 847

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

848	** $P < 0.01$ and * $P < 0.05$ comparing drug + amphetamine to vehicle + amphetamine treatment;
849	Holm-Sidak's multiple comparison test). e, Summary of the effects of the different antipsychotic
850	drugs on amphetamine-disrupted D1- and D2-SPN ensemble dynamics. Pink shading indicates
851	the hyperdopaminergic neural ensemble dynamics. Encircled "-" denotes antipsychotic-normal-
852	ized changes. Arrows denote effect sizes compared to vehicle only (for vehicle + amphetamine)
853	or to vehicle + amphetamine (for antipsychotic + amphetamine; one arrow $\geq 10\%$, two arrows
854	>= 30%, and three arrows $>=$ 50% statistically significant effect sizes; four arrows denotes the
855	exacerbation of D1-SPN hyperactivity by MP-10 pre-treatment). f, We injected vehicle or anti-
856	psychotic drug 25 min before amphetamine treatment and started measuring PPI 25 min after
857	amphetamine treatment. g, h, Percent PPI of startle response at 4, 8, and 16 dB pre-pulse intensi-
858	ties following vehicle or amphetamine only treatment (g) and mean percent PPI across all pre-
859	pulse intensities following vehicle or drug + amphetamine treatment (h). All data are expressed
860	as mean \pm s.e.m. ($N = 11$; **** $P < 0.0001$, *** $P < 0.001$ compared to vehicle only treatment;
861	$^{\#\#\#\#}P < 0.0001$ comparing drug + amphetamine to vehicle + amphetamine treatment; Holm-

862 Sidak's multiple comparison test).

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

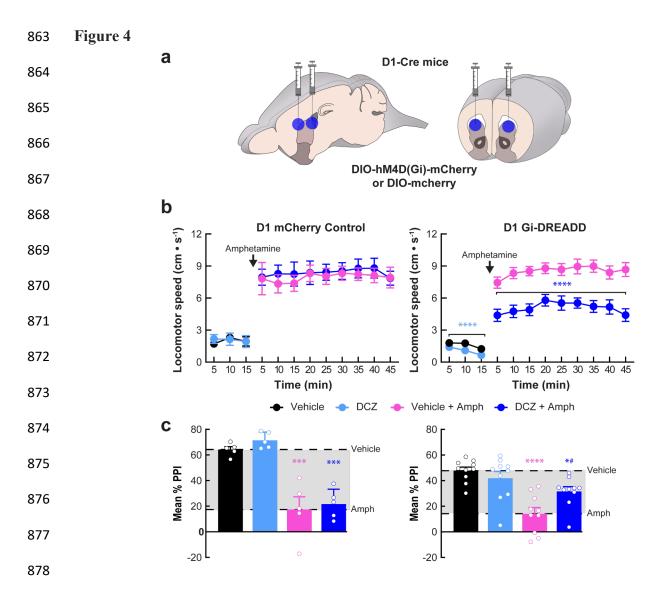


Fig. 4: Inhibiting D1-SPNs is sufficient to rescue amphetamine-induced hyperlocomotion 879 and PPI deficits. a, We injected DIO-hM4D(G_i)-mCherry or DIO-mCherry virus bilaterally at 880 881 two sites in the dorsomedial striatum of D1-Cre mice. b, c, Treatment with the selective DREADD agonist deschloroclozapine (DCZ) reduced baseline locomotion and attenuated am-882 883 phetamine-driven hyperlocomotion (b) and PPI disruption (c) in D1-Cre mice expressing DIO-884 hM4D(G_i)-mCherry (*right*), but not the control DIO-mCherry virus (*left*). All data are expressed as mean \pm s.e.m. (N = 10 experimental and N = 5 control mice; ****P < 0.0001, ***P < 0.001, 885 *P < 0.05 comparing vehicle or DCZ + amphetamine to vehicle only treatment; "P < 0.05 com-886 887 paring DCZ + amphetamine to vehicle + amphetamine; Holm-Sidak's multiple comparison test).

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

888 Figure 5

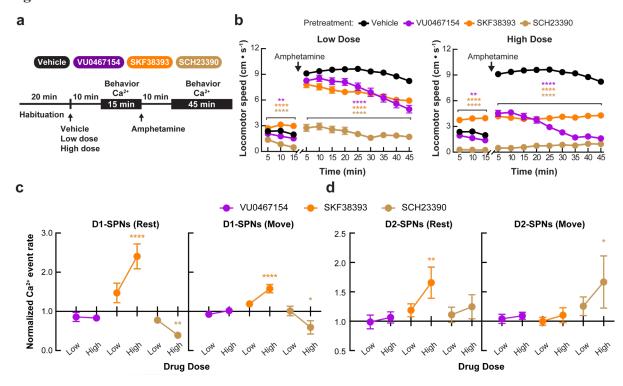


Fig. 5: Effects of D1-SPN-targeted compounds on normal D1- and D2-SPN activity levels 889 and spontaneous or amphetamine-driven locomotion. a, To record behavior and Ca²⁺ activity. 890 we habituated the mice to the open field arena for 20 min before drug injection. After administer-891 ing vehicle or a dose of a D1-SPN-targeted drug, we recorded behavior and Ca²⁺ activity for 15 892 min, administered amphetamine, and recorded Ca²⁺ activity for an additional 45 min. All record-893 ings began 10 min after vehicle, drug, or amphetamine treatment. We administered different drug 894 doses on consecutive days and gave the mice a day off between the different drugs. **b**, Mean \pm 895 s.e.m. locomotor speed during the first 15 min recording period following vehicle or drug treat-896 ment and the 45 min recording period after amphetamine treatment (N = 31 mice; ****P <897 0.0001 and **P < 0.01 comparing drug to vehicle and drug + amphetamine to vehicle + amphet-898 amine treatment; Holm-Sidak's multiple comparison test). c, d, Mean \pm s.e.m. Ca²⁺ event rates in 899 D1-SPNs (c) and D2-SPNs (d) after treatment with a low or high dose of D1-SPN-targeted com-900 901 pounds during rest (*left*) and movement (*right*), normalized to event rates following vehicle only treatment (N = 11 D1-Cre and N = 10 for A2A-Cre mice; ****P < 0.0001, **P < 0.01 and *P < 0.01902 0.05 comparing drug to vehicle treatment: Holm-Sidak's multiple comparison test). 903

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

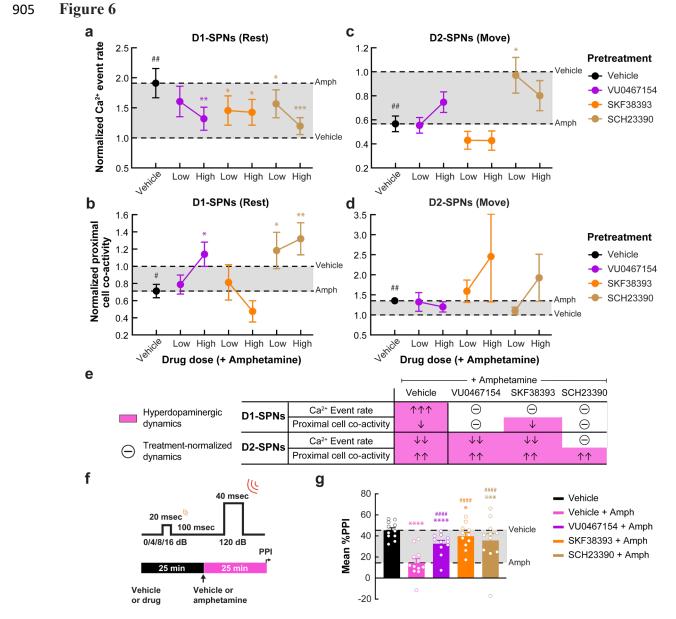
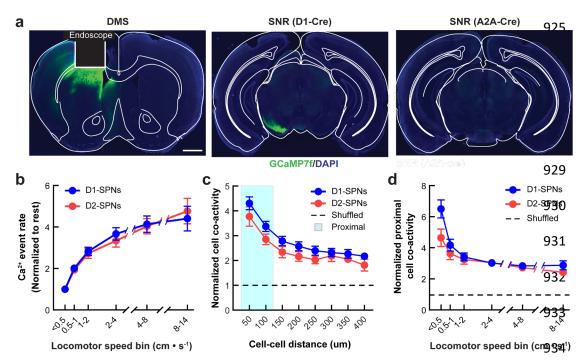


Fig. 6: D1-SPN-targeted targeting normalized hyperdopaminergic D1-SPN dynamics and 906 deficits in sensorimotor gating. a, b, Ca²⁺ event rates (a) and proximal co-activity (b) of D1-907 SPNs during periods of rest following vehicle or drug + amphetamine treatment, normalized to 908 values following vehicle only treatment. \mathbf{c} , \mathbf{d} , Ca^{2+} event rates (\mathbf{c}) and proximal co-activity of 909 D2-SPNs (d) during periods of movement following vehicle or drug + amphetamine treatment, 910 normalized to values following vehicle only treatment. Data are represented as mean \pm s.e.m. (N 911 = 11 D1-Cre and N = 10 A2A-Cre mice; ${}^{\#}P < 0.05$ and ${}^{\#\#}P < 0.01$ comparing amphetamine to ve-912 hicle treatment; ***P < 0.001, **P < 0.01 and *P < 0.05 comparing drug + amphetamine to ve-913

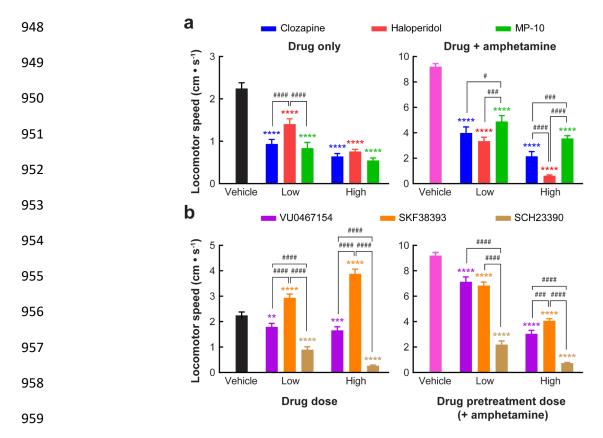

"The neural correlates of antipsychotic effect"

- hicle + amphetamine treatment; Holm-Sidak's multiple comparison test). e, Summary of the ef-
- 915 fects of different D1-SPN-targeted compounds amphetamine-disrupted D1- and D2-SPN ensem-
- 916 ble dynamics. Pink shading indicates neural ensemble dynamics under hyperdopaminergic states.
- 917 Effect sizes are represented as in Fig. 3e. f, We injected vehicle or D1-SPN-targeted drug 25 min
- 918 before amphetamine treatment and started measuring PPI 25 min after amphetamine treatment. g,
- 919 Mean \pm s.e.m. percent PPI across all pre-pulse intensities following vehicle or drug + ampheta-
- 920 mine treatment. (N = 11; ****P < 0.0001, ***P < 0.001 and *P < 0.05 compared to vehicle
- 921 treatment; $^{\#\#\#}P < 0.0001$ compared to vehicle + amphetamine treatment; Holm-Sidak's multiple
- 922 comparison test).

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

923 Supplementary Information


924 Extended Data Figure 1

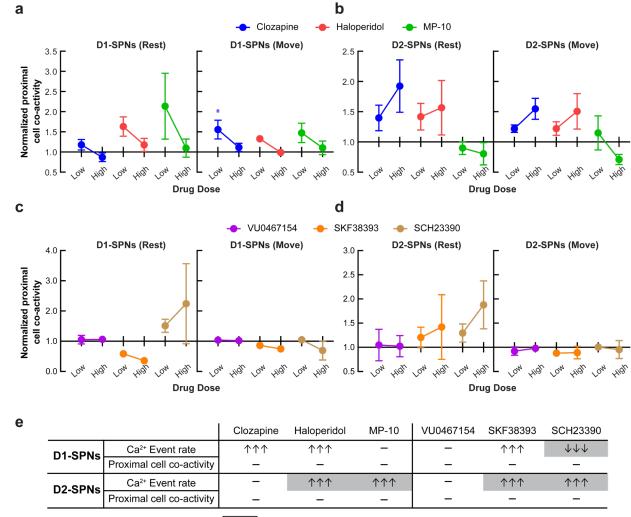
Extended Data Fig. 1: Quantifying normal D1- and D2-SPN ensemble dynamics. a, Repre-935 sentative coronal brain sections of dorsomedial striatum and substantia nigra from experimental 936 D1- or A2A-Cre mice (green: anti-GFP; blue: DAPI nuclear stain; scale bar: 1 mm). White lines 937 indicate the position of the implanted microendoscope and boundaries of brain areas. \mathbf{b} , Ca²⁺ 938 event rates in D1- and D2-SPNs at different speed bins normalized to event rate levels at rest (lo-939 comotor speed < 0.5 cm·s⁻¹). c, Co-activity (jaccard index) of D1-SPN or D2-SPN pairs during 940 movement (locomotor speed ≥ 0.5 cm·s⁻¹) versus the separation of cell pairs normalized to tem-941 942 porally shuffled datasets (dashed line). Cyan shading indicates proximally (25-125 µm) cell pairs. d, Co-activity of proximal D1- and D2-SPN pairs at increasing bins of locomotor speed, 943 944 normalized to temporally shuffled comparisons (*dashed line*). Data are expressed as mean \pm s.e.m. (N = 11 D1-Cre and N = 10 for A2A-Cre mice; data were averaged across all recordings 945 946 following vehicle only treatment).

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

947 Extended Data Figure 2

960Extended Data Fig. 2: Effects of antipsychotic and D1-SPN-targeted drugs on normal and961amphetamine-driven locomotor activity. a, b, Running speed following treatment with vehi-962cle, antipsychotics (a) or D1-SPN-targeted compounds (b) with (*right*) or without amphetamine963co-treatment (*left*). Data are represented as mean \pm s.e.m. (N = 31 mice; ****P < 0.0001, ***P <9640.001, **P < 0.01 and *P < 0.05 compared to vehicle only treatment; ####P < 0.0001, ###P <9650.001 and #P < 0.05 comparing the different drug treatment combinations; Holm-Sidak's multi-966ple comparison test).


967

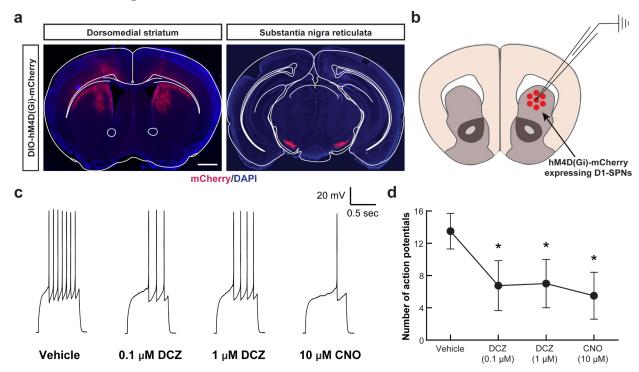
968

- 970
- 971
- 972

"The neural correlates of antipsychotic effect"

Event rate changes associated with parkinsonism

Extended Data Fig. 3: Effects of antipsychotic and D1-SPN-targeted drugs on the proximal 974 975 co-activity of D1- and D2-SPN under normal conditions. a, b, Co-activity of proximal D1- (a) and D2-SPN (b) pairs during rest and movement following clozapine, haloperidol, or MP-10 ad-976 ministration. c, d, Proximal co-activity in D1- (c) and D2-SPNs (d) during rest and movement 977 following VU0467154, SKF38393, or SCH23390 administration. Proximal co-activity values 978 were first binned by locomotor speed, normalized to comparisons in temporally shuffled datasets 979 within each speed bin, and normalized to the corresponding values following vehicle only treat-980 ment. Data are expressed as mean \pm s.e.m. (N = 11 D1-Cre and N = 10 A2A-Cre mice; *P < 0.05981 compared to vehicle treatment; Holm-Sidak's multiple comparison test). e. Summary of the ef-982


"The neural correlates of antipsychotic effect"

Yun et al. (2021)

983	fects of different antipsychotic and D1-SPN-targeted drugs on D1- and D2-SPN ensemble dy-
984	namics under normal conditions. Each arrow denotes mean changes of $\geq 50\%$ at the highest
985	dose tested (see also Fig. 2c, d).
986	
987	
988	
989	
990	
991	
992	
993	
994	
995	
996	
997	
998	
999	
1000	
1001	
1002	
1003	
1004	
1005	
1006	
1007	

"The neural correlates of antipsychotic effect"

1008 Extended Data Figure 4

Extended Data Fig. 4: Histological and electrophysiological characterization of hM4Di-1009 mCherry expression and function. a, Representative coronal brain sections of dorsomedial stri-1010 1011 atum and substantia nigra from experimental D1-Cre mice. Red indicates hM4Di-mCherry and blue indicates DAPI nuclear stain. Scale bar, 1 mm (see also Fig. 4). b, We performed patch-1012 clamp electrophysiological recordings from hM4Di-mCherry-expressing neurons in the DMS of 1013 D1-Cre mice. c, Representative traces of action potential responses to 250 pA current injection. 1014 1015 d, Number of action potentials following vehicle, DCZ or CNO treatment. Data are expressed as mean \pm s.e.m. (N = 4; *P < 0.05 compared to vehicle treatment; Holm-Sidak's multiple compari-1016 1017 son test).

- 1018
- 1019
- 1020
- 1021
- 1022
- 1023

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

1024 Supplementary Table 1

Figure	Comparison	Test	p-value	N-value	
		Two-way repeated	Speed: <0.0001		
		measures ANOVA	Treat: 0.0686		
		measures ANOVA	Interaction: 0.0020		
			lolm-Sidak corrected p-values)		
	D1-SPN event rates across speeds	<0.5	<0.0001	N = 11	
	(Vehicle vs Amphetamine)	0.5-1	0.0003		
		1-2	0.0003		
		2-4	0.0008		
		4-8	0.0288		
Fig. 1c		8-14	0.4619		
		Mixed-effects	Speed: <0.0001		
		model	Treat: 0.0002		
		model	Interaction: <0.0001		
		Multiple comparisons (H	Iolm-Sidak corrected p-values)		
	D2-SPN event rates across speeds	<0.5	0.2695	N = 10	
	(Vehicle vs Amphetamine)	0.5-1	0.0721	N = 10	
		1-2	0.0010		
		2-4	<0.0001		
		4-8	<0.0001		
		8-14	<0.0001		
			Speed: <0.0001		
		Two-way repeated	Treat: 0.0141		
		measures ANOVA	Interaction: <0.0001		
		Multiple comparisons (H			
	D1-SPN event rates normalized to vehicle	<0.5	<0.0001		
	D1-SPN event rates, normalized to vehicle, across the speeds (Vehicle vs Amphetamine)	0.5-1	0.0005	N = 11	
	deross the speeds (venicle vs vinplictanine)	1-2	0.0188	-1	
		2-4	0.1336	-	
		4-8	0.2844	-	
		8-14	0.2844	-	
Fig. 1d		8-14			
		Mixed-effects	Drug: <0.0001		
		model	Treat: 0.0001 Interaction: <0.0001		
			Holm-Sidak corrected p-values)		
	D2-SPN event rates, normalized to vehicle,	<0.5	0.0021	N = 10	
	across the speeds (Vehicle vs Amphetamine)	0.5-1	0.0005	-	
		1-2	<0.0001	-	
		2-4	<0.0001	-	
		4-8	<0.0001	4	
		8-14	<0.0001		
	D1-SPN event rates, normalized to vehicle, at rest	Wilcoxon			
	(Vehicle vs Amphetamine)	signed-rank	0.0098		
		_		N = 11	
	D1-SPN event rates, normalized to vehicle, during movement	Wilcoxon	0.0420		
Fig. 1e	(Vehicle vs Amphetamine)	signed-rank			
1.9. 10	D2-SPN event rates, normalized to vehicle, at rest	Wilcoxon	0.0000		
	(Vehicle vs Amphetamine)	signed-rank	0.0039	1	
		-		N = 10	
	D2-SPN event rates, normalized to vehicle, during movement	Wilcoxon	0.0020	1	
	(Vehicle vs Amphetamine)	signed-rank		1	

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

Fig. 1f	D1-SPN proximal cell co-activity (20-100 μm), normalized to shuffled, across the speeds (Vehicle vs Amphetamine) D2-SPN proximal cell co-activity (20-100 μm),	<0.5 0.5-1 1-2 2-4 4-8 8-14 Mixed-effects model	Drug: <0.0001	N = 11
	normalized to shuffled, across the speeds (Vehicle vs Amphetamine)	<0.5 0.5-1 1-2 2-4 4-8 8-14	0.0006 0.3190 0.3031 0.2525 0.3031 0.2525	N = 10
	D1-SPN proximal cell co-activity (20-100 μm), first normalized to shuffled and then normalized to vehicle treatment, across the speeds (Vehicle vs Amphetamine)	Two-way repeated measures ANOVA Multiple comparisons <0.5 0.5-1 1-2 2-4	Drug: <0.0001 Treat: 0.9885 Interaction: <0.0001	N = 11
Fig. 1g		4-8 8-14 Mixed-effects model	0.7455 0.0043 Drug: 0.4755 Treat: <0.0001	
	D2-SPN proximal cell co-activity (20-100 μm), first normalized to shuffled and then normalized to vehicle treatment, across the speeds (Vehicle vs Amphetamine)	Multiple comparisons <0.5 0.5-1 1-2 2-4 4-8 8-14	Interaction: 0.4755 (Holm-Sidak corrected p-values) 0.0096 0.3835 0.1591 0.0282 0.0282 0.0068	N = 10
	D1-SPN proximal cell co-activity (20-100 μm), first normalized to shuffled and then normalized to vehicle treatment, at rest (Vehicle vs Amphetamine)	Wilcoxon signed-rank	0.0244	N = 11
Fig. 1h	D1-SPN proximal cell co-activity (20-100 $\mu m),$ first normalized to shuffled and then normalized to vehicle treatment, during movement (Vehicle vs Amphetamine)	Wilcoxon signed-rank	0.3652	IN - 11
rig. 111	D2-SPN proximal cell co-activity (20-100 μm), first normalized to shuffled and then normalized to vehicle treatment, at rest (Vehicle vs Amphetamine)	Wilcoxon signed-rank	0.1484	N = 10
	D2-SPN proximal cell co-activity (20-100 μ m), first normalized to shuffled and then normalized to vehicle treatment, during movement (Vehicle vs Amphetamine)	Wilcoxon signed-rank	0.0078	N - 10

"The neural correlates of antipsychotic effect"

Figure	Comparison	Test	p-v	alue	N-value
			Speed:	<0.0001	
		Two-way repeated	Drug:	<0.0001	1
		measures ANOVA		n: 0.1916	1
	Locomotor speeds following low dose of drug treatments (Vehicle vs Drug)	Multiple compar	isons (Holm-Sidak corre		
	(Venicle vs Drug)	Clozapine	<0.0	0001	
		Haloperidol	<0.0	0001	
		MP-10	<0.0	0001	
		_	Speed:	<0.0001	
		Two-way repeated	Drug:	<0.0001	
		measures ANOVA	Interaction	n: <0.0001	
	Locomotor speeds following low dose of drug treatments	Multiple compar	isons (Holm-Sidak corre	cted p-values)	
	(Vehicle +Amphetamine vs Drug + Ampehtamine)	Clozapine	<0.0	0001	
		Haloperidol	<0.0	0001	
Fig. 3h		MP-10	<0.0	0001	N =31
Fig. 2b		Ture was an entered	Speed:	<0.0001	N =51
		Two-way repeated	Drug:	<0.0001	
		measures ANOVA	Interactio	n: 0.0025	
	Locomotor speeds following high dose of drug treatments	Multiple compar	isons (Holm-Sidak corre	cted p-values)	
	(Vehicle vs Drug)	Clozapine		0001	
		Haloperidol	<0.0	0001	
		MP-10	<0.0	0001	7
		_	Speed:	<0.0001	
		Two-way repeated	Drug:	<0.0001	
		measures ANOVA	Interaction	n: <0.0001	
	Locomotor speeds following high dose of drug treatments (Vehicle +Amphetamine vs Drug + Ampehtamine)	Multiple compar	isons (Holm-Sidak corre	cted p-values)	
		Clozapine	<0.0001		
		Haloperidol	<0.0001		
		MP-10	<0.0	0001	-
		One-way repeated			
		measures ANOVA	<0.0	0001	
			isons (Holm-Sidak corre	cted n-values)	
	D1-SPN event rates at rest across drug treatments	Multiple compar	Low dose	High Dose	
	(Vehicle vs Drug)	Clozapine	0.0031	<0.0001	_
		Haloperidol	0.9023	<0.0001	_
		MP-10	0.5660		_
Fig. 2c		-	0.5660	0.5816	N = 11
		Mixed-effects	<0.0	0001	
		model			
	D1-SPN event rates during movement across drug treatments	Multiple compar	isons (Holm-Sidak corre		
	(Vehicle vs Drug)	Classe	Low dose	High Dose	
		Clozapine	0.1188	<0.0001	
		Haloperidol	0.6575	<0.0001	
		MP-10	0.6575	0.2607	_
		Mixed-effects	0.0	008	1
		model			
	D2-SPN event rates at rest across drug treatments	Multiple compar	isons (Holm-Sidak corre		
	(Vehicle vs Drug)		Low dose	High Dose	
	(1011010-10-0106)	Clozapine	0.9405	0.9816	
		Haloperidol	0.9714	0.0131	
Fig. 2d		MP-10	0.0320	0.0478	N = 10
11g. 2u		Mixed-effects	0.0	018	N - 10
		model	0.0	010	
	D2 CDN event rates during management	Multiple compar	isons (Holm-Sidak corre	cted p-values)	
	D2-SPN event rates during movement across drug treatments		Low dose	High Dose	
	(Vehicle vs Drug)	Clozapine	0.9435	0.9435	
		Haloperidol	0.9435	0.0137	

"The neural correlates of antipsychotic effect"

Figure	Comparison	Test		p-value		N-value
	D1-SPN event rates, normalized to vehicle, at rest (Vehicle vs Amphetamine)	Wilcoxon signed-rank		0.0098		
		One-way repeated		<0.0001		-
5 20		measures ANOVA				
Fig. 3a	D1-SPN event rates at rest across drug treatments	Multiple co		idak corrected p-valu		
	(Vehicle + Amphetamine vs Drug + Amphetamine)		Low dose		High Dose	
		Clozapine + Amphetamine	<0.0001		0.0003	
		Haloperidol + Amphetamine MP-10 + Amphetamine	0.0001		0.0025 0.0407	
	D1-SPN proximal cell co-activity (20-100 $\mu m),$ first normalized to shuffled and then normalized to vehicle treatment, at rest (Vehicle vs Amphetamine)	Wilcoxon signed-rank	012137	0.0244		N = 11
Fig. 2h		Mixed-effects model		<0.0001		
Fig. 3b	D1-SPN proximal cell co-activity (20-100 μm),		omparisons (Holm-Si	idak corrected p-valu	es)	
	first normalized to shuffled and then normalized to vehicle treatment,		Low dose		High Dose	
	at rest (Vehicle + Amphetamine vs Drug + Amphetamine)	Clozapine + Amphetamine	0.0038		<0.0001	
		Haloperidol + Amphetamine	0.0435		0.0002	
	+	MP-10 + Amphetamine	0.6752		0.6752	
	D2-SPN event rates, normalized to vehicle, during movement (Vehicle vs Amphetamine)	Wilcoxon signed-rank		0.0020		
		One-way repeated measures ANOVA		<0.0001		1
Fig. 3c	D2-SPN event rates during movement across drug treatments	Multiple comparisons (Holm-Sidak corrected p-values)		es)		
	(Vehicle + Amphetamine vs Drug + Amphetamine)		Low dose		High Dose	
		Clozapine + Amphetamine	0.7231		0.8177	
		Haloperidol + Amphetamine	0.3003		0.0005	
		MP-10 + Amphetamine	0.0421		<0.0001	
	D2-SPN proximal cell co-activity (20-100 $\mu m),$ first normalized to shuffled and then normalized to vehicle treatment, during movement (Vehicle vs Amphetamine)	Wilcoxon 0.0078 signed-rank			N = 10	
Fig. 3d		Mixed-effects 0.0001				
	D2-SPN proximal cell co-activity (20-100 μm),		omparisons (Holm-Si	idak corrected p-valu	es)	
	first normalized to shuffled and then normalized to vehicle treatment,		Low dose		High Dose	
	during movement (Vehicle + Amphetamine vs Drug + Amphetamine)	Clozapine + Amphetamine	0.1929		0.0906	
		Haloperidol + Amphetamine	0.9206		0.9206	
		MP-10 + Amphetamine	0.7495		0.0216	
		Two-way repeated measures ANOVA		Treat: 0.0006 dB: <0.0001		
Fig. 3g	Percent PPI	Multiple co	omparisons (Holm-Si	dak corrected p-valu	es)	
	(Vehicle vs Amphetamine)		4dB	8dB	16dB	
		Vehicle + Amphetamine	<0.0001	<0.0001	<0.0001	
	Mean percent PPI (Vehicle vs Vehicle + Amphetamine vs Drug + Amphetamine)	One-way repeated measures ANOVA		<0.0001		N= 11
			omparisons (Holm-Si	idak corrected p-valu	es)	
		Vehicle + Amphetamine		<0.0001		_
Fig. 3h	Mean percent PPI	Clozapine + Amphetamine		0.5174		_
	(Vehicle vs Amphetamine or Drug + Amphetamine)	Haloperidol + Amphetamine		0.9142		_
		MP-10 + Amphetamine Clozapine + Amphetamine		0.0003 <0.0001		
				×0.0001		1
	Mean percent PPI (Vehicle + Amphetamine vs Drug + Amphetamine)	Haloperidol + Amphetamine		<0.0001		

1035

Figure	Comparison	Test	p-value	N-value
	Locomotor speeds following DCZ treatments in DIO-hM4D(Gi)- mCherry injected D1-cre mice (Vehicle vs DCZ)	Two-way repeated measures ANOVA	Speed: <0.0001 Drug: <0.0001	
Fig. 4b	Locomotor speeds following DCZ treatments in DIO-hM4D(Gi)- mCherry injected D1-cre mice (Vehicle + Amphetamine vs DCZ + Amphetamine)	Two-way repeated measures ANOVA	Speed: <0.0001	N = 10
	Locomotor speeds following DCZ treatments in DIO-mCherry injected D1-cre mice (Vehicle vs DCZ)	Two-way repeated measures ANOVA	Speed: 0.5855 Drug: 0.7750 Interaction: 0.6221	
	Locomotor speeds following DCZ treatments in DIO-mCherry injected D1-cre mice (Vehicle + Amphetamine vs DCZ + Amphetamine)	Two-way repeated measures ANOVA	Speed: 0.0438 Drug: 0.0780 Interaction: 0.7569	

"The neural correlates of antipsychotic effect"

	Mean percent PPI in DIO-hM4D(Gi)-mCherry injected D1-cre mice (Vehicle vs DCZ vs Vehicle + Amphetamine vs DCZ + Amphetamine)	One-way repeated measures ANOVA	<0.0001	
		Multiple comparisons	(Holm-Sidak corrected p-values)	
		DCZ	0.2698	
	Mean percent PPI in DIO-hM4D(Gi)-mCherry injected D1-cre mice (Vehicle vs DCZ vs Amphetamine or DCZ + Amphetamine)	Vehicle + Amphetamine	<0.0001	
	(DCZ + Amphetamine	0.0108	
	Mean percent PPI in DIO-hM4D(Gi)-mCherry injected D1-cre mice	DCZ	<0.0001	
	(Vehicle + Amphetamine vs DCZ or DCZ + Amphetamine)	DCZ + Amphetamine	0.0108	
Fig. 4c	Mean percent PPI in DIO-mCherry injected D1-cre mice (Vehicle vs DCZ vsVehicle + Amphetamine vs DCZ + Amphetamine)	One-way repeated measures ANOVA	<0.0001	N = 5
		Multiple comparisons		
		DCZ	0.6317	
	Mean percent PPI in DIO-mCherry injected D1-cre mice (Vehicle vs DCZ vs Amphetamine or DCZ + Amphetamine)	Vehicle + Amphetamine	0.0004	
		DCZ + Amphetamine	0.0006	
	Mean percent PPI in DIO-mCherry injected D1-cre mice	DCZ	0.0001	
	(Vehicle + Amphetamine vs DCZ or DCZ + Amphetamine)	DCZ + Amphetamine	0.6317	

1037

1038

Locomotor speeds following low dose of drug treatments (Vehicle vs Drug)	Two-way repeated measures ANOVA	Speed: Drug:	<0.0001	
		Drug:		
	measures ANOVA		<0.0001	
		Interactio	n: <0.0001	
(Vehicle vs Drug)	Multiple compa	isons (Holm-Sidak corre	ected p-values)	
(VU0467154	0.	0017	
	SKF38393	<0.	0001	
	SCH23390	<0.	0001	
		Speed:	<0.0001	
		Drug:	<0.0001	
	measures ANOVA	Interactio	n: <0.0001	
	Multiple compa	isons (Holm-Sidak corre	ected p-values)	
(Vehicle +Amphetamine vs Drug + Ampehtamine)	VU0467154	<0.	0001	
	SKF38393			
	SCH23390	<0.	0001	
		Speed:	0.0056	N =31
Locomotor speeds following high dose of drug treatments (Vehicle vs Drug)				
	measures ANOVA	-		
	VU0467154	0.0013		
	SKF38393	<0.0001		
	SCH23390	<0.	0001	
		· · · · · · · · · · · · · · · · · · ·	<0.0001	
	measures ANOVA	•	n: <0.0001	
	Multiple compa	isons (Holm-Sidak corre	ected p-values)	
(Vehicle +Amphetamine vs Drug + Ampehtamine)				
	SKF38393			
	SCH23390	<0.	0001	
				1
		<0.	0001	
		isons (Holm-Sidak corre	ected n-values)	
D1-SPN event rates at rest across drug treatments	Matchie compa	•	1	
(Vehicle vs Drug)	VII0467154			-
				-
				-
		0.7055	0.0002	N = 11
		<0.	0001	
		isons (Holm-Sidak corre	ected n-values)	
D1-SPN event rates during movement across drug treatments	wurtiple compa		· · ·	
(Vehicle vs Drug)	VII0467154			-
				-
				-
	Locomotor speeds following high dose of drug treatments (Vehicle vs Drug) Locomotor speeds following High dose of drug treatments (Vehicle +Amphetamine vs Drug + Ampehtamine) D1-SPN event rates at rest across drug treatments (Vehicle vs Drug)	(Vehicle +Amphetamine vs Drug + Ampehtamine) VU0467154 VU0467154 SKF38393 SCH23390 Two-way repeated measures ANOVA Locomotor speeds following high dose of drug treatments (Vehicle vs Drug) Wultiple compart Locomotor speeds following High dose of drug treatments (Vehicle vs Drug) Two-way repeated measures ANOVA Locomotor speeds following High dose of drug treatments (Vehicle +Amphetamine vs Drug + Ampehtamine) Two-way repeated measures ANOVA Locomotor speeds following High dose of drug treatments (Vehicle +Amphetamine vs Drug + Ampehtamine) Two-way repeated measures ANOVA D1-SPN event rates at rest across drug treatments (Vehicle vs Drug) Mixed-effects model Multiple compart Wultiple compart D1-SPN event rates at rest across drug treatments (Vehicle vs Drug) Mixed-effects model D1-SPN event rates during movement across drug treatments Mixed-effects model D1-SPN event rates during movement across drug treatments Mixed-effects model	Locomotor speeds following low dose of drug treatments (Vehicle +Amphetamine vs Drug + Ampehtamine) Multiple comparisons (Holm-Sidak corre VU0467154 Locomotor speeds following high dose of drug treatments (Vehicle vs Drug) Two-way repeated measures ANOVA Speed: Drug: Interactio Locomotor speeds following high dose of drug treatments (Vehicle vs Drug) Two-way repeated measures ANOVA Speed: Drug: Interactio Locomotor speeds following high dose of drug treatments (Vehicle vs Drug) Multiple comparisons (Holm-Sidak corre VU0467154 O.I. Locomotor speeds following High dose of drug treatments (Vehicle +Amphetamine vs Drug + Ampehtamine) Two-way repeated measures ANOVA Speed: Interactio D1-SPN event rates at rest across drug treatments (Vehicle vs Drug) Mixed-effects model <0.	Locomotor speeds following low dose of drug treatments (Vehicle +Amphetamine vs Drug + Ampehtamine) Locomotor speeds following high dose of drug treatments (Vehicle vs Drug) Locomotor speeds following high dose of drug treatments (Vehicle vs Drug) Locomotor speeds following high dose of drug treatments (Vehicle vs Drug) Locomotor speeds following High dose of drug treatments (Vehicle vs Drug) Locomotor speeds following High dose of drug treatments (Vehicle vs Drug) Locomotor speeds following High dose of drug treatments (Vehicle vs Drug) Locomotor speeds following High dose of drug treatments (Vehicle vs Drug) Locomotor speeds following High dose of drug treatments (Vehicle +Amphetamine) D1-SPN event rates at rest across drug treatments (Vehicle vs Drug) D1-SPN event rates at rest across drug treatments (Vehicle vs Drug) D1-SPN event rates at rest across drug treatments (Vehicle vs Drug) D1-SPN event rates at rest across drug treatments (Vehicle vs Drug) D1-SPN event rates at rest across drug treatments (Vehicle vs Drug) D1-SPN event rates at rest across drug treatments (Vehicle vs Drug) D1-SPN event rates during movement across drug treatments (Vehicle vs Drug) D1-SPN event rates during movement across drug treatments (Vehicle vs Drug) D1-SPN event rates during movement across drug treatments (Vehicle vs Drug) D1-SPN event rates during movement across drug treatments (Vehicle vs Drug) D1-SPN event rates during movement across drug treatments (Vehicle vs Drug) D1-SPN event rates during movement across drug treatments (Vehicle vs Drug) D1-SPN event rates during movement across drug treatments (Vehicle vs Drug) D1-SPN event rates during movement across drug treatments (Vehicle vs Drug) D1-SPN event rates during movement across drug treatments (Vehicle vs Drug) D1-SPN event rates during movement across drug treatments (Vehicle vs Drug) D1-SPN event rates during movement across drug treatments (Vehicle vs Drug) D1-SPN event rates during m

"The neural correlates of antipsychotic effect"

		Mixed-effects model	0.0	260	
		Multiple comp	Multiple comparisons (Holm-Sidak corrected p-values)		
	D2-SPN event rates at rest across drug treatments (Vehicle vs Drug)		Low dose	High Dose	
	(venicie vs brug)	VU0467154	0.9415	0.8887	
		SKF38393	0.7189	0.0082	
Fig. 5d		SCH23390	0.8674	0.5353	N = 10
rig. su	D2-SPN event rates during movement across drug treatments (Vehicle vs Drug)	Mixed-effects	0.0522		N - 10
		model			
		Multiple comparisons (Holm-Sidak corrected p-values)			
			Low dose	High Dose	
		VU0467154	0.9701	0.9701	
		SKF38393	0.9972	0.9701	
		SCH23390	0.6358	0.0171	

1040

Figure	Comparison	Test	p-v	alue	N-value
	D1-SPN event rates, normalized to vehicle, at rest (Vehicle vs Amphetamine)	Wilcoxon signed-rank	0.0	1098	
Fig. 6a		Mixed-effects model		015	N = 11
	D1-SPN event rates at rest across drug treatments	Multiple co	omparisons (Holm-Sidak correc	ted p-values)	
	(Vehicle + Amphetamine vs Drug + Amphetamine)		Low dose	High Dose	
		VU0467154 + Amphetamine	0.0603	0.0036	
		SCK38393 + Amphetamine SCH23390 + Amphetamine	0.0278 0.0318	0.0183	
		SCH23390 + Ampnetamine	0.0318	0.0001	
	D1-SPN proximal cell co-activity (20-100 $\mu m),$ first normalized to shuffled and then normalized to vehicle treatment, at rest (Vehicle vs Amphetamine)	Wilcoxon signed-rank	0.0	1244	
		Mixed-effects model	0.0	004	
Fig. 6b	D1-SPN proximal cell co-activity (20-100 µm),		omparisons (Holm-Sidak correc	ted n-values)	N = 11
	first normalized to shuffled and then normalized to vehicle treatment,		Low dose	High Dose	
	at rest (Vehicle + Amphetamine vs Drug + Amphetamine)	VU0467154 + Amphetamine	0.7149	0.0334	
		SCK38393 + Amphetamine	0.7149	0.6659	
		SCH23390 + Amphetamine	0.0316	0.0053	
	D2-SPN event rates, normalized to vehicle, during movement (Vehicle vs Amphetamine)	Wilcoxon signed-rank	0.0020		
		Mixed-effects	<0.	0001	
Fig. 6c	D2-SPN event rates during movement across drug treatments	model	omparisons (Holm-Sidak correc	tod a values)	N = 10
-		wuitiple co	Low dose	High Dose	
	(Vehicle + Amphetamine vs Drug + Amphetamine)	VU0467154 + Amphetamine	0.8992	0.1931	
		SCK38393 + Amphetamine	0.3861	0.3861	
		SCH23390 + Amphetamine	0.0005	0.0695	
	D2-SPN proximal cell co-activity (20-100 $\mu m),$ first normalized to shuffled and then normalized to vehicle treatment, during movement (Vehicle vs Amphetamine)	Wilcoxon signed-rank	0.0	078	
		Mixed-effects	0.0	945	
Fig. 6d	D2-SPN proximal cell co-activity (20-100 μm),	model	omparisons (Holm-Sidak correc	tod a values)	N = 10
	first normalized to shuffled and then normalized to vehicle treatment,	wuitiple co	Low dose	High Dose	
	during movement (Vehicle + Amphetamine vs Drug + Amphetamine)	VU0467154 + Amphetamine	0.9712	0.9712	
		SCK38393 + Amphetamine	0.9684	0.1141	
		SCH23390 + Amphetamine	0.9712	0.5083	
	Mean percent PPI (Vehicle vs Vehicle + Amphetamine vs Drug + Amphetamine)	One-way repeated measures ANOVA	<0.	0001	
		Multiple co	omparisons (Holm-Sidak correc	ted p-values)	
Fig. Co.		Vehicle + Amphetamine	<0.	0001	
Fig. 6g	Mean percent PPI	Clozapine + Amphetamine		0001	N= 11
	(Vehicle vs Amphetamine or Drug + Amphetamine)	Haloperidol + Amphetamine		388	
		MP-10 + Amphetamine		003	
	Mean percent PPI	Clozapine + Amphetamine		0001	
	(Vehicle + Amphetamine vs Drug + Amphetamine)	Haloperidol + Amphetamine		0001	
		MP-10 + Amphetamine	<0.	0001	I

1041

1042

1043

"The neural correlates of antipsychotic effect"

Figure	Comparison	Test	p-va	lue	N-value
		Two-way repeated measures ANOVA	Speed: Drug: Interactior	<0.0001 <0.0002 n: 0.0009	
	Locomotor speeds across drug treatments	Multiple compar	isons (Holm-Sidak correc	cted p-values)	
	Locomotor speeds across drug treatments		Low dose	High dose	
	(Drug only)	Vehicle vs Clozapine	<0.0001	<0.0001	
		Vehicle vs Haloperidol	<0.0001	<0.0001	
		Vehicle vs MP-10	<0.0001	<0.0001	
			Low dose	High dose	
		Clozapine vs Haloperidol	<0.0001	0.3988	
		Clozapine vs MP-10	0.3121	0.3988	
Extended Data		Haloperidol vs MP-10	<0.0001	0.1048	
Fig. 2a		Two-way repeated measures ANOVA	Speed: Drug: Interaction	<0.0001 <0.0001 1: <0.0001	
		Multiple compar	isons (Holm-Sidak correc	cted p-values)	
	Locomotor speeds across drug treatments		Low dose	High dose	
	(Drug + Amphetamine)	Vehicle vs Clozapine	<0.0001	<0.0001	
		Vehicle vs Haloperidol	<0.0001	<0.0001	
		Vehicle vs MP-10	<0.0001	<0.0001	
			Low dose	High dose	
		Clozapine vs Haloperidol	0.0701	<0.0001	
		Clozapine vs MP-10	0.0247	0.0001	_
		Haloperidol vs MP-10	<0.0001	<0.0001	N = 31
		Two was an added	Speed:	0.0017	_
		Two-way repeated measures ANOVA	Drug:	<0.0001	
		measures ANOVA	Interaction	: <0.0001	
		Multiple compar	isons (Holm-Sidak correc	cted p-values)	
	Locomotor speeds across drug treatments		Low dose	High dose	
	(Drug only)	Vehicle vs VU0467154	0.0081	0.0006	
	(5105 01.17)	Vehicle vs SKF38393	<0.0001	<0.0001	
		Vehicle vs SCH23390	<0.0001	<0.0001	
			Low dose	High dose	
		VU0467154 vs SKF38393	<0.0001	<0.0001	
		VU0467154 vs SCH23390	<0.0001	<0.0001	
Extended Data		SKF38393 vs SCH23390	<0.0001	<0.0001	
Fig. 2b			Speed:	<0.0001	
		Two-way repeated	Drug:	<0.0001	
		measures ANOVA	Interaction	: <0.0001	
		Multiple compar	isons (Holm-Sidak correc	cted p-values)	
	Locomotor speeds across drug treatments		Low dose	High dose	
		Vehicle vs VU0467154	<0.0001	<0.0001	
	(Drug + Amphetamine)				
	(Diug + Amphetamine)	Vehicle vs SKF38393	<0.0001	<0.0001	
	(Drug + Amprictamine)	Vehicle vs SKF38393 Vehicle vs SCH23390	<0.0001 <0.0001	<0.0001 <0.0001	
	(Drug + Amprecamme)				_
	(Drug + Amprecamme)		<0.0001	<0.0001	
	(Drug + Amprecamme)	Vehicle vs SCH23390	<0.0001 Low dose	<0.0001 High dose	

1045

Figure	Comparison	Test	p-value		N-valu
Extended Data Fig. 3a	D1-SPN proximal cell co-activity (20-100 μm), first normalized to shuffled and then normalized to vehicle treatment, at rest (Vehicle vs Drug)	Mixed-effects model	0.1065		
		Multiple comparisons (Holm-Sidak corrected p-values)			
			Low dose	High Dose	N = 11
		Clozapine	0.9892	0.9892	
		Haloperidol	0.5386	0.9892	
		MP-10	0.0806	0.9892	
	D1-SPN proximal cell co-activity (20-100 μm), first normalized to shuffled and then normalized to vehicle treatment, during movement (Vehicle vs Drug)	Mixed-effects model	0.0331		N = 1.
		Multiple comparisons (Holm-Sidak corrected p-values)			
			Low dose	High Dose	
		Clozapine	0.0397	0.9330	
		Haloperidol	0.3520	0.9587	
		MP-10	0.1137	0.9330	

"The neural correlates of antipsychotic effect"

Yun et al. (2021)

	D2-SPN proximal cell co-activity (20-100 μm), first normalized to shuffled and then normalized to vehicle treatment, at rest (Vehicle vs Drug)	Mixed-effects model	0.0	264	Τ	
		Multiple comparisons (Holm-Sidak corrected p-values)				
			Low dose	High Dose		
		Clozapine	0.5303	0.0514	-	
		Haloperidol	0.5303	0.4105		
Extended Data		MP-10	0.7791	0.7791	N 40	
Fig. 3b	D2-SPN proximal cell co-activity (20-100 μm), first normalized to shuffled and then normalized to vehicle treatment, during movement (Vehicle vs Drug)	Mixed-effects	0.0046		N = 10	
		model	0.0			
		Multiple comparisons (Holm-Sidak corrected p-values)				
			Low dose	High Dose		
		Clozapine	0.5459	0.0587		
		Haloperidol	0.5459	0.0797		
		MP-10	0.5459	0.4449		
		Mixed-effects				
	D1-SPN proximal cell co-activity (20-100 μ m), first normalized to shuffled and then normalized to vehicle	model	0.1	494		
		Multiple comp	risons (Holm-Sidak corrected p-values)			
			Low dose	High Dose	1	
	treatment, at rest (Vehicle vs Drug)	VU0467154	0.9656	0.9656		
		SKF38393	0.9198	0.8907	1	
Extended Data		SCH23390	0.8907	0.2501		
Fig. 3c	D1-SPN proximal cell co-activity (20-100 μm), first normalized to shuffled and then normalized to vehicle treatment, during movement (Vehicle vs Drug)	Mixed-effects	0.0777		N = 11	
		model	0.0777			
		Multiple comp	arisons (Holm-Sidak corrected p-values)			
			Low dose	High Dose		
		VU0467154	0.9718	0.9718		
		SKF38393	0.7316	0.2568		
		SCH23390	0.9718	0.2532		
		Mixed-effects	0.3759			
		model				
	D2-SPN proximal cell co-activity (20-100 μm),	Multiple comparisons (Holm-Sidak corrected p-values)				
	first normalized to shuffled and then normalized to vehicle treatment, at rest (Vehicle vs Drug)		Low dose	High Dose	-	
		VU0467154	0.9885	0.9885		
		SKF38393	0.9115	0.8109		
Extended Data		SCH23390	0.8882	0.1771		
Fig. 3d		Mixed-effects			N = 10	
		model	0.7727			
	D2-SPN proximal cell co-activity (20-100 μm),	Multiple comparisons (Holm-Sidak corrected p-values)				
	first normalized to shuffled and then normalized to vehicle treatment, during movement (Vehicle vs Drug)		Low dose	High Dose		
		VU0467154	0.8594	0.9893		
		SKF38393	0.7161	0.8426		
		SCH23390	0.9893	0.9893]	

	Figure	Comparison	Test	p-value	N-value
		Number of action potential responses (Vehicle vs DCZ or CNO)	One-way repeated	0.0325	
			measures ANOVA		
	Extended Data		Multiple comparisons (Holm-Sidak corrected p-values)		
	Fig. 4d		DCZ (0.1 μM)	0.0383	N = 4
1048			DCZ (1 µM)	0.0383	
			CNO (10 μM)	0.0246	