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ABSTRACT 

Transport of mass within cells helps maintain homeostasis and is disrupted by disease and stress. 
Here, we develop quantitative phase velocimetry (QPV) as a label-free approach to make the 
invisible flow of mass within cells visible and quantifiable. We benchmark our approach against 
alternative image registration methods, a theoretical error model, and synthetic data. Our method 
tracks not just individual labeled particles or molecules, but the entire flow of bulk material through 
the cell. This enables us to measure diffusivity within distinct cell compartments using a single 
approach, which we use here for direct comparison of nuclear and cytoplasmic diffusivity. As a 
label-free method, QPV can be used for long-term tracking to capture dynamics through the cell 
cycle. 
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INTRODUCTION 

Orderly transport is essential for cell function and growth. To maintain homeostasis, cells 

continuously transport materials, including nutrients and bulk material into cells from the 

surrounding environment1, ions through cell membranes1, and liquids2 and structural polymers into 

cell podia to drive cell motion3. In turn, cell transport can be impacted by disease4 and stress5, 6. 

Measurement of transport within cells can therefore improve our understanding of cell behavior, 

disease, responses to environmental stresses and potential disease therapies. Fluorescent markers 

are the most commonly used tools to study transport within cells as they provide distinct signals 

with low background, making them easy to track7, 8, 9, 10, 11. Despite the wide use of fluorescent 

markers in transport studies, fluorescence come with the disadvantages of photobleaching and 

phototoxicity, which induce stress and modifies cell behavior12, 13. The number of components 

labeled at a time is also limited14 and fluorescence tracking cannot measure velocities in untagged 

regions, limiting its ability to measure bulk material transport within cells. 

Label-free methods offer an alternative to fluorescence for transport measurement. Label free 

methods, like phase contrast, differential interference contrast (DIC) and Raman imaging, have 

been applied to measure the dynamics of whole cells15, 16, vesicles17, 18, and lipid droplets19 within 

cells. However, DIC measures phase gradients in just a single orientation, and phase-contrast 

images contain halos that make quantitative analysis difficult20.  

Quantitative phase imaging (QPI) is a label free imaging technique which measures the phase shift 

that occurs as light passes through a material with higher refractive index21. The phase shift 

measured with QPI is directly proportional to the distribution of dry mass in the sample22. QPI is, 

therefore, a better candidate for long-term transport studies within cells by providing quantitative 

data of the motion of bulk material within the cell. Previous work with QPI has used the contrast 

produced by localized variation in biomass density to track well-defined sub-cellular components 

as well as the overall average rate of mass motion23, 24. Spatial and temporal power spectra from 

QPI data have also been applied to quantify cell-average rheological properties25, 26, dynamics of 

red blood cells27, and localized diffusivities28. 

In this work we combine automated image velocimetry and label-free QPI to develop an approach 

we call quantitative phase velocimetry (QPV) that measures unsteady intracellular velocity fields 

capturing the bulk transport of cellular material over long times. To understand the sources of error 
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in QPV, we developed a theoretical model of QPV error that matches experimental results. We 

then apply QPV to measure dry mass transport inside cells during cell cycle progression. With this 

data, we quantify intracellular diffusion dynamics in the nucleus and cytoplasm over the cell cycle. 

We see nuclear diffusion decreases with cell cycle progression and cytoplasm diffusion reduces 

with G1 to S phase transition.  
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RESULTS 

1. Development of QPV from QPI data 

We developed QPV to measure intracellular dry mass velocity from QPI data (figure 1). QPI of 

retinal pigment epithelial (RPE) cells (figure 1b) shows the changing distribution of cell dry mass 

over time. In particular, QPI data show large regions of high mass density in nucleus, low mass 

podia, and small-scale puncta within cells that can serve as features for velocimetry (figure 1b). 

Taking the difference between QPI images over time illustrates the movement of mass captured 

by QPI (figure 1c). In this example, this difference image indicates an overall movement of the 

cell dry mass from the top right corner to the bottom left corner of the image frame. QPV uses 

these data to measure the movement of mass using the principles of particle image velocimetry 

(PIV). As expected in this individual, example cell, the distribution of intracellular dry mass 

velocity determined by QPV shows dry mass velocity vectors pointing from the top right to the 

left bottom of the frame, as well as localized deviation from that overall trend (figure 1d).  

 

Figure 1. Quantitative phase velocimetry (QPV) measures intracellular dry mass 
movement. (a) Quantitative phase imaging (QPI) measures the phase shift of light passing 
through a cell, which is used to compute the dry mass distribution in cells over time. (b) Dry 
mass distribution in RPE cell imaged at 120X magnification, at t = 0 min. The scalebar indicates 
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10 µm length. (c) The difference in QPI mass distribution of the RPE cell in (b) from an image 
taken at t = 10 min later minus the image at 0 min reveals cell motion. The color scale shows the 
net displaced mass over this interval (red increase, blue decrease). The inset in (c) shows a 15x15 
pixel interrogation window that illustrates the change in position of an individual subcellular 
feature from the position marked with a red arrow to the position marked with a black arrow. 
Colorbar shows dry mass difference between frame at time 0 and 10 minutes (red: large increase 
in mass, blue: large decrease in mass). (d) The resulting intracellular biomass velocity field 
computed using quantitative phase velocimetry (QPV). Velocity magnitude indicated with a 0.5 
µm/min scalebar. 

To choose the most compatible image registration method for developing QPV we compared the 

performance of methods commonly used for PIV: normalized cross-correlation (NCC)29, optical 

flow reconstruction (OFR)30, mutual information (MI)31, and sum of squared differences (SSD)32. 

With each method, we estimated the resolution and accuracy of velocity measurement on fixed 

RPE and MCF7 cells moving at known velocity as a velocity standard, as fixed cells have the same 

distribution of intracellular features as living cells (figure 2 and figure S2-S3). The displacement 

distribution computed by QPV of example fixed cells after a total of 1.5 µm downward stage 

motion shows uniform displacement distribution in all interrogation windows pointing in the 

direction of stage motion (figure 2a and figure S2). 

 

Figure 2. SSD image registration measures intracellular velocity from QPI data with 
higher accuracy than OFR, MI and NCC. (a) QPV on RPE fixed cell measures the 
intracellular displacement during microscope stage translation. (b) Comparison of mutual 
information (MI), normalized cross correlation (NCC), optical flow reconstruction (OFR) and 
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sum of squared difference (SSD) for intracellular velocity computation on QPI data at different 
interrogation window sizes shows SSD has highest accuracy at small window sizes (n = 11, error 
bar shows standard error of the mean, SEM). (c) Velocity accuracy versus both interrogation 
window size and displacements of RPE fixed cell using OFR shows that OFR is limited to 
measuring a very narrow range of displacements with acceptable accuracy (n = 11). 
Yellow/white – high accuracy, red/black – low accuracy. (d) QPV velocity measurement 
accuracy versus interrogation window size and displacements of fixed RPE cells show typically 
less than 10% error when the interrogation window size is smaller than the displacement to be 
measured with a region of less than 5% error indicated as a dashed line (n = 11).  

We need the smallest possible interrogation window size for our velocimetry approach to get the 

highest spatial resolution of velocity field. We computed the measurement accuracy of 0.1 µm 

(0.42 x a single pixel) displacements of fixed cells using each method with interrogation window 

sizes ranging from 5 to 59 pixels (1.19 µm to 14 µm) square. This displacement error is the key 

determinant of the error in computed velocity as the time between frames is tightly controlled 

during imaging. Of the four methods tested, SSD and OFR performed better at smaller window 

sizes than MI and NCC which work moderately well with large windows (figure 2b and figure 

S3a).  

The image registration method used for QPV should also perform well over a wide range of 

displacements as cells typically display a wide range of motion from sub-pixel movement in the 

nucleus to highly deforming multiple pixel displacements in the podia regions of the cytoplasm. 

Based on their performance at small window sizes, we further measured displacement error with 

SSD and OFR for displacements from 0.1 to 10 µm and interrogation window sizes from 1 to 14 

µm. The results for OFR with fixed RPE and MCF7 cells shows greater than 50% error for 

displacement measurements above 1 µm at all interrogation window sizes tested (figure 2c and 

figure S3c). Performance of OFR at large displacements can be improved using Gaussian 

blurring33 (figure S4). However, Gaussian blurring comes at the cost of losing the ability to resolve 

small-scale differences in deformation within cells. On the other hand, SSD gives an error of less 

than 10% for any displacement, as long as the window size for the calculation is at least as large 

as the displacement itself and less than 5% for a subset of this region (figure 2d). We also 

evaluated SSD has less error than OFR in displacement direction measurement (figure S5). SSD 

also performs better than OFR for different cells (figure S6). Therefore, considering accuracy, 

spatial resolution and the ability to measure a wide range of displacements, we chose SSD as the 

image registration method for QPV.  
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2. Theoretical modelling of displacement measurement accuracy 

To understand the sources of errors in QPV, we developed a model that account for key parameters 

that contribute to measurement noise. These are: the size range of cell features which impacts 

Brownian diffusion of cell components and the ability to visualize displacement with the 

interrogation window size chosen, the interrogation window size which determines the maximum 

measurable displacement, and the optical resolution limit of the microscope. 

To study how the distribution of spatial features and noise influence the performance of QPV, we 

generated synthetic data consisting of uniform circles (figure 3a top middle) and non-uniform-

sized circles (figure 3a top right) with sizes matched to the average particle sizes observed in RPE 

and MCF7 cells (figure 3b and figure S7b). Perlin noise was added to synthetic data to match the 

continuous local variation background noise in our QPI data (figure 3a bottom middle and bottom 

right). Perlin noise thus has similar power spectrum as the background noise in QPI, and reduces 

the magnitude of the power spectral density (figure S7b). The power spectra of the RPE fixed cell, 

MCF7 fixed cell, and polystyrene beads imaged at 20X magnification match best with the power 

spectrum of non-uniform synthetic data with Perlin noise (figure 3b and figure S7b). Therefore, 

based on this power spectrum analysis, QPI images are best approximated as having as non-

uniform spatial features with added low spatial frequency noise. 

Converting frequency to equivalent particle size shows that the features potentially able to be 

tracked by QPV range in size from organelle-size puncta of mass to the entire cell (figure 3c-d). 

To account for the range of feature sizes captured by QPI and their individual contributions to 

measurement error, we compute the theoretical error for all particle sizes in a cell up to 40 µm, the 

size of a whole cell (figure 3e, figure S9c-d), then perform a weighted average of these particle 

errors based on the power spectrum for the cell (figure 3c, figure S9b). The resulting prediction 

of the error in displacement magnitude (figure 3f, figure S9e) are in good agreement with the 

experimentally computed error for both RPE (figure 3g) and MCF7 cells (figure S9f). Both 

predicted and measured error show large error if the displacement is larger than the window size 

as well as large error when the displacement is less than the diffraction limit (0.48 µm in our case). 

We also observe reasonable agreement in the predicted and measured displacement direction error 

(figure S10). Application of this model and validation allows us to predict the minimum window 

size for accurate intracellular velocimetry. For example, for RPE and MCF7 cells imaged at 120X 
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magnification every 1 minute, the typical observed range of displacement varies from 0 to 5 pixels 

outside of the very fast moving podia. Therefore, we use a 15 by 15 pixel interrogation window, 

which corresponds to an area of 12.75 µm2. 

 

Figure 3. Modelled QPV displacement measurement error agrees with experimental 
measurements. (a) Comparison of background corrected QPI image of RPE fixed cell at 120 X 
(top left) and polystyrene beads at 20X (bottom left) to synthetically generated uniform and non-
uniform circle data, with added Perlin noise (top middle and right) and without added Perlin 
noise (bottom middle and right) (b) Power spectrum of the QPI data (green and magenta) and 
synthetic data with noise (black) in (a) shows the similarity of QPI data to the non-uniform circle 
synthetic data. (c) 2 µm organelle structure inside 40 µm RPE fixed cell illustrating the range of 
features captured by QPI. Scale bars show 5 µm (blue) and 40 µm (red). Colormap shows dry 
mass density in pg/µm2. (d) Power spectral density versus effective particle size of RPE fixed 
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cells (n = 3). Power spectral density corresponding to both 5 µm and 40 µm structures is 
indicated. (e) Theoretical displacement estimation error at 2 and 30 µm particle size for all tested 
displacements and window sizes. (f) Averaging the size dependent model results as in (e), 
weighted by the actual distribution of particle sizes (c) gives a predicted error which is in 
agreement with the (g) measured error from the matched RPE cell using experimental data. 
Colormaps in (f) and (g) are the same. 

3. Application of QPV for measurement of intracellular displacements 

QPV tracks both overall cellular deformation as well as the motion of individual regions within 

cells. As a method based on QPI, which measures dry mass distributions22, QPV measures 

displacement of dry mass. Sample results for an RPE cell are shown in figure 4. The deformation 

of a uniform grid overlayed on the RPE cell image from time 0 minutes (figure 4a) to 30 minutes 

(figure 4b) shows compression of the grid points in the nuclear region and the spacing out of 

points in the podia region (figure 4b), reflecting the observed compression of the cell as its podia 

move upward within the image frame (movie S1). Each square enclosed by four grid points 

in figure 4a represents a volume encompassing a specific quantity of dry mass in the cell. Using 

QPV, we track each region of dry mass as it moves and deform with time. The motion of five such 

volumes in the nuclear and cytoplasmic regions of the indicated RPE cell shows upward movement 

of the control volumes and the movement of the cell over 30 minutes (figure 4c-d and movie S2). 

From these tracks, we can see that mass originating from the central region of the cell are more 

direction oriented with smaller scale fluctuations than mass originating in the lower density regions 

of the cytoplasm. 

QPV data quantifies the overall velocity of bulk mass transport of each region within the cell. The 

mean velocity distribution over 30 minutes in the cell shows a higher average velocity in the 

cytoplasm region, with a moderate velocity in the nuclear region (figure S11a). To more 

systematically assess differences between the cytoplasm and nucleus, we segmented the nuclear 

region from the cytoplasm of the RPE cell using the fluorescent images of an expressed FUCCI 

marker34. Separating the velocities in the nucleus and cytoplasm and comparing them to the cell 

centroid velocity showed no difference as the cell nucleus and bulk of the cytoplasm moves with 

the cell (n = 59 cells, figure S11b). We compute the deformation velocity as the velocity of the 

volumes inside the nucleus and cytoplasm relative to the cell centroid velocity. The deformation 

velocity map overlayed on the RPE cell (figure 4e), shows a similar distribution as the overall 

distribution of intracellular velocities (figure S11a). However, the velocity magnitude in the 
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regions showing the smallest deformations, such as the nucleus, are reduced to around zero (figure 

4e). The average deformation velocity from the nucleus and cytoplasm of the cell also reflects a 

larger deformation in the cytoplasm compared to the cell nucleus (figure 4f). Thus, the nuclei of 

RPE cells move more in line with the overall cell body relative to the cytoplasm, with the podia in 

particular exhibiting a larger velocity relative to that of the whole cell. We also observe higher 

activity in the cell nucleus and cytoplasm in S phase (figure 4f) perhaps due to the combined action 

of DNA replication supplemented by histone transcription and synthesis35. 

 
Figure 4. QPV shows spatial and temporal dynamics of biomass motion within cells. (a) 
Grid markers depict 4 by 4 pixel intracellular volume centroids overlayed on an RPE cell at 120 
X magnification (b) which deforms from (a) to (b) due to movement of the cells in 30 minutes. 
(c) Dry mass inside control volumes initial positions marked using magenta boxes travel along 
the black line to reach the final positions indicated using green boxes in (d) in 30 minutes. (e) 
Deformation velocity, the whole cell velocity subtracted intracellular velocity distribution of dry 
mass, inside the RPE cell (f) Deformation velocity of dry mass in nucleus and cytoplasm of RPE 
cells, shows higher deformation in cytoplasm than nucleus (n = 59, error bars show standard 
error of the mean). * p < 0.05, ** p < 0.01. 
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4. Decreasing intracellular diffusion with cell cycle progression 

Using QPV, we tracked the intracellular dynamics of mass within every control volume within the 

cell (Figure 4c-d) to measure transport of mass continuously for eight hours while simultaneously 

monitoring cell cycle progression with the FUCCI cell cycle indicator34. From these data, we then 

performed the mean squared displacement (MSD) analysis of the deformation, or displacement 

relative to cell centroid displacement, of all tracked intracellular mass from QPV of RPE cells in 

cell cycle (figure 5). The slope and intercept of the MSD plot was used to measure the anomalous 

constant and diffusion coefficient, respectively, of each intracellular region tracked with QPV 

(figure 5a-c). To validate our MSD calculation, we compare the anomalous and diffusion 

constants of live RPE cells to fixed cells moved artificially on a stage that show effectively zero 

diffusivity (figure S12). Nuclear boundaries were determined by alignment to fluorescence images 

of FUCCI cell cycle markers (figure S13). These data indicate that although cytoplasmic material 

exhibits a larger range of displacements than material within the nucleus (figure 5d-e), these 

displacements indicate a lower average effective diffusivity (figure S14a). Both nuclear and 

cytoplasmic diffusion were consistent with moderately sub-diffusive, anomalous diffusion (figure 

S14b).  

The average diffusion coefficient was slightly higher in the nucleus than in the cytoplasm with 

wide variation (figure S14a). To understand this variation, we binned the diffusion coefficient 

based on cell cycle phase (figure 5f, figure S15a). These data indicate that the nuclear diffusion 

coefficient reduces with cell cycle progression and cytoplasm diffusion coefficient reduces through 

G1 to S phase transition and agree with estimates of spatially variable intracellular diffusivity over 

similar time scales using quantum dots36. As a method that tracks mass of intracellular 

components, we can apply QPI to determine the dependence of the measured diffusivity of each 

control volume on its mass. We find a moderate fit to a power law (R = 0.2) with a scaling exponent 

of -0.233 (figure 5h). This is close to the expected scaling of D ~ m-1/3 that would be predicted 

from Stokes-Einstein, assuming mass scales with the cube of effective particle size, but with 

significant deviation at the level of individual control volumes. We estimated the effective size of 

particles tracked by QPV from the power spectra of QPI images (figure 3a), limited to particles 

that are within the window size used for QPV. This yields a roughly constant effective particle size 

through the cell cycle (figure S15b). 
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Figure 5. Mean squared displacement (MSD) analysis shows reduced diffusion coefficient 
in RPE cells with cell cycle progression. (a) QPI image of individual RPE cell with red nuclear 
and black cytoplasmic boundary shown. (b) Anomalous constant distribution within the RPE 
cell from (a). (c) Diffusion coefficient distribution within the RPE cell from (a). (d) Logarithm 
of MSD vs time lag of intracellular volumes in the nucleus of the RPE cell in (a). The black line 
shows the mean of all nuclear volumes. Black line shows the mean of all cytoplasmic volumes. 
(f) Nuclear and cytoplasmic diffusion coefficients in RPE cells over the cell cycle from n = 119 
cells. Error bars show standard error of the mean. (g) Diffusion coefficient versus mass for all 
regions tracked inside RPE cells. Red line shows best fit power law which has a scaling exponent 
of -0.233.. ** p < 0.01, *** p < 1x10-3, **** p < 1x10-4.  
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DISCUSSION 

We developed QPV to measure unsteady velocity fields of bulk intracellular transport from QPI. 

In contrast to bulk transport across the cell membrane and into cells, the bulk intracellular transport 

measured with QPV is the transport of all cellular material within the cell. As a label-free method, 

QPV can directly be applied to measure mass transport within cells over long periods, such as 

throughout the cell cycle, and to make direct comparisons between cellular compartments. We also 

applied QPV to quantify the transport properties of subcellular trajectories to measure intracellular 

effective diffusivity through the cell cycle. 

Our model of error contributions to QPV points towards possible improvements. One key insight 

is that the particle size distribution is critical in determining the accuracy of QPV. This suggests 

that a high-pass filtering scheme may improve accuracy of QPV by reducing the effective particle 

size. However, this would come at the loss of applicability to tracking whole cell displacements, 

as the resulting velocity fields would be for a subset of intracellular particles. We also note that, 

though Brownian motion was found to be a key limit to the accuracy of velocity estimation for 

previous applications of PIV to microscopy data to measure flow within microchannels37, 38, we 

found the influence of Brownian motion to have a small impact on QPV. We estimate an impact 

of <3% for the smallest particle sizes imaged and negligible impact for the largest particles tracked. 

QPV has a number of advantages over alternative approaches for studying mass transport within 

cells. Unlike many other label-free methods, QPV automatically tracks intracellular features based 

on PIV. Additionally, as a label-free method, QPV avoids issues with phototoxicity, 

photobleaching, or label dilution over time, while still giving results for intracellular diffusivity 

that are comparable in magnitude to methods requiring labels. Another major advantage of QPV 

is that it uses the same analysis for both nucleus and cytoplasm, allowing direct comparisons 

between these two compartments that are difficult to label consistently with other approaches. 

Overall, this work suggests that QPV is a valuable tool to study intracellular transport and 

biophysics. 
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METHODS 

Microscopy 

We performed QPI with an Olympus IX83 inverted microscope (Olympus Corporation, Japan) in 

brightfield with a 100X, 1.3 numerical aperture oil-immersion objective, and 1.2X magnifier to 

match the Nyquist criteria with a quadri-wave lateral shearing interferometry wavefront sensing 

camera 39 (Phasics SID4-4MP (Phasics, France) camera). 120 ms exposure with red LED 

illumination (623 nm, DC2200, Thorlabs, USA) was used for QPI image acquisition. We used 

MATLAB (Mathworks, USA) for automated image acquisition. We connected the illumination 

sources, Retiga camera and stage with MicroManager open-source microscopy software 40. The 

Olympus IX83 microscope (Olympus corporation, Japan) and Phasics camera were connected 

directly through MATLAB. QPI images were captured every 1 minute and fluorescence images 

every 30 minutes at 30 imaging positions in every dataset. A flipping mirror arrangement (IX3-

RSPCA, Olympus Corporation. USA) enabled alternate fluorescent and QPI. X-Cite 120LED light 

source (Excelitas technologies, USA) and Retiga R1 camera (Cairn research Ltd, UK) at 300 ms 

exposure were used for the fluorescence, with an Olympus U-FBNA filter cube for green mAG 

fluorophore and Semrock mCherry-B-000 filter cube (IDEX health & science, USA) for imaging 

the red mKO2 fluorophore. Uniform 37℃ and 5% CO2 conditions were maintained using an 

Okolab stage-top incubator (Okolab, Italy) and custom-built objective heating collar, temperature 

controlled by Thorlabs temperature controller (Thorlabs, USA). For live cell imaging, cells were 

plated in Ibidi µ-high treated dishes at 30% confluence. Four sets of 30 live cells were imaged 

every for 8 hours for every imaging session. 

Cell culture  

Cell culture procedures complied with the University of Utah BSL-2 guidelines. MCF7 (mammary 

epithelium) cell lines donated by Welm lab (HCI, Utah) were cultured in Dulbecco's modified 

eagle's medium (DMEM) (Gibco™ 11330057, Thermo Fisher Scientific, USA) with 10% fetal 

bovine serum (FBS) (Corning™ 35015CV, Fisher Scientific, USA). mKO2-hCdt1 and mAG-

hGem tagged FUCCI expressing RPE-1 cells from Edgar lab (HCI, Utah), prepared by Yiqin Ma, 

were cultured in Gibco DMEM with 10% FBS and 5% Penicillin-Streptomycin. Penicillin-

Streptomycin was removed while imaging the cells. Cells were split 1 to 6 to 1 to 3 ratio at 

confluence less than 80% at a frequency based on their growth rate. 
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Cell FUCCI tagging 

RPE cells donated by the lab of Bruce Edgar (University of Utah) were received FUCCI tagged 

with mAG-hGem and mKO2-hCDt1. Cells express the mKO2 tag on Cdt1 in the nucleus during 

G1 phase (red nucleus), added mAG tag on Geminin in the nucleus during S phase (yellow nucleus 

due to combination of red mKO2 and green mAG) and the loss of mKO2 with the onset of G2 

phase (green nucleus). The fluorescent image of the FUCCI tagged nuclei captured every 30 

minutes was segmented using the k-mean algorithm (available as a built-in function in MATLAB) 

and overlapped with the QPI image. 

Mycoplasma testing 

We DAPI (Fisher-NC9677247) stained fixed cells, grown 80 to 90 % confluent, after 

permeabilizing the nuclei using methanol at 4ºC, to test for mycoplasma contamination. The DAPI 

stained cells were imaged using a Retiga R1 camera at 500 ms exposure time and Olympus U-

FUNA filter cube, illuminated by X-Cite 120LED. We checked the presence of DAPI stained 

puncta outside the nucleus as an indicator for mycoplasma contamination. 

Initial processing of QPI data 

The Phasics SID4BIO camera for QPI uses a modified Hartmann mask diffraction grating to 

compute the phase gradient in two orthogonal directions which were converted to phase 

measurements using the Phasics Matlab SDK (Phasics, France). Phase shift was converted to dry 

mass using an assumed specific refractive increment of 0.18 µm3/pg for cell material 22. The phase 

shift of light (𝜙) expressed as an optical path length is directly related to the dry mass (m) at a 

given pixel through the specific refractive increment (α) 41 as: 

 𝑚 =
1
𝛼 ∫ 𝜙𝑑𝐴 

 

(1) 

where A is the area of each pixel of the phase shift image. QPI images were then background 

corrected by fourth order polynomial curve fitting to regions in the phase image outside of cells. 

Fixed cell imaging 

RPE and MCF7 cells were plated in Ibidi µ-high treated dish at 40% confluence. Cells were fixed 

by removing cell culture media, washing with PBS and incubating in 4% paraformaldehyde (PFA) 
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at 37ºC for 10 minutes. The PFA was further removed, cells washed with PBS, refilled with fresh 

PBS and sealed and stored until imaging. During imaging, the dish was heated to 37ºC on Okolab 

stage-top incubator 20 minutes prior to imaging to avoid condensation. Cells were imaged at each 

0.05 µm step stage translation in the vertical direction. 

Image registration 

Sum of squared differences (SSD) 

SSD was then performed on overlapping discretized interrogation windows of 15 by 15 pixels, 

spaced by 1 pixel, in the background corrected QPI image. The SSD of two image regions was 

computed as: 

 𝑆𝑆𝐷(𝑖, 𝑗) =001𝑓(𝑖, 𝑗) − 𝑔(𝑖 + 𝑢, 𝑗 + 𝑣)8!
"

#$%

&

'$%

 
 

(2) 

where f and g are the two interrogation windows from successive images to be matched using SSD 

with i and j the location of pixels comprising the image, M and N are the width and length of the 

image in pixels and u and v are the displacement introduced at each iteration of the SSD 

calculation. 

Normalized cross correlation (NCC) 

NCC between interrogation windows was measured using the MATLAB function normxcorr2. 

The displacement of the highest pixel in the correlation plane from the center pixel was used to 

compute the displacement of the each interrogation window. 

Optical flow reconstruction (OFR) 

OFR developed by Lucas and Kanade 42 measures the transport of intensity profile in images, 

given by 

△ 𝐼
△ 𝑡 =

𝐼(𝑡 +△ 𝑡) − 𝐼(𝑡)
△ 𝑡 = −𝜈. ∇𝐼 

 

(3) 

Here I(t+△t) and I(t) are intensity of images time △t apart, in our case 1 minute. We used the code 

available from 30 for OFR displacement calculation. The BlurSize parameter for blurring image 

using Gaussian blurring before OFR in code was set to 1. The BlurStd parameter was set to 1,2,5,8 

and 12 for understanding impact of Gaussian blurring (figure S4 c and d). 
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Mutual Information (MI) 

MI was computed using a method implemented in MATLAB that extracts mutual information 

from the joint histogram and joint entropy of the registered images that was adapted to perform 

mutual information (MI) image registration calculation on sliding interrogation windows inside 

grayscale QPI images 43. 

Quantitative phase velocimetry 

Our implementation of QPV is based on the SSD image registration method 32 applied to 15 by 15 

pixel (3.57 by 3.57 µm) interrogation windows within cells. A magnified view of one 15 by 15 

pixels interrogation window inside an example cell difference image (figure 1c) shows the 

movement of individual cell components (pointed by red arrow) to a position on the left side of 

the window, pointed by black arrow (15 by 15 pixel inset in figure 1c). SSD produces the lowest 

sum of squared difference when such patterns of mass within an interrogation window overlap 

between two displaced windows from successive imaging frames (figure S1a). Gaussian fitting 

on the 3 by 3 pixel region neighborhood around the lowest value of the computed SSD gives sub-

pixel localization of displacements (figure S1b). This results in the measured displacements that 

form the basis of QPV (figure S1c). Spurious velocities were removed using a conditional median 

filter, thus retaining the original values of subcellular velocity computed. From the known time 

gap between frames set during cell imaging, we compute the velocity of mass transport from these 

displacement measurements (figure 1d). Processing was performed using computational resources 

allocated by the Center for High Performance Computing (CHPC) at the University of Utah. Code 

is available on GitHub (https://github.com/ZangleLab). 

Calculation of measurement error 

The error of displacement magnitude (Emag) was calculated as:  

𝐸()* =
(𝐷+,)- − 𝐷(,)./+,0)

𝐷+,)-
× 100	% 

 

(4) 

where Dreal is the actual magnitude of displacement introduced by movement of stage, and Dmeasured 

is the average measured displacement magnitude.  
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Direction error (Edir) was computed as the angle between the computed and actual displacement 

vector: 

 𝐸0'+ = 𝜃+,)- − 𝜃(,)./+,0 
 

(5) 

θreal is the actual angle of displacement introduced by stage and 𝜃measured is the average angle 

measured by image registration method.  

QPV error model 

Power spectra of the cell images was azimuthally averaged to convert power density image to 2-

dimensional plot of power density vs frequency. 

We estimated the optical diffraction limit as: 

 𝐷𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑙𝑖𝑚𝑖𝑡 =
𝜆
𝑁𝐴 

 

(6) 

where λ is the wavelength of light and NA is the numerical aperture of the objective used for 

imaging, assuming that the illumination NA = 0 to generate a spatially coherent plane wave for 

QPI 44. The code for constructing the particle size dependent error model is also available on 

GitHub (https://github.com/ZangleLab). 

Deformation velocity 

The whole cell velocity was computed based on tracking segmented cell centroids. The cell 

nucleus was segmented from cytoplasm using k-means segmentation algorithm on FUCCI 

fluorescence images. Cytoplasm and nucleus mask were used to separate subcellular 3-minute 

displacement tracks in corresponding regions and used to compute cytoplasm and nuclear 

velocities separately. The average cell centroid velocity was subtracted from all intracellular 

velocities and averaged in cytoplasm and nucleus to compute the deformation velocity of 

cytoplasm and nucleus. 

MSD analysis 

Relation between MSD and time lag (τ) is given by 

 <𝑀𝑆𝐷> = 4𝐷𝜏1 
 

(7) 
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D is the diffusion coefficient and α is the anomalous constant. The proportionality constant is 4D 

as the tracking is two-dimensional. The effective particle size (dp) is obtained from power spectrum 

of QPI image of the cell, weighting the particle size by the power spectrum density, within the 

limit of particle sizes visible by the interrogation window size. 

Statistics 

Welch’s two-tailed t test with unequal variances was used to calculate the significance of 

differences between experimental groups. Error bars are reported as the standard error of the 

mean based on the number of cells in each test group. 
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