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Abstract

The microscopic rate constants that govern an enzymatic reaction are only directly mea-

suredunder certain experimental set-ups, suchas stoppedflow, quenchedflow, or temperature-

jump assays; the majority of enzymology proceeds from steady state conditions which leads

to a set of more easily–observable parameters such as :20C ,  " , and observed Kinetic Isotope

Effects
(
� :20C

)
. This paper further develops a model from Toney (2013) to estimate micro-

scopic rate constants from steady-state data for a set of reversible, four–step reactions. This

paper uses the Bayesian modeling software Stan, and demonstrates the benefits of Bayesian

data analysis in the estimation of these rate constants. In contrast to the optimization methods

employed often in the estimation of kinetic constants, a Bayesian treatment is more equipped

to estimate the uncertainties of each parameter; sampling from the posterior distribution using

Hamiltonian Monte Carlo immediately gives parameter estimates as mean or median of the

posterior, and also confidence intervals that express the uncertainty of each parameter.

1 Introduction

Estimation of the rate constants associated with each step of an enzymatic mechanisms is rarely

straightforward, due to complexity of the reactions and lack of an ability to observe each inter-
†This article is a preprint, and has not yet undergone peer review.
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mediate species during the course of a reaction. The two enzymes under study here are alanine

racemase (AR, EC 5.1.1.1), which catalyzes the reversible conversion of l-alanine to d-alanine, and

triosephosphate isomerase (TIM, EC 5.3.1.1), which functions in glycolysis to convert dihydrox-

yacetone phosphate into d-glyceraldehyde 3-phosphate. Both are classified as isomerases, and

take a single substate in both the forward and reverse directions. The general reaction scheme

for AR and TIM is given in Scheme 1. In order to fully characterize these reactions, kinetically,

E + S
:1
:−1

ES
:2
:−2

EZ
:3
:−3

EP
:4
:−4

E + P

Scheme 1: The Reaction scheme for a reversible, 4-step reaction.2

we would like to estimate the rate constants for every step. In addition, if certain rate constants

are isotopically sensitive, there will be additional values to estimate. For an enzymatic reaction

scheme with four reversible steps, that leaves us with 8 microscopic rate constants to determine.

In Scheme 1, :1 and :−4 are second–order rate constants, and all others are first order. EZ is an

intermediate that reacts rapidly in both directions. The substrates are taken to be l-alanine for

AR and dihydroxyacetone phosphate for TIM, though the reactions are reversible. First order rate

constants :2 and :−3 are isotopically sensitive, with primary kinetic isotope effects �:2 and �:−3.

Since we cannot directly measure :1, :2, etc., we have to rely on indirect methods of determin-

ing those values. Ref. 1, which is the starting point for this work, uses a series of measurements

done under steady state condition, each of which can be related to the microscopic rate constants

mathematically (Eqs. (2)– (12)). Through incorporation of sufficient experimental data, it is pos-

sible in principle to determine each of the microscopic rate constants. In Ref. 1, global fitting is

used to extract individual rate constants from steady-state reaction data. Global fitting in this case

refers to the use of a target function containing contributions from all of the experimental data,

fromwhich are estimated a set of parameters consistent with the entire data set through non-linear

regression. The earlier work used standard non-linear optimization algorithms to minimize the

relative squared error of a set of data points. The target function used was

5 (),J) =
∑
8

(
�̂()) − �8

�8

)2

(1)

Where ) is a vector of parameters to be estimated, J is a vector of experimental values, and
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�̂()) is the function relating the parameters to the experimental value. This function leads to a

minimization of the relative standard deviation (RSD),which is preferred because the experimental

values are different orders of magnitude so they must be scaled to avoid bias. Ref. 1 showed that

convergence was achievable using non-linear optimization, and that the method was reasonably

robust. The fact that an optimization algorithm converges on a set of parameter values is not

in itself useful, unless we have some confidence in those numbers. Ref. 1 wisely uses a method

whereby a set of randomly generated values with the same mean and standard deviation as

the experimental data are fed into the optimization algorithm, and parameters are re-calculated

for each set, allowing an estimation of parameter uncertainty. Other non-linear methods would

employ the Hessian matrix or bootstrapping to the same effect.3,4 These methods fall under the

rubric of frequentist analysis, which is often faster and equally as accurate as Bayesian methods

are, given plentiful, high quality data. However, when the number of parameters to be estimated

is nearly equal to the number of data points, as in the current case, Bayesian methods can provide

invaluable information about the most likely parameter values, given all available data, and the

uncertainty the estimates of each parameter.5 Here I show that a Bayesian modeling of the same

system gives robust and useful estimates of the rate constants and their associated uncertainties.

In addition, a Bayesian treatment is able to handle cases of possible experimental error, at the cost

of greater uncertainty in the parameter posterior distributions.6

1.1 Incorporation of the Equilibrium Constant

We have here introduced a new data value to improve the estimate, the equilibrium constant  4@

(Eq. 13). This is equal to the product of the forward rate constants divided by the reverse rate

constants, and can be determined experimentally by measuring the concentrations of reactant

and product at equilibrium, or indirectly from the forward and reverse :20C/ < values using the

Haldane relationship:11,12

 4@ =
:20C, 5  <,A

:20C,A <, 5

Direct measurement of  4@ is to be preferred, since use of the Haldane relationship utilizes the :20C

and  < values that are already incorporated into the model, so using these values again tends to
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:20C, 5 =
:2

1 + :2/:4 + ((:2 + :−2)/:3)(1 + :−3/:4)
(2)

:20C,A =
:−3

1 + :−3/:−1 + ((:3 + :−3)/:−2)(1 + :2/:−1)
(3)

 <, 5 =
:−1
:1
· 1 + :2/:−1 + (:−2/:3)(1 + :−3/:4)

1 + :2/:4 + ((:2 + :−2)/:3)(1 + :−3/:4)
(4)

 <,A =
:4
:−4
· 1 + :−3/:4 + (:3/:−2)(1 + :2/:−1)

1 + :−3/:−1 + ((:3 + :−3)/:−2)(1 + :2/:−1)
(5)

 �/ =

(
:−2
:2
+ :3
:−3
+ 1

)−1

(6)

� =
:−2(1 + :−3/:4)
:3(1 + :2/:−1)

(7)

slope = :−1:−2:−3 + :2:3:4
:−1:−2:−3 + :2:3:4 + :−1:3:4 + :−1:−2:4

(8)

�:20C, 5 =
�:2 + (:2/:3)(1 + :−3/:4) + :2/:4 + �:2(:−2/:3)(1 + :−3/:4)

1 + (:2/:3)(1 + :−3/:4) + :2/:4 + (:−2/:3)(1 + :−3/:4)
(9)

�:20C,A =
�:−3 + (:−3/:−2)(1 + :2/:−1) + :−3/:−1 + �:−3(:3/:−2)(1 + :2/:−1)

1 + (:−3/:−2)(1 + :2/:−1) + :−3/:−1 + (:3/:−2)(1 + :2/:−1)
(10)

�

(
:20C

 <

)
5

=
�:2 + :2/:−1 + �:2(:−2/:3)(1 + :−3/:4)

1 + (:2/:−1) + (:−2/:3)(1 + :−3/:4)
(11)

�

(
:20C

 <

)
A

=
�:−3 + (:−3/:4) + �:−3(:3/:−2)(1 + :2/:−1)

1 + (:−3/:4) + (:3/:−2)(1 + :2/:−1)
(12)

 4@ =
:1:2:3:4

:−1:−2:−3:−4
(13)

Figure 1: Equations used in the analysis of data for TIM, AR and the simulated data. Eqs. (2)– (12)
are used in Ref. 1, and Eq. (13) is included in this analysis.
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Table 1: Experimental Values used to estimate Rate Constants

Alanine Racemase Triosephosphate Isomerase
Mean (SD) Ref. Mean (SD) Ref.

:20C, 5 1740 (10) 1 750 (50) 1
:20C,A 1280 (12) 1 8350 (350) 1
 <, 5 5.4 (0.1) 1 1.35 (0.15) 1
 <,A 4.0 (0.1) 1 0.05 (0.01) 1
 �/ 1.6 × 10−4 (0.4 × 10−4) 1 ≤ 0.05 1
� 0.5 (0.1) 1 3 (1) 1
slope 0.015 (0.015) 1 0.8 (0.1) 1
�:20C, 5 1.5 (0.1) 1 3.4 (0.1) 1
�:20C,A 1.4 (0.03) 1 1.6 (0.1) 1
�

(
:20C
 <

)
5

1.6 (0.1) 1 3.4 (0.1) 1

�
(
:20C
 <

)
A

1.3 (0.1) 1 1.6 (0.1) 1
 4@ 1.0 (0.05) 7 0.0035 (0.0001) 8–10

bias the estimates. For the same reason, the values of
(
�(:20C/ <) − 1

)
/
(
�:20C − 1

)
used in Ref. 1

are not used here, because they represented re-use of data that is already incorporated as �:20C and
�(:20C/ <). However, in some cases the  4@ might be hard to measure directly, and the Haldane

relationship may be used (with caution). More reliable estimates for  4@ might be possible using

the Haldane relationship if there exists high quality data for homologues of the enzyme, or point

mutants, because the  4@ values calculated by the Haldane relationship should theoretically be

the same for all active versions of an enzyme, as long as the temperature and buffer composition

are similar. In this case we can average the values from several sources to obtain a more reliable

estimate for  4@ .

An additional reason for using the value of  4@ is that the expression contains :1 and :−4,

which each only appear in one other equation (for  < , forward and reverse). This means that we

are dependent on accurate measurement of  < to get reliable values for :1 and :−4, in the absence

of any further information. For enzymes such as AR, which converts l-alanine to d-alanine, the

 4@ is theoretically exactly 1, since there is no reason l-alanine would have a higher or lower free

energy than d-alanine in a mostly achiral aqueous solution. For TIM, there is no direct measure-

ment of the  4@ available in the literature, possibly because both dihydroxyacetone phosphate

and d-glyceraldehyde 3-phosphate are themselves in equilibrium with their catalytically-inactive

hydrated forms.8 So in order to obtain the  4@ for the unhydrated forms, I averaged 4 literature
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values for  4@ , derived from the Haldane relationship.8–10

2 Considerations for Accurate Parameter estimation

2.1 General Limitation of the Bayesian Method

Every form of parameter estimation rests on a set of assumptions about the data and a model; this

case is no different. Stan, as with other Bayesian modeling software, requires these assumptions

be made explicit. Each parameter needs a prior distribution, which can affect the final result. The

form of the model partly determines the results, and an incorrect model will lead to unhelpful

results.

2.2 Choice of Priors for :s.

One aspect of a Bayesian analysis that differs from the function minimization procedures used

in Ref. 1 is the requirement to specify a prior distribution for each of the parameters. This is

information that is incorporated into the model according to the modified version of Bayes’ Law:13

?(Θ |�) ∝ ?(� |Θ)?(Θ)

Here, the posterior distribution of the parameters ?(Θ |�), the output of our simulation, is the

product of the likelihood function ?(� |Θ) and the prior distribution for the parameters ?(Θ). I

have chosen a uninformative prior : ∼ Exponential
(
�
)
for each of the :s, based on the following

assumptions:

1. The value of : is necessarily > 0, so an exponential distribution has the same domain.

2. The exponential distribution is often seen in physically relevant phenomena.14,15

3. Setting : ∼ Exponential
(
�
)
with � << 1 gives a broad distribution that covers the region

from 1 to 1 × 109, typical values for microscopic rate constants.

4. Nonetheless, the prior is not too restrictive, because we have poor prior information about

which values are typical for a rate constant.
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This last point is especially important, as too restrictive a prior can end up determining the shape

of the posterior distribution in the absence of sufficient experimental data.

The prior for :2 (and the other :s) is implemented as follows in Stan:

transformed data{

real<lower=0> kfp;

...

kfp = kf[1]; // the lower limit for all forward rate constants is kcat,f.

...

}

parameters {

...

real<lower=kfp, upper=1e12> k2; // rate of bond vibration. Fersht(1999)

...

real<lower=0> bet; // Hyperprior parameter for all ks

}

k2 ~ exponential(bet); // Prior ditribution for k2

...

bet ~ gamma(1,1); // Hyperprior; Gamma is conjugate prior for Exp.

Here, we utilize a hyperprior �; the prior distribution for :2 depends on the parameter �, which is

also estimated over the course of the simulation. This allows a great deal of flexibilitywhile keeping

the mathematical form of the priors constant. The hyperprior for � is set as � ∼ Gamma (1, 1), a

relatively uninformative prior with most of the mass below 1.

2.3 Choice of Priors for Intrinsic KIEs
(Dki

)
.

Kinetic isotope effects are strictly positive quantities, and for the comparison between deuterium

and protium the intrinsic KIE of step 8 is

�:8 =
:8 ,%

:8 ,�
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where :8 ,% and :8 ,� are the rate constants of the reaction with protonated and deuterated substrate.

Common ranges for primary KIEs are 1.5 – 3, in the absence of quantum-mechanical tunneling.16

Rarely, inverse KIEs are observed where �:8 < 1. Given these constraints, I set the prior as

�:8 ∼ Lognormal (1, 0.5)

Figure 8 graphs the prior used for KIEs. We see that most of the mass is between 1 and 4, but the

density extends to infinity in the positive direction. I limit the value of KIEs to less than 500, based

on the fact that the largest measured enzymatic �:20C is around 500.17 Any KIE greater than 6 is

likely to be due to quantum mechanical effects, and in cases where this is suspected ( e.g. hydride

transfer) the prior could be adjusted to reflect the expected ranges of values.

2.4 The Problem constants – :1 and :−4.

In Ref. 1 and here, there are difficulties in accurately determining :1 and :−4 for both TIM and AR.

Significantly, in Ref. 1 :1 and :−4 each only appear in one equation, the one for  <, 5 (Eq. 4) and

 <, 5 (Eq. 5).

 <, 5 =
:−1
:1
· 1 + :2/:−1 + (:−2/:3)(1 + :−3/:4)

1 + :2/:4 + ((:2 + :−2)/:3)(1 + :−3/:4)

 <,A =
:4
:−4
· 1 + :−3/:4 + (:3/:−2)(1 + :2/:−1)

1 + :−3/:−1 + ((:3 + :−3)/:2)(1 + :2/:−1)

The intuitive effect of this is that eachof the experimental values besides <, 5 and <,A only indirectly

provide information as to the true value of :1 and :−4, by helping to determine the values of the

other parameters. But an interesting effect of this can be seen in Figure 7, which shows correlation

between parameters during the course of the simulation as the posterior distribution is explored.

In row 5, column 1, we see that the values of :1 and :−1 are linearly correlated, as are the values

of :4 and :−4 in row 8, column 4. Looking at the equations for  < , we see that this is largely

due to the fact that each contains the factor :1/:−1 or :4/:−4, and since this is the sole place that

:1 and :−4 appear in this model, ambiguity in :−1 is passed along to :1, etc. Adding the data

for the  4@ doesn’t alter this, as the expression for  4@ also contains :1/:−1 and :4/:−4. This tells

us that :1 and :−4 can’t be considered separately from :−1 and :4; all this model can give us, in

8
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the absence of strong prior information about :1 and :−4, is the ratios :1/:−1 and :4/:−4, i.e. the

equilibrium constants for the first and fourth steps. Thus in my Stan code I have replaced :1/:−1

and :4/:−4, where they appear, with  1 and  4. This slightly simplifies the calculations, and for a

reversible reaction such as these it is reasonable to assume that the forward and reverse constants

are within three orders of magnitude of each other, so we can limit the value of  1 and  4 during

the simulation to between 0 and 103. Indeed, in both TIM and AR the values determined are

approximately equal to  <, 5 and 1/ <,A , though this is not necessarily true in general as  <s can

be greater than, less than, or equal to the association equilibrium constant (e.g.  1) in the case of

a multi-step reaction.18

3 Results and discussion

3.1 Application to Simulated Data

We base our estimates on a set of 12 equations, and we estimate 11 parameters from these data

points and their uncertainties, following the general rule of thumb that one can estimate at best

= − 1 unknown parameters from = data points. However, this is only best–case; experimental

error and the structure of the model can limit our ability to estimate parameters effectively. The

primary difficulty here is one of structural identifiability;19 can we, even with ideal data, estimate

the parameters given the model we have?

To test the ability of our model to accurately determine rate constants, I simulated a data set

with a fixed relative standard deviation (RSD) for all experimental values. I chose values for :s in

the range of 103 to 108, and two isotope effect values in the classical range (1-6). With a RSD of

0.01, representing ideal experimental conditions, the modeled mean values are all within 10% of

the true value, and the 90% confidence intervals contain the true value. Repeating this with other

simulatedvalues gives equally accurate results. The '̂ statistic13,20measures the averagedivergence

between MCMC chains during a simulation; in ideal data the value is 1.0 exactly, indicating that

all the chains in the simulation have converged on the same posterior distribution. I have used 4

independent chains in each analysis. The '̂ for all of the parameters in this investigation is less

than 1.1, as prescribed by Ref. 13.

Increasing the RSD to 0.1, amuchmore realistic value, shows themodel beginning to drift away

9
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from the true values and an increase in uncertainty. Nonetheless only two of the parameters is off

by more than 50% – :4 and :−3. These two parameters are highly correlated, and in the absence of

stronger prior information are likely to deviate from their simulated values. Notably, the ratio of :4

to :−3 is simulated as 0.5 and the fit shows 0.375, suggesting than an increase in prior information

for either :4 or :−3 would greatly improve the estimate of both. While Toney validated his model

with ideal datasets, his test data didn’t include experimental error and is analogous to my dataset

with RSD = 0.01. The results of the modeling show that the current method is able to accurately

determine rate constants under ideal conditions, and that experimental error begins to affect this

at higher levels, as expected. I conclude from this that the model is structurally identifiable, with

some parameters such as the intrinsic isotope effects determined with better precision than others.

Table 2: Statistical summary of the Stan output for the Simulated Data. '̂ is the Gelman–Rubin
statistic.20 90% CI is the 90% confidence interval for the posterior of each parameter. RSD is
Relative Standard Deviation.

Parameter Sim. Value Mean (RSD = 0.01) 90% CI '̂ Mean (RSD = 0.1) 90% CI '̂

:1 2 × 104 1.97 × 104 (1.86 − 2.09) × 104 1.00 1.58 × 104 (1.39 − 1.80) × 104 1.00
:2 1 × 103 9.93 × 102 (9.56 − 10.3) × 102 1.00 7.51 × 102 (4.32 − 11.2) × 102 1.00
:3 1 × 107 1.00 × 107 (9.51 − 10.5) × 106 1.00 1.40 × 107 (7.07 − 27.2) × 106 1.00
:4 1 × 104 1.06 × 104 (8.61 − 13.1) × 103 1.00 3.45 × 106 (9.22 − 75.4) × 105 1.00
:−1 5 × 103 4.94 × 103 (4.68 − 5.23) × 103 1.00 3.99 × 103 (3.91 − 4.10) × 103 1.00
:−2 1 × 108 9.81 × 107 (9.43 − 10.2) × 107 1.00 6.69 × 107 (3.81 − 10.1) × 107 1.00
:−3 2 × 104 2.15 × 104 (1.73 − 2.66) × 104 1.00 9.19 × 106 (2.05 − 20.4) × 106 1.00
:−4 1 × 105 9.92 × 104 (9.67 − 10.2) × 104 1.00 8.96 × 104 (7.22 − 11.3) × 104 1.00
�:−3 3.5 3.48 (3.44 − 3.52) 1.00 3.26 (2.86 − 3.66) 1.00
�:−3 1.5 1.53 (1.48 − 1.58) 1.00 1.95 (1.35 − 2.81) 1.00

3.2 Alanine Racemase

Table 3 shows the output of the Stan modeling for Alanine Racemase. We see that all of the

parameters have converged well, as shown by the '̂ values lying close to unity. From the table,

and from the graphs in Figure 9, the intrinsic KIEs (�:2 and �:−3) are in good agreement with

the analysis from Ref. 1. The intrinsic KIEs for AR are especially well-defined, as shown by

Figure 9. The prior and posterior distributions of both �:2 and �:−3 are shown, and the prior

is much broader than the posterior, showing that the experimental data have been instumental

in determining the mean and confidence intervals for the KIEs through the likelihood function.

10
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Table 3: Statistical summary of the Stan output for the AR Data. '̂ is the Gelman–Rubin statistic.20
90% CI is the 90% confidence interval for the posterior of each parameter.

Parameter Mean Median 90% CI '̂ Num. Opt. (Toney, 2013)
:1 (mM−1s−1) 1.4 × 104 1.3 × 104 (7.2 × 103 , 2.6 × 104) 1.00 > 105

:2 (s−1) 2.8 × 103 2.8 × 103 (2.5 × 103 , 3.0 × 103) 1.00 2600(200)
:3 (s−1) 8.3 × 106 8.2 × 106 (6.3 × 106 , 1.1 × 107) 1.00 1.4 × 107(0.3 × 107)
:4 (s−1) 9.0 × 105 7.2 × 105 (2.5 × 105 , 2.1 × 106) 1.00 9 × 106(8 × 107)
:−1 (s−1) 7.5 × 104 6.7 × 104 (3.7 × 104 , 1.4 × 105) 1.00 > 106

:−2 (s−1) 4.7 × 106 4.6 × 106 (6.7 × 105 , 5.9 × 106) 1.00 6.8 × 106(0.7 × 106)
:−3 (s−1) 3.8 × 103 3.7 × 103 (3.2 × 103 , 4.5 × 103) 1.00 4000(700)
:−4 (mM−1s−1) 2.1 × 102 1.7 × 102 (5.6 × 101 , 4.9 × 102) 1.00 2 × 104(2 × 105)
�:2 1.56 1.56 (1.44, 1.67) 1.00 1.55(0.11)
�:−3 1.41 1.41 (1.36, 1.46) 1.00 1.35(0.09)

Others show some disagreement, especially the values of :3 and :−2 which differ by > 10-fold.

The reason for this is not entirely clear, but is likely due to the effects of experimental uncertainty,

as both in Ref. 1 and the present work the models are shown to give accurate results with ideal

data. In the case of real world data, the difference between the models and algorithms becomes

more important as error increases, as do the assumptions behind each. In every case where the

present results and those of Ref. 1 disagree significantly ( > 10-fold), the latter parameters show

a great deal of uncertainty. In the case of AR, these are :3, :−2 and :−3. For :3 and :−2 we only

have lower bounds in Ref. 1, and the SD of :−3 is 4 times the mean. In the present work, Stan is

using the log of the joint likelihood function to estimate the shape and position of the posterior

distribution, under the influence of a prior distribution; in Ref. 1 the program is trying tominimize

a cost function (Eq. 1 ). Function minimization in the absence of a prior distribution can behave

similarly to doing a Bayesian analysis with a Uniform prior on all parameters. In a case where the

domain of each parameter is on the order of 1012, for a Bayesian analysis this gives us a prior where

the parameter is nine times as likely to be in the range 1011 to 1012 as between 0 and 1011. This is

part of the motivation for the use of the exponential distribution as a prior for all :s, to correct this

bias towards larger numbers. In minimizing the function, if the experimental data are subject to

error the parameters can vary freely over large ranges during the search, and converge to a wide

range of values. This search is unbiased by a prior distribution, so might be preferred as long

as the uncertainty in parameter estimates can be contained and there is little prior information.

However in cases where parameters cannot be defined to within even an order of magnitude by
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function minimization, a Bayesian analysis such as the one shown here should be considered. I

also note that the values that I estimate for all the parameters are consistent with the experimental

data; the experimental means and theoretical mean values agree to within 1% in all cases. It may

be that due to experimental uncertainty more than one set of parameters is consistent with the

data (multimodality). In this case, an improvement of the experimental data or a more informative

prior distribution might be necessary to resolve the problem.

3.3 Triosephosphate Isomerase

Table 4: Statistical summary of the Stan output for the TIMData. '̂ is the Gelman–Rubin statistic.20
90% CI is the 90% confidence interval for the posterior of each parameter.

Parameter Mean Median 90% CI '̂ Num. Opt. (Ref. 1)
:1 (mM−1s−1) 1.4 × 104 1.3 × 104 (9.7 × 103 , 2.2 × 104) 1.01 8400(1500)
:2 (s−1) 4.4 × 103 4.2 × 103 (2.9 × 103 , 6.3 × 103) 1.00 4000(1600)
:3 (s−1) 9.7 × 104 8.3 × 104 (4.1 × 104 , 1.9 × 105) 1.00 > 109

:4 (s−1) 1.3 × 104 1.3 × 104 (9.5 × 103 , 1.8 × 104) 1.00 1.2 × 104(0.3 × 104)
:−1 (s−1) 2.0 × 104 1.9 × 104 (1.4 × 104 , 3.1 × 105) 1.00 1.1 × 104(0.2 × 104)
:−2 (s−1) 7.9 × 104 7.2 × 106 (4.0 × 104 , 1.4 × 105) 1.00 > 108

:−3 (s−1) 5.3 × 104 4.8 × 104 (2.8 × 104 , 9.8 × 104) 1.00 5 × 105(20 × 105)
:−4 (mM−1s−1) 4.0 × 104 3.8 × 104 (2.2 × 104 , 6.3 × 104) 1.00 2.3 × 105(0.3 × 105)
�:2 3.57 3.57 (3.45, 3.71) 1.00 3.56(0.08)
�:−3 2.64 2.61 (2.10, 3.31) 1.00 3.3(0.5)

For TIM, similar issues arise as for AR. There is an assumption that the uncertainties in each

parameter are distributed normally. Looking at the estimates for the TIM dataset, Ref. 1 estimated

:−4 as 5 × 105 with a SD (20 × 105) ; if you assume normalcy that would mean a full 40% of the

confidence interval lies below zero, where it is impossible for the value to be. Likewise for :−4, the

optimization results give wide ranges for the parameter confidence interval.

Nickbarg and Knowles9 also calculated the ratios of the forward and reverse rate constants for

yeast TIM. Table 5 shows a comparison of the results from the current study compared with Ref. 1

and Nickbarg and Knowles (1988). There is agreement between as to the ratios of the forward and

reverse constants for the first and fourth steps (:1/:−1 and :4/:−4). The current paper andNickbarg

and Knowles (1988) give essentially identical estimates for :2/:−2 and :3/:−3, with Ref. 1 differing

by ≈ 103 in both cases. At stake is the question of whether the complex of TIM with the enediol
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intermediate (EZ, in Scheme 1) is significantly higher in energy than the other enzyme forms.

Higher energy would destabilize EZ, leading to higher :−2 and :3 values and would therefore lead

to :2/:−2 approaching zero and :3/:−3 much greater than one. While it is not my intention to wade

into this debate, the results presented here are not consistent with a high-energy intermediate.

Table 5: Comparison of forward and reverse rate-constant ratios from the present work, Nickbarg
and Knowles (1988), and Toney (2013). Results in the two rightmost columns are given as Mean
(SD).

Mean 90% CI Nickbarg and Knowles (1988) Toney (2013)
:1/:−1 0.7 (0.6, 0.9) 0.6 (0.3) 0.8 (0.2)
:2/:−2 0.05 (0.02, 0.09) 0.1 (0.5) < 4 × 10−5

:3/:−3 1.8 (0.8, 3.6) 2 (10) > 2000
:4/:−4 0.06 (0.04, 0.09) 0.04 (0.02) 0.05 (0.01)

4 Methods

4.1 Incorporation of Experimental Error.

The data1 is expressed asmean (�̂) and standard deviation (�̂), as is commonly done in biochemical

studies. The data are incorporated into the model as follows:

� = 5
(
:1 , :2 , . . . ,

�:−3
)

�̂ ∼ Normal(�, �̂)

This is represented in Stan as follows, for :20C, 5 (ignoring all other data values):

data { // data are entered as vectors of length 2.

vector[2] kf; // kf[1] is mean, kf[2] is sd.

... }

transformed parameters{

real<lower=0> mukf; // "true" value of kf, function of k1, k2,... etc.

mukf = k2/(1 + k2/k4 + ((k2+k_2)/k3)*(1 + k_3/k4)) ;

... }

model {
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kf[1] ~ normal(mukf, kf[2]); // Likelihood function.

... }

Where the true value of the experimentally-determined parameter (e.g. :20C) is assumed to

be drawn from a distribution with mean �, and the standard deviation is set equal to the

experimentally-determined uncertainty in the value. The model will then incorporate the mean

value (�̂) as data, and estimate a true value for it as well (�), based on the global fitting. While one

could use a distribution other than Normal to model the error, most published results use models

that assume Normally-distributed error so when incorporating results from others it is important

to follow this assumption. Ideally, the model would incorporate the raw data instead and proceed

from there to estimates of the rate constants; however, the raw data is not available, as is often the

case with biochemical data. Nonetheless it is still possible to get estimates of the rate constants

from published results.

4.2 MCMC Analysis

To estimate the posterior distribution of each of the eight parameters, I used cmdstanr 0.3.0 running

under R 3.5, which is built on cmdstan 2.26.1.21 For each analysis, 5000 iterations of the sampler

were run on 4 parallel chains. The first 4000 of each were ‘warm-up’ samples, in which the

parameters and step sizes are tuned by Stan’s NUTS algorithm. This value, higher than the

default value of 1000 warm-up samples, was necessary to ensure that the sampling distribution

was stable, but had minimal effect on the runtime of the program. Runtimes on MacOS using a

3 GHz quad-core processor and 4 parallel chains ranged from 2 - 60s, without diagnostic errors

after sampling. Figures were generated using ggplot2 and the bayesplot package, except Figure

8 which was plotted with gnuplot.
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Supporting Information Available

The following files are available free of charge.

• simulate.stan: Stan model file

• enrg.R: R script file to process Toney (2013) data.

• simulate.R: R script file to simulate and process data.
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Figure 2: Traceplots of the modeled rate constants for the simulated data set, with experimental
SD set to 0.01 for all quantities. The H-axis is the parameter value at each draw, and the G-axis are
the sample numbers, post warm-up.
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Figure 3: Pairwise comparison of the MCMC Draws for simulated rate constants, showing corre-
lations between parameters.
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Figure 4: Traceplots of the rate constants for TIM.
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Figure 5: Pairwise comparison of the MCMC Draws for TIM rate constants, showing correlation
between :1 and :−1

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2021.08.04.454956doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.454956
http://creativecommons.org/licenses/by-nc-nd/4.0/


k−3 K4

k4 k−1 k−2

K1 k2 k3

0 2004006008001000 0 2004006008001000

0 2004006008001000 0 2004006008001000 0 2004006008001000

0 2004006008001000 0 2004006008001000 0 2004006008001000

1e+07

2e+07

3e+07

4e+07

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2000

2500

3000

0.0e+00

2.5e+07

5.0e+07

7.5e+07

3.8

3.9

4.0

4.1

4.2

0.18

0.19

0e+00

3e+07

6e+07

9e+07

3000

4000

5000

6000

7000

8000

Chain

1
2
3
4

Figure 6: Traceplots of the rate constants for AR.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2021.08.04.454956doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.454956
http://creativecommons.org/licenses/by-nc-nd/4.0/


k1

k2

k3

k4

k_1

k_2

k_3

k_4

Dk2

Dk_3

Figure 7: Pairwise comparison of the MCMC Draws for AR rate constants, showing correlation
between :1 and :−1
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Figure 9: Posterior and prior distributions for the intrinsic KIEs
(
�:8

)
of TIM and AR. The prior

distribution is shown in purple, and the posterior is shown in blue, filled.
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