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Abstract 39 

Magnetoencephalography (MEG) is used extensively to study functional connectivity (FC) 40 

networks of phase-synchronization, but the relationship of these networks to their biophysical 41 

substrates is poorly understood. Biophysical Network Models (BNMs) have been used to 42 

produce networks corresponding to MEG-derived networks of phase-synchronization, but the 43 

roles of inter-regional conduction delays, the structural connectome and dynamics of model of 44 

individual brain regions, in obtaining this correspondence remain unknown. In this study, we 45 

investigated the roles of conduction delays, the structural connectome, and dynamics of models 46 

of individual regions, in obtaining a correspondence between model-generated and MEG-47 

derived networks between left-hemispheric regions. To do this, we compared three BNMs, 48 

respectively comprising Wilson-Cowan oscillators interacting with diffusion Magnetic 49 

Resonance Imaging (MRI)-based patterns of structural connections through zero delays, 50 

constant delays and distance-dependent delays respectively. For the BNM whose networks 51 

corresponded most closely to the MEG-derived network, we used comparisons against null 52 

models to identify specific features of each model component, e.g. the pattern of connections 53 

in the structure connectome, that contributed to the observed correspondence. The Wilson-54 

Cowan zero delays model produced networks with a closer correspondence to the MEG-55 

derived network than those produced by the constant delays model, and the same as those 56 

produced by the distance-dependent delays model. Hence, there is no evidence that including 57 

conduction delays improves the correspondence between model-generated and MEG-derived 58 

networks. Given this, we chose the Wilson-Cowan zero delays model for further investigation. 59 

Comparing the Wilson-Cowan zero delays model against null models revealed that both the 60 

pattern of structural connections and Wilson-Cowan oscillatory dynamics contribute to the 61 

correspondence between model-generated and MEG-derived networks. Our investigations 62 

yield insight into the roles of conduction delays, the structural connectome and dynamics of 63 

models of individual brain regions, in obtaining a correspondence between model-generated 64 

and MEG-derived networks. These findings result in a parsimonious BNM that produces 65 

networks corresponding closely to MEG-derived networks of phase-synchronization. 66 

 67 

Keywords: Biophysical Network Models; Wilson-Cowan oscillators; Phase-synchronization; 68 

Magnetoencephalography; MEG resting-state; MEG functional networks 69 

 70 
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Highlights 73 

● Simple biophysical model produces close match (ρ=0.49) between model and MEG 74 

networks 75 

● No evidence for conduction delays improving match between model and MEG 76 

networks 77 

● Pattern of structural connections contributes to match between model and MEG 78 

networks 79 

● Wilson-Cowan oscillatory dynamics contribute to match between model and MEG 80 

networks 81 

 82 
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1. Introduction 103 

Functional Connectivity (FC) networks underpin the execution of cognitive tasks (Cole et al. 104 

(2013), Cohen & D’Esposito (2016)) and are also observed during resting-state (Beckmann et 105 

al. (2005), Damoiseaux et al. (2006)). FC networks are sets of interacting brain regions, 106 

wherein the interactions are reflected by correlated activities of the brain regions. Key forms 107 

of correlation observed in Electroencephalography (EEG) and Magnetoencephalography 108 

(MEG) resting-state or task data, are the pairwise correlations between the oscillation 109 

amplitudes of a set of brain regions (Hipp et al. (2012), Colclough et al. (2015), Brookes et al. 110 

(2012)), or the pairwise synchronization between oscillation phases of a set of brain regions 111 

(Palva et al. (2005), Palva et al. (2010), Palva & Palva (2012), Zhigalov et al. (2015), 112 

Siebenhühner et al. (2020), Marzetti et al. (2019)). FC networks of amplitude correlation or 113 

phase-synchronization are widely studied with EEG/MEG, but the structure-function mapping 114 

between biophysical substrates and FC networks is poorly understood. We refer to biophysical 115 

substrates as systems-level components, e.g., the structural connectome, dynamics of brain 116 

regions or inter-regional conduction delays, which underpin observed FC networks. 117 

 118 

Biophysical Network Models (BNMs) (Woolrich & Stephan (2013)) have been used to relate 119 

MEG-derived networks of amplitude correlation to their biophysical substrates. BNMs 120 

comprise models of individual brain regions, linked by biologically informed structural 121 

connectivity. BNMs of Kuramoto oscillators linked by diffusion Magnetic Resonance Imaging 122 

(dMRI)-based structural connections with realistic conduction delays, produced FC networks 123 

of amplitude correlation corresponding moderately to those observed in MEG resting-state 124 

(Cabral et al. (2014)) (ρ = 0.41, where ρ is Pearson Correlation). Similarly, BNMs of spiking 125 

neuron populations linked by dMRI-based structural connections with realistic delays also 126 

produced FC networks of amplitude correlation corresponding moderately to those observed 127 

in MEG-derived networks of amplitude correlation (ρ = 0.4) (Nakagawa et al. (2014)).  128 

 129 

FC networks of phase-synchronization have been suggested to be relevant to information 130 

processing in the brain, coordinating communication across regions via regulation of spike-131 

time relationships (Fries (2005), Singer (1999), Palva & Palva (2012)) and supporting 132 

functional integration (Palva & Palva, (2012), Siegel et al. (2012), Deco et al. (2015)). In fact, 133 

particular phase-synchronization networks are known to be recruited for specific cognitive 134 
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tasks, including working memory (Kitzbichler et al. (2011), Palva et al. (2010)), visual 135 

attention (Lobier et al. (2018)) and sensorimotor processing tasks (Hirvonen et al. (2018)). 136 

 137 

Just as for MEG-derived networks of amplitude correlation, BNMs have been employed to 138 

relate EEG- or MEG-derived networks of phase-synchronization to their biophysical 139 

substrates. BNMs of Kuramoto oscillators linked by dMRI-based structural connections with 140 

conduction delays, produced networks of phase-synchronization corresponding to those 141 

observed in EEG resting-state (Finger et al. (2016)). However, this model produced networks 142 

with only weak correspondence to EEG-derived networks, when the networks were estimated 143 

with measures insensitive to EEG volume conduction (ρ = 0.17 for weighted Phase Lag Index 144 

(wPLI)). BNMs of Wilson-Cowan oscillators with inhibitory synaptic plasticity (ISP), linked 145 

by dMRI-based structural connections with conduction delays, have been used to produce 146 

networks of phase-synchronization corresponding to those observed in MEG resting-state 147 

(Abeysuriya et al. (2018)). While this BNM produced networks with a moderate correlation to 148 

MEG-derived networks (ρ = 0.43 for Phase Locking Value (PLV), ρ = 0.28 for Phase Lag 149 

Index (PLI)) (Abeysuriya et al. (2018)), the strengths of model-generated phase-150 

synchronization (~0 - 0.6 for PLV and ~0 - 1 for PLI) were an order of magnitude higher than 151 

those observed in MEG-derived networks (~0.01 - 0.06 for both PLV and PLI). Further, while 152 

the correspondence between the model-generated and MEG-derived networks was assessed, 153 

the roles of conduction delays, the structural connectome and the dynamics of models of 154 

individual brain regions in producing this correspondence was not investigated. 155 

  156 

In this study, we investigated the roles of conduction delays, the structural connectome and the 157 

dynamics of models of individual regions, in producing networks corresponding to observed 158 

MEG-derived networks of phase-synchronization between left-hemispheric regions. To do 159 

this, we first compared three hypotheses, respectively postulating model-generated networks 160 

of phase-synchronization corresponding to MEG-derived networks, are produced by the 161 

dynamics of Wilson-Cowan oscillators linked by dMRI-based patterns of structural 162 

connections, via zero, constant and distance-dependent conduction delays. We expressed each 163 

of these hypotheses as a BNM. For the BNM producing networks corresponding most closely 164 

to the observed MEG-derived networks, we used comparisons against null models to determine 165 

specific features of each model component, for e.g., pattern of connections in the structural 166 

connectome, that contribute to the correspondence between the model-generated and MEG-167 

derived networks. Together, these investigations yield insight into the precise roles of inter-168 
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regional conduction delays, the structural connectome and the dynamics of models of 169 

individual brain regions, in producing networks corresponding to observed MEG-derived 170 

networks of phase-synchronization.  171 

2. Materials & Methods 172 

In this study, we investigated the roles of conduction delays, the structural connectome and the 173 

dynamics of models of individual brain regions, in producing model-generated networks 174 

corresponding to the observed MEG-derived networks of phase-synchronization. To do this, 175 

we first compared the correspondence between model-generated and MEG-derived networks 176 

of three BNMs, respectively including zero, constant and distance-dependent conduction 177 

delays. Figure 1 illustrates the pipeline to estimate and compare the model-generated and MEG-178 

derived networks. For the BNM producing networks corresponding most closely to the MEG-179 

derived networks, we used null models to determine specific features of each model component 180 

that contributes to the correspondence between model-generated and MEG-derived networks. 181 

For example, we compared the correspondence between model-generated networks from the 182 

original model and the MEG-derived networks, against the correspondence between model-183 

generated networks from null models comprising degree-preserved randomised versions of the 184 

structural connectome, and the MEG-derived networks. Such a comparison enabled inferences 185 

on the contribution of the pattern of structural connections to the correspondence between 186 

model-generated and MEG-derived networks, over and above the number of connections, i.e. 187 

degree, to each brain region. 188 

 189 
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 190 

Figure 1. Pipeline to generate and compare model-generated and MEG-derived networks 191 

of phase-synchronization. a. MEG device with sensors detecting weak magnetic fields arising 192 

from post-synaptic potentials in the human brain. b. Source-reconstructed data projected from 193 

MEG sensors to brain regions. c. Band-pass filtered source-reconstructed MEG data. d. Matrix 194 

of strength of phase-synchronization between source-reconstructed MEG data from every pair 195 

of brain regions. e. Biophysical Network Model (BNM) comprising Wilson-Cowan oscillators 196 

linked by biologically informed structural connections. f. Simulated data transformed to MEG 197 

source space by projecting dynamics to MEG sensors, and projecting sensor-level simulated 198 

data back to brain regions. g. Band-pass filtered source-reconstructed simulated MEG data. h. 199 

Matrix of strength of phase-synchronization between source-reconstructed simulated MEG 200 

data from every pair of brain regions. MEG device panel from Pfeiffer et al. (2018).  201 

 202 

2.1. Models 203 

We implemented three models, each representing specific hypotheses on the interaction 204 

between dynamics of models of brain regions, structural connectome and conduction delays, 205 

in producing networks corresponding to MEG-derived networks of phase-synchronization.  206 

 207 

Wilson-Cowan zero delays model: Wilson-Cowan oscillatory dynamics interact with the 208 

pattern of connections in the structural connectome without conduction delays, to produce 209 

networks of phase-synchronization corresponding to those observed in MEG resting-state. 210 

  211 
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We implemented this model as a set of Wilson-Cowan oscillators linked by biologically 212 

informed structural connectivity (Wilson & Cowan (1972), Kilpatrick (2013), Cowan (2016)). 213 

The dynamics of each oscillator arise from the interaction between excitatory and inhibitory 214 

neuronal populations, i.e. the PING model (Traub et al. (1997)), and are also influenced by 215 

external inputs and the dynamics of linked oscillators. For oscillator 𝑖: 216 

𝜏𝑒

𝑑𝑈𝑒

𝑑𝑡
= −𝑈𝑒(𝑡) + 𝐹(𝑤𝑒𝑒𝑈𝑒(𝑡) − 𝑤𝑒𝑖𝑈𝑖(𝑡) − 𝑏𝑒 + 𝐽𝑒 + 𝑘 ∑ 𝐾(𝑖, 𝑗)𝑈𝑒(𝑡)

𝑁

𝑗=1

) 217 

𝜏𝑖

𝑑𝑈𝑖

𝑑𝑡
= −𝑈𝑖(𝑡) + 𝐹(𝑤𝑖𝑒𝑈𝑒(𝑡) − 𝑤𝑖𝑖𝑈𝑖(𝑡) − 𝑏𝑖 + 𝐽𝑖)  218 

 219 

where 𝐹(𝑣) =
1

1+𝑒−𝑣 is a sigmoid function, 𝑈𝑒(𝑡) and 𝑈𝑖(𝑡) are the mean firing rates at time 220 

𝑡 of the excitatory and inhibitory populations respectively, 𝑤𝑒𝑒 and 𝑤𝑖𝑖 are the excitatory-221 

excitatory and inhibitory-inhibitory connection weights respectively, 𝑤𝑖𝑒  and 𝑤𝑒𝑖 are the 222 

excitatory-inhibitory and inhibitory-excitatory connection weights, 𝑏𝑒  and 𝑏𝑖 are threshold 223 

constants for excitatory and inhibitory populations, 𝐽𝑒  and 𝐽𝑖 are injection currents to excitatory 224 

and inhibitory populations, 𝜏𝑒 and 𝜏𝑖 are the time constants of the excitatory and inhibitory 225 

populations, and 𝑘 is a scalar multiplier over the coupling matrix 𝐾, which specifies links 226 

between 𝑁 oscillators. For this model, we postulated that non-zero conduction delays are not 227 

relevant to producing the networks of phase-synchronization observed in MEG resting-state. 228 

 229 

Parameter values: We set the parameters of each Wilson-Cowan oscillator to the same values 230 

(Table 1) since we assumed the intrinsic properties of the brain regions are identical. The choice 231 

of values for connection weights within (𝑤𝑒𝑒, 𝑤𝑖𝑖) and between (𝑤𝑖𝑒 , 𝑤𝑒𝑖) excitatory and 232 

inhibitory populations, and the strengths of external currents (𝐽𝑒 , 𝐽𝑖) are consistent with 233 

canonical neurophysiological findings of 1.) strong excitatory-excitatory connections (Jansen 234 

& Rit (1995), Douglas et al. (1989), Binzegger et al. (2004)) 2.) excitatory-inhibitory and 235 

inhibitory-excitatory connections being weaker than excitatory-excitatory connections (Jansen 236 

& Rit (1995), Binzegger et al. (2004)) 3.) weak inhibitory-inhibitory connections (Douglas et 237 

al. (1989), Binzegger et al. (2004)) and 4.) the strength of injection currents, e.g. from thalamus, 238 

being significantly lower than strength of excitatory-excitatory connections (Douglas et al. 239 

(1989), Binzegger et al. (2004)). The threshold constants of excitatory (𝑏𝑒)  and inhibitory 240 

populations (𝑏𝑖) are difficult to determine from the neurophysiology literature, but the values 241 

were chosen to produce oscillatory phenomena (Wilson & Cowan (1972), Singh et al. (2016), 242 
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Sreenivasan et al. (2017)). We chose the excitatory (𝜏𝑒) and inhibitory time constants (𝜏𝑖) to 243 

produce dynamics around 10 Hz, i.e. the peak frequency of oscillatory power in the power 244 

spectrum of MEG resting-state (Nakagawa et al. (2014)). We tuned the parameter 𝑘, i.e. the 245 

scalar multiplier over the coupling matrix, 𝐾 (see Section 2.6). 246 

 247 

Parameters Values 

𝑤𝑒𝑒, 𝑤𝑖𝑖, 𝑤𝑖𝑒 , 𝑤𝑒𝑖 16, 3, 12, 15 

𝑏𝑒 , 𝑏𝑖 4, 3.7 

𝐽𝑒 , 𝐽𝑖 2, 0 

𝜏𝑒, 𝜏𝑖 23.7, 23.7 

 248 

Table 1. Parameter values of individual Wilson-Cowan oscillators 249 

 250 

Wilson-Cowan constant delays model: Wilson-Cowan oscillatory dynamics interact with the 251 

pattern of connections in the structural connectome through constant non-zero conduction 252 

delays, to produce networks of phase-synchronization corresponding to those observed in MEG 253 

resting-state.  254 

 255 

We implemented this model as a set of Wilson-Cowan oscillators linked by biologically 256 

informed structural connectivity with constant, non-zero delays. The dynamics of individual 257 

oscillators were influenced by inter-regional interactions of constant delay, in contrast to zero 258 

delays assumed by the Wilson-Cowan zero delays model. For oscillator 𝑖: 259 

𝜏𝑒

𝑑𝑈𝑒

𝑑𝑡
= −𝑈𝑒(𝑡) + 𝐹(𝑤𝑒𝑒𝑈𝑒(𝑡) − 𝑤𝑒𝑖 𝑈𝑖(𝑡) − 𝑏𝑒 + 𝐽𝑒 + 𝑘 ∑ 𝐾(𝑖, 𝑗)𝑈𝑒(𝑡 − 𝑇)

𝑁

𝑗=1

) 260 

𝜏𝑖

𝑑𝑈𝑖

𝑑𝑡
= −𝑈𝑖(𝑡) + 𝐹(𝑤𝑖𝑒𝑈𝑒(𝑡) − 𝑤𝑖𝑖 𝑈𝑖(𝑡) − 𝑏𝑖 + 𝐽𝑖) 261 

 262 

where 𝑇 specifies the constant delay in milliseconds, and all other terms bear the same 263 

definitions as the Wilson-Cowan zero delays model. For this model, we postulated that the 264 

increase in conduction delay due to longer distance between regions is counteracted by the 265 

decrease in conduction delay due to higher conduction velocity between regions. This 266 
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assumption is supported by recent modelling work (Noori et al. (2020)) reporting highly similar 267 

conduction delays across region-pairs due to increased conduction velocity produced by 268 

activity-dependent myelination counteracting longer delays between distant brain regions.  269 

 270 

Parameters values: We set the parameters of the Wilson-Cowan oscillators to the values in 271 

Table 1, and tuned the parameters 𝑘 and constant delay 𝑇 (see Section 2.6).  272 

 273 

Wilson-Cowan distance-dependent delays model: Wilson-Cowan oscillatory dynamics interact 274 

with the pattern of connections in the structural connectome through distance-dependent 275 

conduction delays, to produce networks of phase-synchronization corresponding to those 276 

observed in MEG resting-state.  277 

 278 

We implemented the Wilson-Cowan distance-dependent delays model as comprising a set of 279 

Wilson-Cowan oscillators linked by biologically informed structural connectivity, with 280 

conduction delays proportional to distance between respective brain regions. The dynamics of 281 

individual oscillators are influenced by inter-regional interactions of variable delay, in contrast 282 

to zero and constant delays assumed by the Wilson-Cowan zero delays and constant delays 283 

models respectively. For oscillator 𝑖: 284 

𝜏𝑒

𝑑𝑈𝑒

𝑑𝑡
= −𝑈𝑒(𝑡) + 𝐹(𝑤𝑒𝑒𝑈𝑒(𝑡) − 𝑤𝑒𝑖𝑈𝑖(𝑡) − 𝑏𝑒 + 𝐽𝑒 + 𝑘 ∑ 𝐾(𝑖, 𝑗)𝑈𝑒(𝑡 − 𝑇(𝑖, 𝑗))

𝑁

𝑗=1

) 285 

𝜏𝑖

𝑑𝑈𝑖

𝑑𝑡
= −𝑈𝑖(𝑡) + 𝐹(𝑤𝑖𝑒𝑈𝑒(𝑡) − 𝑤𝑖𝑖 𝑈𝑖(𝑡) − 𝑏𝑖 + 𝐽𝑖) 286 

 287 

where 𝑇(𝑖, 𝑗) specifies the distance-dependent delay in metres/second, and all other terms bear 288 

the same definitions as the model describing the Wilson-Cowan zero delays model. For this 289 

model, we specified conduction delays as Euclidean distance between regions divided by a 290 

conduction velocity 𝑣 (Cabral et al. (2014), Nakagawa et al. (2014), Hadida et al. (2018)).  291 

 292 

Rather than Euclidean distance, an alternative method to estimate distances between brain 293 

regions is the average length of the streamlines between regions, as calculated by the 294 

tractography method used. However, we found the average estimated streamline lengths of 295 

~20% of structural connections to be lower than the corresponding Euclidean distances, which 296 

represent the minimum length between regions. Since this might be due to known biases in 297 
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streamline termination with tractography methods (Smith et al. (2013)), we chose Euclidean 298 

distance to estimate distances between brain regions. 299 

  300 

Parameters values: We set the parameters of the Wilson-Cowan oscillators to the values in 301 

Table 1, and tuned the parameters 𝑘 and the conduction velocity 𝑣 (see Section 2.6). 302 

 303 

2.2. Model comparison 304 

We compared the Wilson-Cowan zero delays, constant delays and distance-dependent delays 305 

models by the correspondence between their respective networks of phase-synchronization and 306 

the observed MEG-derived network of phase-synchronization. We ran 20 simulations of each 307 

model to obtain its dynamics at different starting conditions. After each run, we compared the 308 

model-generated network of phase-synchronization to a held-out MEG-derived network of 309 

phase-synchronization, i.e. an MEG-derived network not used to estimate model parameters 310 

(see Section 2.5). We quantified correspondence between model-generated and MEG-derived 311 

networks, i.e. model performance, by the RMSE (Root Mean Square Error) and Pearson 312 

Correlation between the upper-triangular elements of the model-generated and MEG-derived 313 

adjacency matrices, low RMSE and high Correlation reflecting a close correspondence. We 314 

used independent samples t-tests of the respective RMSE and Correlation values to compare 315 

model performances, with two-tailed p < 0.001 considered statistically significant. Further, we 316 

used Cohen’s d (Cohen (1988)) to measure effect sizes, with d ≥ 1 considered a strong effect. 317 

 318 

2.3 Obtaining model-generated network of phase-synchronization    319 

Below, we describe the details of the different model components, model simulations, and the 320 

procedure to generate the network of phase-synchronization from the model dynamics. 321 

 322 

2.3.1 Model elements 323 

The model comprised an ensemble of 74 Wilson-Cowan oscillators linked by biologically 324 

informed structural connectivity. We used the left-hemispheric regions of the Destrieux brain 325 

atlas (Destrieux et al. (2010)) to specify the number and location of the oscillators. We specified 326 

the links between oscillators by the binary matrix of the strongest 10 percentile structural 327 

connections between left-hemispheric regions of the Destrieux atlas. We derived this binary 328 

matrix from a group-averaged (N=57) weighted matrix of the number of streamlines between 329 

brain regions, estimated by constrained spherical deconvolution (Smith et al. (2013)) and 330 

probabilistic tractography (Smith et al. (2012)) on pre-processed DWI images from the Human 331 
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Connectome Project (van Essen et al. (2013)). We divided each element of the binary matrix 332 

by the sum of elements in its row, to ensure similar strengths of inputs to each of the 74 regions 333 

(Hlinka & Coombes (2012), Forrester et al. (2020)). 334 

 335 

2.3.2 Model simulations 336 

We used the Brain Dynamics Toolbox (BDT) for model simulations (Heitmann et al. (2018)). 337 

The Wilson-Cowan zero delays model is implemented in BDT, while we extended the BDT 338 

implementation of the zero delays model to implement the Wilson-Cowan constant delays and 339 

Wilson-Cowan distance-dependent delays models. We have made these implementations 340 

publicly available (Williams et al. (2021a)). We simulated the models for 630 seconds at 500 341 

Hz with ODE45 (Bogacki & Shampine (1996)) for the Wilson-Cowan zero delays model, and 342 

ODE23a (Shampine & Thompson (2001)) for the constant delays and distance-dependent 343 

delays models. We limited local discretisation error by setting Absolute and Relative Tolerance 344 

of all solvers to 1 × 10-6 and 1 × 10-3 respectively. We set initial conditions of excitatory and 345 

inhibitory populations of the Wilson-Cowan oscillators by sampling a uniform random 346 

distribution between 0 and 1. Notably, we used dynamics of only the excitatory populations for 347 

further processing since pyramidal neurons in excitatory populations are the dominant 348 

contributors to the measured MEG (Lopes da Silva (2013)). These model dynamics represented 349 

the mean firing rate of pyramidal neurons in excitatory populations.  350 

  351 

2.3.3 Transforming simulated data to MEG source-space 352 

We transformed simulated data to MEG source-space by forward-projecting the simulated data 353 

to MEG sensors and then inverse-projecting the simulated sensor-level data, with subject-354 

specific forward and inverse operators respectively (Korhonen et al. (2014)). We used the same 355 

forward and inverse operators estimated to source-reconstruct the sensor-level MEG resting-356 

state data (see Section 2.4.2). This procedure yielded subject-specific source-reconstructed 357 

simulated MEG datasets, of activity from 74 regions for 630 seconds. 358 

  359 

2.3.4 Band-pass filtering 360 

We band-pass filtered the model dynamics in the alpha frequency band (8 - 12 Hz) since it is 361 

the dominant source of oscillatory power in MEG resting-state (Nakagawa et al. (2014)). We 362 

performed the filtering with Morlet wavelets of peak frequency = 9.83 Hz, width parameter = 363 

5, yielding subject-specific narrowband datasets, from 74 regions for 630 seconds. 364 

 365 
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2.3.5 Estimating network of phase-synchronization 366 

For each subject-specific dataset, we used weighted Phase Lag Index (wPLI) (Vinck et al. 367 

(2011)) to estimate strength of phase-synchronization between each pair of brain regions. 368 

 369 

𝑤𝑃𝐿𝐼 =
|𝐸(|𝐼𝑚𝑎𝑔(𝑋)|𝑠𝑖𝑔𝑛(𝐼𝑚𝑎𝑔(𝑋))|

𝐸(|𝐼𝑚𝑎𝑔(𝑋)|)
 370 

 371 

where 𝑋 is the cross-spectrum between a pair of signals and 𝐼𝑚𝑎𝑔(𝑋) is its imaginary 372 

component. Crucially, wPLI is insensitive to the confounding influence of MEG field spread 373 

(Vinck et al. (2011), Palva et al. (2018)). We removed the effect of transient dynamics on the 374 

phase-synchronization estimates by discarding the first 30 seconds of each dataset. The phase-375 

synchronization estimation produced 74 × 74 subject-specific matrices, which we averaged to 376 

obtain the model-generated network of phase-synchronization. 377 

 378 

2.4 Obtaining MEG-derived network of phase-synchronization 379 

Below, we describe the details of acquiring, preprocessing, source-reconstructing sensor-level 380 

MEG resting-state data and estimating the MEG-derived network of phase-synchronization. 381 

 382 

2.4.1 Data acquisition & pre-processing 383 

We recorded MEG resting-state data from 46 healthy subjects (19 female, age 30.7 ± 9.5 years) 384 

for 600 seconds at a sampling rate of 1000 Hz. During the recordings, we instructed subjects 385 

to focus on a cross on the screen in front of them during the recordings. We performed the 386 

recordings at Meilahti hospital, Helsinki with a 306-channel MEG system (204 planar 387 

gradiometers and 102 magnetometers, MEGIN Oy). For each subject, we collected T1-388 

weighted anatomical MRI scans at a resolution of 1 × 1 × 1 mm with a 1.5T MRI scanner 389 

(Siemens, Germany). The Ethics Committee of Helsinki University Central Hospital approved 390 

the study, and we performed the study according to the Declaration of Helsinki. We obtained 391 

written informed consent from each participant. We used MaxFilter (Taulu & Hari (2009)) to 392 

suppress extra-cranial noise and co-localise the sensor-space recordings, and Independent 393 

Component Analysis (ICA) (Oostenveld et al. (2011)), to exclude components identified as 394 

ocular or cardiac artefacts. 395 

 396 

 397 

 398 
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2.4.2 Estimating MEG-derived network of phase-synchronization 399 

We transformed preprocessed, sensor-level MEG data time series to brain regions, then band-400 

pass filtered these data and estimated networks of phase-synchronization. We used MNE 401 

software to generate subject-specific inverse operators (Hämäläinen & Ilmoniemi (1994)) to 402 

transform sensor-level data to the level of cortical parcels or brain regions (Palva et al. (2010), 403 

Zhigalov et al. (2017), Lobier et al. (2018), Hirvonen et al. (2018)). We applied fidelity 404 

weighting (Korhonen et al. (2014)) on the inverse operators to reduce the influence of MEG 405 

field spread. We also used MNE to generate subject-specific forward operators, including 406 

subject-specific head conductivity models, cortically constrained source models with 5000-407 

7500 sources per hemisphere, and to co-localise MEG to MRI. We used FreeSurfer 408 

(http://surfer.nmr.mgh.harvard.edu/) for volumetric segmentation of MRI data, surface 409 

reconstruction, flattening, cortical parcellation and neuroanatomical labelling of each source to 410 

a region in the Destrieux brain atlas. For each subject, we averaged the time series of sources 411 

within a region to obtain the activity time-course for that region. We then downsampled each 412 

subject-specific dataset to 500 Hz and retained the time courses of the 74 left-hemispheric 413 

regions for further processing. We used an identical procedure as applied to the simulated data, 414 

to perform band-pass filtering (see Section 2.3.4) and to estimate subject-specific 74 × 74 415 

MEG-derived matrices of phase-synchronization (see Section 2.3.5). 416 

 417 

2.5 Splitting MEG-derived networks into training and testing datasets 418 

We generated two subsets of the original 46 subject-specific phase-synchronization matrices, 419 

to estimate free model parameters and to evaluate model performance respectively. The first 420 

subset or training dataset contained 23 unique, randomly selected subject-specific matrices. We 421 

averaged the matrices to obtain a group-level matrix, which we used as the target MEG-derived 422 

network to estimate model parameters. The held-out or testing dataset contained the 23 subject-423 

specific matrices not used in the first subset. We averaged these matrices to obtain a group-424 

level matrix, which we used as the target MEG-derived network to determine correspondence 425 

between model-generated and MEG-derived networks. 426 

 427 

2.6 Determining optimal values of model parameters 428 

We selected optimal model parameter values by performing a grid search for a range of 429 

parameter values. We quantified correspondence between model-generated and MEG-derived 430 

networks, i.e., model performance, as RMSE and Pearson Correlation between the upper-431 

triangular elements of the model-generated and the training set MEG-derived matrices of 432 
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phase-synchronization (see Section 2.5). We chose optimal parameter values as those 433 

simultaneously yielding low RMSE and high Correlation. For the zero delays, constant delays 434 

and distance-dependent delays models, we used the parameter range of 𝑘 = 0.5 to 5, in intervals 435 

of 0.5, for the scalar multiplier over the structural connectome. For the constant delays model, 436 

we had a delay parameter 𝑇, with range from 2 ms to 20 ms, in intervals of 2 ms. For the 437 

distance-dependent delays model, we had a conduction velocity parameter 𝑣, with range from 438 

3 m/s to 30 m/s, in intervals of 3 m/s. We ran simulations for 315 seconds for each parameter 439 

combination and discarded the first 30 seconds to remove transient model dynamics, before 440 

estimating the model-generated network of phase-synchronization. 441 

 442 

2.7 Evaluating statistical significance of model performance 443 

We evaluated statistical significance of model performance by comparing against permutation-444 

based null distributions of the performance measures. We quantified model performance by 445 

RMSE and Correlation between upper-triangular elements of the mean model-generated matrix 446 

of phase-synchronization and the held-out testing set MEG-derived matrix of phase-447 

synchronization (see Section 2.5). We estimated the mean model-generated matrix of phase-448 

synchronization by averaging the 20 model-generated matrices from different starting 449 

conditions. We determined statistical significance of the RMSE and Correlation values by z-450 

scoring them against 100 corresponding values estimated after randomly permuting, without 451 

replacement, the mean model-generated matrix. We tested the hypotheses that RMSE is lower 452 

than chance and that Correlation is higher than chance by calculating the one-tailed p-value of 453 

the z-scores, with p < 0.001 considered statistically significant.  454 

 455 

2.8 Sensitivity of model performance to choice of model parameter values 456 

We assessed the sensitivity of the model’s performance to small changes in parameter values. 457 

To do this, we determined RMSE and Correlation values between the MEG-derived matrix and 458 

model-generated matrices generated from simulating jittered models. To introduce jitter, each 459 

non-zero parameter of the model was varied between -10% and 10% of its original value, with 460 

2% increments, while keeping all other parameters at their original values. Then, we z-scored 461 

the RMSE and Correlation values against the 20 RMSE and Correlation values from the 462 

original model. z values higher than 3 were considered to reflect values of parameters at which 463 

the model performance was sensitive. 464 

 465 
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 466 

2.9 Determining features of each model component contributing to model performance 467 

For the model producing networks of phase-synchronization corresponding most closely to the 468 

MEG-derived networks of phase-synchronization, we determined specific features of each 469 

model component, e.g., pattern of connections in the structural connectome, contributing to the 470 

observed correspondence. To do this, we compared the correspondence between model-471 

generated and MEG-derived networks obtained with the original model, against the 472 

correspondence obtained with 100 examples of a null model, each containing a randomised 473 

version of a specific model component, e.g., randomly connected structural connectome, while 474 

all other aspects of the model remained identical to the original model.  475 

 476 

Each of the Wilson-Cowan zero delays, constant delays and distance-dependent delays models, 477 

postulate that the topological organisation of the structural connectome, i.e., its pattern of 478 

connections, contributes to the correspondence between model-generated and MEG-derived 479 

networks. To verify this, we created 100 examples of a null model containing degree-preserved 480 

but randomised versions (Maslow & Sneppen (2002)) of the original binary structural 481 

connectome, while all other aspects were identical to the original model. For each example of 482 

this null model, the randomised structural connectome had the same number of connections to 483 

each brain region as the original structural connectome, but the pattern of connections between 484 

regions was different to the original structural connectome. By comparing the correspondence 485 

between model-generated and MEG-derived networks of the original model against the 486 

correspondences obtained with the null models, we tested the hypothesis that the pattern of 487 

structural connections contributed to the observed correspondence, over and above the number 488 

of connections, i.e., degree, to each brain region. 489 

 490 

Each of the Wilson-Cowan zero delays, constant delays and distance-dependent delays models 491 

postulate that the Wilson-Cowan oscillatory dynamics contribute to the correspondence 492 

between model-generated and MEG-derived networks. To verify this, we created 100 examples 493 

of a null model where the dynamics of each brain region were described by a uniform random 494 

distribution whose mean (0.2) and range (0.07 to 0.36) were matched to those of original 495 

Wilson-Cowan dynamics, while the original structural connectome specified the interaction 496 

between regions. The model is specified as: 497 
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𝑑𝑈

𝑑𝑡
= −𝑈(𝑡) + 𝐹(𝑟𝑎𝑛𝑑(𝑡) + 𝑘 ∑ 𝐾(𝑖, 𝑗)𝑈(𝑡 − 𝑇(𝑖, 𝑗)

𝑁

𝑗=1

)) 498 

where 𝐹(𝑣) =
1

1+𝑒−𝑣  is a sigmoid function, 𝑈(𝑡) is the mean firing rate, 𝑟𝑎𝑛𝑑(𝑡) is a sample 499 

from a uniform random distribution, 𝑘 is a scalar multiplier over the coupling matrix 𝐾, which 500 

specifies links between 𝑁 oscillators and 𝑇(𝑖, 𝑗) is a delay matrix containing zeros for all 501 

elements, for the Wilson-Cowan zero delays model, a constant non-zero delay for all elements, 502 

for the Wilson-Cowan constant delays model, and connection-specific delays for each element, 503 

for the Wilson-Cowan distance-dependent delays model. We estimated the parameter 𝑘 using 504 

the same procedure as for the original model (see Section 2.6). We set Relative Tolerance of 505 

the simulation to 0.1, to ensure completion in a reasonable time. By comparing the 506 

correspondence between model-generated and MEG-derived networks of the original model 507 

against the correspondences obtained with the null models, we tested the hypothesis that the 508 

Wilson-Cowan oscillatory dynamics contributed to the correspondence between model-509 

generated and MEG-derived networks of phase-synchronization, over and above random 510 

dynamics with same mean and range as the Wilson-Cowan oscillatory dynamics. 511 

  512 

The Wilson-Cowan distance-dependent delays model postulated that the connection-specific 513 

delays contributed to the correspondence between the model-generated and MEG-derived 514 

networks. To verify this, we created 100 examples of a null model by randomly permuting 515 

delays (without replacement) from the original model, while all other aspects, including the 516 

structural connectome and Wilson-Cowan oscillatory dynamics, were identical to the original 517 

model. By comparing the correspondence between model-generated and MEG-derived 518 

networks of the original model against the correspondences obtained with the null models, we 519 

tested the hypothesis that the connection-specific delays contributed to the observed 520 

correspondence, over and above merely the set of conduction delays used. Since the Wilson-521 

Cowan zero delays and Wilson-Cowan constant delays models had the same delays for each 522 

connection, determining the contribution of connection-specific delays to the correspondence 523 

between model-generated and MEG-derived networks was not relevant. 524 

 525 

Correspondence between the model-generated and MEG-derived networks, for both the 526 

original model and null models, were quantified by RMSE and Correlation between the upper-527 

triangular elements of model-generated and the testing set MEG-derived matrices of phase-528 

synchronization (see Section 2.5). To remove outliers from the null distribution, we excluded 529 
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cases for which RMSE values lay more than 5SD from the mean. We then estimated the z-530 

score of the original model’s RMSE and Correlation against RMSE and Correlation of the null 531 

models. We tested the hypotheses that mean RMSE for the original model is lower than RMSE 532 

for the null models and mean Correlation for the original model is higher than Correlation for 533 

the null models by calculating one-tailed p-values of the respective z-scores, with p < 0.001 534 

considered a statistically significant contribution. 535 

 536 

2.10 Comparing model performance against performance of Kuramoto oscillator model 537 

For the model producing networks of phase-synchronization corresponding most closely to 538 

those observed in MEG resting-state, we compared its observed correspondence against the 539 

correspondence between model-generated and MEG-derived networks of an equivalent 540 

Kuramoto oscillator model (Kuramoto (1984)). The Kuramoto oscillator model has been used 541 

to model oscillatory phenomena in systems neuroscience (Breakspear et al. (2010), Cabral et 542 

al. (2014)). The phase dynamics of individual regions were described by the classic Kuramoto 543 

model, where we used the same coupling matrix 𝐾 as in the Wilson-Cowan models, to specify 544 

links between regions. The sine of instantaneous phases was computed to convert the phase 545 

dynamics to time series of oscillatory activity. We set the scalar multiplier 𝑘 over the coupling 546 

matrix with the same training procedure used for the Wilson-Cowan zero delays model (Section 547 

2.6), while we set the natural frequencies of the Kuramoto oscillators so as to produce 548 

oscillatory dynamics around 10 Hz. To do this, we set the natural frequencies as independent 549 

samples from a Gaussian distribution of mean = 6.2 × 10
−2

 and standard deviation = 6.2 × 550 

10
−3

. We simulated the model, then applied the same processing as to the Wilson-Cowan 551 

model dynamics (see Section 2.3) to furnish the Kuramoto model-generated matrix of phase-552 

synchronization, which we then matched to the MEG-derived matrix with RMSE and 553 

Correlation. We used independent samples t-tests to compare RMSE and Correlation values of 554 

the chosen model against RMSE and Correlation values of the Kuramoto model, with two-555 

tailed  p < 0.001 considered statistically significant.   556 

3. Results 557 

3.1 Determining optimal values of model parameters 558 

We estimated the optimal values of free parameters, for the Wilson-Cowan zero delays, 559 

constant delays and distance-dependent delays models. We identified the optimal parameter 560 
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values as those that yielded model-generated matrices of phase-synchronization with the 561 

strongest correspondence to the training set MEG-derived matrices of phase-synchronization. 562 

For each of the models, we compared model-generated and MEG-derived matrices of phase-563 

synchronization using RMSE and Pearson Correlation, choosing parameter values yielding low 564 

RMSE and high Correlation (Figure 2). For the Wilson-Cowan zero delays model, the optimal 565 

parameter value is 𝑘 = 2, yielding RMSE = 0.04 and Correlation = 0.45, 𝑘 being the scalar 566 

multiplier over the structural connectome. For the Wilson-Cowan constant delays model, the 567 

optimal combination of parameter values is 𝑘 = 2 and 𝑇 = 2 ms, yielding RMSE = 0.04 and 568 

Correlation = 0.33, with 𝑇 being the constant delay between brain regions. For the Wilson-569 

Cowan distance-dependent delays model, the optimal combination of parameter values is 𝑘 = 570 

1.5 and 𝑣 = 12 m/s, yielding RMSE = 0.04 and Correlation = 0.38, with 𝑣 being the assumed 571 

transmission velocity of neuronal activity across structural connections. We used these values 572 

to run fresh simulations of the Wilson-Cowan zero delays, constant delays and distance-573 

dependent delays models, and determined correspondences of the respective model-generated 574 

matrices of phase-synchronization to the testing set MEG-derived matrix of phase-575 

synchronization, which we estimated as the average of 23 held out subject-level matrices. 576 
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 577 

Figure 2. Grid search for optimal parameter values of each model. a. RMSE and 578 

Correlation values for a range of 𝑘 values, for Wilson-Cowan zero delays model b. RMSE and 579 

Correlation values for every combination of a range of 𝑘-values and a range of delay values, 580 

for Wilson-Cowan constant delays model c. RMSE and Correlation values for every 581 

combination of a range of 𝑘-values and range of conduction speed values, for Wilson-Cowan 582 

distance-dependent delays model. 𝑘 is the scalar multiplier over the structural connectome.    583 

 584 

 585 
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 586 

3.2 Model comparison 587 

We compared the Wilson-Cowan zero delays, Wilson-Cowan constant delays and Wilson-588 

Cowan distance-dependent delays models. To do this, we compared the correspondences 589 

between their respective model-generated networks of phase-synchronization, and the testing 590 

set MEG-derived network of phase-synchronization. We quantified correspondence with 591 

RMSE and Correlation between upper triangular elements of the model-generated matrices 592 

from 20 simulations of each model and the testing set MEG-derived matrix. We used 593 

independent samples t-tests to compare performances between models and Cohen’s d to 594 

measure effect sizes. RMSE values from the constant delays model (mean = 0.041) are higher 595 

than RMSE values from both the zero delays (mean = 0.039) (two-tailed p = 1.1 × 10-8, 596 

Cohen’s d = 2.3) and distance-dependent delays models (mean = 0.039) (two-tailed p = 7.4 × 597 

10-5, Cohen’s d = 1.4) (Figure 3, left panel). In contrast, there is no difference between RMSE 598 

values from the zero delays and distance-dependent delays models (two-tailed p > 0.001, 599 

Cohen’s d = 0.37). Similarly, Correlation values from the constant delays model (mean = 600 

0.37) are lower than Correlation values from the zero delays (mean = 0.47) (two-tailed p = 601 

4.7 × 10-10, Cohen’s d = 2.62) and distance-dependent delays models (mean = 0.46) (two-602 

tailed p = 1.6 × 10-10, Cohen’s d = 2.74) (Figure 3, right panel), while there is no difference in 603 

Correlation values from the zero delays and distance-dependent delays models (two-tailed p > 604 

0.001, Cohen’s d = 0.12). These results suggest that the presence of delays in the Wilson-605 

Cowan distance-dependent delays model does not improve the correspondence between 606 

model-generated and MEG-derived networks, compared to the correspondence obtained with 607 

the Wilson-Cowan zero delays model. Hence, we chose the more parsimonious model, i.e. 608 

the Wilson-Cowan zero delays model, for further investigation. 609 

 610 

 611 
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 612 

Figure 3. Including conduction delays does not improve model performance Violin plots 613 

of RMSE values for the Wilson-Cowan zero delays (mean = 0.039), constant delays (mean = 614 

0.041) and distance-dependent delays models (mean = 0.039) (left panel). Violin plots of 615 

Correlation values for the Wilson-Cowan zero delays (mean = 0.47), constant delays (mean = 616 

0.37) and distance-dependent delays models (mean = 0.46) (right panel). 617 

  618 

3.3 Close correspondence between model-generated and MEG-derived network of phase-619 

synchronization 620 

We observed that the source-reconstructed dynamics of the Wilson-Cowan zero delays model 621 

exhibited intermittent dynamics (Figure 4a), also observed in MEG resting-state data (Shriki et 622 

al. (2013)). Further, the frequency spectrum of the dynamics displayed peaks in delta (1 - 4 623 

Hz), alpha (8 - 12 Hz) and beta (12 - 30 Hz) frequency bands (Figure 4b), which have also been 624 

observed in MEG resting-state data (Mahjoory et al. (2020), Lopes da Silva (2013)). 625 

 626 

We compared the levels of phase-synchronization within the source-reconstructed dynamics of 627 

the Wilson-Cowan zero delays model to those observed in source-reconstructed MEG resting-628 

state data. To do this, we compared the mean of the Kuramoto order parameter (Breakspear et 629 

al. (2010)) of the source-reconstructed model dynamics and source-reconstructed MEG resting-630 

state data, across participants in the held-out testing set. We observed mean of the Kuramoto 631 

order parameter of the model dynamics (Figure 4a) (mean = 8 × 10-2, standard deviation = 9 × 632 

10-3) to be close to the mean of the Kuramoto order parameter of the source-reconstructed MEG 633 

resting-state data (mean = 8 × 10-2, standard deviation = 1 × 10-2). Hence, the source-634 
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reconstructed dynamics of the Wilson-Cowan zero delays model display similar levels of 635 

phase-synchronization as those observed in source-reconstructed MEG resting-state.  636 

 637 

Figure 4. Intermittent dynamics and peaks in the frequency spectrum of dynamics of 638 

Wilson-Cowan zero delays model are similar to those observed in MEG resting-state. a. 639 

10-second time course of model dynamics from all brain regions for example subject b. 640 

Frequency spectrum of model dynamics for 10-second segment of model dynamics from all 641 

brain regions, for example subject. Different colours indicate time course/frequency spectrum 642 

of different brain regions. Same colour in panels a, b belongs to the same brain region. 643 

 644 

We next assessed the correspondence between the mean model-generated and MEG-derived 645 

networks of phase-synchronization. The mean model-generated network was the average of 20 646 

model-generated networks, each estimated from simulated model data from different initial 647 

conditions. We compared the mean model-generated network of phase-synchronization to the 648 

testing set MEG-derived network. Specifically, we compared the distributions of mean model-649 

generated and MEG-derived phase-synchronization values, and compared the RMSE and 650 

Correlation between the mean model-generated and MEG-derived matrices against their 651 

corresponding permutation-based null distributions. The distributions of mean model-652 

generated and MEG-derived phase-synchronization values are similar, with central tendency 653 

(median = 0.09) and dispersion (median absolute deviation = 0.02) of mean model-generated 654 

network values close to central tendency (median = 0.07) and dispersion (median absolute 655 

deviation = 0.02) of MEG-derived network values (Figure 5a). RMSE = 0.04 between mean 656 

model-generated and MEG-derived matrices is lower than chance (z = -29.9, one-tailed p = 6.7 657 

× 10-197), and Correlation = 0.49 between mean model-generated and MEG-derived networks 658 

is higher than chance (z = 25.4, one-tailed p = 0) (Figure 5b,c). Further, most top 5 percentile 659 
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strongest connections lie within and between parietal, temporal and occipital regions, for both 660 

mean model-generated and MEG-derived networks of phase-synchronization (Figure 5d). 661 

Taken together, the results demonstrate a close correspondence between the mean model-662 

generated and MEG-derived networks of phase-synchronization. 663 

 664 

Figure 5. Close correspondence between mean model-generated network and MEG-665 

derived network of phase-synchronization a. Histogram of connection strengths for mean 666 

model-generated and MEG-derived networks of phase-synchronization b. Scatter plot of 667 

connection strengths for MEG-derived network of phase-synchronization against mean model-668 

generated network of phase-synchronization c. Matrices of connection strengths between every 669 

pair of brain regions for mean model-generated and MEG-derived network of phase-670 
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synchronization. d. Brain network visualisation of top 5 percentile strongest connections for 671 

mean model-generated and MEG-derived networks of phase-synchronization. MOD = model. 672 

Brain networks were visualised with BrainNet Viewer (http://www.nitrc.org/projects/bnv/) 673 

(Xia et al. (2013)). 674 

  675 

We assessed the sensitivity of the Wilson-Cowan zero delays model, to changes in the values 676 

of model parameters. To do this, we performed a sensitivity analysis wherein we estimated 677 

change in model performance to small changes in the values of model parameters. We varied 678 

the value of each non-zero parameter from -10% to 10% of its original value, while keeping all 679 

other parameters at their original value. The RMSE and Correlation from simulating these 680 

jittered models were z-scored against the 20 RMSE and Correlation values from simulating the 681 

original model, to estimate the change in model performance. We found the model performance 682 

to be robust to changes in values of 𝑘 and 𝑤𝑖𝑖 parameters (z values < 3), i.e. the scalar multiplier 683 

over the structural connectome and weight of self-inhibitory connections of Wilson-Cowan 684 

oscillators respectively. However, the model performance is sensitive to changes in the values 685 

of all other model parameters (z values > 3) (Figure S1). Hence, we observe that the Wilson-686 

Cowan zero delays model is sensitive to changes in the values of its model parameters. 687 

 688 

We have shared the mean model-generated network and networks from each of 20 simulations 689 

of the Wilson-Cowan zero delays model, through an open dataset (Williams et al. (2021b)). 690 

 691 

3.4 Determining features of each model component contributing to model performance 692 

The Wilson-Cowan zero delays model represents the hypothesis that the Wilson-Cowan 693 

oscillatory dynamics interact with the pattern of structural connections to produce networks of 694 

phase-synchronization corresponding to MEG-derived networks of phase-synchronization. 695 

Hence, it postulates that both the pattern of structural connections and Wilson-Cowan 696 

oscillatory dynamics contribute to the observed correspondence. 697 

 698 

We tested the hypothesis that the pattern of structural connections contributes to the 699 

correspondence between model-generated and MEG-derived networks. To do this, we 700 

compared correspondence obtained with the original model against correspondence obtained 701 

with null models containing degree-preserved randomised versions of the structural 702 

connectome, all other aspects of the null model being identical to the original model. The 703 

structural connectome from each of the null models had the same number of connections to 704 
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each brain region as the original structural connectome, but the pattern of connections between 705 

regions was different from that of the original structural connectome. We used RMSE and 706 

Correlation between the model-generated and testing set MEG-derived matrices to quantify 707 

correspondence. Mean RMSE with the original model of 0.04 was lower (z = -3.7, one-tailed 708 

p = 1 × 10-4) and mean Correlation of 0.47 was higher (z = 8.4, one-tailed p = 0) than the set of 709 

RMSE and Correlation values yielded by null models containing degree-preserved randomised 710 

versions of the original structural connectome (Figure 6a). These results confirm that the 711 

pattern of connections in the structural connectome contributes to the observed correspondence 712 

between model-generated and MEG-derived networks, over and above the number of 713 

connections, i.e. degree, to each brain region. 714 

 715 

Given the contribution of the pattern of connections of the structural connectome to the 716 

observed correspondence between model-generated and MEG-derived networks, we 717 

investigated if the model-generated network is merely a recapitulation of the structural 718 

connectome. To do this, we compared Correlation between the model-generated matrix and the 719 

testing set MEG-derived matrix, against Correlations between 100 bootstrapped versions of the 720 

structural connectome matrix and the testing set MEG-derived matrix. Mean Correlation of 721 

0.47 between the model-generated and MEG-derived matrices is higher (z = 181.5, one-tailed 722 

p = 0) than Correlations between bootstrapped versions of the structural connectome matrix 723 

and the MEG-derived matrix (Figure S2). These results demonstrate that the model does not 724 

merely recapitulate the structural connectome at the level of its dynamics, but that it operates 725 

on the structural connectome in a non-trivial way to produce the observed MEG-derived matrix 726 

of phase-synchronization. 727 

 728 

We tested the hypothesis that the Wilson-Cowan oscillatory dynamics contributes to the 729 

comparison between model-generated and MEG-derived networks of phase-synchronization.  730 

To do this, we compared correspondence obtained with the original model against 731 

correspondence obtained with null models wherein the dynamics of each brain region were 732 

described by random dynamics interacting through the structural connectome used in the 733 

original model. The mean and range of random dynamics were matched to those of the Wilson-734 

Cowan oscillators. For the random node dynamics model also, we estimated the model 735 

parameter 𝑘, the scalar multiplier over the structural connectome, with the same procedure as 736 

for the Wilson-Cowan zero delays model (Section 2.6). We used RMSE and Correlation 737 

between the model-generated and testing set MEG-derived matrices to quantify 738 
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correspondence. Note that Correlation is insensitive to scale of the compared phase-739 

synchronization strengths, hence it would yield high values for similar patterns of model-740 

generated and MEG-derived phase-synchronization even if the random node dynamics model 741 

produced weaker phase-synchronization strengths than those observed in the MEG-derived 742 

networks. Just as for the Wilson-Cowan zero delays model, the optimal value of 𝑘 for the 743 

random node dynamics model was identified as 2. Mean RMSE with the original model of 0.04 744 

was lower (z = -40.8, one-tailed p = 0) and mean Correlation of 0.47 was higher (z = 4.9, one-745 

tailed p = 5 × 10-7) than the set of RMSE and Correlation values yielded by null models 746 

containing random node dynamics instead of Wilson-Cowan oscillatory dynamics (Figure 6b). 747 

These results confirm that the Wilson-Cowan oscillatory dynamics contributes to the observed 748 

correspondence between model-generated and MEG-derived networks, over and above 749 

dynamics with the same mean and range. 750 

 751 

Figure 6. The pattern of connections in the structural connectome and dynamics of 752 

Wilson-Cowan oscillators, contribute to correspondence between model-generated and 753 

MEG-derived networks of phase-synchronization a. Scatter plot of connection strengths 754 

from MEG-derived network and example model-generated network (blue) and of connection 755 

strengths from MEG-derived network and example null model-generated network, wherein 756 

structural connectome is randomised (yellow). b. Scatter plot of connection strengths from 757 

MEG-derived network and example model-generated network (blue) and scatter plot of 758 

connection strengths from MEG-derived network and null model-generated network, wherein 759 

node dynamics are randomised (dark gray). MOD = model.   760 

 761 
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Given the contribution of Wilson-Cowan oscillator dynamics to the correspondence between 762 

model-generated and MEG-derived networks, we investigated if the mere presence of 763 

oscillatory rather than random node dynamics would produce the observed correspondence. To 764 

do this, we compared correspondence obtained with the Wilson-Cowan zero delays model 765 

against correspondence obtained with an equivalent Kuramoto oscillator model, which also 766 

produces oscillatory dynamics. No statistically significant difference in the correspondences 767 

with the Wilson-Cowan zero delays model and Kuramoto oscillator model would imply the 768 

mere presence of oscillatory node dynamics produces a correspondence between model-769 

generated and MEG-derived networks. We quantified correspondence using the RMSE and 770 

Correlation between the respective model-generated and MEG-derived matrices of phase-771 

synchronization. We identified 𝑘 = 0.5 as the optimal value of the scalar multiplier over the 772 

structural connectome for the Kuramoto oscillator model. Mean RMSE of 0.04 with the 773 

Wilson-zero delays model was lower than mean RMSE of 0.53 with the Kuramoto oscillator 774 

model (two-tailed p = 8.4 × 10-59). Similarly, mean Correlation of 0.47 with the Wilson-Cowan 775 

zero delays model is higher than mean Correlation of 0.13 with the Kuramoto oscillator model 776 

(two-tailed p = 2.2 × 10-37) (Figure S3). These results demonstrate the mere presence of 777 

oscillatory node dynamics does not produce the observed correspondence between model-778 

generated and MEG-derived networks. Rather, it is the oscillatory dynamics of the Wilson-779 

Cowan oscillators resulting from the interaction between excitatory and inhibitory neuronal 780 

populations, which produces the observed correspondence. 781 

 782 

3.5 Robustness of results 783 

Finally, we investigated the robustness of the obtained correspondence between model-784 

generated and MEG-derived networks, to choices made for the simulations and analyses. To 785 

do this, we compared correspondence obtained with different solvers and with different relative 786 

tolerance values for the model simulations. In addition, we determined if changing the modeled 787 

hemisphere from left to right would qualitatively change the correspondence between the 788 

model-generated and MEG-derived networks. We quantified correspondence by the RMSE 789 

and Correlation between the model-generated and MEG-derived matrices of phase-790 

synchronization. We used the ODE45 solver in the original simulations, but RMSE and 791 

Correlation values are not different when ODE23 and ODE113 solvers were used (two-tailed 792 

p > 0.001 for each) (Figure 7a). Similarly, we used relative tolerance of 10-3 for the original 793 

simulations, which yielded RMSE and Correlation values neither different to those obtained 794 

with lower relative tolerance values of 10-4 and 10-5 nor a higher relative tolerance of 10-2 (two-795 
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tailed p > 0.001 for each)  (Figure 7b). Changing the modeled hemisphere from left to right 796 

also yielded a moderate correspondence between the model-generated and MEG-derived 797 

network (Correlation = 0.33) (Figure S4). Hence,  the correspondence between model-798 

generated and MEG-derived networks of phase-synchronization, were robust to choices made 799 

for the simulations and analyses. 800 

 801 

Figure 7. Results are robust to changes in solver and relative tolerance of solution a. 802 

Boxplot of RMSE and Correlation with different solvers. Solver used in the original model was 803 

ODE45. b. Boxplot of RMSE and Correlation at different relative tolerances of solution. 804 

Relative tolerance used in the original model was 10-3. 805 

4. Discussion 806 

Large-scale networks of phase-synchronization are widely observed with EEG or MEG during 807 

rest and task. BNMs are used to produce model-generated networks corresponding to MEG-808 

derived networks of phase-synchronization, but the respective roles of conduction delays, the 809 

structural connectome and dynamics of models of individual brain regions, in obtaining this 810 
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correspondence remain unknown. In this paper, we investigated the roles of conduction delays, 811 

the structural connectome and dynamics of models of individual regions, in producing 812 

networks of phase-synchronization corresponding to those observed in MEG resting-state. We 813 

found no evidence that including conduction delays improves the correspondence between the 814 

model-generated and MEG-derived networks of phase-synchronization. Further, we 815 

demonstrated that both the pattern of structural connections and Wilson-Cowan oscillatory 816 

dynamics contribute to obtaining the observed correspondence between model-generated and 817 

MEG-derived networks of phase-synchronization. 818 

 819 

The topological organisation of the structural connectome, i.e., its pattern of connections, 820 

contributes to the observed correspondence between the model-generated and MEG-derived 821 

network of phase-synchronization. Previous studies have used the structural connectome within 822 

BNMs to produce other phenomena, such as networks matching experimentally observed 823 

fMRI-derived networks (Deco et al. (2009)), MEG-derived networks of amplitude correlation 824 

(Tewarie et al. (2019)) and spatial distribution of oscillation amplitudes observed in MEG 825 

resting-state (Raj et al. (2019)). Studies have also used the structural connectome in models to 826 

produce networks matching MEG-derived networks of phase-synchronization, but these have 827 

been via abstract statistical or oscillator models (Finger et al. (2016)), graph theory measures 828 

(Wodeyar & Srinivasan (2019)) or formal series expansions (Meier et al. (2016)). A single 829 

study used the structural connectome with a biologically plausible model to produce networks 830 

of phase-synchronization matching those observed in the MEG resting-state (Abeysuriya et al. 831 

(2018)). Our study advances findings from these studies in the following ways: 1.) We used 832 

comparison against null models to identify the specific feature of the structural connectome, 833 

i.e., its topological organisation, rather than lower-level properties such as the degree of each 834 

brain region, contributing to the observed correspondence between model-generated and MEG-835 

derived networks of phase-synchronization, and 2.) We demonstrated that the correspondence 836 

between the model-generated and MEG-derived networks of phase-synchronization is not 837 

explained merely by the correspondence between the structural connectome and the MEG-838 

derived network of phase-synchronization. Consistent with computational modelling on the 839 

relationship between the structural connectome and networks of phase-synchronization 840 

(Forrester et al. (2020)), these results suggest a significant but nontrivial relationship between 841 

the structural connectome and the model-generated network of phase-synchronization. 842 

 843 
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The dynamics of Wilson-Cowan oscillators contribute to the observed correspondence between 844 

model-generated and MEG-derived networks of phase-synchronization. Previous modelling 845 

studies have studied the role of the structural connectome in producing observed functional 846 

networks, but the role of dynamics of brain regions in producing these networks has not 847 

received much attention. A recent computational modelling study (Forrester et al. (2020)) 848 

demonstrated the influence of node dynamics on the relationship between the structural 849 

connectome and model-generated networks of phase-synchronization. The study demonstrated 850 

that oscillatory node dynamics are accompanied by a nontrivial relationship between the 851 

structural connectome and model-generated networks of phase-synchronization. Our study 852 

advances previous work in the following ways: 1.) While previous work has related oscillatory 853 

node dynamics to model-generated networks, this is the first work demonstrating the 854 

importance of oscillatory node dynamics in producing networks of phase-synchronization 855 

corresponding to those observed in experimental MEG resting-state. 2.) We illustrate the 856 

importance of specifically Wilson-Cowan oscillatory dynamics, by demonstrating that the 857 

Wilson-Cowan zero delays model produces networks with closer correspondence to MEG-858 

derived networks of phase-synchronization than does an equivalent model of Kuramoto 859 

oscillators. This result is consistent with computational modelling demonstrating the influence 860 

of both amplitude and phase dynamics, as produced by Wilson-Cowan oscillators, on estimates 861 

of phase-synchronization (Daffertshofer & van Wijk (2011)). Kuramoto oscillators only yield 862 

descriptions of phase dynamics. Hence, the oscillatory dynamics resulting from the interaction 863 

between excitatory and inhibitory neuronal populations, as described by Wilson-Cowan 864 

oscillators, contributes to producing networks of phase-synchronization corresponding to those 865 

observed in MEG resting-state. 866 

 867 

We find no evidence that including conduction delays improves the correspondence between 868 

model-generated and MEG-derived networks of phase-synchronization. Modelling studies 869 

investigating the role of delays in producing networks resembling fMRI-derived functional 870 

networks or MEG-derived networks of amplitude correlation have yielded differing results. 871 

Results of some studies suggest the importance of delays in producing fMRI-derived networks 872 

(Ghosh et al. (2008), Deco et al. (2009)) or MEG-derived networks of amplitude correlation 873 

(Cabral et al. (2014), Nakagawa et al. (2014)), while other modelling studies not including 874 

delays also produce networks resembling fMRI-derived (Honey et al. (2007)) or MEG-derived 875 

networks of amplitude correlation (Deco et al. (2017)). The role of conduction delays in 876 

producing networks resembling MEG-derived networks of phase-synchronization has not 877 
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received much attention. A recent modelling study (Abeysuriya et al. (2018)) reported that, in 878 

the special case of a high mean activity level (mean activity = 0.3) of Wilson-Cowan oscillators 879 

imposed by synaptic plasticity mechanisms, conduction delays were not necessary to producing 880 

networks resembling MEG-derived networks of phase-synchronization. In our study, we 881 

advance previous work by demonstrating that, also in the more general case of no specific mean 882 

target activity imposed by synaptic plasticity mechanisms, a close correspondence between 883 

model-generated and MEG-derived networks of phase-synchronization can be achieved. 884 

 885 

The absence of evidence in our study, for the role of delays in producing MEG-derived 886 

networks of phase-synchronization, might be either due to errors in the estimates of conduction 887 

delay or due to conduction delays not being mechanistically important in producing MEG-888 

derived networks of phase-synchronization. If the latter were true, one would expect the 889 

Wilson-Cowan constant delays and Wilson-Cowan distance-dependent delays model to 890 

produce networks corresponding equally to the MEG-derived network of phase-891 

synchronization. However, the Wilson-Cowan distance-dependent delays model produces 892 

networks correspondingly more closely to the MEG-derived network, than networks produced 893 

by the Wilson-Cowan constant delays model. In fact, the Wilson-Cowan distance-dependent 894 

delays model produces networks corresponding as closely to the MEG-derived network, as 895 

networks produced by the Wilson-Cowan zero delays model. Hence, we propose that improved 896 

accuracy in estimating conduction delays, by accounting for axonal diameter and myelination 897 

(Nakagawa et al. (2014), Waxman & Swadlow (1977)) in addition to distance, could yield 898 

improved correspondence between networks produced by the Wilson-Cowan distance-899 

dependent delays model and the MEG-derived network of phase-synchronization. Specialised 900 

diffusion MRI sequences could yield estimates of myelination and axonal diameter (Drobnjak 901 

et al. (2016), Whittall et al. (1997)), but these estimates remain elusive.  902 

 903 

The Wilson-Cowan zero delays model compares well to previously proposed BNMs producing 904 

networks of phase-synchronization observed in the MEG resting-state. A strength of a recently 905 

proposed BNM (Abeysuriya et al. (2018)) with distance-dependent conduction delays and 906 

inhibitory synaptic plasticity, was that it used the same set of parameter values to 907 

simultaneously produce a correspondence to both MEG-derived networks of amplitude 908 

correlation and MEG-derived networks of phase-synchronization. However, two notable 909 

aspects of the Wilson-Cowan zero delays model we propose are 1.) its parsimonious nature in 910 

not including conduction delays or synaptic plasticity mechanisms, while still producing 911 
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networks corresponding closely (ρ = 0.49) to MEG-derived networks of phase-synchronization 912 

and 2.) its strengths of phase-synchronization between regions were of the same order of 913 

magnitude and closer to those observed in the MEG-derived network (RMSE = 0.04) compared 914 

to previously proposed BNMs. However, a direct comparison between our model and those 915 

used in previous studies is difficult due to differences in the brain parcellation atlases used, 916 

number of hemispheres considered, measures of phase-synchronization used, as well as 917 

processing details of MEG and model-generated data. 918 

   919 

A limitation of the Wilson-Cowan zero delays model we propose is that while it does produce 920 

networks corresponding to MEG-derived networks of phase-synchronization, it does not 921 

simultaneously produce networks of amplitude correlation nor produce spatial distribution of 922 

oscillation amplitudes corresponding to those observed in MEG resting-state (results not 923 

shown). However, we did find these phenomena were produced by the model operating at very 924 

low levels of structural coupling between regions, e.g., 𝑘 values of 10-3, where 𝑘 is the scalar 925 

multiplier across the structural connectome. This was outside the range of structural coupling 926 

strengths investigated in our study. Future studies will use likelihood-free inference methods 927 

to estimate parameters from wider parameter ranges (Lintusaari et al. (2017), Lintusaari et al. 928 

(2018), Gutmann & Corander (2016), Cranmer et al. (2020)). Sensitivity analysis of our model 929 

revealed the model performance to be highly sensitive to values of model parameters. This 930 

could be due to the absence, in the model, of empirically observed homeostatic mechanisms to 931 

counteract the effect of changes in e.g., the mean activity level of the Wilson-Cowan oscillators. 932 

 933 

Future work could extend the model to include empirically observed spatial gradients in 934 

synaptic excitation (Wang (2020)), which in turn produce empirically observed spatial 935 

gradients in peak frequency (Hadida et al. (2019), Mahjoory et al. (2020)). The model could 936 

also be extended to include the effects of noise (Faisal et al. (2008)), which has been suggested 937 

to play a role in generating dynamics of resting-state data from other methodologies (Deco et 938 

al. (2009)). These models, fit to MEG resting-state data, could be locally perturbed to emulate 939 

task-related dynamics (Tiesinga et al. (2010)). Such virtual experiments could be used to 940 

develop, test and refine hypotheses on biophysical substrates underlying observed networks of 941 

phase-synchronization in MEG task data.    942 
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5. Conclusion 943 

In this study, we investigated the respective contributions of conduction delays, the structural 944 

connectome and dynamics of models of individual brain regions, in producing model-generated 945 

networks of phase-synchronization corresponding to those observed in MEG resting-state. 946 

Based on our investigations, we report no evidence for the role of conduction delays in 947 

producing networks corresponding to MEG-derived networks of phase-synchronization. 948 

Further, we demonstrate the contribution of the topological organisation of the structural 949 

connectome and the dynamics of Wilson-Cowan oscillators in producing model-generated 950 

networks of phase-synchronization that correspond to those observed in MEG resting-state. 951 

Future studies will extend these models and subject them to local perturbations to provide 952 

insight on biophysical substrates underlying observed networks in rest and task conditions. 953 
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Supplementary figures 1187 

 1188 

Figure S1. Model performance is sensitive to values of model parameters Change in model 1189 

performance, as measured by z-scored RMSE and z-scored Correlation, for percentage change 1190 

in original value of each model parameter while keeping all other parameters at their original 1191 

values. 1192 
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 1199 

Figure S2. Structural connectome is weakly correlated to the MEG-derived network of 1200 

phase-synchronization Histogram of correlations between MEG-derived network of phase-1201 

synchronization and 100 bootstrapped versions of structural connectome. 1202 
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 1216 

Figure S3. Wilson-Cowan zero delays model outperforms Kuramoto oscillator model a. 1217 

Violin plots of RMSE values for the Wilson-Cowan zero delays and Kuramoto oscillator 1218 

models (left panel). Violin plots of Correlation values for the Wilson-Cowan zero delays and 1219 

Kuramoto oscillator models (right panel). 1220 
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 1234 

Figure S4. Moderate correspondence between mean model-generated network and right-1235 

hemispheric MEG-derived network of phase-synchronization  a. Histogram of connection 1236 

strengths for mean model-generated and right-hemispheric MEG-derived networks of phase-1237 

synchronization b. Scatter plot of connection strengths for right-hemispheric MEG-derived 1238 

network of phase-synchronization against mean model-generated network of phase-1239 

synchronization c. Matrices of connection strengths between every pair of brain regions for 1240 

mean model-generated and right-hemispheric MEG-derived network of phase-1241 

synchronization. d. Brain network visualisation of top 5 percentile strongest connections for 1242 

mean model-generated and right-hemispheric MEG-derived networks of phase-1243 
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synchronization. MOD = model. Brain networks were visualised with BrainNet Viewer 1244 

(http://www.nitrc.org/projects/bnv/) (Xia et al. (2013)). 1245 
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