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Abstract 

Much of our long-term knowledge is organised in complex networks. Sleep is thought to be 

critical for abstracting knowledge and enhancing important item memory for long-term 

retention. Thus, sleep should aid the development of memory for networks and the abstraction 

of their structure for efficient storage. However, this remains unknown because past sleep 

studies have focused on discrete items. Here we explored the impact of sleep (night-sleep/day-

wake within-subject paradigm) on memory for graph-networks where some items were 

important due to dense local connections (degree centrality) or, independently, important due 

to greater global connections (closeness / betweenness centrality). A network of 27 planets 

(nodes) sparsely interconnected by 36 teleporters (edges) was learned via discrete 

associations without explicit indication of any network structure. Despite equivalent exposure 

to all connections in the network, we found that memory for the links between items with high 

local centrality or high global centrality were better retained after sleep. These results highlight 

that sleep has the capacity for strengthening both global and local structure from the world and 

abstracting over multiple experiences to efficiently form internal networks of knowledge.    
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Introduction 

Sleep has been shown to support the consolidation of declarative memories (Diekelmann & 

Born, 2010; Feld & Born, 2017; Stickgold, 2005). A night of sleep will tend to enhance 

memories compared to a similar period of wakefulness during the day (e.g., Abel & Bauml, 

2014; Baran, Daniels, & Spencer, 2013; Fenn & Hambrick, 2012). The main mechanism driving 

this consolidation is thought to rely on the repeated reactivation of recently encoded memories 

during sleep (Rasch, Buchel, Gais, & Born, 2007; Wilson & McNaughton, 1994). Over time, 

the reactivation of overlapping information leads to memory abstraction such that some of the 

detail is lost and the gist of an experience or the centrally important information is retained 

(Lewis & Durrant, 2011). Sleep is thought to be particularly important for the extraction of such 

gist and the building of schemas (Lutz, Diekelmann, Hinse-Stern, Born, & Rauss, 2017; 

Schapiro et al., 2017). Consistent with this, important items encoded before sleep have been 

shown to be more enhanced by sleep (Feld, Besedovsky, Kaida, Munte, & Born, 2014; Javadi, 

Tolat, & Spiers, 2015; McNamara, Tejero-Cantero, Trouche, Campo-Urriza, & Dupret, 2014; 

Wilhelm et al., 2011). In addition, memory strength and item difficulty affect how much memory 

is boosted by sleep with low strength and high difficulty items profiting the most (Drosopoulos, 

Schulze, Fischer, & Born, 2007; Kuriyama, Stickgold, & Walker, 2004; Schapiro, McDevitt, 

Rogers, Mednick, & Norman, 2018).    

While most studies of sleep have focused on discrete items such as word lists or item 

pairs (Diekelmann & Born, 2010; Feld & Born, 2017), most real-world information is interlinked 

and integrated in networks of knowledge (Patterson, Nestor, & Rogers, 2007). Thus, it remains 

unclear how sleep impacts the learning of network structures. It has recently been argued that 

the hippocampus and parahippocampal structures which support spatial memory and 

navigation may have evolved in humans to support the learning of knowledge networks more 

broadly (Behrens et al., 2018; Bellmund, Gardenfors, Moser, & Doeller, 2018; Epstein, Patai, 

Julian, & Spiers, 2017; George et al., 2021; Spiers, 2020; Whittington et al., 2020). This has 

extended to concepts in reinforcement learning where optimal policies for learning new 

information need to be developed (Stachenfeld, Botvinick, & Gershman, 2017).  
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Recordings from individual cells in the hippocampal-parahippocampal network have 

provided evidence that neurons with specific tunings support aspects of representing a 

cognitive map of the environment (Epstein et al., 2017; Grieves & Jeffery, 2017; John O'Keefe 

& Nadel, 1978). Hippocampal place cells in rats show spatially localised patterns of activity 

during movement through environments with each place cell being active in different specific 

regions of an environment (O'Keefe & Dostrovsky, 1971). Collectively they provide a unique 

code for each location encountered in the environment. During periods of sleep and immobility, 

subpopulations of place cells tend to re-activate, with the order of the cells active ‘replaying’ 

the sequence of locations visited in an environment previously (Foster, 2017; Ji & Wilson, 

2007). Such replay appears to preserve the topological structure of the environment, with 

sequences of replay along routes in a Y-shaped maze consistent with the physical connections 

within the environment (Wu & Foster, 2014). This suggests that during sleep, hippocampal 

networks will replay the various paths experienced during the awake state preserving the 

structure and may replay intersections or paths that are more frequently encountered if replay 

is linked to the amount of exposure. For example, passing through a central node many times 

while exploring a network of paths would lead to reactivations passing through that node many 

more times than other regions. 

Using a film simulation of a complex network of recently learned city streets it has been 

possible to examine evoked hippocampal responses to street networks when navigating 

(Javadi et al., 2017). When entering new street junctions, if the new street contained more 

local streets to choose from (higher degree centrality) then posterior hippocampal activity 

increased, but if the options decreased (e.g. a dead end) then posterior hippocampal declined. 

While posterior hippocampal activity responded to local connectivity, the anterior hippocampus 

responded to changes in the globally connectivity (closeness centrality). Its activity increased 

when entering a more globally connected street in the network and decreased when entering 

less globally connected streets. While this suggests the day after learning a street network the 

hippocampus is able to track the connectivity in a network during navigation, we still know very 
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little about how such networks are learned and consolidated in the gap between learning and 

navigation. 

Recently a number of studies have begun to explore how graph structures may be 

learned (Lynn & Bassett, 2020; Tomov, Yagati, Kumar, Yang, & Gershman, 2020). However, 

most of these studies only tracked memory for a short period of time or only investigated 

learning (Kahn, Karuza, Vettel, & Bassett, 2018; Karuza, Kahn, Thompson-Schill, & Bassett, 

2017; Lynn, Kahn, Nyema, & Bassett, 2020; Schapiro, Rogers, Cordova, Turk-Browne, & 

Botvinick, 2013). In contrast, a recent study asked participants to learn structured information 

according to a graph and retrieve it 24 hours later in an MRI scanner (Garvert, Dolan, & 

Behrens, 2017). Neuronal activity measured in the entorhinal cortex tracked the distance 

between items within the learned graph. Another interesting study (however with a short 

retention interval ranging minutes) investigated how local connectivity, i.e., community 

structure, affects statistical learning and could show that participants are sensitive to this type 

of topology inasmuch as they identified edges connecting local communities as natural 

breaking points (Schapiro et al., 2013). However, to our knowledge there has been no research 

on the impact of local and global centrality (i.e., degree centrality and closeness centrality) on 

information processing and memory acquisition in the long-term. Nor have studies examined 

how sleep may impact learning networks, where theories emphasize the importance of 

extracting the gist from experience, which arguably would relate to the centrality of nodes in a 

network.  

Here, we examine how sleep during retention affects associations that were learned 

using an explicit graph-learning task with a topology that allowed us to disentangle 

contributions of local and global centrality. We expected 1. that weaker/more difficult 

associations would be improved more by sleep (as has been demonstrated elsewhere 

Drosopoulos, Schulze, Fischer, & Born, 2007; Kuriyama, Stickgold, & Walker, 2004; Schapiro, 

McDevitt, Rogers, Mednick, & Norman, 2018), meaning that greater distance between nodes 

would predict a greater benefit from sleep, 2. that important information would be improved 

more by sleep, such that high centrality would predict a greater benefit from sleep. In our 
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design edges connected to high and low centrality nodes did not systematically differ in 

exposure during learning as we carefully and pseudorandomly chose routes. We did not have 

strong predictions that sleep more strongly impacts information of high global or local centrality, 

since relevance has been shown to generally enhance the sleep effect (Wilhelm et al., 2011). 

In addition, we contrasted centrality derived relevance with more classical reinforcement 

related relevance, by associating some of the nodes with monetary reward and punishment.   
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Methods 
Participants 

Twenty-five healthy young men aged between 18 and 30 years (24.20 ± 3.53) took part in the 

study. Participants were non-smokers, fluent in English, not currently under medication and 

did not have any physical or mental disorders. They all reported having a regular sleep 

schedule, going to bed before midnight (11:18 pm ± 47 minutes) and waking up before 8:00 

am (7:41 am ± 47 minutes). In addition, participants did not work during night shifts and were 

not diagnosed with sleep disorders and they did not travel across time zones. Finally, they did 

not report any stressful events such as exams or deadlines before or during the experiment. 

Written informed consent was obtained from each participant before starting the experiment. 

The experiment was approved by the UCL ethics committee (ID number: 8951/002). 

Participants were compensated financially for their participation. 

Design and procedure  

The study was performed in a balanced, within-subject design where participants came for two 

sessions separated by at least 7 days (8.44 ± 2.98). Each session was composed of a learning 

and a retrieval phase with a retention interval of 10 hours between the two phases. At the end 

of the learning phase, participants were asked to avoid learning new information or studying 

and to not rehearse the information they had learned. Two conditions, sleep and wake, were 

tested in the experiment for each participant. In the wake condition, participants came at 8 am 

to complete the learning phase and returned at 8 pm for the retrieval phase. In the sleep 

condition, participants arrived at 8 pm and returned the following day at 8 am (see Figure 1A). 

The sequence of conditions was counterbalanced across participants. 

The experiment was divided into two phases, in the first, the learning phase, 

participants completed the learning and the reward tasks and in the second, the retrieval 

phase, they completed the recall task (for details, see task description below). At the end of 

each phase, control measures were taken. Mood of the participants was assessed by asking 

them to fill in the Positive And Negative Affective Scale (PANAS, Watson, Clark, & Tellegen, 

1988) their subjective sleepiness was measured with the Standford Sleepiness Scale (SSS, 
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Hoddes, Zarcone, Smythe, Phillips, & Dement, 1973) and reaction time (RT) and vigilance 

were obtained from the 5-minutes version of the Psychomotor Vigilance Task (PVT, Dinges et 

al., 1997). Additionally, at the end of each retrieval phase, participants performed a word 

generation task to assess their ability to retrieve highly consolidated information 

(Aschenbrenner, Tucha, & Lange, 2000). 

 

Figure 1. Experimental procedure and task description. A) In our within-subject 

design participants took part in two identical experimental sessions with parallel 
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versions of the task and retention intervals containing either sleep or wakefulness. The 

learning phase started at 8:00 am (or pm) and participants performed a learning task 

(see C) and a reward task (see F). After the 10-hour retention interval, participants 

came back to the lab to complete the retrieval phase (see G). After one week, 

participants returned to perform the other experimental session with the remaining 

retention interval. B) Representation of the undirected graph structure composed of 36 

edges (black lines) linking 27 nodes (circles with examples of stimuli presented during 

the experience). Red nodes represent reinforced nodes, either positive (reward), 

negative (punishment) or neutral. This image was never shown to the participants, but 

determined the structure of the learned associations. C) During learning, participants 

saw one of the three planets displayed at the top. After choosing, the choice was 

marked but only the correct planet (i.e., the one connected to the bottom planet 

according to the graph) moved down to replace the bottom planet. Then a new set of 

three planets appeared at the top prompting a new choice. Participants performed eight 

such choices (transitions) taking an eight-step route through the graph (an example 

route is indicated by arrow in B). After each route, they received feedback on their 

performance and a new route started at a pseudo-random location on the graph.  

Participants performed 81 routes in total. D) To construct the graph the graph-

theoretical parameters of degree centrality and E) closeness centrality were 

orthogonalized (i.e. allowing to independently asses their effect on retention) and a 

three-fold symmetry was pursued (to enable equal positions for the reinforced nodes). 

F) During the reward task, participants were shown a planet representing one of the 

three reinforced nodes (reward, punishment and neutral). After 0.5-1 seconds a white 

square appeared on top of the picture. Dependent on the participants pressing the 

spacebar quickly enough, they were shown the outcomes at the bottom. G) During the 

retrieval task, participants were shown two planets taken pseudo-randomly from the 

graph network and had to answer whether they were directly connected or whether 

one, two or three and more planets were in between.  

 

Finally, at the end of the second retrieval phase, participants filled in the Santa Barbara 

Sense-Of-Direction scale (SBSOD, Hegarty, Richardson, Montello, Lovelace, & Subbiah, 

2002) asking questions about spatial and navigational abilities and completed the Navigational 

Strategies Questionnaire (NSQ; Brunec et al., 2019) asking questions about their experiences 

with navigation and their navigation strategy.  

Graph structure  

A graph consisting of 27 nodes was constructed (A representation of the graph can be seen in 

Figure 1B) and pictures were assigned to each node (unique landscapes of extraterrestrial 

planets). The number of nodes was chosen to enable effective encoding within the 1.5 hours 

of the learning phase (as determined by pilot participants’ performance). The graph contained 
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36 edges that connected the nodes. During construction, the graph-theoretical parameters of 

closeness centrality and degree centrality were orthogonalized and a three-fold symmetry was 

pursued (Figure 1D and 1E). In addition, three nodes corresponding to the red nodes in Figure 

1B were selected to be reinforced. The nodes were either positively reinforced (reward node), 

negatively reinforced (punishment node) or not reinforced (neutral node). The reinforcements 

were associated during the reward task (for details, see task description below). This graph 

was never shown to the participants during the experiment and participants were not explicitly 

told about an underlying structure of the learning task. 

Learning task  

The learning task was gamified to optimise participants’ motivation during learning and retrieval 

(see Supplementary Methods for details). Briefly, the task was embedded in a storyline of 

humankind on the brink of extinction on earth and participants explored planets to find a new 

home for humans to live. Our piloting demonstrated that participants’ motivation, especially 

during the 1.5 hours of the learning session, greatly benefitted from this approach, which 

enabled us to use a somewhat larger graph. To familiarise the participant with the stimuli, each 

planet was shown in the middle of the screen with its name under it for 2 seconds with an inter-

stimulus-interval of 0.5 seconds. Next, the participants learnt the graph structure by performing 

81 routes of 8 transitions length between the planets of the graph. An overview of the task can 

be seen in Figure 1. For each transition, the participants were asked to identify the neighbour 

of the current planet that was presented at the bottom of the screen (i.e., the planet connected 

by a single edge) while being shown three potential planets at the top of the screen. One option 

was the correct planet (one of the 2-4 connected planets) and the two other options were 

incorrect (i.e., not directly connected). Of the two wrong choices, one of the planets had a 

distance of two edges, i.e. there was one planet between the current planet and the incorrect 

choice, and the other had a distance of three or more edges, i.e., there were at least two 

planets in between. The wrong choices were chosen randomly from all planets qualifying the 

distance argument and only the shortest distance was considered relevant for this choice. 

During each transition, participants had a maximum of 10 seconds to choose the correct 
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transition. If they did not answer within the time limit, the choice was considered incorrect and 

the next trial was presented. 

Reward task  

The reward task was constructed to be an adaptation of the monetary incentive delay task that 

robustly activates reward areas (Knutson, Westdorp, Kaiser, & Hommer, 2000). During the 

task, participants saw the three reinforced nodes mentioned above. During 180 trials, a fixation 

cross appeared in the middle of the screen for 250 milliseconds followed by one of the three 

planets representing the nodes for 2 seconds. After 0.5 to 1 seconds, a white square appeared 

and the participants needed to press the spacebar as fast as possible (pressing before the 

square was shown was considered a miss). Depending on their RT and the planet presented, 

the participants obtained a different monetary outcome (Figure 1F). For the reward planet, if 

the participants were fast enough, they got +2£, but if they were not fast enough, they got 0£. 

For the punishment planet, being fast enough let them earn 0£, but being too slow made them 

lose -2£. Finally, for the neutral planet participants got 0£ whether they were fast or not. Their 

wins and losses accumulated resembling the amount they would receive for performing the 

reward task.  

Retrieval task  

The retrieval task was divided into three parts. In the first part, we presented two planets 

(without their names) next to each other to the participants that were chosen pseudo-randomly 

and asked if they were directly connected during learning or if there were one, two or three 

and more planets in between (Figure 1G). This was done for all the possible combinations of 

the 27 planets, therefore the participants were presented with 351 trials. In the second part, 

we asked the participants about the names of the planets. Participants performed 27 trials, one 

for each planet, and were asked which of four possible names was correct. The three incorrect 

names were chosen to be from planets that were one, two or more edges away, respectively. 

In the last part, the participant identified the contingencies learned in the reward task again. 
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Data reduction and statistical analysis  

The data of 6 participants were excluded from the analysis. Four participants had a learning 

performance with an accuracy lower than 0.5 and two participants had a high learning 

performance, accuracy above 0.8, but a low retrieval performance, less than 0.4. In addition, 

only node pairs with distance 1 to 4 were analysed since the retrieval tested participant’s 

knowledge of the graph structure only to distance 4 at maximum. Data reduction was 

performed in Matlab 2018a and the statistical analysis depended on R studio (Version 1.0.143). 

The analysis relied mainly on repeated measures ANOVA, paired t-tests, pearson correlations 

and regression with linear modelling. Details regarding the data reduction and statistical 

analysis can be found in the supplementary methods.  
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Results 

Retention performance 

A retention measure was created by subtracting the learning performance from the retrieval 

results, i.e., how much information the participant retained during the retention period (Figure 

2A; for more details see the Supplementary Methods section and Supplementary Figure 4). 

When collapsing all distance information, we found that participants retained more information 

from learning to retrieval in the sleep condition than in the wake condition (t(18)=2.13; p<0.05). 

An ANOVA across distances, confirmed this main effect of interval (F(1,18)=4.52; p<0.05). 

When analysing the distances individually we found that for distance 4 the sleep condition also 

showed better retention (t(18)=2.29; p<0.05) (Figure 2D). However, no such difference was 

found for distances 1, 2 and 3 (p>0.19). Using linear regression lines modelling the distances 

per interval revealed a difference of intercept between sleep and wake conditions (F(1,18)=-

3.99; p=0.02). However, this analysis did not reveal a difference in the slopes, i.e., no distance 

by interval interaction (F(1,18)=-2.22; p=0.09, Figure 2G). 

Regarding the local connectivity (degree centrality), participants retained more 

information during the sleep interval (F(1,18)=4.71; p=0.04). This effect was stronger for nodes 

of degree centrality 3 (t(18)=2.15; p<0.05) compared to degree 2 (p=0.06) or 4 (p=0.07, Figure 

2B). The regression analysis analysis confirmed the main effect of sleep (difference in 

intercept: F(1,18)=-4.86; p=0.04) and indicated that higher degree centrality was associated 

with an increased benefit from sleeping during retention (difference in slope: F(1,18)=-8.26; 

p=0.01, Figure 2C). 

Similar results were found for global connectivity (closeness centrality) since 

participants again performed better across the sleep retention interval (F(1,18)=5.26; p=0.03), 

which was mirrored by a sleep benefit for closeness centrality of 4 (t(18)=2.27; p=0.04) and 5 

(t(18)=2.90; p=0.001) but not for closeness 1 (p=0.28), 2 (p=0.17) or 3 (p=0.07) (Figure 2D). 

Again the regression analysis showed that participants performed better across sleep 

(difference in intercepts: F(1, 18)=-3.79; p<0.01) and that a higher degree centrality increased 

the effect of sleep (difference in slopes: F(1, 18)=-3.59; p=0.01, Figure 2E). 
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Figure 2 Retention performance. A) Left, the retention measure was calculated by 

subtracting the learning performance from retrieval performance. Details can be found 

in Supplementary Figure 5. Right, mean overall retention performance for the sleep 

(blue) and the wake (red) condition. B) Mean retention performance and C) regression 

model for the different distances within the graph, D) & E) for the different levels of 

degree centrality of the nodes and F) & G) for the different levels of closeness centrality 

of the nodes. For the violin plots, the black dots represent the individual performance, 

the black bar represents the mean across participants, the black rectangle shows the 

95% of a Bayesian highest density interval and the coloured shape displays the 

smoothed density.  *p<0.05, **p<0.01 

 

Learning and retrieval performance 

For the learning results, there was a trend towards overall learning performance (calculated by 

averaging the encoding results over the four distances, see supplementary methods) being 

greater for the wake than for the sleep condition (t(18)=-2.09; p=0.06) (Supplementary Figure 

1B). However, when viewing only first order connections (as learned during the task) and 

dividing the learning task into thirds, no main effect of sleep or wake was evident when 

analysing the three thirds in an ANOVA (F(1,18)=2.66; p=0.12) or for the last third in an 

individual t-test (t(18)=-1.09; p=0.29, Supplementary Figure 1A). Although the participants 

increased their learning performance across the thirds (F(1, 18)=124.74; p<0.001). The 

individual learning curves of participants are shown in Figure 3 A and B for both conditions. 

Regarding local connectivity, an ANOVA showed that higher degree centrality was 

associated with better learning (F(1, 18)=44.55; p<0.001) but no effect of intervals nor an 

interaction was found (p>0.5) (Supplementary Figure 2A). For global connectivity, similar 

results were found, i.e., participants learned nodes with higher closeness centrality better (F(1, 

18)=33.01; p<0.001) (Supplementary Figure 2C) but there was no effect for the retention 

interval and no interaction (p>0.5). Similarly, no difference in intercept and slopes were found 

for the linear model analysis. 
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Figure 3. Participants’ raw learning and retrieval data. A) Learning curve across 

the 81 routes for the sleep and B) the wake condition. Mean (thick  line) and individual 

responses (thin lines) for correct response (green), the close distractor (yellow) and 

the distant distractor (red) smoothed by a five point moving average. The black arrow 

indicates when participants performance was significantly biased by the graph 

structure (i.e. accuracy of the close and distant distractor started to differ).C) Retrieval 

task data for each distance (rows) in the sleep and D) the wake condition. On the left 

the graph structure and an example (in green) is shown for each distance, which is 

defined by the number of edges between the pair of nodes tested. Within the circles, 

green lines represent correct connections and grey lines correspond to incorrect 

connections at that distance, whereas line thickness depicts how many participants 

gave the respective answer. 

 

Regarding the general retrieval performance (calculated by the hit rates for each 

distance, see supplementary methods), participants were better at correctly identifying closer 

pairs than more distant ones  (F(1,18)=7.46; p<0.001) but there was no main effect of the 

interval nor an interaction effect (p>0.5) (Supplementary Figure 1C). A visualisation of the raw 

retrieval data can also be found in Figure 3 C and D. No statistical difference was found for 

local connectivity (Supplementary Figure 2B) but global connectivity showed a main effect of 

the centrality (F(1, 18)=4.34; p<0.01) (Supplementary Figure 2D). Similar to learning, no 

statistical differences were found for the linear model analysis. Finally, participants were not 

able to remember planet name associations better across the sleep than the wake condition 

(t(18)=0.89; p=0.38) 

Reinforcement 

Individual balance curves (the amount of money given to participants, see Methods section), 

for the two conditions can be found in Figure 4 A/B. Regarding the retention measure, an 

ANOVA found no influence of sleep or wake (F(1, 18)=2.33; p<0.14) nor was there an effect 

of reinforcement or an interaction of the two (F(1,18)=1.12; p=0.34) (Figure 4C). However, 

exploratory paired t-tests found that for the punishment node participants performed better in 

the sleep condition (t(18)= 2.10; p<0.05) but not for the reward and neutral nodes (p>0.30). 
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Figure 4 Reinforced nodes results. A) Individual monetary balance curves during the 

reward task in the sleep and B) the wake condition. Participants earned the amount 

reached at the end of the task. C) Retention performance for the reinforced nodes. The 

black dots, bar and rectangle represent the individual performances, the mean and the 

95% of a Bayesian highest density interval, respectively. The coloured shape around 

shows the smoothed density. *p<0.05 
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Navigation tests  

A significant correlation was found between the two navigation questionaires (r = 0.55, p<0.02). 

Since the variance of the NSQ was larger further correlations used this navigation test (Figure 

5).  Participants with a higher score in the NSQ have a higher mapping strategy. We found a 

significant negative relationship between the NSQ and the retention measure for the sleep (r=-

0.58, p<0.01) but not for wake condition (r=-0.40, p>0.09). A positive relationship between the 

NSQ and learning performance in the sleep condition (R=0.46, p<0.05) and between the NSQ 

and retrieval performance in the wake condition (R=0.48, p<0.05). Correlations for learning 

performance in the wake condition (R=0.43, p=0.07) and retrieval performance in the sleep 

condition (R=0.37, p=0.12) did not reach significance. In general, although some relationships 

did not reach significance in the sleep or the wake conditions the overall pattern of effects was 

similar. 

Control tasks  

There was no difference in the long-term retrieval performance (measured with the word 

generation task) between the sleep and the wake conditions (t(18)=-0.82; p=0.42). Also, no 

statistical difference was found for objective vigilance (reaction speed of the PVT), subjective 

sleepiness (measured by the SSS) or positive or negative affect (measured by PANAS) 

between the sleep and the wake conditions during learning (PVT: t(18)=1.02, p= 0.32; SSS: 

t(18)=-0.57, p=0.57; PANAS-positive: t(18)=1.37; p= 0.19; PANAS-negative: t(18)=2.08; 

p>0.05) or retrieval (PVT: t(18)=0.66, p=0.52; SSS: t(18)=-0.86; p=0.40; PANAS-positive: 

t(18)=0.67; p= 0.51; PANAS-negative: t(18)=-0.33; p=0.74). Descriptive statistics can be found 

in Table 1. 
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Figure 5. Correlation of the results and the navigation score. A) The Navigation 

Strategies Questionnaire (NSQ) score, the black dots, bar and rectangle represent the 

individual performances, the mean and the 95% of a Bayesian highest density interval, 

respectively. The coloured shape around shows the smoothed density. B) Relationship 

of the Navigation Strategies Questionnaire (NSQ) with learning performance, C)  

retrieval performance and D) retention performance for the sleep condition and  with 

E) learning performance, F)  retrieval performance and G) retention performance for 

the wake condition. Regression lines (blue – sleep, red – wake) and black dots for the 

individual data points are shown. 

 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455038doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455038
http://creativecommons.org/licenses/by/4.0/


Discussion 

Here, we investigated the impact of sleep on consolidating learned topological networks, which 

varied across them in global and local connectivity of nodes. We found both connections to 

globally and locally highly relevant nodes were preferentially enhanced by sleep. This was 

despite equal exposure to all the connections in the network during learning. By contrast, sleep 

had no impact on the enhancement of nodes made salient by monetary reinforcement. We 

discuss how these results help advance our understanding of how representations of learned 

graph networks are affected by offline processing, models of sleep and consolidation and 

implications for understanding offline replay in hippocampal networks.  

The current study presents a novel associative learning task, where information was 

learned according to a graph network. We found that during learning, the graph influenced 

behaviour beyond first level associations inasmuch as close distractors (distractors that were 

only one edge away from being a direct connection) were more frequently chosen than distant 

distractors (distractors that were at least two edges away from being a direct connection) when 

participants made errors. Although sleep enhanced memory retention per se, its effect was not 

enhanced by increased distance between the nodes, as might have been expected due to 

sleep preferentially enhancing items with low association and high difficulty (Drosopoulos et 

al., 2007; Kuriyama et al., 2004; Schapiro et al., 2018). Sleep did however specifically enhance 

items that were more relevant for navigating the network as items of high local and of high 

global connectivity showed a stronger sleep effect. This graded effect of topological relevance 

may be related to findings of graded reward effects on memory within a maze (Braun, Wimmer, 

& Shohamy, 2018). In this study, participants explored a maze by uncovering cards laid out in 

a 2-d grid and received a high or a low reward after a certain amount of cards. The reward 

effect was higher the closer a card was to the final card that was uncovered. Although we found 

a similar graded effect of topological relevance, we found no effect of monetary reinforcement 

applied to a subset of nodes. This may likewise be explained by a spread of reward across the 

network, if one assumes that our network was too small. We chose the size of our network 

after extensive piloting so that it could be learned to about 80% correct within 1.5 hours. Using 
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a larger network or maybe even two networks with different reinforcement procedures may 

prove more fruitful. 

Sleep has been suggested to enhance the abstraction of gist from episodes (Lewis & 

Durrant, 2011). Such gist abstraction may become more important, when larger networks are 

learned, as participants will struggle to keep all connections in memory. Representing the 

network at different scales would then allow for more efficient memory processing. Integrating 

very large networks may occur over several nights of sleep, as has been shown for other gist 

abstraction processes (Lutz et al., 2017). Once a large network has been built, it may prove 

that new items can be added to this schema much faster and with less reliance on the 

hippocampus (Tse et al., 2007; van Kesteren, Fernandez, Norris, & Hermans, 2010). In fact, 

sleep may no longer be required to consolidate such memories since encoding may circumvent 

the hippocampus directly integrating into the neocortical knowledge network (Himmer, Muller, 

Gais, & Schonauer, 2017). Based on past work showing this rapid learning of new nodes to 

networks (Tse et al., 2007; van Kesteren et al., 2010), we would predict that after adding new 

nodes to our network encoding would not require sleep consolidation to stabilize traces as long 

as the global topological is minimally affected. This could be studied in our paradigm by adding 

nodes that do or do not strongly influence topology. For example, providing a single shortcut 

between very distant parts of the network could radically change the closeness centrality of 

nodes and potentially drive more extended consolidation during sleep.  

One prediction from theories highlighting the importance of global gist extraction and 

schema development (Gilboa & Marlatte, 2017; Lewis & Durrant, 2011) is that predominantly 

the globally important information would be prioritised over the local important information. We 

did not find this was the case, since high degree centrality also impacted consolidation during 

sleep. In future research, it would be interesting to explore memory after several days to 

observe whether global and local information is lost or retained at the same rate. Testing other 

network structures would also help explore whether the local and global effects are additive, 

in that are nodes with both high local and global centrality doubly enhanced by sleep.  
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According to one perspective, hippocampal replay during sleep has been considered 

to be closely aligned with prior experience, so that sequences of place cells evident during 

learning would emerge again during subsequent sleep (Ji & Wilson, 2007). Reward has been 

shown to influence replay of place cells and enhancing reward increases the frequency of 

replay events in brief rest intervals during learning (Ambrose, Pfeiffer, & Foster, 2016). Another 

study showed that enhancing dopaminergic modulation within the hippocampus enhances 

replay frequency during post encoding rest (McNamara et al., 2014). An alternative perspective 

has recently suggested that in the absence of reward replay events may represent random 

samples from available trajectories through space (Stella, Baracskay, O'Neill, & Csicsvari, 

2019). The enhancement of globally relevant nodes in our network could be explained by either 

account. Either global relevance was inferred already during wake encoding and enhanced 

replay of those nodes during sleep by a synaptic tagging mechanism (Redondo & Morris, 2011) 

or the structure of the network may have biased replay that occurs in form of random walks on 

the graph to emphasize nodes with high betweenness centrality. As betweenness and 

closeness centrality were highly correlated in our graph, we cannot at present distinguish which 

the two metrics might impact consolidation during sleep. With a larger network it would be 

possible to dissociate closeness centrality and betweenness centrality (see Fig 1 of Javadi et 

al., 2017). If replay takes a random walk through the network it might specifically enhance 

regions of high betweenness centrality but not closeness centrality. However, it may be that 

replay prioritizes important structures to be learned (Mattar & Daw, 2018), which recent 

evidence supports (Liu, Mattar, Behrens, Daw, & Dolan, 2021). 

In conclusion, we find that local and global aspects of connections between individual 

items of a declarative associative memory task determine access to sleep dependent memory 

consolidation. This approach has the potential to explore in more detail how replay influences 

the knowledge structure of declarative memory. Many psychiatric disorders come with 

impaired memory as well as sleep disruption, better understanding how complex memories 

are formed during sleep may increase our understanding of these disorders.  
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Boxes 

Box 1. Graphs. We refer to graphs in their mathematical form to describe connections (edges) 

between instances (nodes) and not, as more commonly used, as a form of data presentation. 

Graphs are part of our everyday life and are most easily visualized as networks of connections. 

For example, the connections of the London Underground can be described using a graph. 

Here, the different stations are the nodes and the connections are the edges, i.e., the node 

Russel Square is connected to the node Euston via the node King’s Cross and two edges. The 

degree centrality and closeness centrality of a given node signify its relevance in the network. 

For example Oxford Circus has a high degree centrality as it is directly connected to 6 other 

stations, but it also has a high closeness centrality as you can travel to any other node relatively 

quickly (i.e., using few edges).     
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Tables 
 

Table 1. Some data. 

 Sleep Wake 
 Mean SD Mean SD 
Word Generation 41.16 2.73 42.79 2.95 
     
PANAS - Positive     
Learning Phase 30.16 1.52 28.36 2.21 
Retrieval Phase 28.17 1.86 26.89 1.52 
     
PANAS - Negative     
Learning Phase 14.10 0.77 12.58 0.58 
Retrieval Phase 11.84 0.59 12.00 0.55 
     
PVT     
Learning Phase 3.13 0.08 3.08 0.07 
Retrieval Phase 3.17 0.08 3.14 0.06 
     
SSS     
Learning Phase 2.63 0.23 2.79 0.29 
Retrieval Phase 2.42 0.18 2.69 0.22 
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Supplementary Methods 

General procedures  

All the learning tasks were programmed and executed on Matlab2016a with the package 

Psychtoolbox-3. Matlab was running on Dell OPTIPLEX 990 with Windows 7 Enterprise with a 

Dell P2011H monitor (resolution of 1600x900). Up to four participants were run at one time in 

individual cubicles. 

Two storylines were created and were told using texts during the instructions, as well 

as, videos before and after the tasks, to keep the participants interested and focused. The first 

storyline, corresponding to the first session, emphasized that Earth will be destroyed and 

participants are sent into a new galaxy to explore it. The second storyline, related to the second 

session, told that there are strange sounds and radio wave frequencies that are being emitted 

from a neighbouring galaxy. This time, participants must explore this galaxy to lead to further 

understanding of what these sounds may mean. Videos that helped build this storyline can be 

found in the supplementary methods. The stimuli were presented on a screen that contained 

elements of a videogame to further gamify the experience (see below for details).  

Both sessions used the same protocol and participants learnt the same graph structure 

but with a different set of stimuli (i.e. pictures) for each session. In addition, each participant 

received a uniquely randomised version of the task with different stimuli, planets, names and 

routes. For each memory task, instructions and examples were presented at the beginning and 

participants had the opportunity to ask any questions after the instructions.  

 

Learning task  

After each route that consisted of 8 transitions, the participant received feedback of their 

performance, i.e., they were shown up to three stars with a written sentiment (0 stars – Try 

harder, 1 star – Well done, 2 stars – Superb, 3 stars – Amazing). Furthermore, participants 

could keep track of their progress by consulting a bar at the right side of the screen that was 

updated after each transition. Moreover, a rank system was created and participants were 

promoted after completing every 27 routes ('Novice'; 'Lieutenant Jr.'; 'Lieutenant'; 'Captain'; 
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'Major'; 'Colonel'; 'Commander'). An “energy level monitor” at the bottom was filled up to 1500 

at the beginning of the experiment. For additional motivation, the participants lost 2 units each 

time they got an incorrect answer whereas only 1 unit was lost for a correct choice. This bar 

was related to the storyline as depleting too much energy would produce negative 

consequences for humankind.  

 

Reward task  

To learn these associations between planets and gain/loss, the criterion, i.e., the maximum 

time for the reaction that participants needed to match, changed throughout the task. At the 

beginning, the criterion was slow so participants would accumulate 6£, even if they were 

reacting rather slowly, since the task was very easy. Then, the criterion was sped up so 

participants mostly lost money and reached -6£ as the task became very hard. For the rest of 

the task, a linear function was applied to the RT data of the last twenty trials to set the criterion 

that scaled with the amount of accumulated money, if the participant was lower than 24£ in 

their balance, the task was easier, and if they had more it was harder and the difference in 

criterion was proportional to the difference in money. This procedure ensured that participants 

received approximately the same total of money after the experiment and experienced the 

different contingencies sufficiently frequently. After finishing 180 trials of the task, the 

participants were asked to indicate which planets predicted which outcome, by showing them 

the planets consecutively and asking whether it was possible (1/ “I could win money.” 2/ “I 

could NOT lose or win money.” 3/ “I could lose money.”).  

Similar as in the learning task, participants could keep track of their progress on a bar 

on the right-hand side. Moreover, they could also see in real-time what their current balance 

was at the bottom of the screen. 

 

Retrieval task  

Similar to the learning task, a bar on the right side tracked the progress of the task. 

Furthermore, a bar on the bottom side, the “Map Quality Monitor”, revealed the participant’s 
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performance during the task, the bar was updated after each feedback slide. Participants 

obtained more stars by being correct for the distance 1 compared to the other distance (2, 3, 

4 and plus) as they were less numerous. This feedback system used stars similar to the 

learning task and was used for the two first parts (0 stars – Try harder, 1 star – Well done, 2 

stars – Superb, 3 stars – Amazing). The feedback appeared every 9 trials for the first part 

(corresponding to the pictures associations), and every 3 trials for the second part 

(corresponding to the planet names).  

 

Control tasks 

The PANAS contains 10 positive (e.g.; interested) and 10 negatives adjective (e.g.; scared) 

describing the participant’s current mood with a scale ranging from 1= “not at all” to 5= “very 

much”. The SSS asks the participant to choose from 1 = “Feeling active, vital, alert, or wide 

awake” to 8 = “Asleep”. During the PVT, participants were facing a red counter on a black 

screen and were asked to press the spacebar as soon as the clock would start to count. 

Pressing the space would stop the counter and show to the participant their reaction time. 

Then, the inverse of the mean of their reaction speed (i.e.: 1/mean RT) was calculated for each 

phase. The word generation instructed to write as many words as possible in two minutes for 

either letter cues (p or m) or a category (occupations or hobbies). 

Pilot testing  

Before obtaining the final paradigm described above, 3 pilot participants were run only on the 

learning task and another 6 pilot participants underwent the complete procedure of one 

experimental session. All the gamification aspects were added during the development of the 

paradigm in tight dialogue between the researchers and the participants to ensure high 

motivation and clear task instructions. The analysis strategy of the results is based mainly on 

the experience made during the pilot study.  

An analysis of the pilot data suggested that the task could be learnt at a 70-80% 

accuracy level and retrieved with an overall hit rate of 60% (which was significantly higher than 

the overall false alarm rate). Although the learning and the retrieval accuracy were encouraging 
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regarding feasibility of the paradigm, we decided to change the retrieval task in two distinct 

ways to improve on this. Initially, participants were asked if the two nodes presented were 

neighbours (i.e., “Was it possible to teleport between these two planets” [during learning]) and 

the participant could answer how sure they were from a scale from 1 to 4 (1/ “Yes, I am sure 

this was possible.” 2/ “Yes, but I am not sure this was possible.” 3/ “No, but I am not sure this 

was impossible.” 4/ “No, I am sure this was impossible.”). We changed this to the procedure 

asking for a distance judgement described above that allows a finer grained analysis of the 

graph representation. The same confidence scale (1/ “Yes, I am sure it was.” 2/ “Yes, but I am 

not sure it was.” 3/ “No, but I am not sure it was not.” 4/ “No, I am sure it was not.”) was initially 

used for the second part of retrieval that, where we showed planet name pairs and asked 

whether they belonged together (i.e., “Was this planet named...?”). We changed this design to 

the four alternatives forced choice procedure described above that reduced the amount of 

items to 27, as participants had complained about the length of the original task (729 items).  

 

Data reduction and statistical analysis  

The retrieval data were analysed by calculating the hit rates (the number of times pairs of a 

certain distance were correctly identified,divided by all the possible pairs of this distance) for 

distance 1 to distance 4. Then, a repeated-measure 2 x 4 ANOVA (sum of squares type III) 

with the factors sleep/wake and the 4 distances was done. In addition, a paired t-test was 

performed between the sleep and the wake condition on the general retrieval performance 

calculated by taking the mean over the four distances for each participant. 

Data from the learning task was reduced by calculating the mean of the accuracy for 

each third of the task, i.e., the mean of routes 1-27, 28-54 and 55-81 for each participant and 

each retention interval. Then, a repeated-measure 2 x 3 ANOVA (sum of squares type III) with 

the factors sleep/wake and task third was performed to assess the learning across the task. A 

paired t-test was completed between the sleep and the wake condition on the last third to 

further assure comparability. Using the method described below, the learning performance for 
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each distance was used to create a mean for both retention intervals to get the general learning 

performance. Then, a paired t-test was completed between the two conditions. 

To obtain the learning results for each distance, we weighed each edge of the graph to 

take into account all the learning data. Therefore, for distance 1, the weight for a transition 

depended on its position in the learning task. For example, if participants saw a transition 8 

times, the weight for the first time they saw it would be 1/8, second time would be 2/8 and last 

time would be 8/8. Next, the weights were multiplied by the accuracy (1/0), summed together 

and divided by the sum of all the weights in order to give a single accuracy value between 1 

and 0 for each transition. This ensured that instances closer to the end of the task were 

weighted more for learning accuracy than instances at the beginning. For distances 2 to 4, the 

graph structure was used to calculate performance between two given nodes. Specifically, the 

weighted accuracies of the distance 1 edges along the path between the two nodes were 

multiplied. Finally, the weighted performance for each distance was normalized separately by 

using the mean and standard deviation calculated with the data from both sleep and wake. 

The retention measure between learning and retrieval was calculated by deducting the 

normalized learning data from the normalized retrieval performance for each distance (see 

also Supplementary Figure 5).  

Using the retention measure data, a paired t-test was performed between the sleep 

and the wake condition on the general performance by averaging over the distances. 

Additionally, a repeated-measure 2 x 4 ANOVA (sum of squares type III) with the factors 

sleep/wake and the 4 distances was calculated. Single paired t-tests were performed between 

the retention intervals for each distance. In addition, to account for the order of the distances, 

a regression line was created for each interval. Then, a linear model was applied to compare 

if there was a difference of intercept or slopes between the two regression lines. 

The retention measures for each centrality (i.e. degree and closeness) were computed 

by averaging the retention measure data between the nodes with the centrality of interest (e.g. 

all nodes with a value of degree centrality of 3) and all the other nodes of the graph connected 

to them from distance 1 to 4 (e.g. for distance 1, it includes the neighbouring nodes of each 
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node with a value of degree centrality of 3. Then, the nodes connected with a distance of 2, 3 

and 4). Next, a repeated-measure 2 x 3 ANOVA (sum of squares type III) with the factors 

sleep/wake and the centrality measure was performed. In addition, paired t-tests were 

performed between the retention intervals for each centrality. Moreover, the method using 

regressions lines as described for distances above was used for both centrality measures. 

The effect of reinforcement was calculated using a similar method to the centrality 

analysis. For each reinforced node (i.e. reward, punishment and neutral), the retention 

measure was calculated using the mean between the weighted edge accuracies of the 

reinforced node of interest (e.g. reward node) and the nodes being on the same arm of the 

graph. For example, if we use the node as  numbered in Figure 2, the nodes we would compare 

to the reward node would be 6, 16, 17, 18, 25, 26 and 27 as we are excluding the central nodes 

(i.e. 1, 2 and 3). Then, one repeated-measure 2 x 3 ANOVA (sum of squares type III) with the 

factors sleep/wake and the 3 reinforced arms was performed. Finally, several paired t-tests 

were done between the sleep and the wake condition for each of the reinforced nodes. 

The retrieval of planet-name associations was analyzed by summing the correct 

answers and dividing them by the number of items for each condition. A paired t-test was then 

performed to compare the two retention intervals. 

Regarding the control tests, pen and paper data (SSS, PANAS and Word generation) 

were transferred into excel files and scored according to the test instructions. A single missing 

value in the PANAS was replaced by the mean of the items that were not missing within that 

scale for the participant. For the word generation task, sum scores for the letter and category 

cues were added together to create an overall score of retention performance for each retrieval 

session. The RT data from the PVT were transformed to reaction speed by dividing one by the 

RT for each trial. Then, the trials were averaged for each condition and participant. For all the 

control tasks paired t-tests were applied to compare sleep and wake.  

The NSQ and SBSOD were scored according to the instructions. A unique missing value 

resulted in not taking the specific question into account and dividing the final score with the 

number of questions minus the number of questions missing. Thus, the NSQ gave a mapping 
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tendency score from -14 to 14 and the SBSOD a score from 1 to 7 where the higher the score, 

the better one’s perceived sense of direction. A first pearson correlation compared the scores 

for both navigation scores. Then, pearson correlations were done between the NSQ scores 

and both intervals for learning, retrieval and retention measure data. 
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Supplementary Figure 1. Learning and retrieval performance. A) Learning 

performance (proportion correct) during the learning task for the first, second and last 

third of the task (27 routes each) and B) for the whole task. C) Retrieval performance 

for the whole task. D) Retrieval performance for the different distances. The black dots, 

bar and rectangle represent the individual performances, the mean and the 95% of a 

Bayesian highest density interval, respectively. The coloured shape around shows the 

smoothed density. 
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Supplementary Figure 2. Learning and retrieval performance for centrality 

measures. A) Learning and B) retrieval performance for different levels of degree 

centrality (local connectivity). C) Learning and (d) retrieval performance for different 

levels of closeness centrality (global connectivity). The black dots, bar and rectangle 

represent the individual performances, the mean and the 95% of a Bayesian highest 

density interval, respectively. The coloured shape around shows the smoothed density. 
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Supplementary Figure 3. Learning and retrieval performance for the reinforced 

nodes. A) Learning and B) retrieval performance across the three reinforced nodes. 

The black dots, bar and rectangle represent the individual performances, the mean 

and the 95% of a Bayesian highest density interval, respectively. The coloured shape 

around shows the smoothed density. 
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Supplementary Figure 4. Schematic explaining the analysis to obtain the 

retention measure. 
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