Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Evolution of the folding landscape of effector caspases

Suman Shrestha, View ORCID ProfileA. Clay Clark
doi: https://doi.org/10.1101/2021.08.05.455265
Suman Shrestha
Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Clay Clark
Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Clay Clark
  • For correspondence: clay.clark@uta.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Caspases are a family of cysteinyl proteases that control programmed cell death and maintain homeostasis in multicellular organisms. The caspase family is an excellent model to study protein evolution because all caspases are produced as zymogens (procaspases) that must be activated to gain full activity; the protein structures are conserved through hundreds of millions of years of evolution; and some allosteric features arose with the early ancestor while others are more recent evolutionary events. The apoptotic caspases evolved from a common ancestor into two distinct subfamilies: monomers (initiator caspases) or dimers (effector caspases). Differences in activation mechanisms of the two subfamilies, and their oligomeric forms, play a central role in the regulation of apoptosis. Here, we examine changes in the folding landscape by characterizing human effector caspases and their common ancestor. The results show that the effector caspases unfold by a minimum three-state equilibrium model at pH 7.5, where the native dimer is in equilibrium with a partially folded monomeric (procaspase-7, common ancestor) or dimeric (procaspase-6) intermediate. In comparison, the unfolding pathway of procaspase-3 contains both oligomeric forms of the intermediate. Overall, the data show that the folding landscape was first established with the common ancestor and was then retained for >650 million years. Partially folded monomeric or dimeric intermediates in the ancestral ensemble provide mechanisms for evolutionary changes that affect stability of extant caspases. The conserved folding landscape allows for the fine-tuning of enzyme stability in a species-dependent manner while retaining the overall caspase-hemoglobinase fold.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted August 06, 2021.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Evolution of the folding landscape of effector caspases
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Evolution of the folding landscape of effector caspases
Suman Shrestha, A. Clay Clark
bioRxiv 2021.08.05.455265; doi: https://doi.org/10.1101/2021.08.05.455265
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Evolution of the folding landscape of effector caspases
Suman Shrestha, A. Clay Clark
bioRxiv 2021.08.05.455265; doi: https://doi.org/10.1101/2021.08.05.455265

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Biophysics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3479)
  • Biochemistry (7318)
  • Bioengineering (5296)
  • Bioinformatics (20197)
  • Biophysics (9976)
  • Cancer Biology (7703)
  • Cell Biology (11250)
  • Clinical Trials (138)
  • Developmental Biology (6418)
  • Ecology (9916)
  • Epidemiology (2065)
  • Evolutionary Biology (13280)
  • Genetics (9352)
  • Genomics (12554)
  • Immunology (7674)
  • Microbiology (18939)
  • Molecular Biology (7417)
  • Neuroscience (40893)
  • Paleontology (298)
  • Pathology (1226)
  • Pharmacology and Toxicology (2126)
  • Physiology (3140)
  • Plant Biology (6838)
  • Scientific Communication and Education (1270)
  • Synthetic Biology (1891)
  • Systems Biology (5296)
  • Zoology (1085)