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Abstract 14 

When choosing between different options, we tend to consider specific attribute qualities rather 15 

than deliberating over some general sense of the objects’ overall values. The importance of each 16 

attribute together with its quality will determine our preference rankings over the available 17 

alternatives. Here, we show that the relative importance of the latent attributes within food rewards 18 

reliably differs when the items are evaluated in isolation compared to when binary choices are 19 

made between them. Specifically, we used standard regression and sequential sampling models to 20 

examine six datasets in which participants evaluated, and chose between, multi-attribute snack 21 

foods. We show that models that assume that attribute importance remains constant across 22 

evaluation and choice contexts fail to reproduce fundamental patterns in the choice data and 23 

provide quantitatively worse fits to the choice outcomes, response times, and confidence reports 24 

compared to models that allow for attribute importance to vary across preference elicitation 25 

methods. Our results provide important evidence that incorporating attribute-level information into 26 

computational models helps us to better understand the cognitive processes involved in value-27 

based decision-making. 28 

 29 
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Introduction 32 

Most decisions that we make are based on information about a variety of relevant features 33 

of the available options. Theories and mathematical models of multi-attribute choice generally 34 

agree that, in principle, the decision system in our brains should compare options based on how 35 

well they score across all relevant attribute dimensions (Bettman et al., 1998; Gigerenzer & 36 

Gaissmaier, 2011; E. J. Johnson & Payne, 1985; Keeney et al., 1993; Levav et al., 2010; Payne et 37 

al., 1988, 1993; Russo et al., 1996; Shah & Oppenheimer, 2008). These overall scores, be they 38 

based on subjective valuations or more objective features, are typically thought to be calculated as 39 

the weighted sums of sub-scores across all dimensions (Bettman et al., 1998; Bhatia & Stewart, 40 

2018; Gigerenzer & Gaissmaier, 2011; E. J. Johnson & Payne, 1985; Levav et al., 2010; Payne et 41 

al., 1988, 1993; Russo et al., 1996; Shah & Oppenheimer, 2008). Specifically, each option will be 42 

assigned a score along each attribute dimension, and each dimension will be given some weight 43 

according to how relevant or important it is to the decision. Simplifications of this strategy that 44 

assign equal weights to all attributes (Dawes, 1979; Dawes & Corrigan, 1974), reduce attribute 45 

scores to binary better/worse rankings (Russo & Dosher, 1983), or only consider a subset of the 46 

attributes have been proposed as well (Fishburn, 1974; Tversky, 1972). How well these simpler 47 

strategies perform depends the choice context (Bettman et al., 1998; Gigerenzer & Gaissmaier, 48 

2011; E. J. Johnson & Payne, 1985; Levav et al., 2010; Payne et al., 1988, 1993; Russo et al., 1996; 49 

Shah & Oppenheimer, 2008). Regardless of precisely how they are combined, almost every choice 50 

is determined by an assessment of multiple attributes. Thus, it is important for both basic and 51 

applied researchers to better understand how the attribute composition of choice options (and not 52 

just their overall values) influences the decision-making process in the brain. 53 
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It is known that individuals’ preferences over options that combine monetary gains and 54 

losses with probabilities or time delays may reverse when different methods are used to elicit those 55 

preferences. For example, preferences revealed through choices have been shown to reverse 56 

compared to those elicited by matching, pricing, or rating procedures (Alós-Ferrer et al., 2016; 57 

Alos-Ferrer et al., 2020, 2021; Fischer et al., 1999; Grether & Plott, 1979; Lichtenstein & Slovic, 58 

1971; Seidl, 2002; Tversky et al., 1988, 1990; Weber & Johnson, 2009). A leading explanation for 59 

these preference reversals is that the weights on the risk, time, and/or money dimensions differ 60 

across the preference elicitation procedures (Seidl, 2002; Tversky et al., 1988). Eye-tracking 61 

experiments have shown that changes in the proportion of visual fixations to a lottery’s potential 62 

monetary outcome relative to its probability across choice and pricing trials are associated with 63 

the differences in the relative weight given to outcomes versus probabilities when choosing versus 64 

setting a price (Alos-Ferrer et al., 2021). This influence of visual attention on context dependent 65 

weighting is consistent with sequential sampling models that predict that the effects of overall 66 

value and attribute differences on choices are determined in part by the amount of attention paid 67 

to each option or attribute (Busemeyer & Townsend, 1993; Diederich, 1997; Krajbich et al., 2010; 68 

Roe et al., 2001). Together these theories and data form the basis of our hypothesis that decision 69 

values in naturalistic multi-attribute choices will also be constructed at the time of choice from the 70 

options’ basic attributes in a context-dependent manner, rather than being compared as a unitary 71 

overall value aggregated across all attributes in a constant fashion.   72 

Consistent with this idea, recent work has shown that the disparity of the options’ attribute 73 

compositions affects multi-attribute decision making (Lee & Holyoak, 2021). A pair of options 74 

has high disparity if, for example, one option scores high in the first attribute dimension but low 75 

in the second, while the other option scores high in the second dimension but low in the first 76 
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(Figure 1a, left panel). On the contrary, a pair of options has low disparity if both options have 77 

similar scores along each attribute dimension (Figure 1a, middle panel). Notably, two decisions 78 

could be equally difficult in the traditional sense that the overall value ratings of the choice options 79 

are equally close together, yet have very different levels of disparity (Figure 1a, right panel). In 80 

multiple independent experiments, Lee & Holyoak (Lee & Holyoak, 2021) found that choice 81 

behavior differs as a function of disparity, such that higher disparity corresponds to higher choice 82 

consistency (i.e., a choice in favor of the option that was previously rated as having the higher 83 

overall value) and lower response time, even after accounting for differences in overall values. 84 

Here, we show that computational models of value comparison that assume an immutable 85 

combination of attributes into the overall option value cannot account for this pattern of results. 86 

 87 
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Figure 1. Choice disparity. a) A schematic illustration of orthogonal components of choice 88 

difficulty: dV and disparity. The left plot illustrates a “high disparity” choice, and the middle plot 89 

illustrates a “low disparity” choice. The orange and green dots represent the alternative options 90 

for each choice, each plotted according to its measurements on two attribute dimensions. The 91 

example assumes equal importance weights for each attribute, so the iso-value curves are 92 

represented by parallel lines with slope -1. The difference in overall value of the options, dV, is 93 

the distance between the iso-value curves on which the options lie. Disparity is the distance 94 

between the options in the dimension orthogonal to overall value (see Equation 1 below for a 95 

mathematical formulation). The right plot shows the location of each choice pair in the 96 

transformed dV-disparity space. b) An example illustration of two choice sets for snack foods, one 97 

high disparity (left plot), one low disparity (right plot). As shown by the dashed iso-value lines, all 98 

of the available snacks are of comparable overall value (and thus each choice pair is of 99 

comparable low dV). However, the two choice pairs are of very different disparity. In the high 100 

disparity pair (left), one option scores high on pleasure but low on nutrition, while the other option 101 

scores low on pleasure but high on nutrition. In the low disparity pair (right), both options score 102 

high on pleasure and low on nutrition. 103 

 104 

Instead, choices between naturalistic multi-attribute stimuli and subsequent confidence 105 

ratings for those choices are best explained by models in which individual attributes are actively 106 

(re)weighted during the comparison process. In our tests, we focus on multi-attribute choices 107 

between naturalistic, unitary options with multiple inherent, latent features as opposed to bundled 108 

or conjoint options made up of multiple components (e.g., probability + amount for risky choice; 109 

delay + amount for inter-temporal choice; effort or pain + reward for cost-benefit tradeoffs; 110 

different items for bundled choices). We believe that this type of naturalistic reward, which could 111 

plausibly be treated as an integrated whole, provides a stronger test of whether items are compared 112 

based on fixed overall values or values constructed from flexible attribute weights during 113 

decisions. We find that models that allow context-dependent attribute weights during decisions 114 

best explain the outcome and response time data. However, we also show that using a subset of 115 

attribute-specific ratings together with overall value ratings helps to better explain choice behavior 116 

(when obtaining ratings for the full set of individual attributes is impractical).  117 

 118 
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Methods 119 

Data 120 

 We analyzed the data from six previously published experiments (Experiments 1-5 in (Lee 121 

& Holyoak, 2021), plus one unpublished pilot experiment that we label Experiment 0). The total 122 

number of participants across the six datasets was 307, using the same exclusion criteria from the 123 

original study (41 for Experiment 0, 50 for experiment 1, 48 for experiment 2, 54 for experiment 124 

3, 60 for experiment 4, and 54 for experiment 5). 125 

In each experiment, participants completed several distinct phases. They first passively 126 

observed images of individual snack foods (100 in Experiments 0 and 1, 60 in Experiments 2-5). 127 

Second, they provided overall value ratings for each individual snack food. Next, they rated the 128 

pleasure they expected to derive from each food and its nutritional value, in separate experimental 129 

sections (the order of the pleasure and nutrition rating tasks was counterbalanced across 130 

participants). Following all three rating phases, participants completed a choice task in which they 131 

chose their preferred snack from pairs of options (50 choice trials for Experiments 0 and 1, 30 132 

choice trials for Experiments 2-5). During the choice section, after each choice, participants also 133 

rated their confidence that the option they chose was indeed their preferred option on that trial. 134 

In addition to the aforementioned datasets, we also examined data from an unpublished 135 

pilot auxiliary task that were originally collected along with the primary data reported in (Lee & 136 

Daunizeau, 2021). In the main study, participants provided overall value ratings for 148 food 137 

options, then made 74 choices between pairs of options. Out of the main group of participants, 17 138 

completed the auxiliary task, in which they rated each of the food options in terms of “taste”, 139 

“health”, “texture”, and “appearance”. We are thus able to compare versions of our models 140 
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(described below) that incorporate four attributes rather than two (the third and fourth attributes 141 

enter the models in the same way as the first and second attributes). 142 

 143 

Models 144 

In this study, we consider several variants of the drift-diffusion model (DDM; (Ratcliff, 145 

1978; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998)). The specifics of each model are 146 

detailed below. The DDM is a member of the evidence accumulation-to-bound class of models, 147 

wherein the values of the options (in simple two-alternative forced-choice tasks) are repeatedly 148 

compared across time. The so-called evidence that arises in favor of one option over the other is 149 

corrupted by processing (e.g., neural) noise, so repeated samples are accumulated to cancel out the 150 

noise. Once a sufficient amount of evidence has been accrued (i.e., the response threshold is 151 

reached), the process terminates and a choice is made. We fit variants of the DDM in which the 152 

evidence accumulation rate is proportional to the difference in overall value between the options 153 

(ovDDM) or to a weighted linear combination of the differences in individual attributes (maDDM) 154 

to six different empirical data sets. We demonstrate that the maDDM provides a better account of 155 

choice probabilities, mean response times (RTs), and the effects of attribute disparity on choice 156 

outcomes and RT, in terms of both the qualitative predictions and quantitative fits of the models. 157 

 158 

Model 1:  Overall value DDM (ovDDM) 159 

The first model is a DDM in which only the aggregated, overall values of the two options 160 

influence the evidence accumulation or drift rate on each trial. Specifically, evidence about the 161 

overall value of each option is sampled at each time step, the evidence for the two options is 162 
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compared, and the relative evidence in favor of option 1 over option 2 is added to the evidence 163 

accumulator. The cumulative evidence (x) evolves across deliberation time as follows: 164 

𝑥𝑡 = 𝑥𝑡−1 + 𝜇1 − 𝜇2 + 𝜀 165 

𝜀 ~ 𝑁(0, 𝜎2) 166 

𝑥0 = 0 167 

where μi is the reported overall value of option i ∊ {1, 2} and σ2 is white noise in the accumulation 168 

process. Evidence sampling and accumulation proceeds until x reaches a response boundary ∊ {θ, 169 

-θ}, with the sign determining the chosen option (arbitrarily defined as positive for option 1, 170 

negative for option 2). Response time (RT) is equal to t at the moment a boundary is crossed. 171 

Choice probability (p, choice of option 1) and mean RT can be analytically derived (Alós-Ferrer, 172 

2018) as a function of μ1, μ2, and σ2, with θ being fixed (here, to θ = 1 for simplicity): 173 

𝐷𝑉 = 𝜇1 − 𝜇2 174 

𝑝 =
1

1 + 𝑒
(

−2𝑑𝐷𝑉
𝜎2 )

 175 

𝑅𝑇 =
2𝑝 − 1

𝑑𝐷𝑉
 176 

where μ1 and μ2 are independent variables, and d and σ2 are free parameters to be estimated to 177 

capture the individual-specific mean rate of evidence accumulation (drift rate) and level of noise 178 

in the accumulation process, respectively. 179 

 180 

Model 2:  Multi-attribute DDM (maDDM) 181 

 The second model is of the same form as Model 1, except that the evidence accumulator is 182 

driven by two separate evidence streams (one for each attribute dimension: a, b). The process is 183 

otherwise identical, and it unfolds as follows: 184 
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𝑥𝑡 = 𝑥𝑡−1 + 𝜇1
𝑎 − 𝜇2

𝑎 + 𝜇1
𝑏 − 𝜇2

𝑏 + 𝜀 185 

𝜀 ~ 𝑁(0, 𝜎2) 186 

𝑥0 = 0 187 

where μi
j is the reported value of option i ∊ {1,2} along attribute dimension j ∊ {a,b}, and σ2 is 188 

white noise common to the overall evidence accumulation process. Choice probability and mean 189 

RT are derived as: 190 

𝐷𝑉𝑎 = 𝜇1
𝑎 − 𝜇2

𝑎 191 

𝐷𝑉𝑏 = 𝜇1
𝑏 − 𝜇2

𝑏 192 

𝑝 =
1

1 + 𝑒
[
−2(𝑑𝑎𝐷𝑉𝑎+𝑑𝑏𝐷𝑉𝑏)

𝜎2 ]

 193 

𝑅𝑇 =
2𝑝 − 1

𝑑𝑎𝐷𝑉𝑎 + 𝑑𝑏𝐷𝑉𝑏
 194 

where dj are independent free parameters that allow for different rates of evidence accumulation 195 

within each attribute dimension j∊ {a,b}. 196 

 197 

Model 3:  Multi-attribute DDM plus overall value (maDDM+) 198 

 Our third model assumes that the drift rate is driven by the separate values of the individual 199 

attributes that were explicitly evaluated (in these experiments, pleasure and nutrition), but that it 200 

is also influenced by other attributes that were not explicitly evaluated. Thus, if the overall value 201 

ratings contain information about the attributes that were rated individually as well as other 202 

attributes that were not rated, including overall value should enhance the model fit. Therefore, in 203 

this model, the evidence accumulator is driven by evidence streams for each explicit attribute 204 

dimension as well as the aggregate overall value estimates. The process is otherwise identical to 205 

that in Models 1 and 2, and it unfolds as follows: 206 
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𝑥𝑡 = 𝑥𝑡−1 + 𝜇1
𝑜 − 𝜇2

𝑜 + 𝜇1
𝑎 − 𝜇2

𝑎 + 𝜇1
𝑏 − 𝜇2

𝑏 + 𝜀 207 

𝜀 ~ 𝑁(0, 𝜎2) 208 

𝑥0 = 0 209 

where μi
o  is the reported overall value for option i ∊ {1, 2}, μi

j is the reported value of option i ∊ 210 

{1,2} along attribute dimension j ∊ {a,b}, and σ2 is white noise common to the overall evidence 211 

accumulation process. (Note that in cases where the individual attributes are highly correlated 212 

and/or the attribute ratings jointly explain a large portion of the variance in overall values, it may 213 

be necessary to employ orthogonalization or dimensionality reduction techniques, if the goal is to 214 

make inferences about the relative weights or importance of attributes in determining the drift 215 

rate.) Choice probability and mean RT are derived as: 216 

𝐷𝑉𝑜 = 𝜇1
𝑜 − 𝜇2

𝑜 217 

𝐷𝑉𝑎 = 𝜇1
𝑎 − 𝜇2

𝑎 218 

𝐷𝑉𝑏 = 𝜇1
𝑏 − 𝜇2

𝑏 219 

𝑝 =
1

1 + 𝑒
[
−2(𝑑𝑜𝐷𝑉𝑜+𝑑𝑎𝐷𝑉𝑎+𝑑𝑏𝐷𝑉𝑏)

𝜎2 ]

 220 

𝑅𝑇 =
2𝑝 − 1

d𝑜𝐷𝑉𝑜 + 𝑑𝑎𝐷𝑉𝑎 + 𝑑𝑏𝐷𝑉𝑏
 221 

where dj are independent free parameters that allow for different rates of evidence accumulation 222 

for overall value estimates and within each attribute dimension j∊ {a,b}. 223 

 224 

Drift diffusion model fitting procedure 225 

We fit each of the three candidate models to the experimental data from each of our models 226 

under consideration. We then performed Bayesian model comparison to determine which of the 227 

models (if any) performed better than the others across the population of participants. For this 228 
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model fitting and comparison exercise, we relied on the Variational Bayesian Analysis toolbox 229 

(VBA, available freely at https://mbb-team.github.io/VBA-toolbox/; (Daunizeau et al., 2014)) with 230 

Matlab R2020a. Within participant and across trials, we entered the experimental variables 231 

{ratings of overall, pleasure, and nutrition for each option} as input and {choice = 1 for left option, 232 

0 for right option; RT} as output. We also provided the model-specific mappings from input to 233 

output as outlined in the analytical formulas above. As we fixed the threshold parameter θ to 1, the 234 

parameters to be fitted were thus the drift rate d and diffusion noise σ2 terms described above in 235 

the model formulations. VBA requires prior estimates for the free parameters, for which we set 236 

the mean equal to 0 and the variance equal to e (to allow an arbitrarily large step size during the 237 

gradient descent search algorithm, yet constrain the algorithm to a reasonable search space) for 238 

each parameter. The theoretical drift rate and noise parameters are always positive; we thus 239 

constrained the search space of our model fitting algorithm to the positive domain. VBA then 240 

recovers an approximation to both the posterior density on unknown variables and the model 241 

evidence (which is used for model comparison). We used the VBA_NLStateSpaceModel function 242 

to fit the data for each participant individually, followed by the VBA_groupBMC function to 243 

compare the results of the model fitting across models for the full group of participants. 244 

One benefit of using VBA to fit the data to our models is that it is computationally efficient, 245 

as it relies on Variational Bayesian analysis under the Laplace approximation. This iterative 246 

algorithm provides a free-energy approximation for the model evidence, which represents a natural 247 

trade-off between model accuracy (goodness of fit, or log likelihood) and complexity (degrees of 248 

freedom, or KL divergence between priors and fitted parameter estimates; see (Friston et al., 2007; 249 

Penny, 2012)). Additionally, the algorithm provides an estimate of the posterior density over the 250 

model’s free parameters, starting with Gaussian priors. Individual log model evidence scores are 251 
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then provided as input to the group-level random-effect Bayesian model selection (BMS) 252 

procedure. BMS provides an exceedance probability that measures how likely it is that a given 253 

model is more frequently implemented, relative to all other models under consideration, in the 254 

population from which participants were drawn (Rigoux et al., 2014; Stephan et al., 2009). This 255 

approach to fitting and comparing variants of DDM has already been successfully demonstrated 256 

in previous studies (Feltgen & Daunizeau, 2021; Lee & Usher, 2021; Lopez-Persem et al., 2016). 257 

 258 

Logistic regression for changes in attribute weights 259 

 We fit Bayesian hierarchical regressions to the binary choice outcomes and the implied 260 

choice outcomes from the overall value rating sessions using the R package, brms, which relies on 261 

STAN for Markov Chain Monte Carlo sampling of the posterior distributions (Bürkner, 2017a, 262 

2017b; R Core Team, 2020; Stan Development Team, 2021). Both regressions included varying 263 

intercepts and slopes for each participant, however we omit these terms in the notation below for 264 

conciseness and clarity. 265 

choice ~ 𝛽0  +  𝛽1 ∗ 𝑃𝑑𝑖𝑓  +  𝛽2 ∗ 𝑁𝑑𝑖𝑓  +  𝜎 266 

Here, choice indicates whether the participant selected the left item in the binary choice 267 

task or if the left item was rated higher in the overall value rating session. The differences in 268 

pleasure (Pdif) and nutrition (Ndif) ratings are computed as the rating for the left option minus the 269 

rating for the right option for the respective attributes. We used Gaussian priors with mean = 0 and 270 

SD = 1 for 𝛽0 ∶  𝛽3 and half Cauchy priors with location = 0 and scale = 5 for the standard 271 

deviations of all participant-specific varying effects. We estimated the posterior distributions for 272 

all parameters based on 2500 samples from 4 independent chains after 2500 warm-up samples. 273 

 274 
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Linear regressions for confidence ratings 275 

We fit linear regressions to the choice confidence ratings, assuming that those ratings were 276 

right-censored given the high proportion of trials in which participants reported maximum 277 

confidence. In other words, we assumed that the true underlying confidence could extend beyond 278 

the upper limit of the confidence scale. We fit three right-censored linear regressions as Bayesian 279 

hierarchical models using the R package, brms, which relies on STAN for Markov Chain Monte 280 

Carlo sampling of the posterior distributions (Bürkner, 2017a, 2017b; R Core Team, 2020; Stan 281 

Development Team, 2021). All three regressions included varying intercepts and slopes for each 282 

participant, however we omit these terms in the notation below for conciseness and clarity. 283 

(𝐿𝑅1)     𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ~ 𝛽0  +  𝛽1 ∗ 𝑂𝑉𝑑𝑖𝑓  +  𝜎 284 

(𝐿𝑅2)     𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ~ 𝛽0  +  𝛽1 ∗ 𝑃𝑑𝑖𝑓  +  𝛽2 ∗ 𝑁𝑑𝑖𝑓  +  𝜎 285 

(𝐿𝑅3)     𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ~ 𝛽0  +  𝛽1 ∗ 𝑃𝑑𝑖𝑓  +  𝛽2 ∗ 𝑁𝑑𝑖𝑓  +  𝛽3 ∗ 𝑂𝑉𝑑𝑖𝑓  +  𝜎 286 

In all regressions, the differences in overall value (OVdif), pleasure ratings (Pdif), or 287 

nutrition ratings (Ndif) were computed as the absolute value of the difference between ratings for 288 

the option displayed on the left and right sides of the screen. We used Gaussian priors with mean 289 

= 0 and SD = 1 for 𝛽0 ∶  𝛽3 and half Cauchy priors with location = 0 and scale = 5 for the standard 290 

deviations of all participant-specific varying effects. We estimated the posterior distributions for 291 

all parameters based on 2000 samples from 3 independent chains after 2000 warm-up samples. 292 

 293 

Results 294 

Lee and Holyoak (Lee & Holyoak, 2021) introduced the term disparity as a secondary 295 

characteristic of a decision, orthogonal to the primary characteristic most often used in the field: 296 
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overall value difference. The disparity between two options {i,j} with respect to two attribute 297 

dimensions (here, P for pleasure and N for nutrition) is calculated as: 298 

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑖,𝑗 ≜ |
[𝑃𝑖 𝑁𝑖]∗[

−𝑏𝑃
𝑏𝑁

]−[𝑃𝑗 𝑁𝑗]∗[
−𝑏𝑃
𝑏𝑁

]

‖
−𝑏𝑃
𝑏𝑁

‖
| , for options 𝑖, 𝑗.    (1) 299 

where bP and bN are the importance weights for the P and N attributes, respectively. Note that it 300 

would be straightforward to extend this formula to incorporate more than two options or more than 301 

two attributes. Disparity calculated in this way effectively transforms the variable space from 302 

attribute dimensions to decision dimensions (see Figure 1). 303 

 304 

Qualitative Model Predictions 305 

We first show the qualitative predictions that each model (simulated under its participant-306 

specific best fitting parameters) makes with respect to the effects of value difference (dV) and 307 

disparity (D) on choice consistency, RT, and how this compares to the empirical data (Figure 2). 308 

For the synthetic data, we used the real input data for each individual participant (value of option 309 

1, or v1; value of option 2, or v2; pleasure of option 1, or p1; pleasure of option 2, or p2; nutrition 310 

of option 1, or n1; nutrition of option 2, or n2). The output data we used (choice probability and 311 

RT) was the output from the VBA model fitting procedure (described in the Methods section), 312 

where these variables were predicted using the best fitting parameter estimates for each participant 313 

under each model. Next, we performed mixed model regressions of choice (binomial) and of RT 314 

(linear) on dV and D, pooling all simulations together and including study and participant as 315 

random effect regressors. (Note: we coded the data such that option 1 always had the higher overall 316 

value.) Model 3 is the only model from the set we examined that is able to account for the 317 

qualitative benchmarks with respect to the positive impact of dV and D on choice consistency 318 

(whether or not the higher-rated option was chosen) and the negative impact of dV and D on RT 319 
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(see Figure 2). Model 1 accounts for the dV relationships, but obviously cannot account for any 320 

relationship involving D (as this model contains no information about the attribute composition of 321 

the options). Model 2 does account for all of the qualitative benchmarks, but it overemphasizes 322 

the impact of D (relative to dV) on both consistency and RT (in comparison to the empirical data). 323 

It thus seemed probable that Model 3 would perform best in a formal model comparison of these 324 

three models. 325 
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Figure 2:  Qualitative predictions of the effects of value difference (dV = value of option 1 – value 327 

of option 2) and disparity (D; see equation 1) on choice consistency and log(RT) in the empirical 328 

(top row) and simulated data (rows 2-4; shown for responses simulated using the best fitting 329 

parameters for each model; bar heights represent mean mixed model regression coefficients 330 

across participants; error barts represent s.e.m.). 331 

 332 

Quantitative model comparisons 333 

To evaluate the models, we computed specific pairwise model comparisons as well as a 334 

simultaneous comparison of all three diffusion decision model specifications. First, we compared 335 

the fit of the model based on overall value (Model 1) to a model based on individual attribute 336 

values (Model 2), to test our hypothesis that decision makers place different importance or decision 337 

weights on attributes during choices than when rating the overall value of each option in isolation. 338 

If the attributes are weighted and aggregated the same way during ratings and choices, then Model 339 

1, which uses the comprehensive overall value of the foods to estimate choices should outperform 340 

Model 2, which only uses a subset of the foods’ attributes (pleasure and nutrition) to estimate 341 

choice outcomes and response times. If instead attributes are weighted differently during choices 342 

compared to ratings, then the flexibility to estimate attribute-specific decision weights may give 343 

Model 2 the advantage even though it is based on only two attributes out of a larger set. Across all 344 

six datasets (studies 0-5 from (Lee & Holyoak, 2021)), the participant population was split evenly 345 

between supporting Models 1 and 2 (estimated model frequency of 0.50 for each; see Figure 3A). 346 
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Figure 3: Pairwise model comparison results: A) ovDDM (model 1) versus maDDM (model 2). 348 

B) ovDDM (model 1) versus maDDM+ (model 3). C) maDDM (model 2) versus maDDM+ (model 349 

3). D) Simultaneous comparison of ovDDM (model 1), maDDM (model 2), and maDDM+ (model 350 

3). We show here the probability that each model best accounted for the data at the participant 351 

level (left panel), across the six studies we examined; each cell represents the probability that the 352 

model (column) best represents the behavior of the participant (row). The black  dashed lines serve 353 

to indicate which participants belonged to each of the six datasets. We also show the probability 354 

that each model best explains the data across the participant population (right panel), across all 355 

studies. Here, the black dashed line indicates chance level if all models were equally probable a 356 

priori. 357 

 358 

Next, we tested a model in which we tried to combine the advantages of the comprehensive 359 

overall value ratings together with the flexibility to estimate choice-specific weights for a subset 360 

of the individual attributes. We fit a third DDM model (Model 3) that used the pleasure and 361 

nutrition ratings as well as information about the foods’ values beyond those two attributes, in the 362 

form of the reported overall value. This provides a measure to quantify the benefit of including 363 

individual attribute ratings in the model in addition to overall value ratings. Model 3 performed 364 

much better than Model 1. Across all six datasets, Model 3 had an exceedance probability of 1 and 365 

an estimated model frequency of 0.91 (see Figure 3B). 366 

We also tested Model 3 against Model 2, to quantify the benefit of including overall value 367 

ratings in the model in addition to individual attribute ratings (pleasure and nutrition). Model 3 368 

performed much better than Model 2. Across all six datasets, Model 3 had an exceedance 369 

probability of 1 and an estimated model frequency of 0.96 (see Figure 3C). 370 

When we formally compared all three models simultaneously, the results were consistent 371 

with the pairwise comparisons reported in the preceding paragraphs. Across all datasets, the 372 

winning model was Model 3, with an exceedance probability of 1 and an estimated model 373 

frequency of 0.89. Model 1 had an estimated frequency of 0.07, and Model 2 had an estimated 374 

frequency of 0.04 (see Figure 3D). 375 
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The last model comparison analysis that we performed examined the dataset for which we 376 

had overall value ratings as well as four individual attribute ratings (taste, health, texture, 377 

appearance). Here, the model in which the attributes each individually contributed (Model 2) 378 

outperformed the standard DDM based on overall value ratings alone (Model 1; but note the small 379 

sample size, n=17). In the other model comparisons, the results were the same as with our main 380 

datasets. Even though this additional dataset had attribute ratings covering a larger range of 381 

potentially relevant attributes (4 versus 2), Model 3 still dominated the model comparison 382 

(exceedance probability = 1; estimated model frequency for Model 3 = 0.96, for Models 1 and 2 = 383 

0.02 each; see Figure 4). 384 
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Figure 4: Model comparison results for four-attribute choice data: A) ovDDM (model 1) versus 386 

maDDM (model 2). B) ovDDM (model 1) versus maDDM+ (model 3). C) maDDM (model 2) 387 

versus maDDM+ (model 3). D) Simultaneous comparison of ovDDM (model 1), maDDM (model 388 

2), and maDDM+ (model 3). We show here the probability that each model best accounted for the 389 

data at the participant level (left panel), across the six studies we examined; each cell represents 390 

the probability that the model (column) best represents the behavior of the participant (row). We 391 

also show the probability that each model best explains the data across the participant population 392 

(right panel), across all studies. The black dashed line indicates chance level if all models were 393 

equally probable a priori. 394 

 395 

Model recoverability 396 

To verify that our model-fitting procedure is suitable for this specific analysis, we 397 

performed a test of model recoverability. Specifically, we took as the model input the actual data 398 

for each participant in Studies 1-6 (ratings of overall value, pleasure, and nutrition for each option). 399 

We then simulated the set of choice probabilities and mean RTs for each participant, separately 400 

according to each of our models, using the actual participant-specific fitted parameters for each 401 

model. Finally, we fit all simulated data (per simulated participant) to each of our models and 402 

performed the same formal model comparison as with our real experimental data. The results of 403 

this procedure can be seen in Figure 5 as a model confusion matrix. This matrix shows, for each 404 

true generative model, the percentage of simulated participants (under that model) that were 405 

attributed to each of the best fit models by our model-fitting procedure. As shown in the matrix, 406 

model confusion was low and the procedure attributed the true model as the best fitting model for 407 

the vast majority of the simulated participants (recovery accuracy: 87% for Model 1, 66% for 408 

Model 2, 69% for Model 3). There was a non-trivial amount of confusion between Model 3 and 409 

Models 1 and 2, which is expected because Model 3 is essentially a combination of Models 1 and 410 

2. Nevertheless, this confusion seems to have hurt Model 3 as much as it helped (i.e., the matrix is 411 

relatively symmetrical), so the results of our quantitative model comparison should be valid. 412 
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 413 

Figure 5:  Model recovery analysis. Each cell in the “confusion matrix” summarizes the 414 

percentage of simulated participants (under each true model) for which our model-fitting 415 

procedure attributed each of the (best fit) models. Note that our fitting procedure attributed the 416 

true model as the best fitting model for 87%, 66%, 69% of the time for Models 1-3, respectively. 417 

 418 

Changes in attribute weights 419 

The results above show that the relative importance or weight of the pleasure and nutrition 420 

attributes change between the overall value rating and choice tasks even though, in theory, the 421 

same valuation processes should be employed in both cases. Other attribute weights may change 422 

as well, but we focus on pleasure and nutrition because we have the most data on those two 423 

attributes. Participants in these studies typically chose the more pleasurable of the two food options 424 

in the choice task. Therefore, we used hierarchical Bayesian logistic regression analyses to 425 

determine if pleasure weights reliably increased relative to nutrition weights across participants, 426 

or if instead participants were equally likely to show either an increase or a decrease in the 427 

weighting of pleasure relative to nutrition. We determined implied choices from the overall value 428 

ratings, classifying the food item with the higher rating as the chosen option. Pooling the data 429 

across all six experiments, we found that in choices compared to ratings, there was a consistent 430 

increase in the influence of pleasure (mean change in logistic regression coefficient = 0.57, 95% 431 
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highest density interval (HDI) = [-0.15, 1.31]) and a consistent decrease in the influence of 432 

nutrition (mean change in logistic regression coefficient = -0.25, 95% HDI = [-0.64, 0.14]). The 433 

mean difference in differences (i.e., interaction) between pleasure and nutrition weights across 434 

choice and rating sessions was 0.82 (95% HDI = [-0.10, 1.70]), and the posterior probability of 435 

this change being greater than zero was 0.96.  Thus, on average, participants’ choices were more 436 

influenced by pleasure than nutrition, relative to their overall value ratings. The difference in the 437 

influence of the attributes between the different valuation tasks is one reason why the DDMs using 438 

attribute-level information explain choices better than the DDM based on overall value ratings 439 

alone.  440 

  441 

Choice Confidence 442 

 The datasets we examined (and many others in the literature) show clear and robust 443 

relationships between the differences in the overall value ratings of options within each pair and 444 

choice consistency, RT, and confidence. We also found the expected negative relationship between 445 

RT and confidence in our data sets (cross-participant mean correlation = -0.35, s.e.m. = 0.01). The 446 

DDM analyses demonstrated that models including separate ratings of individual attributes explain 447 

choice consistency and RT better than models based on an aggregated overall value ratings alone. 448 

Standard DDM formulations do not directly predict choice confidence. However, any valid model 449 

of choice confidence should be able to account for the robust empirical finding that value 450 

difference has a positive impact on confidence. It would be interesting to know whether the 451 

differences in individual attribute ratings also have such an impact on confidence. To that end, we 452 

tested whether the overall value ratings or the independent ratings for each attribute, or their 453 

combination (i.e., the independent variable inputs to the three DDM variants we examined) better 454 
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explained the reported levels of choice confidence. We used a right-censored linear regression to 455 

fit the confidence data in all cases, because the participants’ confidence ratings were clearly 456 

bounded by the upper limit of the reporting scale. In line with our DDM results on RTs and choice 457 

outcomes, the regression model for confidence based on both overall value and individual 458 

attributes was best (Table 1). 459 

 460 

Table 1. Model comparison of linear regressions for confidence ratings 

 Overall value Pleasure + Nutrition Pleasure + Nutrition + Overall value 

LOOIC 2066.2  190.2 2750.8  192.6 1675.4  192.9 

This table reports the mean  SD of the LOO information criteria computed using Pareto smoothed 

importance sampling (Vehtari et al., 2017) for the three linear regressions we compared. Lower LOOIC 

values indicate better expected out-of-sample predictions.  

  461 

Discussion 462 

The construction of a choice option’s subjective value is an active, malleable process. We 463 

have shown that when options are composed of multiple distinct attributes, the manner in which 464 

these attributes are evaluated and potentially combined to determine the overall value of each 465 

option relative to the other depends on the valuation context. Specifically, the contributions of 466 

inherent attributes such as pleasure and nutrition to the overall value of food rewards differs when 467 

the foods are evaluated in isolation compared to when choices are made between pairs of foods, 468 

even though the goal of the valuation process should be the same in both cases. These findings 469 

indicate that preferences over naturalistic multi-attribute goods are sensitive to the details of the 470 

methods used to elicit them. 471 

Most options that humans need to evaluate and choose from in daily life have multiple 472 

attributes or dimensions, and we found that these attributes are combined in a context-dependent 473 

manner to determine an option’s value. Previous work on naturalistic multi-attribute decisions has 474 

shown that people form option representations based on a large number of separate underlying 475 
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attributes (Bhatia & Stewart, 2018). Our results on both choice outcomes and post-decision 476 

confidence ratings are consistent with these findings. In addition, our model simulation and 477 

comparison results show that the representations that determine an option’s subjective value differ 478 

between rating and binary choice tasks. From the simulation tests, it is clear that decision models 479 

based on a unitary overall value do not generate the influence of disparity (Lee & Holyoak, 2021) 480 

on choices or response times seen in the empirical data. In terms of quantitative model 481 

comparisons, if the overall values of the foods in these six studies were invariant across the ratings 482 

and choice tasks, then DDMs using only the overall values to determine the drift rate (Model 1) 483 

would be preferred over DDMs using either a subset of the food attributes (i.e., Model 2 with 484 

pleasure and nutrition) or individual attributes plus the overall values (Model 3). This is because 485 

relative to Model 1, Model 2 adds complexity (one additional parameter) while at the same time 486 

reducing the completeness of the information about the food items – assuming overall value is 487 

determined by more than just pleasure and nutrition. Instead, the model comparisons showed a tie 488 

between Models 1 and 2 in our primary data sets. However, we also report preliminary evidence 489 

from a dataset with ratings of four separate attributes that multi-attribute DDM specifications such 490 

as Model 2 do far better when they include ratings for more than two individual attributes. 491 

Moreover, if overall value representations were constant, then Model 3 would add redundant 492 

complexity compared to Model 1 and be penalized for that complexity without benefiting from 493 

greater explanatory power in the comparisons. In fact, Model 3 (overall value + pleasure + 494 

nutrition) is the best in terms of generating the observed effects of attribute disparity and 495 

accounting for the pattern of choice outcomes and response times. 496 

The superior ability of DDM and regression models including attribute-level information 497 

to explain the effects of disparity on choices and RTs, as well as in explaining choice confidence, 498 
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indicates that the importance of one or more attributes reliably differs during binary choices 499 

relative to ratings. Specifications of the DDM that use reports of overall value as the input to the 500 

evidence accumulation process implicitly hold the relative importance of each attribute fixed, and 501 

thus cannot account for differences in value computation between ratings of single options and 502 

choices over two or more options. In contrast, a multi-attribute DDM specification will directly 503 

estimate the importance weights for each attribute within the choice context and is therefore better 504 

able to explain choice behavior. However, these models are agnostic about how or why the 505 

importance of specific attributes differs when individuals are computing the overall value of a 506 

single option compared to choosing between two options. 507 

Many sequential sampling models of decision making posit that attention and salience play 508 

an important role in value computation and comparison. Examples of such models are Decision 509 

Field Theory (DFT; Townsend & Busemeyer, 1993), an extension of DFT known as the Multi-510 

Attribute Dynamic Decision (MADD) model (Diederich, 1997), and the attentional DDM (aDDM; 511 

Smith & Krajbich, 2019; Krajbich, Armel, & Rangel, 2010). In the DFT model, the drift rate can 512 

vary across deliberation time if, for example, one option is more salient but the other is truly more 513 

valuable. The MADD model makes the multi-attribute nature explicit, and the drift rate fluctuates 514 

over time as the decision maker shifts focus across the set of relevant attributes. Although the 515 

aDDM has generally been applied to the overall values of options, or to distinct items within a 516 

bundle (Fisher, 2017, 2021), it would be conceptually similar to the MADD if applied at the 517 

attribute level for goods that are inherently multidimensional. This also has some similarities with 518 

query theory, which holds that the order in which a decision maker considers different aspects (or 519 

attributes) of an option alters its resultant valuation (E. Johnson et al., 2007; Weber et al., 2007). 520 

In all these models, it is assumed that options or attributes that receive more attention will be 521 
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favored during the value comparison process. However, the relationship between value and 522 

attention is most likely bidirectional (Anderson et al., 2011; Callaway et al., 2021; Gluth et al., 523 

2018; Jang et al., 2021; Towal et al., 2013).   524 

Differences in the amount of attention directed to specific attributes during the evaluation 525 

and decision contexts could explain changes in the relative importance of the attributes across 526 

those contexts. Consistent with this idea, changes in the proportions of visual fixations to locations 527 

on a computer screen indicating the monetary amount versus the probability of winning when 528 

pricing versus choosing between lotteries are associated with inconsistencies between the two 529 

preference elicitation contexts (Alos-Ferrer et al., 2021; Kim et al., 2012). Fixation patterns 530 

towards monetary amount versus delay affect temporal discounting rates (Fisher, 2021a), although 531 

it has not yet been tested whether this might vary in pricing versus choice contexts. Internal 532 

attention processes may have effects similar to visual attention for naturalistic multi-attribute 533 

goods. The focus of internal attention is more difficult to measure than visual attention (i.e., 534 

fixation locations), but studies combining decision tasks with neuroimaging or electrophysiology 535 

and machine learning techniques may give us a window into these cognitive processes (Aoi et al., 536 

2020; Peixoto et al., 2021). Experimental manipulation of focus on a specific attribute (Fisher, 537 

2018; Hare et al., 2011) may also prove useful, if an appropriate method to dynamically shift 538 

attention within each trial is developed. 539 

There may be other unknown mechanisms beyond differences in attention allocation that 540 

led to changes in the importance weights given to attributes during rating compared to choice tasks. 541 

Although both the rating and choice processes are noisy to some extent, noise is an unlikely 542 

explanation of our results. Unbiased noise in the two tasks could not account for the consistent 543 

increases in the weight on pleasure relative to nutrition during the choice versus rating tasks. 544 
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However, it is possible that changes in motivation, engagement, or perceptions of the food items 545 

and/or task goals may have differed in the overall value rating compared to binary choice sessions 546 

instead of or in addition to any change in attribute-level attention. The current data do not allow 547 

us to examine these alternative mechanisms in detail, and it will be important to address them in 548 

future studies. 549 

In addition to providing further insight into the mechanistic nature of value-based 550 

decisions, our current work has practical implications for future studies of decision-making. We 551 

have shown that it is best to use as much attribute-level information as possible when modeling 552 

decisions over multi-attribute stimuli. Most, if not all, naturalistic stimuli are composed of multiple 553 

attributes, thus most studies of decision-making should incorporate attribute-level information. At 554 

the same time, it will often be impractical to collect information on a large number of attributes, 555 

especially if one needs subjective opinions about the attributes from each participant in an 556 

experiment. Our results indicate that combining attribute-specific and overall values may be a good 557 

compromise between attempting to include comprehensive attribute-level information and 558 

conforming to practical constraints. Naturally, which attribute-level information to obtain and how 559 

to best combine it with some type of overall value rating will depend on the hypotheses and 560 

experimental design. Given the clear evidence that the value-comparison process is based on 561 

context-dependent attribute weights, experiments that use a well-designed combination of 562 

attribute-specific and aggregate-level information should prove to be the most useful in advancing 563 

our understanding of many important decision mechanisms.  564 
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