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2 

Abstract 16 

Naturally fermented milk (NFM) products are popular food delicacies in Indian states of 17 

Sikkim and Arunachal Pradesh. Bacterial communities in these NFM products of India were 18 

previously analysed by high-throughput sequence method. However, predictive gene 19 

functionality of NFM products of India has not been studied. In this study, raw sequences of 20 

NFM products of Sikkim and Arunachal Pradesh were accessed from MG-RAST/NCBI 21 

database server. PICRUSt2 and Piphillin tools were applied to study microbial functional 22 

gene prediction. MUSiCC-normalized KOs and mapped KEGG pathways from both 23 

PICRUSt2 and Piphillin resulted in higher percentage of the former in comparison to the 24 

latter. Though, functional features were compared from both the pipelines, however, there 25 

were significant differences between the predictions. Therefore, a consolidated presentation 26 

of both the algorithms presented an overall outlook into the predictive functional profiles 27 

associated with the microbiota of the NFM products of India. 28 
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Introduction 34 

Naturally fermented milk (NFM) products are popular food items in daily diets of ethnic 35 

people of Arunachal Pradesh and Sikkim in India, which include dahi, mohi, gheu, soft-36 

chhurpi, hard-chhurpi, dudh-chhurpi, chhu, somar, maa, philu, shyow, mar, chhurpi/churapi, 37 

churkam and churtang/chhurpupu (Rai et al. 2016; Tamang et al. 2021). Previously, 38 

taxonomic analysis using high-throughput sequencing (HTS) of NFM products of Arunachal 39 

Pradesh and Sikkim viz. chhurpi, churkam mar/gheu and dahi, have been studied 40 

(Shangpliang et al. 2018). We have recorded the abundance of phylum Firmicutes with 41 

predominated species of lactic acid bacteria (LAB) viz. Lactococcus lactis (19.7%) and 42 

Lactobacillus helveticus (9.6%) and Leuconostoc mesenteroides (4.5%) and acetic acid 43 

bacteria (AAB): Acetobacter lovaniensis (5.8%), Acetobacter pasteurianus (5.7%), 44 

Gluconobacter oxydans (5.3%), and Acetobacter syzygii (4.8%) (Shangpliang et al. 2018). 45 

Application of shotgun metagenomics is one of the commonly used methods for 46 

understanding the microbial-associated gene functional characteristics (Quince et al. 2017). 47 

However, alternately functional profiles of a microbial community can also be inferred 48 

indirectly by marker-gene surveys such as 16S rRNA gene (Ortiz-Estrada et al. 2019; 49 

Bokulich et al. 2020). Bioinformatics pipelines such as Phylogenetic Investigation of 50 

Communities by Reconstruction of Unobserved States version2 (PICRUSt2) (Douglas et al. 51 

2020) and Piphillin (Narayan et al. 2020) among others are some of the well-known tools for 52 

microbial predictive functionality studies from various NGS-related metagenomic data 53 

(Ortiz-Estrada et al. 2019; Bokulich et al. 2020). These pipelines have also been applied in 54 

fermented milk products to infer the functional gene predictions (Zhang et al. 2017; Zhu et al. 55 

2018; Chen et al. 2020; Choi et al. 2020a,b). Microbiota present in NFM products harbour 56 

probiotic properties and impart several health-promoting benefits to consumers (Bengoa et al. 57 

2019; Tamang et al. 2020; García-Burgos et al. 2020). Predictive gene functionality in NFM 58 
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products of India has not been analysed yet. Hence, the present study is aimed to predict the 59 

microbial functional contents of 16S rRNA gene sequencing data of NFM products of India, 60 

previously analysed by high-throughput sequencing method (Shangpliang et al. 2018), using 61 

PICRUSt2 and Piphillin pipelines. 62 

 63 

Material and Methods  64 

Pre-analysis prior to predictive functionality analysis 65 

Raw sequences of NFM products of Arunachal Pradesh and Sikkim in India analysed by HTS 66 

method (Supplementary Table 1) were accessed from MG-RAST/NCBI database server and 67 

were used in this study. Raw reads were processed using QIIME2-2020.6 68 

(https://docs.qiime2.org/2020.6/) (Bolyen et al. 2019). After importing into QIIME2 69 

environment, Q-score based filtering and denoising was performed using Divisive Amplicon 70 

Denoising Algorithm (DADA2) (Callahan et al. 2016) via qiime dada2 denoise-paired 71 

plugin. Quality-filtered sequences were then clustered against SILVA v132 (Quast et al. 72 

2012) databases and followed by taxonomic assignment using q2-vsearch-cluster-features-73 

closed-reference (Rognes et al. 2016). 74 

 75 

Predictive functionality analysis 76 

PICRUSt2 analysis (https://github.com/picrust/picrust2/wiki)  77 

Quality-filtered clustered sequences were feed into PICRUSt2 algorithm (Douglas et al. 78 

2020) using via q2-vsearch-cluster-features-closed-reference (Rognes et al. 2016). PICRUSt2 79 

deduced the predictive functionality of the marker genes by using a standard integrated 80 

genomes database. Firstly, multiple assignment of the exact sequence variants (ESVs) was 81 

performed using HMMER (http://www.hmmer.org/). Placements of ESVs in the reference 82 

tree with evolutionary placement-ng (EPA-ng) algorithm (Barbera et al. 2019) and Genesis 83 
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Applications for Phylogenetic Placement Analyses (GAPPA) omics (Czech and Stamatakis 84 

2019) were applied. Prediction of gene families was run using a default castor R package 85 

(Louca and Doebeli 2018) with the default algorthim run (maximum parsimony) and 86 

metagenome prediction was acquired using metagenome_pipeline.py (Ye and Doak 2009). 87 

 88 

Piphillin analysis (https://piphillin.secondgenome.com/) 89 

Additionally, predictive functionality was also inferred using Piphillin (Narayan et al. 2020), 90 

a web-server analysis pipeline. DADA2-clustered representative sequences (.fasta) and 91 

abundance frequency table (.csv) were used as inputs for the analysis. 92 

 93 

Statistical analysis and data visualization 94 

Unnormalized Kyoto Encyclopaedia of Genes and Genomes (KEGG) ortholog (KO) profiles 95 

of PICRUSt2 and Piphillin predictive were normalized using Metagenomic Universal Single-96 

Copy Correction (MUSiCC) (Manor and Borenstein 2015). The output features were then 97 

mapped to KEGG database for systematic analysis of gene functions (Kanehisa et al. 2012). 98 

Relative abundance at the category level was plotted as stacked bar-plot using MSEXCEL 99 

v365. Statistical analysis for significant features (pathways) was carried out using STAMP 100 

(Parks et al. 2014). Normalized predictive features were log-transformed and the differences 101 

between PICRUSt2 and Piphillin predictive features were calculated using White’s non-102 

parametric with Benjamini-Hochberg FDR (false discovery rate) (Parks et al. 2014). Non-103 

parametric Spearman’s correlation of the bacteria and functionality was analyzed through 104 

Statistical Package for the Social Sciences (SPSS) v20 and the heatmap representation was 105 

plotted using ClustVis (Metsalu and Vilo 2015). 106 

 107 

Results 108 
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Microbial predictive gene functionality 109 

A total of 1109 error-corrected ESVs was obtained from DADA2 analysis and about 268 110 

SILVA-clustered sequences were used for the downstream predictive analysis. A total of 111 

5995 MUSiCC-normalized KOs and 181 mapped KEGG pathways was obtained from 112 

PICRUSt2 analysis. Similarly, a total of 5245 MUSiCC-normalized KOs and 157 mapped 113 

KEGG pathways was obtained from Piphillin analysis. Overall, both PICRUSt2 and Piphillin 114 

pipelines showed a similar pattern (Fig. 1), except in the metabolism category where the 115 

PICRUSt2 was significantly higher in comparison to that predicted by Piphillin pipeline (Fig. 116 

2). Additionally, at the super pathway level, PICRUSt2 prediction showed significantly high 117 

in amino acid metabolism, metabolism of cofactors and vitamins, energy metabolism, and 118 

biosynthesis of other secondary metabolites (Fig. 2). On the other hand, predictive super 119 

pathways which included carbohydrate metabolism, xenobiotics biodegradation and 120 

metabolism, metabolism of other amino acids, lipid metabolism, metabolism of terpenoids 121 

and polyketides, glycan biosynthesis and metabolism, and nucleotide metabolism were 122 

significantly higher through Piphillin prediction (Fig. 2). Significant metabolic-related 123 

pathways inferred by both PICRUSt2 and Piphillin tools were compared showing several 124 

functional features predicted by these two pipelines (Fig. 3). 125 

 126 

Non-parametric correlation of bacteria with predictive functionality 127 

Non-parametric Spearman's correlation analysis resulted in a complex bacterial-functions 128 

interaction. Lactococcus showed a significant negative correlation with glycerolipid 129 

metabolism and ubiquinone and other terpenoid-quinone biosynthesis. Lactobacillus showed 130 

significant negative correlation with tryptophan metabolism, galactose metabolism, and 131 

lipoic acid metabolism while it was observed to be positively significantly correlated with 132 

sulphur metabolism. On the other hand, valine, leucine and isoleucine degradation, arginine 133 
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biosynthesis and ubiquinone and other terpenoid-quinone biosynthesis was positively 134 

correlated with Leuconostoc, and negatively correlated with galactose metabolism. 135 

Furthermore, a significant negative correlation was observed between Acetobacter with 136 

pathways- tryptophan metabolism, valine, leucine and isoleucine biosynthesis, and lipoic acid 137 

metabolism. Gluconobacter also showed a significant negative correlation with 138 

phenylalanine metabolism, pentose and glucuronate interconversions, fructose and mannose 139 

metabolism, and nitrogen metabolism. Glycerolipid metabolism and ubiquinone and other 140 

terpenoid-quinone biosynthesis showed significant positive correlation with Staphylococcus, 141 

which significantly negatively correlated with propanoate metabolism. Pseudomonas showed 142 

significant negative correlation with fructose and mannose metabolism and significant 143 

positive correlation with tyrosine metabolism, valine, leucine and isoleucine degradation, 144 

arginine and proline metabolism, galactose metabolism, ubiquinone and other terpenoid-145 

quinone biosynthesis and glutathione metabolism. Additionally, a significant positive 146 

correlation was observed between Acinetobacter with phenylalanine metabolism, 147 

streptomycin biosynthesis, ascorbate and aldarate metabolism, propanoate metabolism, 148 

nitrogen metabolism, and biosynthesis of ansamycins (Fig. 4). 149 

 150 

Discussion 151 

In this study, microbial predictive gene functional analysis from targetted-16S rRNA gene 152 

was explored using PICRUSt2 and Piphillin pipelines. Inference of predictive functionality 153 

using these two said pipelines showed a high metabolism rate, since most of these products 154 

are consortia of many metabolically active microbiota (Shangpliang et al. 2018). These 155 

findings are similar to recent studies reported from fermented dairy products (Zhang et al. 156 

2017; Zhu et al. 2018; Chen et al. 2020; Choi et al, 2020a,b). The association of various 157 

metabolic pathways such as amino acid metabolism, carbohydrate metabolism, energy 158 
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metabolism, lipid metabolism, metabolism of cofactors and vitamins, and other secondary 159 

metabolites with the bacterial genera indicated an active interaction of bacteria-function 160 

complexity. LAB are predominant microbiota in many ethnic fermented milk products of 161 

India followed by few AAB (Tamang et al. 2000; Dewan and Tamang 2006, 2007; 162 

Shangpliang et al. 2018; Ghosh et al. 2019; Shangpliang and Tamang 2021). Spearman’s 163 

correlation of the predominant bacterial genera with the predictive functionality resulted in a 164 

complex microbial-functions interaction in NFM products of Sikkim and Arunachal Pradesh. 165 

Metabolic activity such as amino acid metabolism is important in dairy products as they 166 

contribute in development of flavour (Yvon and Rijnen 2001). Similarly, carbohydrate 167 

metabolism does also play a major role in flavour and aroma development in milk 168 

fermentation (Pan et al. 2014). The abundance of functional pathways related to metabolism 169 

of amino acids, lipid, energy and carbohydrates were earlier reported in fermented milk and 170 

milk products (Zhang et al. 2017; Ramezani et al. 2017; Zhu et al. 2018; Yasir et al. 2020; 171 

Chen et al. 2020). A high correlation of functional properties and LAB have also been 172 

reported in cheeses (Yang et al. 2020), since LAB are the most predominant microorganisms 173 

in fermented milk products (Rezac et al. 2018; Chen et al. 2020). We observed a positive 174 

correlation of Staphylococcus with the predictive metabolic features of these NFM products, 175 

and interestingly, Staphylococcus is metabolically active in dairy products playing functional 176 

activities such as amino acid metabolism, carbohydrate metabolism, lipid metabolism and 177 

nitrogen metabolism (Leroy et al. 2020). We also observed the presence of significant 178 

correlation of bacteria with cofactors and vitamins metabolism such as ubiquinone and other 179 

terpenoid-quinone biosynthesis and lipoic acid metabolism, which are essential for other 180 

microbial metabolism (Yao et al. 2020). Apart from LAB, AAB have also contributed to 181 

many functional features in NFM products; AAB involve in protein metabolism, production 182 

of secondary metabolites and volatile compounds (Illeghems et al. 2015; Ai et al. 2019). 183 
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Functional profiles from both PICRUSt2 and Piphillin were normalized using MUSiCC 184 

(Manor and Borenstein 2015), which is a marker gene-based method which use universal 185 

single-copy genes for biasness correction of gene abundances (Noecker et al. 2017). 186 

Normalization using MUSiCC have proven necessary for gene functional studies (Vincent et 187 

al. 2017), rescaling the abundant predicted KOs to the actual average gene copy number, 188 

correcting several known biases (Manor and Borenstein 2017). Piphillin is usually applied in 189 

human clinical samples (Iwai et al. 2016); whereas PICRUSt2 is widely used for 190 

environmental samples (Douglas et al. 2020). However, these pipelines have also been 191 

widely used in dairy products (Choi et al. 2020a,b). 192 

From our present analysis, PICRUSt2 analysis generated more predicted KOs and KEGG 193 

pathways in comparison to that of Piphillin. Though, significant differences were observed, 194 

however, there are functions which were predicted only from PICRUSt2 and missing in 195 

Piphillin and vice versa. Therefore, consolidated predictive functions from both these 196 

pipelines are necessary for a comprehensive outlook into the potential of bacteria associated 197 

with NFM products. Though predictive functionality study of the microbiota associated with 198 

NFM products at present is only speculations using bioinformatics tools, a general outlook 199 

into the potentiality of functions may be studied and compared. Nonetheless, in the absence 200 

of shotgun metagenomics data, using PICRUSt2 and Piphillin serves to be the reliable 201 

analysis for microbial predictive gene function. 202 

 203 

Conclusion 204 

Bacterial community in NFM products showed many functional features with many 205 

important health benefits to consumers. We applied PICRUSt2 and Piphillin tools to infer the 206 

predictive functional features of microbiota associated with the ethnic fermented milk 207 
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products of India. Therefore, such studies may be used for future comparison with detailed 208 

gene functionality studies of other fermented foods elsewhere.  209 
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Legends for Figures: 384 

Figure 1: An overall categorical representation of the MUSiCC-normalized predictive 385 

microbial functions as inferred by (a) PICRUSt2 and (b) Piphillin. 386 

 387 

Figure 2: Extended error bar chart representation of the significant predictive functionalities 388 

as inferred by both PICRUSt2 and Piphillin. (a) Overall, metabolism is significantly higher in 389 

PICRUSt2 analysis as compared to that of Piphillin, however, (b) a shared difference was 390 

observed at the super-pathway level. Significance (q-value>0.05) was calculated using 391 

White’s non-parametric test with Benjamini-Hochberg FDR (false discovery rate) in 392 

STAMP. 393 

 394 

Figure 3: An overall comparison of the significant metabolic pathways as inferred by 395 

PICRUSt2 and Piphillin depicting a significant number of functional features predicted by 396 

these two pipelines. Significance (q-value>0.05) was calculated using White’s non-397 

parametric test with Benjamini-Hochberg FDR (false discovery rate) in STAMP. 398 

 399 

Figure 4: Non-parametric Spearman's correlation of the ASV-associated predominant 400 

bacterial genera of the NFM products with a consolidated functional feature as inferred by 401 

both PICRUSt2 and Piphillin. Here, calculation was carried out using Statistical Package for 402 

the Social Sciences (SPSS) v20 and heatmap was generated using ClustVis. All significant 403 

correlation pairs are denoted by * (*<0.05 and **<0.01). LAB-lactic acid bacteria; AAB-404 

acetic acid bacteria. 405 

  406 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.06.455378doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455378


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.06.455378doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455378


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.06.455378doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455378


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.06.455378doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455378


(w
hich w

as not certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint
this version posted A

ugust 8, 2021. 
; 

https://doi.org/10.1101/2021.08.06.455378
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2021.08.06.455378

