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Abstract

Motivation: Reconstructions of structure of biomolecules, for instance via X-ray crystallography or cryo-EM frequently
contain clashes of atomic centers. Correction methods are usually based on simulations approximating biophysical
chemistry, making them computationally expensive and often not correcting all clashes.
Results: We propose a computationally fast data-driven statistical method yielding suites free from within-suite clashes:
From such a clash free training data set, devising mode hunting after torus PCA on adaptive cutting average linkage tree
clustering (MINTAGE), we learn RNA suite shapes. With classification based on multiscale structure enhancement (CLEAN),
for a given clash suite we determine its neighborhood on a mesoscopic scale involving several suites. As corrected suite
we propose the Fréchet mean on a torus of the largest classes in this neighborhood. We validate CLEAN MINTAGE on a
benchmark data set, compare it to a state of the art correction method and apply it, as proof of concept, to two exemplary
suites adjacent to helical pieces of the frameshift stimulation element of SARS-CoV-2 which are difficult to reconstruct. In
contrast to a recent reconstruction proposing several different structure models, CLEAN MINTAGE unanimously proposes
structure corrections within the same clash free class for all suites.
Code Availability: https://gitlab.gwdg.de/henrik.wiechers1/clean-mintage-code

1 Introduction
Understanding the structure of active biomolecules is ever more
important for maintaining and prolonging human health (e.g Schlick
and Pyle (2017)). In particular this pertains to RNA molecules in view
of designing drugs that target specific structures (e.g. Batool et al.
(2019)), as recently impressively demonstrated by the worldwide effort
confronting the SARS-CoV-2 (severe acute respiratory syndrome) virus
responsible for the COVID-19 (corona virus disease) pandemic (e.g.
Croll et al. (2021)).

Extracting RNA primary structure is nowadays fairly well feasible
using currently available gene sequencing technology (e.g. Wang et al.
(2009)). Predicting from that the structure, however, is a still unsolved
fundamental problem (e.g. Schlick and Pyle (2017)). Although elaborate
methods such as X-ray crystallography and cryo-EM (cryogenic electron
microscopy) are used that return spatial electron densities – and from
these densities individual atom positions can be inferred – frequently,
the inferred molecular structures contain so-called clashes (e.g Murray
et al. (2003); Schlick and Pyle (2017)).

Definition 1.1. A clash is a forbidden molecular configuration, where
two atoms are reconstructed closer to each other than is chemically
possible1.

In case of RNA, clashes most relevant and most difficult to correct are
between atoms along the backbone, in particular when single hydrogen
atoms are added to inferred structures (e.g. Murray et al. (2003)).

In order to correct such clashes, methods from molecular dynamics
are usually employed: Simulated atoms are allowed to fluctuate into
positions of minimal energy, following approximations of the laws of
biophysical chemistry (e.g. Chou et al. (2013)). For RNA molecules,
these simulations are highly computation intensive due to the large
variability of RNA shape. If local and not global energy minima are
achieved, thus corrected molecules may still feature clashes and their
geometries may be outliers in comparison to clash free geometries (e.g.
Richardson et al. (2018)). Figure 2 (center) illustrates the state of the art
correction by ERRASER (Enumerative Real-space Refinement ASsisted
by Electron-density under Rosetta) from Chou et al. (2013) and (right)
our CLEAN MINTAGE (Classification based on muLtiscale structurE
enhAncemeNt using Mode huntINg after Tours pca on Adaptive cutting
averaGe linkage trEes) correction proposed here. As our method is
developed from a statistical learning perspective it does not suffer from
the above drawbacks as evident from Figure 2.

1 The validation tools in PHENIX, see Liebschner et al. (2019), reports
a clash if van der Waals shells overlap by more than 0.4 Å, see Word
et al. (1999).
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Our method is computationally fast and proposes data-driven
corrections taken from classes of clash free geometries previously learned
using torus PCA from Eltzner et al. (2018). It draws power, on the
one hand from a specifically designed adaptive pre-clustering method
and the ability of torus PCA to efficiently reduce torus clusters to one
dimension only, which then allows for further post clustering by mode
hunting (Figure 3) and, on the other hand from the simultaneous two-
scale approach, inspired by Hamelryck et al. (2010) using “coarse and
fine degrees of freedom”. It may well serve to provide clash free initial
configurations for subsequent molecular dynamics methods.
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Fig. 1: Backbone suite number i with 7 dihedral angles
δi, εi, ζi, αi+1, βi+1, γi+1, δi+1 describing the suite’s shape, see
Figure 17 in the supplement.

Fig. 2: RNA backbone suites with carbon (dark red), oxygen (dark
blue) and phosphorus atoms (pink), see Figure 1. Left: 73 clash suites
which form our ERRASER test set T′ (see Supplement I). Center: Their
corrections by ERRASER. More than half of them still feature clashes
(see Supplement I.1). Right: Their corrections by CLEAN MINTAGE.
Each correction belongs to a clash free class. See Figures 14 and 15 in
the supplement for both corrections in dihedral angle representation.

Fig. 3: One-dimensional torus PCA representation of torus pre-cluster
2 from the benchmark training set (Section G.2) of RNA suite backbone
shapes (left) is efficiently decomposed into 4 classes (right) by mode
hunting, yielding Class 2 (red), Class 5 (green), Class 6 (grey), Class 7
(purple), see also Figure 20 in the supplement.

As most RNA backbone clashes appear within suites (the part from
one sugar ring to the next (e.g. Murray et al. (2003), see Figure 1 and
Definition D.1 in Supplement D), in our microscopic scale we represent
suites by tuples of 7 dihedral angles. Recall that every directed bond

between two atoms (C4’ and C3’, say, cf. Figure 1 and Figure 17 in the
supplement) defines a dihedral angle in the one-dimensional torus T :=

[0, 2π]/ ∼ (here “∼” identifies 0 and 2π) with distance dT(φ, ψ) :=

min{|φ − ψ|, 2π − |φ − ψ|}, φ, ψ ∈ T. Hence, a suite’s shape is a
data point on the seven dimensional torus T7 with the canonical product
distance dT7 given by

d2
T7 (φ, ψ) =

7∑
j=1

dT(φj , ψj)
2

with φ = (φj)
7
j=1, ψ = (ψj)

7
j=1.

Definition 1.2. We call a suite a clash suite if two of its backbone atoms
(including associated hydrogen atoms and oxygen atoms belonging to the
phosphate) clash with each other. All other suites that have k (specified
below) neighboring non-clash suites are called clash free.

Using our Algorithm 2.1 (MINTAGE), we learn 15 classes of clash
free suites including their variability from a large clash free benchmark
training data set, see Figure 3, called the MINTAGE benchmark classes.

Our mesoscopic scale comprises for every suite, whether clash free
or a clash suite, k neighboring suites on either side. This gives a
configuration of 2k + 1 suites, representing the local geometry of the
suite’s neighborhood. Setting k = 2 the mesoscopic scale of a suite
within a helix will conveniently correspond roughly to a half turn. We
describe the mesoscopic shape by the size-and-shape of the centers of
the 6 = 2k + 2 sugar rings involved (Figure 4), giving an element in
SΣ2k+2

3 with the Procrustes distance dΣ, see Supplements C, D.3 and
Dryden and Mardia (2016).
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Fig. 4: The mesoscopic shape (red lines) for k = 2 centered at the i-th
suite is determined by the six centers of the sugar rings x̄i−2, . . . , x̄i+3.
Their connecting backbones (blue and black lines) give 5 suites, two
before and two after suite i.

Our Algorithm 2.4 (CLEAN) corrects a clash suite as follows. With
respect to the geometry of mesoscopic shape space, its ρ (we use ρ = 50)
nearest clash free neighbors are determined and the class containing most
of the corresponding ρ suites is identified, defining a subset of the ρ
suites. Then, the clash suite is replaced by the torus Fréchet mean of
the subset of suites, yielding a clash free suite in a data-driven manner.
The mesoscopic shape of the clash suite is replaced with the orthogonal
projection of the Procrustes mean of the subset’s mesoscopic shapes to
the subset of mesoscopic shapes featuring specific constraints inherited
from the mesoscopic shape of the clash suite.

When we apply our method to two exemplary suites adjacent to
helical structures of the frameshift stimulation element of SARS-CoV-
2 (detailed in Section 3.2), our method proposes only elements from a
single class against various different structure proposals in Zhang et al.
(2020), see Figure 5.

For graphical illustration we display torus-valued shapes also as size-
and-shape configurations. In displays, all size-and-shape configurations
will be shown in optimal position to the Procrustes mean of the underlying
data set.

Size-and-shape space and Fréchet means are detailed in the
supplement, along with details on our two scales, reconstruction
methods, as well as further details on our methods and results. In
particular the benchmark data sets are detailed in Supplement D.4.
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Fig. 5: Left: Ten different model proposals by Zhang et al. (2020) for
the backbone of Suite 2 (from the left panel of Figure 11 in Section
3.2); adjacent to a helical piece of the frameshift stimulation element of
SARS-CoV-2. One model (red) clashes (with clash score 0.401Å which is
slightly above the threshold of 0.4Å) and nine models (black, featuring
two different types of shape) are clash free, but inconsistent. Our CLEAN
MINTAGE correction proposes unanimously over all ten models a suite
shape (green, all consistent, so they overlap) from the clash free Class
1 (see Figures 13 and 20 from the supplement). Right: Mesoscopic
shapes of the ten models (red and black) and their ten CLEAN MINTAGE
corrections (green).

2 Methods

2.1 Torus PCA Based Clustering

Our Mode huntINg after Torus pca on Adaptive cutting averaGe linkage
trEes (MINTAGE) algorithm builds on three components. Initially the
torus data is pre-clustered by adaptively cutting an average linkage
clustering tree, as detailed in Supplement G.1. Then, each cluster is
reduced to a one dimensional torus representation using torus PCA,
recently developed by Eltzner et al. (2018), with varying flag parameters.
While the torus is rather inconvenient for PCA based dimension reduction
methods (almost all geodesics are dense and tangent space methods lose
periodicity), torus PCA deforms a torus into a stratified sphere, opening
up the toolbox of principal nested spheres from Jung et al. (2012).
This makes the torus even more attractive for PCA based dimension
reduction methods than Euclidean space, cf. Huckemann and Eltzner
(2015). Finally, if the sum of squared residual distances to these one
dimensional torus representations of the pre-clusters is less than one
fourth of the cluster’s total Fréchet variance, these one dimensional
representations are subjected to circular mode hunting that identifies
subclusters with statistical significance, as detailed in Section 2.2.

Algorithm 2.1 (MINTAGE).

1. From input suite data X(1), . . . , X(n) obtain a list of pre-clusters
using Algorithm G.1 from the supplement and store it as the
remaining cluster list R. Create the initially empty final cluster
list F .

2. WhileR is non-empty:

a. Take a cluster C fromR and set m = 1:
b. ForC perform torus PCA from Eltzner et al. (2018) with the flags

GC (gap centered), MC (mean centered), SI (spread inside), SO
(spread outside) as detailed there

• if m = 1: GC, SI
• if m = 2: GC, SO
• if m = 3: MC, SI
• if m = 4: MC, SO
• if m = 5: Remove C from the remaining cluster listR, add it

to F and go to Step 2(a).

c. For the suiteX(j) ∈ C letX(j,1D) denote their one-dimensional
torus PCA projections and letµ denote the torus PCA nested mean
from Eltzner et al. (2018). Whenever
4
(∑n

j=1 dT7

(
X(j), X(j,1D)

)2) ≤ ∑n
j=1 dT7

(
X(j), µ

)2
,

perform mode hunting from Section 2.2:

• if subclusters were found, add them to the remaining cluster
listR and remove C from it.

• else: Set m = m+ 1 and go to Step 2(b).

3. Return F .

Supplement G.2 details the application of MINTAGE to the
benchmark training data set yielding the 15 MINTAGE benchmark
classes and the MINTAGE benchmark outliers.

2.2 Circular Mode Hunting

We cluster the one-dimensional projections obtained by torus PCA in
Step 2(c) of Algorithm 2.1 using the multiscale method described by
Dümbgen and Walther (2008). Although this method was originally
defined for the real line, its numerical implementation for circular data is
even simpler. Since modes are separated by minima, we use this method
to identify regions in which minima are located with a certain confidence
level. (Throughout the applications, we use a fixed confidence level of
95%). In each of these regions, we estimate the minima by estimating
the density of the one-dimensional projections using a wrapped Gaussian
kernel. As the bandwidth increases, the number of minima of the density
estimate in each of the regions decreases. Whenever there is only one
minimum left in a region – this will inevitably happen due to the causality
of the wrapped normal kernel, see Huckemann et al. (2016) – we take
this as a cluster boundary, see Figure 6 for an illustration of our method.
Figure 3 shows pre-cluster 2 from the benchmark training data set which
is decomposed by mode hunting into four subclusters.

0 2π

small bw

large bw

Fig. 6: Circular mode hunting for data (black asterisks). Intervals
containing minima with statistical significance (red) and wrapped
Gaussian kernel smoothed densities with varying bandwidths having too
many minima (brown) and having the statistically significant number
of minima (blue). The latter minima are taken as cluster boundaries
(orange).

2.3 Multiscale RNA backbone correction

We first motivate why and how our multiscale correction algorithm
involves the two different scales of suites and mesoscopic shapes.
Moreover, in Supplement H.2 we validate it on the benchmark test data
set from Supplement D.4.

2.3.1 Motivation for a Multiscale Correction Ansatz
In a first fundamental study, we establish a relationship between suites
from the benchmark training data set (Supplement D.4) that have similar
mesoscopic shapes, see Figure 4 and Definition D.2 in Supplement
D.3. To this end, we cluster the mesoscopic shapes of the suites
from the benchmark training data set using the simple version of
Algorithm G.1 from Supplement G.1, performing only Steps 1 and 2
with κ = 5 and dmax such that 50% of the mesoscopic strands are
outliers. This guarantees that the simple mesoscopic clusters obtained
are rather concentrated and for this reason we obtain a higher (than
in Supplement G.2) number of 110 such clusters. It turns out that the
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suites corresponding to each simple mesoscopic cluster also form rather
concentrated suite clusters and they are in high correspondence with
the 15 MINTAGE benchmark classes (obtained from the MINTAGE
Algorithm 2.1 applied in Supplement G.2 to the benchmark training set).
This leads to the following hypothesis.

Hypothesis 2.2. Correctly reconstructed suites with similar
mesoscopic shapes have also similar suite shape. In particular,
concentrated mesoscopic clusters relate to suite clusters.

Indeed, for the overwhelming majority of the simple mesoscopic
clusters the standard deviation of angles (between 0 and 2π) of their
suites is less than 0.6, as depicted in the left panel of Figure 21 in the
supplement. Only very few clusters with low cardinality (close to the
minimum ofκ+1 = 6) have higher suite variance. On the other hand, the
high correspondence of simple mesoscopic clusters with the MINTAGE
benchmark classes is detailed in the caption of Figure 7 and in the right
panel of Figure 21 in Supplement H.1.

Fig. 7: Left: Exemplary simple mesoscopic clusters. Right: Suites
belonging to the mesoscopic shapes from the exemplary clusters. Notably,
Cluster 1 (black) of size 77 contains 73 suites from MINTAGE benchmark
Class 1, all of the others clusters are in 1-to-1 correspondence to
MINTAGE benchmark classes: Cluster 30 (green, size 13) to Class 5,
55 (magenta, size 8) to 12 and 92 (red, size 6) to 2.

In a second fundamental study, we consider the 198 clash suites in the
benchmark data set forming the test data set, see Supplement D.4. Their
suite shapes as well as their mesoscopic shapes feature a rather larger
spread, see Figure 22 in the supplement. As before, we consider training
suites from concentrated neighborhoods in the mesoscopic shape space,
of size ρ ∈ N. For a given clash suite c such a neighborhood is

Uc := (1){
t ∈ T : #

{
t′ ∈ T : dΣ(mt′ ,mc) ≤ dΣ(mt,mc)

}
≤ ρ
}
.

Here T is the set of training suites (the clash free suites in the benchmark
data set, see Supplement D.4) and mt denotes the mesoscopic shape of
t ∈ T. From Figure 8, which illustrates a typical clash suite c, we derive
the following hypothesis.

Hypothesis 2.3. While clash suite shapes are rather irregular among
the suite shapes of their clash free neighbors in mesoscopic space (left
panel), their mesoscopic shapes differs mostly mildly from nearby clash
free mesoscopic shapes (right panel).

In particular, two of the four teal landmarks in the middle differ
systematically from those of the clash free mesoscopic shapes, thus
hinting also towards wrongly reconstructed sugar ring centers. Again,
Uc is rather concentrated in the mesoscopic shape space and its
suites feature a strongly dominating cluster. For this reason, the
following multiscale backbone correction algorithm simultaneously
corrects clashing suites on suite and on mesoscopic levels, working with

Fig. 8: Left: A typical clash suite c (red) and the ρ = 50 suites (black)
from the neighborhoodUc in the benchmark training data set with respect
to mesoscopic shape distance. Right: The corresponding mesoscopic
shape mc (red) and those from Uc (black). The latter are concentrated
in the mesoscopic shape space.

concentrated neighborhoods defined by mesoscopic shape distance. In
these concentrated neighborhoods, dominating clusters from MINTAGE
of the training data set provide guidance for correction.

2.3.2 The RNA Backbone Correction Algorithm
We exploit the above Hypotheses 2.2 and 2.3, take into account that the
suite of interest in the mesoscopic shape is positioned between the third
and fourth sugar ring, and hence a small change in one of the center sugar
rings of the mesoscopic shape can have a greater impact on the shape of
the suite in the center. The design of the algorithm is further discussed
in Remark H.2 from Supplement H.1.

Algorithm 2.4 (CLEAN). Input:

• a training data set T comprising only non clashing and admissible
suites, i.e. suites that come along with a mesoscopic shape, see
Definition D.4 in the supplement,

• a cluster list C1, . . . , Cr and an outlier set R for T obtained from
applying the MINTAGE Algorithm 2.1,

• a tuning parameter ρ ∈ N governing the size of neighborhoods
defined via mesoscopic shape distance, we choose ρ = 50, and

• a clash suite c and its corresponding mesoscopic clash shape mc.
• the flag DOMINATING set to ABSOLUTE or RELATIVE which will

return either the absolutely dominating cluster Uc from (1) or the
relatively dominating cluster with at least ρ/10 elements, taking
into account cluster size.

Algorithm steps:

1. Calculate

a. the neighborhoodUc as defined in (1) of the ρ suites of the training
data, whose mesoscopic shapes are most similar tomc with respect
to mesoscopic shape space distance;

b. according to flag DOMINATING, the number
ic ∈ arg max

i=1,...,m
#
(
Ci ∩ Uc

)
, (ABSOLUTE), or

ic ∈ arg max
i=1,...,m

1{Ci|#(Ci∩Uc)≥ρ/10}#
(
Ci ∩ Uc

)/
#Ci,

(RELATIVE), respectively, of the dominant torus PCA cluster in
Uc;

c. a Fréchet mean τc ∈ argmint∈T7

∑
t′∈Cic∩Uc

dT7 (t, t′)2 , of
the dominant cluster’s suites in the neighborhood;

d. the approximate length `τc of the suite by the mean distance of
the two C4 atoms in the suites of Cic ∩ Uc;

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.06.455406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455406


CLEAN MINTAGE 5

Fig. 9: Dihedral angles α (horizontal) and γ (vertical). Left: All suites from the benchmark training data set. Centre left: All MINTAGE classes (without
outliers). Centre Right: 73 clash suites from the benchmark test data set (black) and their ERRASER corrections (magenta). Right: Same clash suites
(black) and their CLEAN MINTAGE corrections by Fréchet means of the dominating class (green circles for DOMINATING = ABSOLUTE and green
crosses for DOMINATING = RELATIVE). Figures 12, 13, 14 and 15 in the supplement show the situation for all dihedral angle combinations.

e. a Procrustes mean

µc ∈ argmin
m∈SΣ2k+2

3

∑
t∈Cic∩Uc

dΣ(m,mt)
2 ,

of the corresponding mesoscopic shapes,

2. With a mesoscopic shape mc = [x1, . . . , x2k+2] defined
as in Equation (2) in the Supplement by a representative
(x1, . . . , x2k+2), determine with the Procrustes type Subalgorithm
H.1 from Supplement H.1 the corrected mesoscopic shape m∗c as
the orthogonal projection Y ′ of the Procrustes mean µc to the set

Mc,τc :=
{
m = [y1, . . . , y2k+2] ∈ SΣ2k+2

3 :

‖y1 − y2k+2‖ = ‖x1 − x2k+2‖ and

‖yk+2 − yk+1‖ = `τc}

of mesoscopic shapes whose configurations share the first and
the last landmark with a configuration of mc and whose distance
between the central landmarks is the length `τc of the configuration
Fréchet mean suite τc.

3. Return: the corrected suite shape τc and its corrected mesoscopic
shape mτc := [Y ′].

For all applications we used DOMINATING = ABSOLUTE. Figure
9 and Figure 15 in the supplement display also DOMINATING =
RELATIVE.

3 Results

3.1 Comparing CLEAN MINTAGE with ERRASER

Applying molecular dynamics with the clash suite as initial state,
ERRASER corrects clash suites locally and moderately. This often
results in proposals that remain clashing and outlying. In contrast,
corrections by CLEAN MINTAGE are guided by minor changes on the
mesoscopic scale, which may yield more drastic suite corrections. These
are, however, clash free and no longer outlying, as illustrated in Figures
9 and 10, and detailed in Supplement I.

3.2 COVID 19 Backbone Correction

With the recent worldwide pandemic of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), the virus’ RNA structure
reconstruction and backbone correction has become ever more relevant.
Indeed, effective drug and vaccine development necessitates good
understanding of the three-dimensional RNA structure, see Croll et al.
(2021). Recently, a large number of measurements has been added to
the Protein Data Bank, see Berman et al. (2000), and as part of the

Fig. 10: Left: A clash suite (red) is only infinitesimally corrected by
ERRASER (magenta), remaining clashing and outlying. The more drastic
CLEAN MINTAGE correction (the Fréchet mean of the black suites
constituting the main cluster of the neighborhood Uc from (1)) is guided
by a minimal correction of the mesoscopic shape of the clash suite. Right:
The mesoscopic shape of the clash suite (red) lies almost in the middle
of the mesocopic shapes corresponding to the MINTAGE cluster, heavily
dominating its local neighborhood Uc (black, 39 out of 50 suites).

Coronavirus Structural Task Force (CSTF) headed by Andrea Thorn,
a large number of data sets of SARS-CoV-2 and related structures
are compiled in a git repository, see Thorn et al. (2021). While X-
ray crystallography can achieve very high resolution in principle, the
large viral genome, comprising ∼ 20, 000 bases, is very difficult to
crystallize. Therefore, many structures are determined by cryogenic
electron microscopy (cryo-EM).

3.2.1 The Frameshift Element
In Zhang et al. (2020), the frameshift stimulation element (FSE) of
the SARS-CoV-2 genome was studied, which, due to its slippery site
encodes different proteins simultaneously. As their balanced expression
is required for virus replication, this element is believed to be fairly
resistant against mutations. Hence it is a promising target for antiviral
drug design. Its three-dimensional structure has been assessed by cryo-
EM with a resolution of 6.9Å using the ribosolve pipeline from Kappel
et al. (2020). Using a consensus secondary structure of the molecule
and the cryo-EM map, Zhang et al. (2020) proposed 10 possible three-
dimensional structure models (based on a measurement with mean
pairwise root mean squared deviation of 5.68Å) and stored them to
the Protein Data Bank. Notably, it was not possible to reliably assign
individual atom positions, but the secondary arrangement of helical
segments and the non-helical linking segments could be reconstructed,
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Fig. 11: First: Secondary structure of the imputed frameshift stimulation element, cf. (Zhang et al., 2020, Figure 8). The green, blue and orange regions
show the double-stranded helix regions. The red dots (only one nucleotide is on the red branch) between depict clashing Suites 1 and 2. Second: Model
1 (c1) of Suite 1 (red, clashing) proposed by Zhang et al. (2020), the 43 suites from Class 5 in neighborhood Uc1 (black) and their torus mean (green).
Third: The corresponding mesoscopic shapemc1 (red), the 43 mesoscopic shapes of suites from Class 5 in neighborhoodUc1 (black) and their Procrustes
mean (green). Fourth: All models c1, . . . , c10 (red, clashing) proposed by Zhang et al. (2020) and their CLEAN MINTAGE corrections (green). Fifth:
Mesoscopic shapes mc1 , . . . ,mc10 (red) of the 10 models and projections of Procrustes means (green) of respective dominating clusters.

see Zhang et al. (2020) and first panel of Figure 11. In particular, the suites
linking different helical segments have been difficult to reconstruct. Here
we focus on Residues 28/29 which we call Suite 1 and on Residues 33/34
which we call Suite 2 (referring to enumeration in the PDB file).

Suite 1 (one of the two red dots in the left panel of Figure 11) is a clash
suite in all 10 models, as determined by PHENIX, see Supplement E.
Moreover, the P’-O3’ bond is unphysically long (red vertical in 2nd and
4th panel of Figure 11), reinforcing the conclusion of a bad structure fit.
With the MINTAGE benchmark classes from Supplement G.2, CLEAN
yields 10 corrections, one for each of the 10 models.

The fourth panel of Figure 11 shows the clash suites c1, . . . , c10,
from each of the models. These suites are very similar and so are their
mesoscopic shapes in the fifth panel. In every neighborhood Ucj (j =

1, . . . , 10) constructed by CLEAN, MINTAGE benchmark Class 5 from
Supplement G.2, see Figure 20 in the supplement, is strongly dominating.
The means of the suites of Class 5 in the respective neighborhoods
are nearly identical and give the universal correction for Suite 1, also
displayed in the fourth panel of Figure 11. The second panel of Figure
11 shows the closeup for clash suite c1. In Uc1 , 43 out of the 50 suites
belong to Class 5.

Suite 2 (at the other red dot in the first panel of Figure 11) is a clash
suite only for Model 5, the suites of all other 9 models are clash free,
but inconsistent (see Figure 5). Moreover, in the other models for Suite
2 there are other clashes, such as clashes between backbone and base
atoms. Again with the MINTAGE benchmark classes from Supplement
G.2, CLEAN yields 10 corrections, one for each of the suites c1, . . . , c10

from the 10 models. As before, the corresponding mesoscopic shapes are
very similar, see right panel of Figure 5, and there is a single MINTAGE
benchmark class that dominates every neighborhood, namely Class 1.
In consequence, the CLEAN MINTAGE correction is the torus mean of
the part of Class 1 in the respective neighborhoods. Again these are very
similar, giving the universal CLEAN MINTAGE correction for Suite 2,
now depicted (green) in the left panel of Figure 5.

4 Discussion
The RNA backbone structure correction method proposed in this paper
rests on two pillars:

(1) Torus PCA based suite classification of a large benchmark clash free
data set and

(2) multiscale suite correction based on proximity on a mesoscopic scale.

(1): Remarkably, approximately one out of 6 (see Figure 20 in the
supplement) of the benchmark data suites (and approximately one out of
7 of the ERRASER training suites, see Figure 26 in the supplement) could

not be classified by MINTAGE. While there may be multiple reasons for
this, one is rather obvious: As the presence of clashes is a mere indicator
for faulty atom configuration proposals, it is very likely that many clash
free outliers are also due to faulty reconstructions and hence deserve
structure correction as well. Since our method is specifically designed to
correct suites in such a way that their shapes resemble abundant classes
of shapes, it is well suited to reduce outliers also in cases where no clash
occurs.

(2): Our approach at multiple scales, at a specific suite and at a specific
mesoscopic scale (of roughly one half helix turn length) has proved to be
successful for correcting clash suites via assignment to clash free classes.
A more complete picture of the improved structure may be achieved by
simultaneously correcting several suites along the following lines:

1. A central suite correction may warrant simultaneous correction of
the suites involved at the mesoscopic scale (notably, adjacent suites
overlap at four atoms),

2. Whenever there are base bindings from a corrected suite to other
suites, their structures may be simultaneously corrected.

3. Having thus far corrected only within-suite backbone clashes,
which are very common, a further refinement aims at
simultaneously correcting different suites that clash with one
another.

4. Notably, the multiscale correction method can be applied,
potentially, to various other biomolecules and in particular to
protein structure correction, see Hamelryck et al. (2010).

At this point we would like to clarify that ERRASER corrects not only
all suites (clashing and clash free), it also takes into account potential
clashes with atoms from more distant suites and their nucleobases and
performs various other structure improvements. While this entire process
took several days on the ROSIE servers Chou et al. (2013) our CLEAN
MINTAGE, only correcting within suite clashes, ran within minutes.
Recall that ERRASER, due to its moderate correction potential based on
molecular dynamics, was only able to completely remove clashes for less
than half of the benchmark data. While our outputs, yielding corrections
within clash free classes, do not provide a comprehensive treatment, for
instance, leaving neighboring suites unchanged, they may serve as initial
states for subsequent molecular dynamics, and thus provide powerful
guidance.
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Supplementary Information
A PDB files
Table 1 lists the PDB IDs and the corresponding resolution of the benchmark data set, see Supplement D.4.

PDB ID Resolution
1cvj 2.60
1ddl 2.70
1duh 2.70
1e7k 2.90
1ec6 2.40
1ehz 1.93
1et4 2.30
1f1t 2.80
1f7u 2.20
1f7y 2.80
1f8v 3.00
1f27 1.30
1ffy 2.20
1h3e 2.90
1h4s 2.85
1hmh 2.60
1hr2 2.25
1i6u 2.60
1ivs 2.90
1jbr 2.15

1k8w 1.85
1kh6 2.90
1kq2 2.71
1kxk 3.00
1l2x 1.25
1l9a 2.90
1lng 2.30
1m5k 2.40
1m8v 2.60
1m8x 2.20
1mzp 2.65
1n78 2.10
1ntb 2.90

PDB ID Resolution
1ooa 2.45
1q2r 2.90
1qf6 2.90
1qtq 2.25
1r3e 2.10
1r3o 1.90
1rlg 2.70
1s03 2.70
1s72 2.40
1sds 1.80
1u9s 2.90
1vfg 2.80
1wpu 1.48
1xjr 2.70

1xmq 3.00
1xok 3.00
1y3s 2.25
1yfg 3.00
1yls 3.00
1z43 2.60
2a8v 2.40
2a43 1.34
2atw 2.25
2bh2 2.15
2bte 2.90
2bu1 2.20
2bx2 2.85
2csx 2.70
2fmt 2.80
7msf 2.80
361d 3.00
397d 1.30

Table 1. The PDB IDs from the 71 different measurements from the benchmark data set, see Supplement D.4.
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B Scatterplots of all pairwise dihedral angle combinations
Figure 12 illustrates all two dimensional dihedral angle combinations of the suites of the training data set T, introduced in Supplement D.4. Their
MINTAGE classes (see Algorithm 2.1 in the main text) with the parameters described in Supplement G.2 are shown in Figure 13. The corresponding
cluster sizes are summarized in Figure 20. The scatterplots of the 73 clash suites E from the ERRASER test set are depicted in Figures 14 and 15 as
black diamonds. Figure 14 shows the corresponding ERRASER corrections as magenta circles (see Supplement I) and Figure 15 shows the corresponding
CLEAN MINTAGE (Algorithm 2.4 in the main text) correction as green circles and crosses, respectively.

Fig. 12: Scatterplots of all two dimensional dihedral angle combinations of the suites of the training data set T, see Supplement D.4.
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Fig. 13: Scatterplots of all two dimensional dihedral angle combinations only for the 15 MINTAGE benchmark classes described in Supplement G.2.
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Fig. 14: Scatterplots of the 73 clash suites E (black) from the benchmark data set with their corrections (magenta) by ERRASER from Chou et al. (2013).
More than half of them still feature clashes, cf. Supplement I.1.
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Fig. 15: Scatterplots of the 73 clash suites E (black) from the benchmark data set with their corrections (green) by CLEAN MINTAGE (circles correspond
to flag DOMINATING = ABSOLUTE in Algorithm 2.4 in the main text and crosses to flag DOMINATING = RELATIVE). Each correction belongs to a
clash free class.

C Fréchet Means and Size-And-Shape Space
We describe geometrical objects by an array of seven dihedral angles on the torus T7 as detailed in Supplement D.2 with the torus distance dT from
(4), and by the size-and-shape of a configuration matrix X = (x1, . . . ,x2k+2) ∈ R3×(2k+2) encoding 2k + 2, k ∈ N, three-dimensional landmark
positions xi ∈ R3, i = 1, . . . , 2k + 2 as follows, see Dryden and Mardia (2016).

C.1 Size-And-Shape Space

Proper Euclidean transformations comprising rotations and translations T = (R, v) ∈ SO(3)× R3 act on X columnwise via

T.X = (Rx1 + v, . . . , Rx2k+2 + v) .

Then

SΣ2k+2
3 := {[X] : X ∈ R3×(2k+2)} where [X] = {T.X : T ∈ SO(3)× R3} (2)

is the size-and-shape space which is equipped with the quotient distance, also called Procrustes distance

dΣ([X], [Y ]) := min
T∈SO(3)×R3

‖X − T.Y ‖ (3)
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with the standard Frobenius norm on R3×(2k+2). We say that X and Y are in optimal position if

dΣ([X], [Y ]) = ‖X − Y ‖ .

Taking derivatives one can show that configurations X,Y in optimal position have coinciding mean landmarks with symmetric XY T (e.g. Dryden and
Mardia (2016, Result 7.1)). For this reason, we assume that all landmark configurations are centered, i.e. their landmarks vectors add up to zero. Optimal
positioning is then conveyed by rotations R ∈ SO(3) only.

C.2 Fréchet Means

For data X1, . . . , Xn ∈M on an arbitrary metric space (M,d), define their Fréchet mean by

argmin
X∈M

n∑
j=1

d(X,Xi)
2 .

This is a generalization of the classical Euclidean mean. On complete spaces, Fréchet means exist, and on manifolds, if samples are drawn from continuous
distributions, they are almost surely unique (see Arnaudon and Miclo (2014)).

On SΣ2k+2
3 , Fréchet means defined by Procrustes distance are also called Procrustes means. On T7 we call them torus means.

D RNA Backbone Geometry and Data Sets
RNA molecules are composed of repeating elements called nucleotides and each nucleotide is composed of three building blocks, see Watson et al.
(2004), cf. Figure 1 in the main text: A sugar ring called ribose comprising 5 carbon atoms, one of 4 possible nucleobases which is attached to the ribose
at the C1’ position and a phosphate group connected to the ribose ring at the O5’ atom. The single nucleotides are connected by their O3’ atoms to the
next phosphate group to form long RNA chains.

D.1 RNA folding

In contrast to DNA which usually forms a double helix (its most common form is B-DNA) of complementary strands, in principle, RNA is single stranded
and the form of its ribose (which is not “desoxy” as in DNA, i.e. it has an additional hydroxyl group) allows for complex folding structures. Figure 16
shows a typical RNA structure element, called a hairpin. It is composed of double helices (its most common form A-RNA is similar to A-DNA and
similarly to DNA, the binding occurs along complementary nucleobases), also called stems that are followed by non binding regions called bulges and
terminated by a terminating region called a loop, see for example Wadley et al. (2007) and Richardson et al. (2008).

Loop

StemStem

Bulge

3’

5’

Fig. 16: The hairpin is a common RNA structure element. Double helices (stems) matched by base bindings between nucleotides denoted blue are followed
by mismatching sites (bulges) with several nucleotides not featuring base bindings and a terminating mismatching site (loop). Orientation is conveyed
by the 5’ and 3’ ends, cf. Figure 1 of the main text.

D.2 Modeling RNA Suites on the Torus

Nucleotides are either studied as suites, i.e. from one sugar to the next, or as residues, i.e. from one phosphate to the next, e.g. Murray et al. (2003);
Jain et al. (2015). As clashes often occur between neighboring residues but within same suites, cf. Murray et al. (2003), for our analysis, we use suites.
Indexing, however, is usually done on residue level, so that within a single suite, atom indices change, cf. Figure 1 of the main text. Every directed bond
between two atoms (C4’ and C3’, say, cf. Figure 1) defines a dihedral angle in the onedimensional torus

T := [0, 2π]/ ∼

where “∼” denotes that 0 and 2π are identified. It is the directed angle between the plane spanned by the bond and the bond preceding (C5’ and C4’, say)
and the plane spanned by the bond and the bond succeeding (C3’ and O3’, say), see right panel of Figure 17. For the dihedral angles of concern, Figure
17 lists the 4 consecutive atoms, defining the respective dihedral angles of the bond between the two central atoms.

Definition D.1. We consider a connected RNA strand with N ∈ N consecutive nucleotides indexed by i ∈ {1, . . . , N}. The i-th suite comprises the
RNA region between a C5′i atom and the second next O3′ atom labeled O3′i+1 and the backbone shape of the suite is described by the seven dihedral
angles (δi, εi, ζi, αi+1, βi+1, γi+1, δi+1) ∈ T7 for i = 1, . . . , N − 1, cf. Figure 1 in the main text.

Indeed, geometric suite variability is solely governed by the dihedral angles, since bond lengths (distances between two consecutive atoms) and bond
angles (angles between three consecutive atoms) are approximately constant due to the laws of chemistry, Watson et al. (2004). In consequence, the
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geometry of the i-th suite is described, up to a proper Euclidean transformation (translation and rotation), by (δi, εi, ζi, αi+1, βi+1, γi+1, δi+1) on the
seven-dimensional torus. T7 is a metric space with the canonical product distance dT7 where

d2
T7 (φ, ψ) =

7∑
j=1

dT(φj , ψj)
2 , (4)

dT(φj , ψj) := min{|φj − ψj |, 2π − |φj − ψj |},

with j = 1, . . . , 7 and φ = (φj)
7
j=1, ψ = (ψj)

7
j=1.

angle atom bonds
α O3’ - P - O5’ - C5’
β P - O5’ - C5’ - C4’
γ O5’ - C5’ - C4’ - C3’
δ C5’ - C4’ - C3’ - O3’
ε C4’ - C3’ - O3’ - P
ζ C3’ - O3’ - P - O5’

O3′

C3′

C4′

C5′

δ

Fig. 17: Left: Names (first column) of dihedral angles along the two central atoms of the four atoms involved (second column), see Figure 1 in the main
text. Right: The dihedral angle δ determined by the atoms C5′, C4′, C3′, O3′.

D.3 Size-And-Shapes of Mesoscopic Strands

The mesoscopic view takes the coordinates of the 2k+ 2 ’closest’ sugar rings into account and can be seen as an intermediate scale between the suite or
microscopic (single atoms) and macroscopic (the whole RNA strand) representation.

Definition D.2. We consider a connected RNA strand with N ≥ 2k + 2 consecutive nucleotides indexed in i ∈ {1, . . . , N}, see Figure 4 in the main
text. Each nucleotide comes with a sugar ring formed by the atoms C1′i, C2′i, C3′i, C4′i and O4′i (see Figure 1 in the main text). Denoting their center
of gravity (i.e. average location) with x̄i, for all i = k + 1, . . . , N − k − 1, the mesoscopic strand corresponding to the i-th suite is the configuration
matrix X(i) = (x̄i−k, x̄i−k+1, . . . , x̄i+k+1) ∈ R3×(2k+2). Its size-and-shape in SΣ2k+2

3 , see Dryden and Mardia (2016), is called its mesoscopic
shape.

Since distances between two neighboring sugar rings and angles between three consecutive sugar rings vary, dihedral angles defined by four consecutive
sugar rings are not sufficient to completely define the geometry of mesoscopic strands up to proper Euclidean transformations. The size-and-shape
representation, however suffices.

Remark D.3. For the mesoscopic strands we include the sugar ring centers of the k = 2 suites preceding and the k = 2 suites following the suite of
concern, cf. Figure 4 in the main text. Choosing k = 2 reflects the local geometry at an intermediate (mesoscopic) scale as the 5 + 1 = 6 bases from the
2k + 1 = 5 suites correspond roughly to the number of bases involved in a half helix turn, see e.g. Watson et al. (2004).

We only work with suites that have a corresponding mesoscopic strand, i.e. suites that are not on the outer edge of an RNA strand.

Definition D.4. For an RNA strand of length N ≥ 2k + 2 the suites numbered i = k + 1, . . . , N − k − 1 are called admissible, so that every
admissible suite a has a mesoscopic shape ma ∈ SΣ2k+2

3 and vice versa.

D.4 The Benchmark, Training and Test Data Sets

In our applications, we analyze a subset of a classical RNA data set. The classical RNA data set comprises 8665 suites, carefully selected for high
experimental X-ray precision (of 3 Å= 0.3 nanometers) by Duarte and Pyle (1998); Wadley et al. (2007) and analyzed by them and by others, for example
Murray et al. (2003); Richardson et al. (2008) and Eltzner et al. (2018). The data originate from 71 different measurements and the atomic positions of
each measurement have been stored in the PDB format of a protein data bank file, online at the Protein Data Bank, see Berman et al. (2000). More details
on the PDB files can be found in Table 1 of Supplement A.

From this classical data set, we consider the 7648 admissible suites (which have an associated mesoscopic strand, see Definition D.4) and call this
data set the benchmark data set.

• From the benchmark data set the 5957 clash free suites (suites that also have clash free mesoscopic strands, see Definition 1.2 in the main text) form
the benchmark training data set T, see Figure 12.

• From the remaining suites we chose the suites that feature within suite clashes, forming the benchmark test data set E, containing 198 suites.

As our purpose lies in demonstrating our methods rather than correcting all clashes, all other suites (not themselves clashing but featuring clashes in their
mesoscopic strands) are disregarded in our analysis.
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E Cryo-EM, X-Ray Crystallography, Validation and Correction
Cryo-EM (cryogenic electron microscopy) and X-ray crystallography are popular methods to determine atomic positions in RNA structures, cf. Jain et al.
(2015). For the former, RNA molecules are shock frosted and subjected to electron microscopy. For the latter, using a suitable substrate, RNA molecules
are crystallized and subjected to X-ray imaging. The resolution of X-ray crystallography is defined as the smallest distance of two objects such that their
diffraction patterns can be separated. In cryo-EM, resolution has been defined in various ways, usually via properties of the Fourier transformed electron
density, in order to be comparable to the resolution values given for X-ray crystallography measurements. For a review, see Liao and Frank (2010). From
different angles, via inverse Fourier transforms, the electron density can be reconstructed and, in principle, density peaks correspond to atom positions.
Figure 18 shows exemplary level surfaces of electron densities with estimated atom positions.

Fig. 18: Left: Histogram of X-ray crystallography resolutions in the benchmark data set, see Supplement D.4. Middle and right: reconstructed RNA
structure and electron density contour surface created with PyMOL at level of one σ, see Schrödinger, LLC (2015), at resolution 1.6 Å (middle, from
the benchmark file 1csl, Ippolito and Steitz (2000), see Table 1 building our benchmark data set in Supplement D.4) and at resolution 3 Å (right, from
benchmark file 1f8v, Tang et al. (2001)).

At a resolution of 2.5 to 4Å, which is typical for large RNA strands, base pairings can be predicted well and phosphates are well identified by strong
peaks of density Jain et al. (2015). It is, however, more challenging to precisely estimate the atom positions describing the sugar-phosphate backbone, see
for example Murray et al. (2003). In addition, structural disorder due to crystallization and thermal oscillation contribute to uncertainties, occasionally
resulting in incompatible reconstructed atom positions. Indeed, our benchmark data set contains approximately 2.5 % clash suites.

The PHENIX (Python-based Hierarchical ENvironment for Integrated Xtallography) software provides some validation tools that detect local errors,
see Liebschner et al. (2019). While there are different types of errors detected by PHENIX, in this work we focus on backbone clashes, see Definition 1.2
in the main text. They usually occur after the hydrogen atoms (cf. Figure 1 in the main text) which are not visible in the electron density measurements
(H-atoms contain only one electron which is shifted to the covalent-bond partner atom) are added to the reconstructed configuration.

A popular and well established (see for example Richardson et al. (2018), Jain et al. (2015)) tool for structure correction is ERRASER (Enumerative
Real-space Refinement ASsisted by Electron-density under Rosetta) Chou et al. (2013). In contrast to manual correction tools such as the RNA Rotator
Tool which is available as KiNG, see Chen et al. (2009), ERRASER automatically corrects complete RNA structures as well as individual residues. It
usually executes the following three steps three times in succession, see Chou et al. (2013):

1. The high-resolution Rosetta energy function, extended by electron density correlation evaluation, subjects, among others, all dihedral angles to
minimization in order to obtain a new reconstruction.

2. Residues in this new reconstruction are labeled if the PHENIX validation tools (Supplement F.1) detect errors, if the backbone’s configuration is not
recognized, or if other geometric errors occur (e.g. in the structure of the sugar ring).

3. Labeled residues are reconstructed one after the other by Single Nucleotide StepWise Assembly (SWA) which samples all nucleotide atoms from an
exhaustive grid search.

Supplement F details how we use and apply PHENIX and ERRASER. In application to the benchmark data set from Supplement D.4 we compare
ERRASER to our proposed CLEAN MINTAGE in Section 3.1 of the main text and in Supplement I.

F Using PHENIX and ERRASER

F.1 PHENIX

Since hydrogen atoms are not visible in the electron density measurements, first, the PHENIX tool phenix.reduce adds the hydrogen atoms. Then,
phenix.probe performs an all-atom contact analysis (Word et al., 1999), which declares atoms that are not bonded to each other as a clash if they
are closer together than is physically possible (i.e. if van der Waals shells overlap by more than 0.4 Å). For each PDB file, phenix.clashscore
generates a list of all clashes.

F.2 ERRASER

To correct a PDB file with ERRASER, one needs a 2mFo-DFc density map in CCP4 format in addition to the raw PDB file. We created the 2mFo-DFc
electron density maps with the PHENIX map tool, see Liebschner et al. (2019). However, some older PDB files have not published the associated
experimental files necessary to create a 2mFo-DFc density map in CCP4 format and were therefore left out. We used the offered online server ROSIE
(Rosetta Online Server that Includes Everyone) see Chou et al. (2013) to obtain the ERRASER corrections. ERRASER returns a statistic for each corrected
PDB file that identifies a clashscore (the number of clashes per 1000 atoms) in the raw data set and the clashscore in the PDB file corrected by ERRASER.
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G MINTAGE Details

G.1 Adaptive Cutting Average Linkage Tree Clustering on a Metric Space

The average linkage clustering, also known as unweighted pair group method with arithmetic mean or simply as UPGMA, was first developed by Sokal
and Michener (1958). It is a hierarchical clustering method that creates a rooted tree where each node stands for a cluster comprising all leaves below that
node.

Starting with dataX(1), . . . , X(n) in a metric space with distance d, initially, eachX(i) (i = 1, . . . , n) is assigned its own cluster yielding the initial
running cluster list. The tree constructed starts with a graph comprising n leaves labeled from 1 to n, representing each of these initial clusters. Then,
iteratively, if there is more than one cluster in the running cluster list, the two clusters with the smallest average distance are merged to form a new cluster
which is added to the running list, from which the two merged clusters are deleted. Here, the average distance between two clusters A and B is given by

d(A,B) =
1

|A| · |B| ·
∑
X∈A

∑
Y ∈B

d(X,Y ). (5)

The graph is extended by adding a parent node above the two nodes corresponding to the merged clusters and adding branches joining them to the parent
node. If there have been m nodes, the parent node is labeled m + 1 and assigned a value denoting the distance between the two merged clusters. The
iteration terminates if the running list contains only one cluster, comprising all data, which forms the root of the tree, called the average linkage clustering
tree. Notably, node values increase when approaching the root. Indeed, if clusters A and B are merged to cluster A ∪B and C is any other cluster, then
d(A,B) ≤ d(A,C), d(B,C) and hence

d(A ∪B,C) =
1

|A ∪B| · |C| (|A| · |C| · d(A,C) + |B| · |C| · d(B,C)) ≥ d(A,B) .

Every choice of a distance value dc > 0 yields a clustering by a tree cut at distance dc, i.e. by taking that running list when the last node with distance
value ≤ dc has been added. A simple example is illustrated in Figure 19.

X(1)

X(2)

X(3)

X(4)

5

1

2

3

4

root

5

6

7

(1.4)

(2.8)

(7.1)

0 1 2 7

tree cut
(1.6)

Fig. 19: Left: Four data pointsX(1), . . . , X(4) in the Euclidean plane. The dark red circles show the running cluster list after the first merge. Right: The
corresponding average linkage cluster tree. The dark red line displays the tree cut at distance 2 (after the first merge). The node values are in parentheses.

We note that instead of the average distance function in (5), one may consider the minimal cluster distance yielding single linkage or nearest neighbor
clustering, developed by Florek et al. (1951), which is currently also highly popular. It tends to return long elongated clusters, an effect called chaining,
see Everitt (1993). For our purpose of structure correction relying on Fréchet means, which are generalizations of averages to metric spaces, clustering
based on average distance ensures that Fréchet means are within or close to their clusters with a tendency towards isotropic spread.

In the simple clustering approach, the cluster tree is cut at some fixed distance, cf. Figure 19. We use this for motivating our CLEAN algorithm in
Section 2.3.1. Obviously, this simple approach fails to separate frequent cluster configurations, for instance if two closely neighboring clusters have a
higher density than a third one. Such configurations are separated, however, using a data-adaptive cutting procedure, see for example Langfelder et al.
(2007) and Obulkasim et al. (2015). We choose the following tuning parameters:

• maximal outlier distance dmax controlling cluster density,
• minimal cluster size κ controlling, if not too small, that our mode hunting from Section 2.2 in the main text can significantly separate one-dimensional

clusters with several modes,
• relative branching distance q ensuring that two clusters are only split if their parent node’s distance value is significant in relation to the greatest

distance value of its child nodes.

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.06.455406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455406


17

Algorithm G.1. Consider the set P = {X(1), . . . , X(n)} of n data points. Let R be the outlier list and C be the cluster list, each of which are initially
empty. They are filled iteratively as follows:

1. Compute the average linkage clustering tree from P

2. Perform a tree cut at distance dmax to obtain a clustering, move from P to R all data points that are in clusters with less than κ data points.
3. Compute the average linkage cluster tree for the new P as in Step 1.
4. Set sP =

√
|P |+ κ2 (inspired by the square root rule of thumb used in histogram binning), create an empty list L of clusters.

5. Begin at the root and always follow the branch with more points at each node. From each node add the child node corresponding to the smaller
subcluster to L

a. if it contains more than sP data points,
b. and if the q-fold of its parent node’s distance value is greater than the two children nodes’ distance values.

6. At the last node, where the smaller subcluster is added to L, also add the larger subcluster to L
7. Consider L:

• if L is empty, move the union of all data points from P to C; these correspond then to one single cluster,
• else, add the largest cluster in L to C and remove its points from P .

8. If |P | > 0, go to Step 1.
9. Return the clusters list C and the outlier list R.

Figure 3 in the main text illustrates that some of the pre-clusters resulting from the benchmark training set obviously contain subclusters that have not
be identified by Algorithm G.1. It turns out they can be well separated by mode hunting (see Section 2.2 in the main text) applied to their one dimensional
torus PCA representation.

G.2 The 15 MINTAGE Benchmark Classes and the MINTAGE Benchmark Outliers

In this section we cluster the training set suites from Supplement D.4 with the MINTAGE Algorithm 2.1 yielding the 15 MINTAGE benchmark classes
and the MINTAGE benchmark outliers. Since we use this clustering in Section 2.3 in the main text to suggest corrections for clash suites, we aim at
larger and concentrated clusters, possibly at the price of a larger number of outliers which cannot be allocated to any of the clusters. To this end, for the
pre-clustering Algorithm G.1 we choose the minimal cluster size κ = 20, the relative branching distance q = 0.15 and the maximal outlier distance
dmax such that 5% of the suites in the average linkage tree are in a branch with less than κ data points. The clustering results are summarized in Figure 20.

Cluster number Size
1∗ 3933
2∗ 327
3 203
4 91
5∗ 84
6 46
7∗ 40
8∗ 38
9 37

10 37
11 31
12 29
13 28
14 28
15 23

Outliers 961
Total 5957

Fig. 20: Left: Clusters and outliers (numbers and sizes) obtained from applying MINTAGE to the benchmark training data set yielding the 15 MINTAGE
benchmark classes and outliers. Asterisks mark clusters displayed in the right panel. Right: Five exemplary clusters that can be well displayed together
(colors conforming with Figure 3 in the main text).

With the tuning parameters thus set, our torus PCA based MINTAGE method returns 15 clusters. The largest corresponding to the A helix shape
contains 3933 elements and is highly dominant. All clusters are rather dense and even the smallest cluster has a credible size of 21 elements. The number
of outliers (961), however, is quite large. We conjecture that a considerable number of these are due to incorrect structure reconstructions, which have not
been detected because they have not led to clashes. All 15 clusters determined with the MINTAGE clustering are also displayed in Figure 13.
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H CLEAN Details

H.1 Motivation, Procrustes Step and Design

The following Figures 21 and 22 complement the motivation of CLEAN in Section 2.3.1 from the main text.

Fig. 21: Left: Binned torus standard deviation of the suites belonging to simple mesoscopic clusters. For instance, the suites of Cluster 1 from Figure 7
in the main text have a standard deviation of 0.83, so that Cluster 1 is counted in the 4th green bar from the left. Right: Percentages of suites in simple
mesoscopic clusters belonging to a single MINTAGE benchmark cluster.

Fig. 22: Left: The clash suites from the benchmark data set in Supplement D.4 with carbon (dark red), oxygen (dark blue) and phosphorus atoms (pink),
cf. Figure 1 in the main text. Right: Their mesoscopic shapes.

Algorithm H.1. The Procrustes Step 2 in the CLEAN Algorithm 2.4 in the main text, with notation given there, proceeds as follows:

1. With [Z] = µc and [X] = mc where Z = (z1, . . . , z2k+2) and X = (x1, . . . , x2k+2), set (y1, . . . , y2k+2) = Y := Z

2. Obtain Y ′ from Y by setting Y ′ := Y and additionally

y′1 :=αy1 + (1− α)y2k+2 , y′2k+2 :=αy2k+2 + (1− α)y1

y′k+1 :=βyk+1 + (1− β)yk+2 , y′k+2 :=βyk+2 + (1− β)yk+1

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.06.455406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455406


19

where

α :=
1

2

(
1 +
‖x2k+2 − x1‖
‖y2k+2 − y1‖

)
, β :=

1

2

(
1 +

`τc
‖yk+2 − yk+1‖

)
.

3. Rotate Y ′ into optimal position Y ′Z with respect to Z and set Y := 1
2

(Y ′Z + Z)

4. Repeat Steps 2 and 3 until [Y ′] converges.

Remark H.2. By design, each suite corrected by the CLEAN Algorithm 2.4 is assigned to one of the torus PCA clusters. Moreover, we have:

1. The algorithm uses the ρ most similar mesoscopic shapes Uc. Throughout the applications, we choose ρ = 50 which corresponds to about one
percent of the benchmark training data. Further, choosing a locally dominating and not a globally closest cluster, we prevent the algorithm from
displacing landmarks of the mesoscopic shapes too drastically.

2. As scale is not factored out in size-and-shape space, in Step 3 of Algorithm 2.4 the distance between Landmarks 3 and 4 is set to the length of the
Fréchet mean suite, to ensure that mτc is indeed a mesoscopic shape compatible with τc. Also the distance between Landmarks 1 and 6 remains
constant. Hence, Mc,τc is a proper subspace of SΣ2k+2

3 which will usually not contain the Procrustes mean µc.
3. Since geodesics in SΣ2k+2

3 are projections of straight lines between preshapes in optimal position (e.g. Huckemann et al. (2010)), the orthogonal
projection mτc = [Y ′] of [Z] = µc to Mc,τc is a fixed point of the Subalgorithm H.1 of Algorithm 2.4. In applications we observe rather fast
convergence.

H.2 Validation of CLEAN

We apply the CLEAN Algorithm 2.4 to the 198 clash suites which form the test data set C, which is part of the benchmark data set from Supplement D.4.
For validation we reassure ourselves that backbone correction is realistic and neither arbitrary nor ambiguous. For the former, verify that corrections

happen on a scale not larger than the underlying X-ray crystallography resolution, see Supplement E, and for the latter we verify that the largest clusters
in neighborhoods Uc are indeed strongly dominating in most cases.

In order to relate the amount of correction to resolution, consider

d̃2
c :=

1

resolution2

3

degrees of freedom
dΣ(mc,mτc )2 , (6)

for c ∈ C. The degrees of freedom are given by 3(2k+ 2)− 3− 2− 1 = 3 · 2k, so that the inverse of the second quotient above gives the number 2k of
free landmarks in Mc,τc .

Fig. 23: Left: A mesoscopic strand of a clash suite (red) and its corrected mesoscopic strand (with equal first and last landmark) rotated into optimal
position (green) of the torus mean of the dominating cluster in Uc (defined in (1) in the main text, not depicted). Right: Histogram of relative distances
d̃c, c ∈ C, from (6) between corrected mesoscopic shapes and original mesoscopic shapes.

The histogram in Figure 23 shows that for the vast majority of clash suites c ∈ C, d̃c is smaller than 1. Thus, corrections are only rarely slightly above
and mostly well below the order of resolution.

In order to assess how dominating torus PCA clusters are in neighborhoods Uc (c ∈ C), the histogram in Figure 24 shows the number of suites in
the dominating clusters Cic . Indeed, for many more than half of the neighborhoods, the dominating cluster contains more than half of the neighboring
suites. Remarkably, the negative correlation visible in the scatter plot in Figure 24 (right) shows that a smaller amount of correction tends to correlate
with more elements being in the dominating cluster. c

I Comparing CLEAN MINTAGE with ERRASER
By design, as mentioned in Remark H.2, our CLEAN MINTAGE algorithm corrects clashes by assigning clash suites to one of the classes of the underlying
training data set. In contrast, after correction by ERRASER, see Supplement E, many clash suites remain outliers. We show this in this section by applying
MINTAGE to the training data set T′ (defined below) which is closely related to the benchmark data set, specifically tailored to ERRASER.
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Fig. 24: Left: Histogram of the number of suites in Uc (defined in (1) in the main text), c ∈ C, of the dominating torus PCA cluster. Right: Scatter plot
relating the number of suites in the dominating cluster of Uc and the relative distance d̃c, over c ∈ C.

In fact, ERRASER seems to correct rather locally and cautiously and thus only part of the clashes, whereas our algorithm corrects more globally into
configurations near the training data, that are thus most likely clash free, see Figures 2 and 9 from the main text and Figure 14.

Notably, the ERRASER method on the ROSIE server can only correct PDB files that come with an associated 2mFo-DFc density map in CCP4 format
and do not exceed a specific maximum size. This is the case for only 49 PDB files of the 71 PDB files from our benchmark data set, comprising 2325

suites. We denote this set by R and it is a subset of our benchmark data set from Supplement D.4. Whether clashing or not, all of the suites from R are
corrected by ERRASER (processing PDB files) and we denote the corrected data set with E, and again, E comprises 2325 suites.

As the data set E is too small for the learning step of CLEAN MINTAGE, we augment it by the clash free suites T \R (T denotes the original training
data set from Supplement D.4) which are not corrected by ERRASER, to obtain the

• the ERRASER training data set T′ := (T \R)∪E, which has now the size 6433 (it comprises slightly more suites than T, namely also of the former
clash suites and its neighbors after correction by ERRASER),

• the ERRASER test data set C′ = C ∩R of clash suites which has size 73, and
• the ERRASER data set T′ ∪ C′ of size 6506.

I.1 Clash Reduction by ERRASER

We apply the validation method PHENIX, see Supplement E, which comes with the tool phenix.clashscore which returns the number of clashes
per 1000 atoms found in a given PDB file. Note that this clash score includes all clashes between two atoms in the measurement, not just the clashes
between two backbone atoms.

Fig. 25: Left: Each of the 73 green points compares the clash score of a single PDB files before (horizontal) and after (vertical) correction by ERRASER.
Right: Histogram of numbers of atom clashes (horizontal) in clash suites before (black) and after correction by ERRASER (magenta).

The left panel of Figure 25 shows that ERRASER effectively reduces clash scores as an overwhelming part of the data points (each corresponding to
a single PDB file) lies substantially below the diagonal. The right panel of Figure 25 shows the amount of clash reduction on suite level: after correction
by ERRASER, from C′, approx. 40 % (29) of the suites have been made clash free and almost equally many (30) feature only one clash; correcting the
few suites with a higher number of clashes was only partially possible.

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.06.455406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455406


21

Figure 2 in the main text displays the clash suites from T′ before and after correction by ERRASER and CLEAN MINTAGE. Through ERRASER
correction, no distinct structures become visible. As illustrated in Supplement I.2, a majority of suites remain outliers even after correction by ERRASER.
In stark contrast, CLEAN MINTAGE assigns most clash suites to the dominating (first cluster, A helix) and some to smaller clusters.

I.2 Outliers After ERRASER Correction?

In order to asses the extent to which ERRASER corrected suites remain outliers, we apply our MINTAGE Algorithm 2.1 to the ERRASER training data
set T′ using the tuning parameters from Supplement G.2.

Cluster number Size
1∗ 4393
2∗ 426
3∗ 102
4 98
5 75
6 62
7 46
8∗ 44
9 39

10 38
11 34
12 33
13 28
14 26
15 24

Outliers 965
Total 6433

Fig. 26: Left: The MINTAGE clusters and outliers (numbers and sizes) of the ERRASER training data set T′. Asterisks mark clusters displayed in the
right panel. Right: Five exemplary clusters that can be well displayed together. Notably, Clusters 1, 2, 3 and 8 correspond to the MINTAGE Clusters 1,
2, 5 and 7 of the benchmark data set in Figure 20.

As shown in Figure 26, this returns 15 clusters. The largest corresponds to the A helix shape as in Figure 20, but is even more dominant here. The
overall clustering is comparable to that from Figure 20, in particular the four clusters displayed in the respective right panels are similar (Clusters 1, 2,
5, 7 from the benchmark data set in Figure 20 roughly correspond to Clusters 1, 2, 3, 8 from the ERRASER training data set T′ in Figure 26). Table 2,
however, shows that approx. 80 % of the clash suites from C′ corrected by ERRASER remain outliers.

Cluster number number of ERRASER corrected clash suites
1 4
2 4
5 1
6 4

11 1
15 3

Outliers 56
Total 73

Table 2. Numbers of clash suites corrected by ERRASER into MINTAGE clusters (numbered as in Figure 26) of the ERRASER training data set T′, out of the 73
clash suites forming the ERRASER test data set C′.

The exemplary Figures 10 in the main text and 27 here illustrate the reason: ERRASER performs clash correction locally and moderately and in
consequence, its results often seem too restrictive. Guiding correction by the mesoscopic scale, as in our CLEAN MINTAGE backbone correction method,
results in, often only subtle, changes on larger scales, which are often less restrictive on the suite scale. Indeed, this leads to correcting clash suites into
previously classified shapes, i.e. similar to clash free suites in the training set.
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Fig. 27: The clash suite c (red) from Figure 8 in the main text and the dominating cluster (black) from the ERRASER training data set T′ within the 50

nearest mesoscopic shapes in the neighborhood Uc (defined in (1) in the main text), giving their CLEAN MINTAGE correction (in the "middle" of Uc, see
Figure 8) and the corrected suite proposed by ERRASER (magenta).
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