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Computational modeling of 3D chromatin plays an important
role in understanding the principles of genome organization.
We discuss methods for modeling 3D chromatin structures, with
focus on a minimalistic polymer model which inverts population
Hi-C into high-resolution, high-coverage single-cell chromatin
conformations. Utilizing only basic physical properties such
as nuclear volume and no adjustable parameters, this model
uncovers a few specific Hi-C interactions (15-35 for enhancer-
rich loci in human cells) that can fold chromatin into individual
conformations consistent with single-cell imaging, Dip-C, and
FISH-measured genomic distance distributions. Aggregating
an ensemble of conformations also reproduces population Hi-C
interaction frequencies. Furthermore, this single-cell modeling
approach allows quantification of structural heterogeneity and
discovery of specific many-body units of chromatin interactions.
This minimalistic 3D chromatin polymer model has revealed a
number of insights: 1) chromatin scaling rules are a result of
volume-confined polymers; 2) TADs form as a byproduct of 3D
chromatin folding driven by specific interactions; 3) chromatin
folding at many loci is driven by a small number of specific in-
teractions; 4) cell subpopulations equipped with different chro-
matin structural scaffolds are developmental stage-dependent;
and 5) characterization of the functional landscape and epige-
netic marks of many-body units which are simultaneously spa-
tially co-interacting within enhancer-rich, euchromatic regions.
The implications of these findings in understanding the genome
structure-function relationship are also discussed.
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Introduction
Chromosome conformation capture (1–4) and imaging anal-
ysis (5–8) have generated a wealth of information on nu-
clear genome organization. Structural units, such as compart-
ments, topologically associating domains (TADs), and loops,
have been uncovered from block patterns in Hi-C frequency
heatmaps (9–11). However, canonical Hi-C measures only
population-averaged, pairwise interaction frequencies, which
do not fully represent the underlying 3D conformational dis-
tributions in individual cells. This limits our understanding,
as single-cell 3D chromatin structures do not automatically
follow from Hi-C’s population-averaged heatmap represen-
tation (12).
Veiled behind each Hi-C heatmap is a population of 3D chro-

matin conformations. While single-cell technologies can pro-
vide direct information on 3D spatial arrangements of ge-
nomic elements within a nucleus (5, 11), they are limited in
both resolution and coverage. As an alternative, computa-
tional modeling of chromatin polymers provides a powerful
means for uncovering 3D spatial configurations of genomic
regions and plays important roles in deciphering physical
principles of genome organization.

Optimization-Based 3D Chromatin Models. Among the
many different approaches to modeling 3D chromatin from
Hi-C, optimization methods aim to generate chromatin con-
formations maximally satisfying Hi-C derived distance-
restraints (13–18) (reviewed in (19, 20)). However, they are
ad hoc as conformations obtained do not follow a physically-
governed, a priori-defined distribution, owing to the lack of
a physical model underpinning these methods. In addition,
there is no consideration to ensure adequate sampling such
that a diverse structural ensemble is sufficiently represented.
Furthermore, many tunable parameters are often employed
to ensure a good fit to experimental data: as many distance
thresholds as the number of restraints modeled may need to
be adjusted. If inadequately regularized, they may lead to
overfitting.
Understanding the spatial organization of chromatin requires
a physical 3D chromatin model. With an accurate physical
model, the sampled conformational ensemble will correctly
reflect the conformational distribution in the cell population.

3D Heteropolymer Models with an Empirical Energy
Function. We now briefly discuss physical models of het-
eropolymers with binding interactions among regions of dif-
ferent chromatin states (see excellent reviews of (21–23) for
details). Here chromatin is modeled as heterogeneous blocks
of 3D monomer chains. Monomers, representing 0.5 − 500
kb chromatin, are grouped into different blocks by their
epigenetically-defined chromatin states. An empirical energy
function describes how these monomers interact according
to their binding affinities (24–31). Molecular dynamics sim-
ulations then generate an ensemble of chromatin conforma-
tions. While realistic dynamics are not possible at this coarse-
grained scale, the ensembles obtained can provide direct 3D
structural information.
These powerful models allow detailed assessment of the ef-
fects of different mechanistic assumptions, which can reveal
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important insights into principles of genome organization. As
an example, studies based on the MiChroM method suggest
the likely origin of chromosome territories, reproduce phase
separation, and provide further evidence for the preferential
localization of active genes (26, 27, 32). It was shown that
epigenetic information can be used to predict the structural
ensembles of multiple human cell lines, and short segments
of chromatin make state transitions between closed confor-
mations and open dumbbell conformations (33). The ag-
gregation of denser and predominantly inactive chromatin
was found to drive the positioning of active chromatin to-
ward the surface of individual chromosomal territories (33).
Recent efforts in scaling up MiChroM showed that inter-
chromosomal interactions can now be studied through de-
tailed molecular dynamics simulations (34). A study of the
full diploid genome of all 46 human chromosomes at 1 Mb
resolution was recently carried out to determine factors im-
portant for radial positioning of chromosomes (30). A sep-
arate study using a polymer model with only two epigenetic
states and fixed loop anchors showed that compartments in
Hi-C maps are due to microphase separation of these two
states, leading to highly heterogeneous chromosome dynam-
ics (28).

The String and Binders Switch (SBS) model and related
methods (24) have been applied to study how binder medi-
ated chromatin interactions can lead to 3D chromatin struc-
tures. In (35), the 3D structures of the Sox9 locus and the
whole mouse chromosome 7 were constructed. In (31), it was
found that an increase in binder concentration can lead chro-
matin to adopt a coil-to-globule phase-separated state, where
the intrinsically degenerate globule state corresponds to the
large variation observed in modeled 3D chromatin confor-
mations. Another recent study applied the SBS model to ex-
tract 3D chromatin structures from GAM, SPRITE and Hi-C
data (36), and compared these experimental methods with in
silico models. These experimental techniques were found to
have different efficiency in capturing long-range interactions,
requiring a different minimum number of cells (ranging from
250 to 800) for replicate experiments to return statistically
consistent measurements (36).

Binding Factors and Affinities. The behavior of het-
eropolymer chromatin is fully determined by the energy land-
scape of the model (24–28). Unlike molecular mechanics,
where physical forces such as electrostatic interactions have
been thoroughly studied, first-principle understanding of the
physical factors and interactions of chromatin at mesoscale is
not available. There are likely over 2,600 different proteins
expressed in a cell (37), many yet to be identified, which
complex with DNA and each other at often unknown rates
and affinities. Instead, coarse-grained chromatin states and
empirical binding affinities must be inferred from Hi-C and
epigenetic data. There are likely many different chromatin
state and binding affinity assignments that are all consistent
with experimental data. The non-identifiable nature of such
assignments, combined with other assumptions of the energy
model, may hinder precise inference and limit the biological
interpretability in phenomena detected through simulations.
Furthermore, while an a priori constructed energy model
can effectively explore consequences of various model as-
sumptions, making biological discoveries not encoded in the
model input is challenging.

Importance of Thorough Sampling. A prerequisite for all
3D chromatin polymer methods is that conformational en-
sembles must be thoroughly sampled. This is exceedingly
challenging as chromosomes are severely confined in the
nuclear volume (38) and exhibit extraordinary heterogene-
ity (5, 6, 33, 39). Generating biologically-accurate chromatin
ensembles using molecular dynamics is non-trivial. Without
thorough sampling, it is difficult to ascertain if bias is present
due to inadequate sampling, a misspecified energy model, or
both.

Minimalistic Self-Avoiding Polymer Model of
3D Chromatin
Another approach is to model chromatin as a 3D self-
avoiding polymer but with minimal physical properties and
no adjustable parameters. Once its emerging behavior is
characterized and deficiencies identified, additional ingredi-
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ents are then introduced to refine the model. Such a minimal-
istic approach of polymer modeling has had great success in
earlier studies of protein folding (40, 41).
The initial premises are that chromatin must be 1) connected,
2) self-avoiding, and 3) confined in the cell nucleus. This
approach becomes feasible with recent deep-sampling al-
gorithms (38, 42–45). These algorithms generate nuclear-
confined, self-avoiding chromatin polymers by sequentially
placing connected monomer units until the target polymer
length is reached (Fig 2a). Advanced sampling techniques
such as fractal Monte Carlo enable generation of large and
complex ensembles consisting of 104−5 single-cell 3D chro-
matin structures.
We next discuss recent findings using this minimalistic ap-
proach. First, their generic behavior without invoking Hi-
C-derived information: experimentally measured chromatin
scalings arise naturally, and incorporating telomere and cen-
tromere tethering results in 3D chromatin ensembles that re-
produce Hi-C measured interactions in budding yeast.

Nuclear Confinement Is Intrinsic to Chromatin Scaling
Behavior. For two loci separated by a genomic distance s,
their mean-squared distance R2(s) and contact probability
p(s) scale characteristically. Specifically, R2(s) ∼ s2v , with
the exponent v= 0.33 (46) and withR2(s) further plateauing
at longer s. The contact probability scales as p(s) ∼ 1

sα , with
the exponent α = 1.08 (1). Fractal globule was thought re-
sponsible for these behaviors (1), although subsequent stud-
ies suggested otherwise (47).
Imposing only nuclear volume confinement, randomly-
generated ensembles of self-avoiding 3D chromatin poly-
mers exhibit both scaling relationships and plateau behav-
ior (Fig 2b) (38). These results show: 1) random and self-
avoiding polymers in confinement give rise to scaling rela-
tionships and 2) nuclear size is a major determinant of chro-
matin folding. Indeed, nuclear morphology, such as a large
ratio of nuclear to cytoplasmic volume, is likely important
for the broad cellular reprogramming capabilities in stem
cells (48). Further, nuclear size is often associated with dis-
eases such as cancer (48).

Nuclear Confinement With Landmarks Explains Yeast
3D Genome. In budding yeast, centromeres and telomeres
are tethered to the spindle-pole body and nuclear envelope,
respectively. Incorporating physical tethering of these nu-
clear landmarks into a basic polymer model was sufficient
to give rise to the preferential localization of functional loci
in the nucleus (49, 50). The ensemble of confined chro-
matin polymers with landmarks reproduced intra- and inter-
chromosomal Hi-C interaction frequencies (Pearson R >
0.81 and R > 0.91, respectively) (43, 49, 50) (Fig 2c). In
addition, centromere tethering was found to be responsible
for inter-chromosomal interactions (43). Furthermore, fragile
sites spatially cluster together (43). These findings demon-
strate that ensembles of self-avoiding polymers in confine-
ment, along with simple landmarks, can explain many Hi-C
frequencies observed in yeast. There are significant implica-
tions for mammalian cells with analogous tetherings: attach-

ment of heterochromatin to lamin, and association of actively
transcribed regions to nuclear speckles (51–54). It would
be interesting to quantitatively assess the extent to which
these tetherings contribute to genomic 3D spatial organiza-
tion, their functional consequences, and whether fragile sites
similarly congregate spatially.

A Small Set of Specific Interactions Can Drive
Chromatin Folding
The results from the yeast polymer model require no Hi-
C inputs. This suggests that many measured Hi-C interac-
tions are due to generic effects of confined polymers: many
Hi-C interactions occur due to random collisions of chro-
matin fibers confined in the cell nucleus (38, 42, 55). How-
ever, a small number of interactions occur at significantly el-
evated frequencies than would be expected in a randomly-
generated ensemble of confined chromatin polymers. These
over-represented interactions are known as specific interac-
tions (42). In Drosophila, they constitute only 5−7% of mea-
sured Hi-C interactions. While their numbers are small, they
appear to be critical in maintaining chromatin architecture, as
simulations show that these interactions are sufficient to fold
chromatin at both a locus and whole chromosome level. We
discuss these below.

A Small Fraction of Specific Interactions Captures
Overall Hi-C Pattern. Specific Hi-C interactions emerge
after filtering of spurious interactions which occur due to
generic effects of polymer connectivity, self-avoidance, and
nuclear confinement. To filter these spurious interactions,
one compares the frequency of a Hi-C contact against the cor-
responding frequency in a simulated ensemble of randomly-
generated polymer contacts (Fig 2d). Specific Hi-C con-
tacts will have high frequencies meeting statistical signifi-
cance and hence unlikely to have resulted from random colli-
sions (38, 42). In Drosophila, analysis of 10 loci showed that
only 5−7% of Hi-C interactions are specific (2.0−2.3×106

out of 35 − 42 × 106 Hi-C interactions); however, they cap-
ture the overall Hi-C pattern (Fig 3b) (45). Furthermore, there
are clear changes in specific interactions during embryo de-
velopment, such as reductions in active-inactive interactions
and increases in inactive-inactive interactions (45). These
changes, however, are undetectable without filtering of spuri-
ous Hi-C interactions (Fig 3b). This study illustrates that spe-
cific interactions reveal important temporal changes in chro-
matin structure not apparent in the measured Hi-C data.

Specific Interactions Can Fold Chromatin in
Drosophila. An important question about 3D chromatin
is whether there is a set of critical interactions that drive
chromosomal folding (Fig 3a) (42, 56). Provided they exist,
identifying them will likely reveal crucial determinants
of 3D chromatin organization and delineate the important
interactions and corresponding chromatin structures which
may be necessary for genomic function.
Taking only the specific interactions for a locus (5−7% of all
interactions) as distance restraints to be imposed on the self-
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Fig. 2. Minimalistic 3D self-avoiding polymer model. (a) Illustration of sequential polymer growth process. An ensemble ofN polymer chains,C1 . . .CN , is grown by iterative
addition of self-avoiding monomer units until target length L is reached. (b) A confined ensemble of random polymers gives rise to the characteristic scaling relationships
of mean-square distance and contact probability with genomic distance. (c) An ensemble of confined random polymers with nuclear landmarks (telomere and centromere
attachments) imposed reproduces the heatmap of Hi-C measured frequencies, although no Hi-C information was used (from (38)); (d) The ensemble of confined random
polymers can be used to remove spurious interactions in Hi-C measurements and to identify specific interactions, which have significantly elevated interaction frequencies.
Upper subpanel illustrates that simulated random polymers, when aggregated, exhibit a heatmap of random interactions. The lower subpanel shows that spurious interactions
can be removed from the experimental Hi-C maps through bootstrapping and FDR correction of the random heatmap, resulting in the identification of a small set of specific
interactions. These specific interactions can then be used to fold chromatin into 3D structures (from (42)).
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Fig. 3. Chromatin can be folded using specific interactions (a) Overview. A small set of interactions (thick colored sticks, 10 − 100 for a typical locus of 1 − 2 Mb) can fold
chromatin in individual cells, where they appear in different combinations. Their aggregation gives rise to the 2D projection of the Hi-C heatmap. The Hi-C measured chromatin
interactions (∼ 104) include both specific (colored sticks) and likely-biologically relevant, as well as bystander interactions (blue vertical lines); (b) Specific interactions in
chr2L: 16.3˘16.5 Mb of Drosophila (upper triangles) capture the overall Hi-C interaction patterns (lower triangles) of cells at pre-MBT stages (cycles 9˘13), post-MBT (stages
5 − 8), and S2R+. Pie charts and bar charts show % of different types of specific interactions (A: active, I: inactive, P: polycomb-repressed) in the three cell types. As the
embryo develops, A-I interactions (orange in pie chart) decreases, while I-I interactions (blue in pie chart) increase. In contrast, no such changes are detected when all Hi-C
interactions are considered (bar chart, right) (from (45)); (c) Examples of single-cell chromatin conformations (chr2L: 11.0˘12.0 Mb, 2 kb resolution, Drosophila S2R+ cells)
and their spatial-distance heatmaps. When aggregated, the simulated population Hi-C heatmap (upper triangle, top right column) resembles the measured Hi-C heatmap
(lower triangle, Pearson correlation R = 0.95). (bottom right column) Experimental (top triangle) (2) and simulated (lower triangle) Hi-C heatmaps of human GM12878 cells
(Chr6: 11.65 − 12.29 Mb, 5 kb) reconstructed by aggregation of single-cell conformations (lower triangle) folded using a small set of ≤35 specific interactions (R = 0.98)
(from (44, 45)).

avoiding 3D model, locus conformations generated using a
deep-sampling algorithm reproduce Hi-C heatmaps with high
accuracy (10 loci of length 0.2–2 Mb at different develop-
mental stages at 2 kb resolution, Pearson correlation R =
0.91–0.98, Fig 3b) (45). In addition, details of loops and
known long-range interactions are recovered (45). Further-
more, whole chromosome X of Drosophila can be folded at 5
kb resolution solely using specific interactions (45). Similar
success was reported for the human α-globin locus, where
independent ChIA-PET measurements were predicted from
chromatin folded by 5C-derived specific interactions.
While 3D chromatin ensembles can be constructed by sev-
eral methods, the success of the minimalistic self-avoiding
polymer model is compelling, as only elementary physical
considerations of fiber density, nuclear volume, and ligation
distance are the model input. There are no adjustable parame-
ters, no chromatin state assignments, and no a priori assump-
tions on loop anchors. Further, the small number of specific
Hi-C interactions emerge naturally after spurious Hi-C inter-
actions are removed using an ensemble of random conforma-
tions under the same volume confinement. These successes
suggest that a small number of interactions, not necessarily
indistinct chromatin states with unclear biological interpreta-
tion per se, may be sufficient to generate functional 3D chro-
matin ensembles.

An Even Smaller Set of Specific Interactions Can Fold
Chromatin Loci in Human Cells. The existence of driver
interactions was further explored in a study examining mul-

tiple TAD-bounded regions with ≥ 2 super-enhancers in hu-
man GM12878 cells (44). Remarkably,only 14–35 specific
interactions are sufficient to fold 39 loci (480 kb − 1.94 Mb)
into Hi-C consistent ensembles at 5 kb resolution (R =
0.970 ± 0.003) (Fig 3c, bottom right). These are enriched
with functional associations and active marks (44). They rep-
resent 0.024−1.3% (median 0.67%) of 2,414−62,785 mea-
sured Hi-C interactions, and 0.7−11% (median 5.7%) of the
301−2,112 specific interactions (44).

Interestingly, while removal of cohesin complexes and as-
sociated loops can abolish TADs (57), looping interactions
alone (as defined by HiCCUPS (2)) are insufficient to drive
chromatin folding for 10 Drosophila loci analyzed in (45).
We expect similar results in the human loci studied in (44),
as only 0.1% of the interactions in this smaller set are on do-
main boundaries or are loops identified by HiCCUPS. These
results suggest that looping interactions occurring at TAD
boundaries alone do not drive chromatin folding. Rather,
a small set of specific interactions can fold chromatin into
structural ensembles that naturally exhibit TADs.

While the absolute minimum set of driver interactions is un-
known, it is intriguing whether this finding is general for
other loci. Further analysis of these key interactions will be
worthwhile to define the genomic elements involved and elu-
cidate their functional roles.
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TADs Form as a Byproduct of 3D Chromatin
Folding Driven by Specific Interactions
Topologically associating domains (TADs) (9, 10) are im-
portant structural units in our current understanding of 3D
genome organization. However, their origin and role in
genome function is of considerable debate (58–61). Mini-
malistic polymer models have shed some light on these.

Proto-TADs Exist in Random, Volume-Confined Chro-
matin. When random chromatin polymers are confined
within the nuclear volume, 3D domain structures with height-
ened intra-domain interactions arise naturally (Fig 4a)(38).
These domains, called proto-TADs, are uniformly distributed
along the genome (Fig 4c) (45), and appear frequently: on
average, they cover ∼21% of the random chromatin poly-
mer (38). The entropic origin of TAD formation was also
pointed out in (62). These results show that volume confine-
ment induces a chromatin folding landscape with a propen-
sity for TAD formation. This may greatly simplify the task of
TAD formation during evolution: strategically placed protein
factors may alter the folding landscape sufficiently so certain
pre-existing proto-TADs are probabilistically favored and be-
come fixed into TADs (Fig 4a).

TAD Formation Is Driven by a Small Number of Spe-
cific Interactions. Studying TAD formation during embryo
development has provided important insights. For a 1 Mb re-
gion of Drosophila, TADs are found in Hi-C maps of later
cells (stages 5 − 8 and S2R+) but not in earlier pre-MBT
cells (Fig 4b) (45). This pattern is also observed in mod-
eled 3D conformations, which reproduce Hi-C maps at all
stages (Fig 4b). Specifically, TAD-like structures are found
in a large portion (60%) of individual S2R+ cells (Fig 4b),
consistent with imaging studies (6, 63). However, despite
there being no TADs in the Hi-C maps (Fig 4b, left), a large
fraction (54%) of predicted single-cell chromatin conforma-
tions of early embryos contain TAD-like structures (Fig 4b).
This paradox of TAD-like structures appearing in mod-
eled individual cells but absent in population Hi-C can be
understood from structural analysis of modeled single-cell
chromatin conformations. Random polymers already pos-
sess TAD-like structures (Fig 4a) that are distributed uni-
formly (Fig 4c, top). At early embryo stages, simulations
show TAD-like structures appear in individual cells, but with
highly variable boundary positions and sizes (Fig 4b,left);
reminiscent of random chromatin polymers and hence no
TADs are detectable when aggregated. At later embryo
stages, Hi-C domain boundaries become sharply peaked
at distinct positions; correspondingly, aggregation of sim-
ulated single-cell conformations reproduces well-defined
TADs with sharp boundaries (Fig 4c). These peaks are
likely due to increased insulator binding: at TAD bound-
aries predicted from 3D conformations, binding of insu-
lator complexes BEAF-32 and Chromator are highly en-
riched (Fig 4c) (45). Furthermore, boundaries in pre-MBT
embryos associated with genes expressed zygotically before
MBT (64) are in excellent agreement with boundary proba-

bilities in modeled single-cell conformations (45).
These results suggest that TADs largely arise because of 3D
chromatin folding driven by a small number of specific spa-
tial interactions. The polymer folding landscape induced by
the nuclear volume is already prone to form proto-TADs.
With gradual introduction of strategically placed protein me-
diators of spatial interaction during development, TADs be-
come favored, fixed, and appear as 2D patterns in popula-
tion Hi-C. TADs are a byproduct of 3D interactions induced
during folding, rather than a cause of 3D genome organiza-
tion. This is consistent with recent findings that there is no
simple relationship between TAD structures and gene expres-
sion (58–60).

Minimalistic Single-Cell Chromatin Models
Quantify Chromatin Heterogeneity and Un-
cover Many-Body Units
Hi-C reports only population averages, which hinders the de-
tection of functional cellular subpopulations that may be im-
portant for developmental progression (45). Similarly chal-
lenging is detection of many-body units, three or more ge-
nomic regions simultaneously co-interacting within an indi-
vidual cell, likely important for super-enhancer condensa-
tion (65, 66). Experimental single-cell techniques can ad-
dress these issues but are limited in genomic coverage and
sequencing depth (67). Alternatively, minimalistic chromatin
models can now invert high-quality, population Hi-C into
single-cell conformations whose aggregation is consistent
with Hi-C measurements. We next briefly explain how this
is accomplished (Fig 4a).
Minimalistic modeling of single-cell 3D chromatin must first
predict which specific interactions identified from population
Hi-C are present within an individual cell. Once specific
contacts in individual cells are identified, 3D conformations
are generated following the self-avoiding polymer growth ap-
proach (Fig 2a), with a distance restraint placed between loci
of assigned specific contacts (Fig 5a). Central to this method
is characterizing how certain interactions may cooperatively
induce or exclude formation of other interactions and then ac-
count for these geometric dependencies when predicting co-
occurrence of specific contacts within individual nuclei (44).
This is accomplished through extensive polymer simulations
using a Bayesian generative model (44). An alternative ap-
proach is described in (45). We next discuss the accuracy of
these single-cell models as well as insights gained from them.

Single-Cell 3D Chromatin Is Accurately Modeled from
Population Hi-C. Individual chromatin conformations gen-
erated are in excellent agreement with experimental single-
cell measurements (44, 45). This concordance is seen when
comparing with both single-cell imaging and Dip-C measure-
ments (Fig 5b-5c). While reconciling FISH and Hi-C mea-
surements is challenging (69), aggregation of individual 3D
chromatin conformations can also reproduce the distance dis-
tributions of genomic regions by 3D-FISH (45) (Fig 4d).
Overall, minimalistic 3D polymer modeling can quantita-
tively invert statistical patterns in Hi-C heatmaps into highly-

6 | bioRχiv Liang et al. | Minimalistic 3D Chromatin Models

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.06.455444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455444
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

b

c

Fig. 4. TAD formation as a byproduct of 3D chromatin folding driven by specific interactions. (a) Nuclear volume confinement induces a folding landscape where random
polymers form domain-like 3D structures (right, domain I and II) which correspond to TAD-like patterns (left) in the 2D distance map (from (38)). Strategically placed protein
factors (cyan dots) at the TAD boundaries for loop-formation may sufficiently tilt the chromatin folding landscape such that pre-existing proto-TADs are favored and become
fixed; (b) Aggregated single-cell conformations of pre-MBT cells do not form population TADs, while those in S2R+ cells do. However, single-cell conformations of pre-MBT
cells do form TAD-like structures, as also seen in single-cell spatial-distance heat maps. Boundary strength profiles of 5,000 conformations show most conformations in
pre-MBT cells have ≥ 1 domain(s), but their boundaries have highly variable positions. In contrast, S2R+ cells have fixed boundaries; (c) Distributions of domain boundary
probabilities along genomic position. Domains do exist in random polymers and are uniformly distributed with no preferred positions. Boundary probabilities increase at
preferred positions as embryo cells develop. These boundary positions predicted from 3D single-cell conformations are preferentially localized at insulator binding sites such
as BEAF-32, Chromator, and CP190.
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Fig. 5. Single-cell chromatin conformations folded by specific driver interactions are accurate and reproduce Dip-C, imaging, and FISH studies. They can quantify chromatin
heterogeneity and uncover interacting many-body units. (a) Illustration of inverting Hi-C measurements into an ensemble of single-cell chromatin conformations. Specific
interactions are first identified from population Hi-C (see also Fig 2). Single-cell contact states (right) are then obtained through Bayesian deconvolution. Each contact
state is then used to generate single-cell chromatin conformations, whose aggregation reproduces the poulation Hi-C heatmap. (b) Comparison with Dip-C single-cell data
(GSE117874) (68). Pairwise contacts from a representative Dip-C single-cell locus (upper triangle, black dots) and the corresponding modeled single-cell locus conformation
(lower triangle, gray dots). Contacts present in both models are outlined in red (from (44)). (c) Correspondence between distance maps of a modeled single-cell conformation
(chr3R: 12.20˘12.90 Mb of Drosophila S2R+ at 2 kb resolution) with a conformation constructed from imaging studies in Mateo et al (63) (R = 0.75) (from (45)). (d) The
distributions of spatial distances between chrb and Scyl genes and two other control regions in Drosophila derived from simulated single-cell chromatin conformations (Left)
are highly consistent with DNA FISH measurements (Right) (59)(from (45))). (e) 3D single-cell chromatin conformations in a polycomb-repressed region of Drosophila can be
grouped into 5 clusters, whose representative conformations are also shown. (f) The distributions of the 5 clusters in cell types of pre-MBT(cycles 9˘13), post-MBT (stages
5˘8) and S2R+. Collectively, these conformations reproduce the measured Hi-C heatmaps. (g) Diagrams of 3-, 4-, and 5-body chromatin interactions. All have pairwise
Euclidean distance of ≤ 80 nm. The principal loop is the longest loop (in bp) among chromatin regions forming a many-body interaction. Green dots represent anchors of
principal loops. (h) Principal loop heatmaps of k-body interaction units for the TAD (arrowhead) region containing the SH3KBP1 locus (chr X: 19,560,000˘20,170,000).
Principal loop interaction frequencies are captured from deconvolved single-cells after aggregation (from (44, 45)).
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informative 3D single-cell chromatin conformations. The
modeled conformations are not restricted in genome cov-
erage, thus bridging the gap between population Hi-C and
single-cell studies (6, 7, 63, 68, 70). This opens new avenues
for modeling how genomic interactions in individual cells are
related to cellular functions such as cis regulation of gene ex-
pression and replication.

Single-Cell Chromatin Models Quantify Chromatin
Heterogeneity. A cell population may have functional sub-
populations with distinct chromatin conformations. How-
ever, it is not possible to directly inspect chromatin hetero-
geneity and identify subpopulations from Hi-C heatmaps.
This requires an ensemble model of single-cell conforma-
tions with a properly defined distribution and thorough sam-
pling.
Such single-cell 3D ensembles can now be generated (33, 42,
45). In Drosophila, chromatin heterogeneity of a polycomb-
repressed region was quantified using 5.0 × 104 single-cell
conformations (45), which are found to form five clus-
ters (Fig 5e). Their occupancies change dramatically as the
embryo develops: evenly populated at an early stage, but
two clusters dominate at the later S2R+ stage, accounting
for >96% of the conformations (Fig 5f). Conformational
subpopulations have also been quantified in single-cell mod-
els of the α-globin locus (42): K562 cells are homogeneous
with a single cluster accounting for 97% of the cells, whereas
GM12878 cells have many clusters and are far more hetero-
geneous.
The ability to characterize chromatin heterogeneity allows
quantification of cellular subpopulations according to their
intrinsic 3D chromatin structures. This will facilitate un-
derstanding of the relationship between genome structure
and function. Important questions to be examined in-
clude: whether there are structural scaffolds facilitating cis-
regulatory control of gene expression, are these scaffolds re-
lated to the distinct conformations representing cellular sub-
populations, and can such a connection be substantiated with
single-cell transcriptomics.

Many-Body Units and Genome Function. Many-body (≥
3) or multivalent spatial interactions likely play important
roles in condensing super-enhancer (SE) regions into a tran-
scriptional apparatus (65, 66). However, Hi-C (1) records
only population-averaged, pairwise genomic interactions and
therefore obscures which many-body interactions are present
within individual cells. Single-cell Hi-C (70), Dip-C (68),
Tri-C (71), MC-4C (72), GAM (73), and SPRITE (54) have
great promise in uncovering multivalent chromatin interac-
tions, but are currently limited in sequencing depth, genomic
coverage, or inability to resolve direct versus indirect spa-
tial interactions. Furthermore, it is challenging to evaluate if
these spatial relationships are significant or simply explained
by elementary physical effects of polymer connectivity, vol-
ume exclusion, and nuclear confinement.
The recent CHROMATIX method allows identification of
specific many-body (≥ 3) interactions from Hi-C (44). Ex-
tending deep-sampling methods of (38, 42), it folds chro-

matin through fractal Monte Carlo sampling (44, 45, 74) and
utilizes a Bayesian deconvolution approach to identify spe-
cific many-body units which are: i) fully spatially interacting,
where all participating loci are within a Euclidean distance
threshold (Fig 4g), and ii) not arising from aforementioned
elementary polymer effects.
The functional landscape of many-body interactions of 39
transcriptionally-active TADs in human GM12878 cells (2)
was constructed using CHROMATIX. Many-body units were
found to occur frequently in these euchromatic loci. Com-
pared to randomly formed many-bodies, specific many-
bodies were enriched in promoters, enhancers, and super-
enhancers. In addition, anchor loci of principal loops - the
longest spanning loops within many-body units (Fig 4g), ex-
hibit banding patterns when projected as a 2D-heatmap and
are enriched in super-enhancers. These results show prin-
cipal loops likely bridge enhancers and promoters to enable
spatial coupling of functional regions. As reported in a recent
Drosophila study (75), there is now emerging evidence that
analogous multi-way interactions among enhancers and pro-
moters are pre-formed in early embryo development and then
become activated or repressed during developmental progres-
sion.
Principal loop anchors of specific many-bodies can be di-
rectly predicted using 1D biomarkers (44). DNase accessibil-
ity was found to be the most predictive biomarker. POLR2A
occupancy and nuclear fraction RNA abundance are also im-
portant predictors, indicating these specific many-bodies may
help facilitate transcription. This is consistent with a subse-
quent study (76) proposing RNA accumulation as a mecha-
nism of microphase separation, resulting in co-segregation of
transcriptionally-active chromatin. CTCF and cohesin sub-
unit RAD21 were modestly predictive of specific principal
loops, indicating that while loop extrusion (47, 77) may oc-
cur within the examined TAD regions, there are likely other
important mechanisms at play in the formation of many-body
units enriched in functional elements.

Outlook
Minimalistic self-avoiding 3D chromatin modeling with few
tunable parameters has revealed insights into 3D genome or-
ganization: 1) chromatin scaling rules are a result of volume-
confined polymers, 2) chromatin folding at many loci is
driven by a small number of specific interactions, 3) TADs
emerge from ensembles of single-cell chromatin folded ac-
cording to these small number of specific interactions, 4)
heterogeneous structural scaffolds help define intrinsic cellu-
lar subpopulations whose relative representations are likely
important to developmental progression, and 5) the extent
and functional roles of many-body spatial interactions in
enhancer-rich regions, which are enabled by principal loops.
These findings point to several interesting future directions.
A first task is to identify specific driver interactions in a wide
range of loci. This can be done broadly for different cell
types to define the genomic elements involved and their func-
tional roles. Furthermore, it will be highly informative to as-
sess which specific interactions are conserved and which are
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unique across different cell types, so the structure-function
relationship of chromatin can be characterized at the tissue
level.
In addition, there may be better representations of 3D chro-
matin structure. While the relationship of function and form
is of extraordinary importance to understanding 3D genome
organization, the prevailing representations of 3D genome
structure in terms of TADs and subTADs (78, 79) are inad-
equate, as they are indirect 2D projections of 3D chromatin
and more direct representations may be feasible. These rep-
resentations could be based on the set of interactions that
drive chromatin folding, the principal structures within clus-
ters of 3D conformations, or by characterization of the fold-
ing mechanisms among pioneering interactions and other
functional interactions enabled by them. Such new repre-
sentations can stimulate investigation into the most relevant
molecular players, their interactions, and the biological pro-
cesses involved.
A practical utility of such a representation is to allow tar-
geted perturbation of 3D genome organization. For genomic
regions that are poorly characterized, current perturbations
may involve reversal/deletion of large (≥ 100 kb) genomic
intervals such that many elements are disrupted, and their ac-
cumulative effects detected. If a small set of critical driver
interactions can be identified for a specific locus, it would
facilitate experimental perturbations of much smaller inter-
vals to assess the extent of 3D chromatin alteration, and
thereby precisely identify regions important for nuclear or-
ganization, enabling further investigation of their molecular
functions. Such a perturbation strategy may be generally ap-
plicable to any arbitrary locus. The small number of specific
interactions identified in (42, 45, 74) suggest this may be the
case. Furthermore, functional characterization of perturbed
regions may allow a priori prediction of resulting phenotypic
changes which may then be experimentally validated; this is
similar to the process used in discovery of cis elements con-
trolling DNA replication (80).
Additionally, it should be possible to define the functional
landscapes of many-body spatial chromatin interactions in
different cells and tissues. With the identification of the par-
ticipating functional elements and their principal loops, we
will gain better understanding on how novel loop anchors can
spatially coalesce multiple functional elements to form a co-
herent apparatus for transcription. A global understanding of
many-body interactions is indeed feasible, as demonstrated
by the large-scale study of a set of enhancer-rich loci (44).
Lastly, we have a new means to investigate how chromatin
structure can provide the physical basis for cellular activity.
We can asssess how cellular programs as defined by single-
cell transcriptomes correspond to single-cell 3D chromatin
conformation. The ability to quantify structural heterogene-
ity may allow us to delineate functional cellular subpopula-
tions based on their shared chromatin folds. For example, we
can assess correspondence between different structural clus-
ters of chromatin and different types of cellular behavior, and
whether certain 3D scaffolds are required for specific cellular
states. The analysis of time-evolving patterns of chromatin

clusters may further shed light on embryonic development as
seen in Drosophila (Fig 4e-4f) (45).

Conclusions
With powerful polymer models that can transform 2D Hi-C
interaction maps into ensembles of single-cell 3D chromatin
conformations, we expect to gain further understanding of the
genome structure-function relationship. Emerging frontiers
include: 1) relating ensembles of spatial chromatin structures
to cellular phenotypes such as gene expression and gene us-
age; 2) establishing the structural basis and identifying spa-
tial motifs for different cellular states that are consistent with
experimentally measured single-cell transcriptomics; and 3)
relating transcriptional heterogeneity to chromatin structural
heterogeneity to improve understanding of embryogenesis
and cellular reprogramming (81). We expect that integrated
modeling and experimental studies will play important roles
in investigating these important questions.
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Summary:

• A minimalistic, self-avoiding 3D chromatin model with no
adjustable parameters can transform population Hi-C into
high-resolution, single-cell chromatin conformations;

• Chromatin folding at many loci is driven by a small number
of specific interactions;

• TADs form as a byproduct of 3D chromatin folding driven
by specific interactions;

• Cell subpopulations equipped with different chromatin
structural scaffolds are developmental stage-dependent;

• Characterization of the functional landscape and epige-
netic marks of many-body units which are simultaneously
spatially co-interacting within enhancer-rich, euchromatic
regions.

Bibliography
1. E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling,

I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender,
M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and J. Dekker.
Comprehensive mapping of long-range interactions reveals folding principles of the human
genome. Science, 326(5950):289–293, October 2009. doi: 10.1126/science.1181369.

2. Suhas S.P. Rao, Miriam H. Huntley, Neva C. Durand, Elena K. Stamenova, Ivan D. Bochkov,
James T. Robinson, Adrian L. Sanborn, Ido Machol, Arina D. Omer, Eric S. Lander, and
Erez Lieberman Aiden. A 3d map of the human genome at kilobase resolution reveals
principles of chromatin looping. Cell, 159(7):1665–1680, December 2014. doi: 10.1016/j.
cell.2014.11.021.

3. Rieke Kempfer and Ana Pombo. Methods for mapping 3d chromosome architecture. Nature
Reviews Genetics, 21(4):207–226, December 2019. doi: 10.1038/s41576-019-0195-2.

4. J. Dekker. Capturing chromosome conformation. Science, 295(5558):1306–1311, February
2002. doi: 10.1126/science.1067799.

5. Alistair N. Boettiger, Bogdan Bintu, Jeffrey R. Moffitt, Siyuan Wang, Brian J. Beliveau, Ge-
offrey Fudenberg, Maxim Imakaev, Leonid A. Mirny, Chao ting Wu, and Xiaowei Zhuang.
Super-resolution imaging reveals distinct chromatin folding for different epigenetic states.
Nature, 529(7586):418–422, January 2016. doi: 10.1038/nature16496.

10 | bioRχiv Liang et al. | Minimalistic 3D Chromatin Models

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.06.455444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455444
http://creativecommons.org/licenses/by-nc-nd/4.0/


6. Bogdan Bintu, Leslie J. Mateo, Jun-Han Su, Nicholas A. Sinnott-Armstrong, Mirae Parker,
Seon Kinrot, Kei Yamaya, Alistair N. Boettiger, and Xiaowei Zhuang. Super-resolution chro-
matin tracing reveals domains and cooperative interactions in single cells. Science, 362
(6413):eaau1783, October 2018. doi: 10.1126/science.aau1783.

7. Won-Ki Cho, Jan-Hendrik Spille, Micca Hecht, Choongman Lee, Charles Li, Valentin Grube,
and Ibrahim I. Cisse. Mediator and RNA polymerase II clusters associate in transcription-
dependent condensates. Science, 361(6400):412–415, June 2018. doi: 10.1126/science.
aar4199.

8. Alistair Boettiger and Sedona Murphy. Advances in chromatin imaging at kilobase-scale
resolution. Trends in Genetics, 36(4):273–287, April 2020. doi: 10.1016/j.tig.2019.12.010.

9. Elphège P. Nora, Bryan R. Lajoie, Edda G. Schulz, Luca Giorgetti, Ikuhiro Okamoto, Nicolas
Servant, Tristan Piolot, Nynke L. van Berkum, Johannes Meisig, John Sedat, Joost Gribnau,
Emmanuel Barillot, Nils Blüthgen, Job Dekker, and Edith Heard. Spatial partitioning of the
regulatory landscape of the x-inactivation centre. Nature, 485(7398):381–385, April 2012.
doi: 10.1038/nature11049.

10. Jesse R. Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming Hu, Jun S.
Liu, and Bing Ren. Topological domains in mammalian genomes identified by analysis of
chromatin interactions. Nature, 485(7398):376–380, April 2012. doi: 10.1038/nature11082.

11. Tom Sexton, Eitan Yaffe, Ephraim Kenigsberg, Frédéric Bantignies, Benjamin Leblanc,
Michael Hoichman, Hugues Parrinello, Amos Tanay, and Giacomo Cavalli. Three-
dimensional folding and functional organization principles of the drosophila genome. Cell,
148(3):458–472, February 2012. doi: 10.1016/j.cell.2012.01.010.

12. Quentin Szabo, Axelle Donjon, Ivana Jerković, Giorgio L. Papadopoulos, Thierry Cheutin,
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