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Abstract 28 

Mitochondria are dynamic organelles that constantly alter their shape through 29 

the recruitment of specialized proteins, like mitofusin-2 (Mfn2) and dynamin-related 30 

protein 1 (Drp1). Mfn2 induces the fusion of nearby mitochondria, while Drp1 31 

mediates mitochondrial fission. We previously found that the genetic or 32 

pharmacological activation of mitochondrial fusion was tumor suppressive against 33 

pancreatic ductal adenocarcinoma (PDAC) in several model systems [1]. The 34 

mechanisms of how these different inducers of mitochondrial fusion reduce 35 

pancreatic cancer growth are still unknown. Here, we characterized and compared 36 

the metabolic reprogramming of these three independent methods of inducing 37 

mitochondrial fusion in KPC cells: overexpression of Mfn2, genetic editing of Drp1, or 38 

treatment with leflunomide. We identified significantly altered metabolites via robust, 39 

orthogonal statistical analyses and found that mitochondrial fusion consistently 40 

produces alterations in the metabolism of amino acids. Our unbiased methodology 41 

revealed that metabolic perturbations were similar across all these methods of 42 

inducing mitochondrial fusion, proposing a common pathway for metabolic targeting 43 

with other drugs.  44 

 45 
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Introduction 49 

Pancreatic ductal adenocarcinoma (PDAC) relies on mitochondrial respiration 50 

through remodeling of the electron transport chain in order to sustain its proliferative 51 

abilities [2,3]. We and others have found that morphological changes in mitochondria 52 

can alter their function [1,4]. Mitochondria undergo fusion and fission in response to 53 

external stimuli to optimize metabolic functions and to promote turnover of damaged 54 

organelles through mitophagy [5]. This balance between mitochondrial fusion and 55 

fission is regulated by two key molecules: mitofusin-2 (Mfn2) and dynamin-related 56 

protein 1 (Drp1). As its name suggests, Mfn2 directs the fusion of outer membranes 57 

in adjacent mitochondria whereas Drp1 aggregates to the surface of elongated 58 

networks, constricting the mitochondrial membranes until they break apart through 59 

the process of mitochondrial fission.  60 

Pancreatic cancer cells often display aberrations of mitochondrial dynamics in 61 

favor of mitochondrial fission [1,6], where these organelles take on a fragmented 62 

appearance, which appears to be a KRAS-dependent phenomenon [7]. We 63 

previously demonstrated that this overactive mitochondrial fission could be 64 

therapeutically targeted by disrupting Drp1, increasing expression of Mfn2 65 

genetically, or with the use of leflunomide [1]. The net effect of these three 66 

interventions promoted mitochondrial fusion, which curbed oxidative phosphorylation 67 

(OXPHOS), thereby suppressing tumor growth in pancreatic cancer [1]. However, 68 

the metabolic mechanism by which mitochondrial fusion reduced PDAC growth is 69 

still unknown.   70 

To understand how mitochondrial fusion alters the cellular metabolism of 71 

PDAC, we performed an unbiased comparative metabolomic analysis between three 72 

different methods of inducing mitochondrial fusion: (1) genetically inducing fusion 73 
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using a tetracycline-inducible system to overexpress Mfn2 (Tet-On Mfn2), (2) directly 74 

inhibiting the decomposition of mitochondrial fusion through genetically knocking out 75 

Drp1 using CRISPR (sgDrp1), and (3) pharmacologically inducing fusion through 76 

treatment with leflunomide. We found common metabolic pathways between these 77 

different methods of inducing mitochondrial fusion, suggesting areas for metabolic 78 

intervention to further optimize this therapeutic target.  79 

Results 80 

Mitochondrial Fusion Distinctly Alters PDAC Metabolome 81 

We created isogenic cell lines derived from murine KPC pancreatic tumors with 82 

proven mitochondrial fusion [8]. Tet-On Mfn2 cells express Mfn2 upon exposure to 83 

low-doses of doxycycline, which induces mitochondrial fusion compared to doxy- 84 

negative controls. We also produced cells with predominantly fused mitochondria by 85 

CRISPR-mediated abrogation of Drp1 or treatment with Leflunomide (Figure 1). We 86 

extracted metabolites from each cell line in a minimum of five biological replicates 87 

along with isogenic controls and subjected them to mass spectrometric analysis after 88 

steady state metabolite collection using a well-established methanol extraction 89 

method [9,10].  90 

Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis 91 

quantified the relative concentration levels of 296 distinct metabolites for each of the 92 

cells. To understand the metabolites more closely correlated with mitochondrial 93 

fusion, we subjected the data to stringent filters and normalized the datasets to the 94 

control of each experimental group. Supervised partial least-squares discriminant 95 

analysis (PLS-DA) and unsupervised principal component analysis (PCA) revealed  96 
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  97 
Figure 1. Models of mitochondrial fusion induction. KPC cells were genetically modified to directly 98 
overexpress Mfn2 in a tetracycline-inducible manner, indirectly fuse through CIRSPR knockout of 99 
Drp1, and pharmacologically fuse after treatment with Leflunomide.  100 
 101 

distinct clustering between the induced mitochondrial fusion groups (n = 6) and their 102 

respective controls (n = 6, Figure 2A and 2B). Further hierarchical clustering using a 103 

euclidean distance and ward clustering algorithm revealed that individual replicates 104 

for each treatment group clustered together (Figure 2C). Overall, a total of 14 105 

significantly altered metabolism pathways were shared between the Tet-On Mfn2, 106 

sgDrp1, and pharmacologic treated Leflunomide groups (Table 1). Metabolic super- 107 

pathways regulating amino acids and nucleotides were most consistently altered by 108 

the induction of mitochondrial fusion, compared to individual controls (Figure 2C).  109 
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 110 
Figure 2. Multivariate clustering reveals distinct separation after inducing mitochondrial fusion when 111 
compared to controls. (A) Supervised PLS-DA and (B) unsupervised PCA score plots of Tet-On Mfn2 112 
(blue), sgDrp1 (green), and Leflunomide (purple) treated KPC cells with respect to their corresponding 113 
controls (red). (C) Heatmap with unsupervised hierarchical clustering of affected super pathways 114 
across Tet-On Mfn2 (blue), sgDrp1 (green), and Leflunomide (purple). Both unsupervised and 115 
supervised clustering methods revealed a distinct separation between each method of fusion 116 
induction and its respective control. Predictive power of PLS-DA in component 1 represented by Q2 = 117 
0.85 for Tet-On Mfn2, Q2 = 0.80 for sgDrp1, and Q2 = 0.94 for Leflunomide.  118 
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Table 1. Common altered metabolic pathways from initial metabolite set across pathways supporting mitochondrial fusion. Pathway analysis included 119 
only pathways with an FDR < 0.05, impact > 0.25, and more than 20% of the metabolites in the pathway affected.  120 

Pathway Name 
 

Tet-On Mfn2 (Direct Fusion) sgDrp1 (Indirect Fusion) Leflunomide (Pharmacologic) 

Percent 
Affected 

Differentiated 
Metabolites FDR Impact Percent 

Affected 
Differentiated 
Metabolites FDR Impact Percent 

Affected 
Differentiated 
Metabolites FDR Impact 

Pyrimidine Metabolism 64.10% 25/39 3.39E-04 0.82144 64.10% 25/39 0.0059471 0.7458 64.10% 25/39 2.43E-09 0.43244 

Arginine Biosynthesis 78.57% 11/14 4.69E-04 0.80203 85.71% 12/14 0.0059057 0.6875 92.86% 13/14 3.73E-06 0.75 

Pentose Phosphate Pathway 59.09% 13/22 0.0011839 0.7583 63.64% 14/22 9.65E-05 0.7931 63.64% 14/22 0.050181 0.65904 

Alanine, Aspartate, and 
Glutamate Metabolism 57.14% 16/28 6.00E-05 0.73077 64.29% 18/28 8.16E-06 0.75 64.29% 18/28 2.43E-09 0.475 

Glycolysis / Gluconeogenesis 50.00% 13/26 0.094261 0.64288 53.85% 14/26 8.16E-06 0.54283 53.85% 14/26 0.0061775 0.7797 
Synthesis and Degradation of 

Ketone Bodies 40.00% 2/5 0.06157 0.6 100.00% 5/5 3.72E-05 1 60.00% 3/5 0.0057862 0.875 

Glyoxylate and Dicarboxylate 
Metabolism 34.38% 11/32 0.094261 0.55557 43.75% 14/32 9.40E-06 0.3846 34.38% 11/32 1.67E-04 0.7931 

Citrate Cycle (TCA cycle) 50.00% 10/20 0.058038 0.51326 65.00% 13/20 7.97E-06 0.62071 60.00% 12/20 6.00E-06 0.30768 
Purine Metabolism 43.94% 29/66 6.00E-05 0.48314 51.52% 34/66 0.0015302 0.68176 50.00% 33/66 6.00E-06 0.66668 

Arginine and Proline Metabolism 36.84% 14/38 1.07E-04 0.46873 39.47% 15/38 8.16E-06 0.45 36.84% 14/38 0.0039372 0.55174 

Nicotinate and Nicotinamide 
Metabolism 53.33% 8/15 0.0016517 0.46053 53.33% 8/15 0.11317 0.57144 60.00% 9/15 5.65E-04 0.71428 

Amino Sugar and Nucleotide 
Sugar Metabolism 24.32% 9/37 0.098051 0.43431 24.32% 9/37 5.33E-04 0.26088 24.32% 9/37 0.063576 0.54283 

Glutathione Metabolism 32.14% 9/28 2.89E-05 0.34576 35.71% 10/28 7.08E-06 0.43244 35.71% 10/28 0.017389 0.26088 

Pyruvate Metabolism 31.82% 7/22 0.16459 0.2509 45.45% 10/22 8.16E-06 0.48149 31.82% 7/22 2.10E-04 0.37038 
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Notably, the following three Amino Acid pathways were significantly altered in the 121 

mitochondrial fusion cohorts compared to controls: arginine biosynthesis (FDR < 0.01, 122 

Impact > 0.68, and Percent Affected > 78.5%), alanine, aspartate, and glutamate 123 

metabolism (FDR < 0.0001, Impact > 0.47, and Percent Affected > 57.1%), and 124 

glutathione metabolism (FDR < 0.05, Impact > 0.26, and Percent Affected > 32.1%, 125 

Table 1). Pyrimidine and purine metabolism were the two nucleotide sub-pathways that 126 

were significantly altered after inducing mitochondrial fusion (FDR < 0.01, Impact > 127 

0.43, Percent Affected = 64.1% and FDR < 0.01, Impact > 0.48, Percent Affected > 128 

43.9% respectively, Table 1). We also observed significant changes in several 129 

carbohydrate metabolism sub-pathways, including the pentose phosphate pathway 130 

(PPP), glycolysis/gluconeogenesis, the citrate cycle (TCA cycle), pyruvate metabolism, 131 

and amino sugar and nucleotide sugar metabolism (Table 1). The full unfiltered pathway 132 

analysis for Tet-On Mfn2, sgDrp1, and Leflunomide treated KPC cells can be found in 133 

Figure 3 and Table S1.  134 

Identification of Significantly Differentiated Metabolites  135 

From this, we found that 75 out of 234 metabolites in Tet-On Mfn2, 54 out of 245 136 

metabolites in the sgDrp1, and 74 out of 233 metabolites in the leflunomide treated 137 

groups were altered (both up-and-downregulated) compared to controls. As represented 138 

in their corresponding volcano plots, since LC-MS/MS was unable to detect many 139 

metabolites with a fold change greater than 2, we repeated our analysis with a lower 140 

stringency threshold, considering all significant metabolites based on an FDR < 0.05 in 141 

our initial univariate analysis (Figure 4A). A full list of discriminant metabolites identified 142 

via Student’s t-test can be found in Table S2A-C.   143 
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 144 
Figure 3. Total pathway analysis of filtered metabolites reveals similar impact of Amino Acid, Nucleotide, 145 
and Carbohydrate metabolism pathways as a function of mitochondrial fusion: Tet-On Mfn2 (direct), 146 
sgDrp1 (indirect), and leflunomide treatment (pharmacologic).  147 
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In order to ensure robustness in our feature selection process, we further 148 

developed three different pairwise models to identify metabolite markers for each  149 

group: a significance analysis of microarray (SAM) [11], PLS-DA variable importance in 150 

projection (VIP) [12], and a random forest (RF) [13] classification model. SAM identified 151 

73 out of 234 metabolites in the Tet-On Mfn2 induced fusion group, 71 out of 245 152 

metabolites in the indirect fusion group, and 74 out of 233 metabolites in the 153 

Leflunomide treated group as significantly altered based on an FDR < 0.05 and a 154 

corresponding delta of 0.39, 0.38, and 0.32 for the Tet-On Mfn2, sgDrp1, and 155 

Leflunomide groups respectively (Figure 4B). The full list of discriminant metabolites 156 

identified by SAM can be found in Table S3A-C.  157 

Using our PLS-DA model, a VIP score greater than 1.0 [11] across all 5 principal 158 

components was used as a cutoff to identify discriminant metabolites after induction of 159 

mitochondrial fusion. From our original filtered metabolite set, we detected 83, 72, and 160 

59 potential metabolites of interest in our Tet-On Mfn2, sgDrp1, and Leflunomide 161 

treated groups accordingly (Figure 4C and Table S4A-C). Moreover, permutation testing 162 

of 2000 repeats yielded a P-value = 0.001, suggesting that the separation exhibited by 163 

our PLS-DA model was not due to overfitting. We then performed leave-one-out cross 164 

validation [14] of the models and found that they had a predictive power 85% for Tet-On 165 

Mfn2, 80% for sgDrp1, and 94% for Leflunomide induced fusion.  166 

To account for potential overfitting and potential bias from our previous models, 167 

we also developed an RF classification model for each group using MetaboAnalyst 5.0. 168 

For each RF model, we generated 500 trees to control for potential correlations   169 
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 170 
Figure 4. Statistical methods to identify differentially expressed metabolites after inducing 171 
mitochondrial fusion. (A) univariate Student’s t-test, FDR-adjusted P-value < 0.05, (B) SAM, FDR < 172 
0.05, (C) PLS-DA, VIP score < 1.0, (D) RF model, Mean Decrease Accuracy > 0.  173 
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between metabolites and subsequently measured a variable permutation importance 174 

score for each metabolite represented as the mean decrease accuracy (MDA) value. An 175 

MDA value approximates the amount that our model decreases in accuracy if the 176 

variable was taken out of the model [13]. Accordingly, we classified metabolites with 177 

MDA > 0 as discriminant and included them for pathway analysis. From our models, we 178 

identified 87 total discriminant metabolites in both the Tet-On Mfn2 and sgDrp1 groups 179 

and 81 total discriminant metabolites in the Leflunomide treated group (Figure 4D and 180 

Table S5A-C). 181 

From our four statistical models, we combined the lists of significantly altered 182 

metabolites that contributed to each respective condition of induced mitochondrial 183 

fusion and only considered the overlap between all four lists for a definitive pathway 184 

analysis. This improved the robustness of our data analysis and further increased 185 

confidence in the identified metabolite markers for mitochondrial fusion in PDAC. As a 186 

result, we uncovered 48 unique identifier metabolites for direct fusion by Tet-On Mfn2 187 

(Table 2), 38 unique identifier metabolites for indirect fusion by CRISPR knockout of 188 

Drp1 (Table 3), and 47 unique identifier metabolites for pharmacologic fusion by 189 

Leflunomide (Table 4). 190 

 191 
Table 2. Discriminant metabolites identified after induction of Mfn2. Test statistics calculated for 192 
significantly altered metabolites overlapped across the univariate Student’s t-test, SAM, PLS-DA, and RF 193 
analysis.     194 
 195 

Sample Name Fold 
Change 

Univariate  
FDR 

VIP Score  
(Comp 1) 

Mean Decrease 
Accuracy (MDA) 

SAM  
FDR 

CDP 0.68666 0.027827 1.2867 0.00066667 0.032116 
Carbamoyl Phosphate 1.2514 0.02605 1.0081 0.0018 0.050381 

Asparagine 1.2635 0.011257 1.0645 0.0034 0.037373 
D-Glucosamine-1-

Phosphate 
0.44312 0.02605 1.9094 0.0023333 0.01374 

S-Adenosyl-L-
Methioninamine 

0.32905 0.006065 2.3789 0.0022667 0.004837 
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Table 2. Cont. 196 

Sample Name 
Fold 

Change 

Univariate  
FDR 

VIP Score  
(Comp 1) 

Mean Decrease 
Accuracy (MDA) 

SAM  
FDR 

2-Dehydro-D-Gluconate 0.68566 0.002861 1.3958 0.0099333 0.02345 
Indole 1.3634 0.002861 1.2668 0.003 0.028201 

Citrulline 1.2704 0.001842 1.1353 0.0055333 0.031391 
GTP 1.3369 0.015975 1.1558 0.001 0.035478 

Arginosuccinic acid 1.584 0.002567 1.5611 0.0059333 0.014225 
GMP 1.4193 0.01588 1.3029 0.0018 0.02992 

2-Aminooctanoic acid 0.66975 0.001842 1.4631 0.0036 0.018513 
Arginine 1.2535 0.002277 1.1008 0.0034 0.033201 
Purine 1.2645 0.004142 1.0987 0.005 0.034076 

NADPH 0.1846 0.01588 2.729 0.0026333 0.004837 
O8P-O1P 1.3778 0.005756 1.2761 0.0065333 0.029076 

L-Arginino-Succinate 1.4956 0.000871 1.5079 0.0084429 0.01374 
Alanine 0.54833 0.000871 1.839 0.0148 0.004837 

5-Phosphoribosyl-1-
Pyrophosphate 

1.5979 0.025893 1.4581 0.00066667 0.027951 

S-Ribosyl-L-Homocysteine 0.3906 0.016169 2.049 0.0031333 0.00916 
Acetylcarnitine DL 0.53482 0.001287 1.8265 0.0032667 0.004837 

2-Hydroxy-2-
Methylbutanedioic acid 

1.402 0.01588 1.2822 0.0023333 0.02992 

Glutathione Disulfide 1.314 0.019782 1.0971 0.0089333 0.037373 
Phenylalanine 1.2826 0.000891 1.1717 0.012333 0.029179 

dTMP 1.118 0.020287 1.4411 0.0056 0.027951 
NADH 1.246 0.012535 1.4343 0.00066667 0.026043 

Nicotinamide Ribotide 2.0503 0.002861 1.9196 0.0023333 0.004837 

Uridine 1.4011 0.027827 1.2289 0.0014 0.034076 

Indoleacrylic acid 1.3169 0.011539 1.168 0.0048 0.034076 

Tryptophan 1.374 0.001842 1.3031 0.0067333 0.026043 

3-Phosphoglycerate 0.68917 0.012848 1.3362 0.0051333 0.029076 

N-Acetyl-Glucosamine 0.66265 0.024296 1.3427 0.0013 0.02992 

Sarcosine 0.58198 0.000223 1.7628 0.0058 0.004837 

Tyrosine 1.2589 0.008888 1.0657 0.011667 0.037231 

Aspartate 0.75934 0.000467 1.25 0.0051333 0.026043 

D-Glucono-1,5-Lactone-6-

Phosphate 
0.33822 0.007515 2.2168 0.0036 0.004837 

Methylcysteine 1.3329 0.001001 1.2559 0.002 0.026043 

Glycerophosphocholine 1.3214 0.016098 1.1381 0.0042667 0.035478 

Putrescine 23.644 0.007136 3.6927 0.0033333 0 

Ornithine 0.39436 0.000871 2.2593 0.0063333 0.004837 

Trehalose-6-Phosphate 0.57804 0.020287 1.5976 0.0010667 0.02345 

Carnitine 0.74822 0.004142 1.2306 0.0052667 0.02927 

Pantothenate 1.4739 0.016169 1.3268 0.0039333 0.029312 

Serine 1.2597 0.002567 1.1152 0.0044 0.032885 

Guanosine 1.721 0.030407 1.5297 0.0008 0.026043 

Inosine 2.1501 0.000967 2.0471 0.0099333 0.004837 

Orotidine-5-Phosphate 1.499 0.02791 1.3552 0.0023333 0.02992 

Thiamine-Phosphate 2.1668 0.005756 1.9265 0.0058 0.007195 
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Table 3. Discriminant metabolites identified after deletion of Drp1. Test statistics calculated for 197 
significantly altered metabolites overlapped across the univariate Student’s t-test, SAM, PLS-DA, and RF 198 
analysis. 199 

Sample Name Fold 
Change 

Univariate 
FDR 

VIP Score 
(Comp 1) 

Mean Decrease 
Accuracy (MDA) 

SAM 
FDR 

Betaine 0.664180 0.002147 1.4133 0.0086 0.007697 

4-Pyridoxic acid 0.725180 0.037598 1.1296 0.0013333 0.033019 

Phosphocreatine 1.316600 0.000906 1.1742 0.0052667 0.014145 

Aminoimidazole 

Carboxamide Ribonucleotide 
0.630100 0.028337 1.4028 0.0016667 0.014111 

Glutathione 3.742600 0.000442 2.5826 0.0062667 0 

Glutathione 3.742600 0.000182 2.3268 0.0049333 0 

Acetoacetate 0.596270 0.000101 1.662 0.0072 0.004233 

2-Oxobutanoate 0.593130 0.000101 1.6618 0.0033333 0.004233 

GTP 1.920100 0.026715 1.6525 0.0042667 0.007697 

N-Carbamoyl-L-Aspartate 0.821900 0.001503 1.6041 0.0068 0.005064 

D-Gluconate 0.724880 0.005425 1.2393 0.0022667 0.015196 

Homoserine 0.598390 0.00421 1.5808 0.0054667 0.005681 

Acetyl-CoA 0.043581 0.000107 4.1582 0.0039333 0 

N-Acetyl-L-Aspartic acid 2.249000 9.87E-06 2.1057 0.0046667 0 

Adenylosuccinate 0.533700 0.006098 1.7461 0.0057667 0.005064 

GDP 2.053600 0.03156 1.6927 0.0043333 0.007697 

5-Phosphoribosyl-1-

Pyrophosphate 
1.758200 0.000906 1.6914 0.0022667 0.00449 

Cytidine 0.159910 0.000242 3.0649 0.0071333 0 

S-Ribosyl-L-Homocysteine 1.415700 0.015789 1.2606 0.00066667 0.016006 

Acetylcarnitine DL 0.666230 0.001503 1.4281 0.0023333 0.007362 

N-Acetyl-Glutamine 1.607500 0.014761 1.4623 0.0017333 0.01127 

Deoxyguanosine 0.562700 0.003641 1.6583 0.0024667 0.005064 

Betaine Aldehyde 0.702120 0.00421 1.3118 0.0048 0.012147 

1,3-Diphopshateglycerate 1.842500 0.025568 1.6151 0.0041333 0.00898 

Homocysteine 1.377000 0.001738 1.2676 0.0057333 0.012147 

dAMP 1.372600 0.002658 1.2376 0.0054 0.014111 

D-Glucono-1,5-Lactone-6-

Phosphate 
0.700130 0.011761 1.2703 0.0018 0.015485 

Homocysteic acid 0.616910 0.021676 1.4179 0.0014667 0.013178 

Cystine 0.214900 0.016467 2.3705 0.0048 0.003848 

4-Aminobutyrate 0.741390 0.001858 1.2177 0.0078667 0.014111 

Putrescine 0.528260 0.00226 1.7602 0.0076 0.00449 

Ornithine 1.405100 1.04E-05 1.3596 0.0077667 0.005064 

coenzyme A 4.070400 0.016467 2.2758 0.0041333 0.004233 

2,3-Diphosphoglyceric acid 1.926400 0.012063 1.6976 0.0048 0.00558 

Hypoxanthine 0.251200 4.76E-07 2.7704 0.0075333 0 
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Table 3. Cont. 200 

 201 

Table 4. Discriminant metabolites identified after treatment with Leflunomide. Test statistics calculated for 202 
significantly altered metabolites overlapped across the univariate Student’s t-test, SAM, PLS-DA, and RF 203 
analysis. 204 

Sample Name Fold 
Change 

Univariate 
FDR 

VIP Score 
(Comp 1) 

Mean Decrease 
Accuracy (MDA) 

SAM 
FDR 

Citrate 1.398700 0.000156 1.329 0.0092667 0.007362 

Allantoate 0.624710 0.000242 1.5666 0.001 0.004737 

1-Methyladenosine 0.614980 0.00169 1.5425 0.0023333 0.005064 

Sample Name Fold 
Change 

Univariate 
FDR 

VIP Score 
(Comp 1) 

Mean Decrease 
Accuracy (MDA) 

SAM 
FDR 

Citrate-Isocitrate 0.653650 2.70E-05 1.1599 0.003967 0.007573 

CDP 1.771000 0.001233 1.3036 0.005133 0.00732 

Carbamoyl Phosphate 2.619400 5.46E-05 1.742 0.007 0.001114 

Fumarate 2.787300 2.11E-08 1.8458 0.002514 0.000255 

Aminoimidazole 

Carboxamide 

Ribonucleotide 

0.526080 0.004786 1.3578 0.010638 0.007407 

Choline 0.533840 0.011992 1.2772 0.002 0.008622 

Orotate 15.739000 0.005825 2.5694 0.0008 0.000727 

Thiamine Pyrophosphate 1.780700 0.002856 1.2673 0.003433 0.007573 

Acetoacetate 0.586710 0.022826 1.1496 0.002267 0.015481 

Phosphorylcholine 0.373280 1.28E-09 1.8143 0.011533 0.000255 

Isocitrate 0.476540 0.00499 1.4156 0.002133 0.00732 

Deoxyadenosine 0.288340 0.018626 1.9068 0.0009 0.005729 

1-Methyladenosine 1.883400 0.003598 1.36 0.006667 0.00732 

2-Aminooctanoic acid 1.811500 0.00499 1.2672 0.005743 0.007639 

D-Gluconate 1.999000 3.90E-06 1.5065 0.005733 0.003395 

2-Keto-Isovalerate 2.868000 1.39E-08 1.8731 0.005743 0.000255 

Acetyl-CoA-Posi 4.344300 0.016695 2.0614 0.0008 0.004201 

N-Carbamoyl-L-Aspartate 51.968000 2.86E-10 3.627 0.0074 0 

Cellobiose 0.133540 0.00499 2.2961 0.005467 0.001019 

O8P-O1P 1.511200 0.000757 1.1186 0.008533 0.00911 

Thiamine-Phosphate 1.822400 0.0487 1.1472 0.0005 0.018784 

Creatine 1.813900 3.86E-06 1.394 0.004333 0.00544 

CDP-Ethanolamine 7.034600 0.000145 2.4725 0.005 0 

Acetylcarnitine DL 1.841000 0.00338 1.2953 0.004133 0.007573 

Aconitate 0.542060 2.70E-05 1.3988 0.009033 0.005729 

Shikimate 0.366580 0.000181 1.7807 0.005267 0.001198 

Anthranilate 1.485100 0.021202 1.0136 0.002333 0.021203 
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Table 4. Cont. 205 

 206 
Targeted Pathway Analysis Distinguishes altered Metabolome after Mitochondrial 207 

Fusion 208 

 When conducting sub-pathway analysis from each list of discriminant metabolites 209 

identified via one of our four statistical models, we found that the overarching patterns 210 

observed in alterations of Amino Acid, Nucleotide, and Carbohydrate super-pathways 211 

remained similar to those of our initial untargeted sub-pathway analysis. More 212 

importantly, sub-pathway analysis from each distinct discriminant metabolite 213 

identification method appeared to yield very similar phenotypes across direct genetic 214 

fusion, indirect genetic fusion, and pharmacologic fusion (Figures S1-4 and Tables S6- 215 

9A-C). Using our overlapped discriminant metabolite list for sub-pathway analysis, we 216 

Sample Name 
Fold 

Change 

Univariate 
FDR 

VIP Score 
(Comp 1) 

Mean Decrease 
Accuracy (MDA) 

SAM 
FDR 

Uridine 3.660400 9.62E-05 2.0507 0.001143 0.000727 

2-Isopropylmalic acid 81.792000 1.87E-11 3.8439 0.009533 0 

CMP 3.126500 3.90E-06 1.9097 0.004067 0.000424 

CDP-Choline 8.569100 0.000571 2.4383 0.0036 0.000255 

Deoxyguanosine 0.507480 0.002085 1.4019 0.0026 0.00732 

Citraconic acid 0.639440 0.000181 1.1726 0.004733 0.007573 

N-Acetyl-Glucosamine 1.556400 0.008589 1.109 0.005467 0.01403 

Glycerophosphocholine 1.606000 3.48E-05 1.2246 0.004 0.00732 

2-Oxo-4-

Methylthiobutanoate 
0.461890 0.043799 1.4045 0.0014 0.00941 

Histidinol 1.546000 0.024378 1.021 0.0032 0.021203 

4-Aminobutyrate 1.947500 0.000426 1.4171 0.0046 0.006111 

Dihydroorotate 7.470800 3.97E-07 2.5685 0.0076 0 

UDP 1.853800 0.004218 1.3149 0.0066 0.007573 

Itaconic acid 0.688280 0.000804 1.0502 0.006067 0.012297 

Maleic acid 2.836300 1.41E-07 1.8604 0.0048 0.000424 

dCDP 1.193600 0.00578 1.3101 0.004667 0.007639 

N-Acetyl-Glucosamine-1-

Phosphate 
2.279300 0.00499 1.5674 0.0008 0.006463 

Aspartate 3.759100 4.98E-08 2.0869 0.0108 0 

Allantoate 158.36 3.66E-12 4.1202 0.0084 0 

Guanosine 2.803700 0.002386 1.7677 0.005 0.003886 
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discovered that even our more limited metabolite set was able to recapitulate these 217 

trends in metabolic repogramming in each independent method of mitochondrial fusion 218 

induction. Specifically, Amino Acid, Nucleotide, and Carbohydrate pathways were 219 

altered across all three experimental groups (Figure 5). We found eight particular sub- 220 

pathways that were considered significantly impacted after filtering the raw pathway 221 

outputs from MetaboAnalyst based on an FDR < 0.05 (Table S10A-C). These included 222 

alanine, aspartate, and glutamate metabolism (FDR < 0.0001), arginine biosynthesis 223 

(FDR < 0.0001), glutathione metabolism (FDR < 0.05), cysteine and methionine 224 

metabolism (FDR < 0.01), pyrimidine metabolism (FDR < 0.0001), purine metabolism 225 

(FDR < 0.0001), PPP (FDR < 0.001), and glycolysis/gluconeogenesis (FDR < 0.05, 226 

Table 5).  227 

Further analysis revealed that although these pathways were considered 228 

statistically significant based on our FDR adjusted P-value, we observed that many of 229 

these pathways had a low impact and correspondingly low percentage of affected 230 

metabolites in one of the three groups. Diving deeper, arginine biosynthesis appeared 231 

to be more affected after direct fusion with Tet-On Mfn2 (Impact = 0.56, Percent 232 

Affected = 42.9%) than after indirect fusion with sgDrp1 (Impact = 0.19, Percent 233 

Affected = 14.3%) and pharmacologic fusion with Leflunomide (Impact = 0.13, Percent 234 

Affected = 21.4% Table 5). Glutathione metabolism was more heavily affected by 235 

indirect fusion (Impact = 0.27, Percent Affected = 17.9%) than direct fusion (Impact = 236 

0.16, Percent Affected = 14.3%) and pharmacologic fusion (Impact = 0.03, Percent 237 

Affected = 3.6%). Cysteine and methionine metabolism was least impacted by 238 

Leflunomide treatment (Impact = 0.03, Percent Affected = 3.0%) followed by Drp1  239 
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 240 

Figure 5. Pathway analysis of overlapped discriminant metabolites from direct fusion in Tet-On Mfn2, 241 
indirect fusion in sgDrp1, and pharmacologic fusion in leflunomide treated KPC cells.  242 
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knockout (Impact = 0.15, Percent Affected = 12.1%) and Mfn2 upregulation (Impact = 243 

0.15, Percent Affected = 15.2%, Table 5). Understandably, pyrimidine metabolism was 244 

most affected by Leflunomide treatment (Impact = 0.28, Percent Affected = 25.6%) 245 

since its mechanism of action directly inhibits dihydroorotate dehydrogenase (DHODH), 246 

a crucial enzyme in the de novo pyrimidine biosynthesis pathway. Interestly, direct 247 

fusion through Tet-On Mfn2 closely mirrored Leflunomide’s effect on pyrimidine 248 

metabolism, having an impact of 0.22 on the pathway with 23.1% of its metabolites 249 

altered (Table 5). Purine metabolism was most affected by indirectly inducing fusion 250 

with knockout of Drp1 (Impact = 0.22, Percent Affected = 15.2%); though, still 251 

moderately altered via direct fusion with Tet-On Mfn2 (Impact = 0.14, Percent Affected = 252 

10.6%) and pharmacologic fusion with Leflunomide (Impact = 0.10, Percent Affected = 253 

9.1%, Table 5). Both carbohydrate metabolism sub-pathways, PPP, and glycolysis were 254 

modestly impacted across the three groups, but knockdown of Drp1 in particular had 255 

more impact on glycolysis/gluconeogenesis (Impact = 0.11, Percent Affected = 11.5%), 256 

supporting recent findings that Drp1 promotes metabolic changes through glycolysis to 257 

drive PDAC tumorigenesis (Table 5) [7,15]. The main pathway that had an impact 258 

greater than 0.28 across the Tet-On Mfn2, sgDrp1, and Leflunomide groups was 259 

alanine, aspartate, and glutamate metabolism with more than 21.4% of the pathway 260 

appearing significantly altered (Table 5).  261 

Table 5. Significantly altered pathways from overlapped discriminant metabolite sets. 262 

Pathway Name Percent Affected Differentiated 
Metabolites FDR Impact 

 Tet-On Mfn2 (Direct Fusion) 

Beta-Alanine Metabolism 9.52% 2/21 6.74E-07 0.04762 

Aminoacyl-tRNA Biosynthesis 16.67% 8/48 6.74E-07 0.31033 

 263 
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Table 5. Cont. 264 

Pathway Name 
Percent 
Affected 

Differentiated 
Metabolites 

FDR Impact 

 Tet-On Mfn2 (Direct Fusion) 

Alanine, Aspartate, and Glutamate 

Metabolism* 
28.57% 8/28 7.36E-06 0.3125 

Arginine Biosynthesis* 42.86% 6/14 7.36E-06 0.5625 

Glutathione Metabolism* 14.29% 4/28 7.36E-06 0.16216 

Pantothenate and CoA Biosynthesis 15.79% 3/19 7.85E-06 0.11112 

Glycine, Serine, and Threonine 

Metabolism 
17.65% 6/34 0.00002 0.26191 

Nicotinate and Nicotinamide Metabolism 13.33% 2/15 2.83E-05 0.19048 

Pyrimidine Metabolism* 23.08% 9/39 4.87E-05 0.22035 

Arginine and Proline Metabolism 13.16% 5/38 4.88E-05 0.3 

Cysteine and Methionine Metabolism* 15.15% 5/33 5.28E-05 0.15151 

Amino Sugar and Nucleotide Sugar 

Metabolism 
5.41% 2/37 0.000185 0.08696 

Pentose Phosphate Pathway* 13.64% 3/22 0.000216 0.10345 

Glycolysis / Gluconeogenesis* 3.85% 1/26 0.000264 0.02857 

Purine Metabolism* 10.61% 7/66 0.00047 0.13634 

 sgDrp1 (Indirect Fusion) 

Arginine Biosynthesis* 14.29% 2/14 2.05E-07 0.1875 

Alanine, Aspartate, and Glutamate 

Metabolism* 
21.43% 6/28 2.32E-07 0.28125 

Fatty Acid Degradation 5.13% 2/39 2.32E-07 0.16327 

Arginine and Proline Metabolism 15.79% 6/38 2.66E-07 0.25 

Glutathione Metabolism* 17.86% 5/28 4.20E-07 0.27028 

Glycolysis / Gluconeogenesis* 11.54% 3/26 1.56E-06 0.11428 

Pyrimidine Metabolism* 7.69% 3/39 1.82E-06 0.0339 

Nitrogen Metabolism 16.67% 1/6 2.85E-06 0.25 

Pentose Phosphate Pathway* 18.18% 4/22 3.06E-06 0.10344 

Glyoxylate and Dicarboxylate 

Metabolism 
9.38% 3/32 3.06E-06 0.11538 

Purine Metabolism* 15.15% 10/66 3.92E-06 0.2159 

Butanoate Metabolism 26.67% 4/15 7.42E-06 0.33334 

 265 
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Table 5. Cont. 266 

 sgDrp1 (Indirect Fusion) 

Citrate Cycle (TCA cycle) 10.00% 2/20 7.42E-06 0.10345 

Propanoate Metabolism 8.70% 2/23 7.69E-06 0.11538 

Cysteine and Methionine 

Metabolism* 
12.12% 4/33 3.69E-05 0.15151 

 Leflunomide (Pharmacologic) 

Alanine, Aspartate, and Glutamate 

Metabolism* 
25.00% 7/28 3.28E-09 0.3125 

Pantothenate and CoA Biosynthesis 10.53% 2/19 2.69E-08 0.05556 

Pyrimidine Metabolism* 25.64% 10/39 2.69E-08 0.28815 

Purine Metabolism* 9.09% 6/66 2.25E-07 0.10227 

Citrate Cycle (TCA cycle) 30.00% 6/20 5.03E-07 0.27587 

Valine, Leucine, and Isoleucine 

Biosynthesis 
12.50% 1/8 5.03E-07 0.25 

Aminoacyl-tRNA Biosynthesis 2.08% 1/48 5.03E-07 0.03448 

Glyoxylate and Dicarboxylate 

Metabolism 
12.50% 4/32 7.65E-07 0.15384 

Nicotinate and Nicotinamide 

Metabolism 
13.33% 2/15 7.65E-07 0.19048 

Arginine Biosynthesis* 21.43% 3/14 8.20E-07 0.125 

Glycine, Serine, and Threonine 

Metabolism 
5.88% 2/34 4.87E-05 0.02381 

Butanoate Metabolism 26.67% 4/15 8.19E-05 0.26667 

Valine, Leucine, and Isoleucine 

Degradation 
10.00% 4/40 0.000343 0.13208 

Cysteine and Methionine 

Metabolism* 
3.03% 1/33 0.00155 0.0303 

Beta-Alanine Metabolism 9.52% 2/21 0.002936 0.04762 

Pentose Phosphate Pathway* 9.09% 2/22 0.010995 0.06896 

Glutathione Metabolism* 3.57% 1/28 0.04232 0.02703 

Glycolysis / Gluconeogenesis* 7.69% 2/26 0.043741 0.05714 

*Pathways common amongst Tet-On Mfn2, sgDrp1, and Lef treatment. 267 
 268 

  269 

 270 
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Interestingly, several pathways from this analysis were identified as specific to 271 

each independent method for mitochondrial fusion induction. We noticed that direct 272 

fusion via Tet-On Mfn2 showed distinct impact on aminoacyl-tRNA biosynthesis and 273 

glycine, serine, and threonine metabolism in the top 5 pathway hits (Figure 5). Likewise, 274 

fatty acid degradataion and the citrate cycle were specific to sgDrp1 and Leflunomide 275 

groups when considering only the top 5 pathway hits (Figure 5). Nevertheless, after 276 

mapping the significantly altered metabolic pathways identified from the KEGG 277 

database using our overlapped discriminant metabolite set exhibited that they were in 278 

fact highly interconnected (Figure S5). Alanine, aspartate, and glutamate metabolism 279 

fed into each of the previously mentioned metabolic pathways, aligning with each of our 280 

metabolic screens. Furthermore, we see that many of the pathways are interdependent 281 

among each other, suggesting that altering mitochondrial morphology from a punctate 282 

to fused state does in fact play a significant role in metabolic reprogramming in favor of 283 

curbing tumorigenesis.  284 

 285 

Discussion 286 

Advances in mitochondrial biology in the previous decade have opened the doors 287 

to novel means of therapeutically targeting tumorigenesis. It has been widely shown that 288 

mitochondrial respiration is essential across multiple tumor-types in order to circumvent 289 

limitations in glycolysis, actively remodeling their means for cellular energetics [3,16– 290 

18]. This is particularly true in pancreatic cancer where mitochondrial dysfunction has 291 

been found to shift the cellular bioenergetics of cells to favor OXPHOS, supporting 292 

proliferation and metastasis [19,20]. Moreover, we and others have shown that defects 293 
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in KRAS, the most widely mutated gene in PDAC, is characteristic of fragmented 294 

mitochondria [1,7,20]. Although more than 90% of PDAC cases are driven by oncogenic 295 

KRAS [21], limited advancements have been made in formulating a clinical approach to 296 

target the gene. Instead, our work provided an alternative solution, altering the 297 

phenotypic state of mitochondria driven by KRAS through Drp1, which in turn 298 

suppressed tumor growth through modulating levels of defective mitochondria and 299 

limiting OXPHOS capability in PDAC [1]. In order to gain a better understanding of the 300 

impact of shifting the status of mitochondria from fragmented to fused, we attempted to 301 

elucidate the metabolome of PDAC after three independent methods of inducing fusion. 302 

To our knowledge, this is the first comparative metabolomic study of mitochondrial 303 

fusion in pancreatic cancer to identify macroscopic pathway alterations.  304 

Our study builds upon previous findings to better understand common metabolic 305 

perturbations from mitochondrial fusion. Here, we used three different models: a direct 306 

fusion model involving the upregulation of Mfn2 in a doxycycline-dependent manner, an 307 

indirect fusion model through the attenuation of Drp1 using CRISPR-Cas9, and a 308 

pharmacologic approach with Leflunomide, each in KPC cells. Of note, alanine, 309 

aspartate, and glutamate metabolism was the most prominent hit across all three 310 

methods of induced fusion, understandably because of its overarching position 311 

providing the precursors for the other seven identified metabolic pathways commonly 312 

altered (Figures 5 and S5). This finding further supports current working theories of 313 

tumor ability to alternatively fuel metabolism using extracellular amino acid pools, 314 

particularly, alanine, aspartate, glutamate, and asparagine, as carbon sources [10,22].  315 
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We also observed several expected alterations in nucleotide pathways 316 

downstream due to dysregulation of glycolysis and PPP that are linked to mutant KRAS 317 

activation [20,23–25] by reducing the pool of fragmented mitochondria present. 318 

Leflunomide is widely known for its direct inhibition of DHODH, an enzyme localized on 319 

the inner mitochondrial membrane, that is responsible for de novo pyrimidine 320 

biosynthesis. Interestingly, genetic modulation of mitochondrial morphology appeared to 321 

affect these pathways in a similar fashion. Tet-On Mfn2 and sgDrp1 modulated 322 

pyrimidine biosynthesis in addition to glycolysis and PPP, showing a common set of 323 

metabolic disturbances across multiple super-pathways. Ultimately, this suggests that 324 

mitochondrial fusion may actually be working in tandem with DHODH inhibition as a 325 

tumor suppressive mechanism in pancreatic cancer.  326 

Nevertheless, future research is needed in order to fully characterize the 327 

mechanism by which mitochondrial fusion reprograms the metabolome to curb 328 

tumorigenesis. We recognize that our study follows a markedly stringent method of 329 

discriminant metabolite identification. Relative metabolite concentration readings missed 330 

at least 1 data point for more than 20% of our metabolites across all three induced 331 

fusion groups as a result of either low concentration or poor mass spectrometry signal 332 

response, potentially limiting our analysis. Methods to impute these missing values 333 

should be explored when doing an in-depth analysis of sub-pathway alterations. 334 

However, our study provides foundational evidence that mitochondrial morphology plays 335 

a notable role in metabolic reprogramming further supporting leflunomide as a novel 336 

therapeutic against PDAC due to its ability to leverage both mitochondrial fusion and 337 

DHODH inhibition.   338 
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Materials and Methods 339 

Cell Culture 340 

 Murine KPC cells syngeneic with C57BL/6 (K8484) were a generous gift from 341 

Anirban Maitra from the University of Texas MD Anderson Cancer Center. KPC cells 342 

were grown in RPMI-1640 supplemented with 10% FBS, 2 mM GlutaMax, 1 mM sodium 343 

pyruvate, and 7 µg/mL of insulin. We previously described the generation and selection 344 

of KPC Tet-On Mfn2, sgDrp1, and sgGFP clones [1]. 345 

 346 

Untargeted Metabolomic Analysis 347 

 All metabolomic analyses were conducted under steady state conditions. KPC 348 

cell lines were grown in appropriate growth media in six replicates in 10-cm plates. Two 349 

hours before metabolite collection, cells were incubated in fresh growth media. 350 

Accordingly, replicate cell lines were plated and grown in parallel in order to control for 351 

cell growth. Cell counts from the replicate plates were used to normalize metabolite 352 

readings. After incubation in fresh growth media, 4 mL of 80% methanol that was pre- 353 

chilled to -80˚C was added, and the cell plates were immediately transferred to -80˚C to 354 

incubate overnight. The cell lysate-methanol mixture was then scraped and transferred 355 

to conical tubes on dry ice and centrifuged at 5000 g for 5 minutes. The supernatant 356 

was collected, and the process was repeated two more times after resuspending the 357 

pellet in 500 µL of chilled 80% methanol, for a total volume of 5 mL. Samples were then 358 

completely dried via speed vacuum at 30˚C. Metabolites were analyzed by LC-MS/MS 359 

as previously described [9,10]. 360 

 361 
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Discriminant Metabolite Identification 362 

 From our initial 296 measured metabolites, we stringently filtered out readings 363 

that were missing any values to ensure robustness in our analysis. As a result, 79.1%, 364 

82.8%, and 78.7% of the metabolites within the datasets remained for our Tet-On Mfn2, 365 

sgDrp1, and Leflunomide groups, respectively. Continued filtering for altered 366 

metabolites was performed using four independent statistical approaches: (1) FDR- 367 

adjusted two-sided Student’s t-test (P-values < 0.05 were considered statistically 368 

significant), (2) SAM (significant metabolite features were identified at an FDR < 0.05 369 

and corresponding delta of 0.39 for Tet-On Mfn2, 0.38 for sgDrp1, and 0.32 for 370 

Leflunomide), (3) PLS-DA variable importance in projection (VIP scores > 1.0 were 371 

considered significant for class separation), and (4) RF classification based on 500 372 

trees (significance established at permutation importance, MDA > 0).  373 

Two-sided Student’s t-test characterized significant differences based on hypothesis 374 

testing of the groups’ means following a normal distribution. However, since we only 375 

had an n = 6 for each group, there is the possibility that the variance in our dataset is 376 

not stable [26]. To account for this, SAM uses a nonparametric approach which does 377 

not rely on a prescribed probability distribution [27,28]. SAM processes multiple 378 

permutations of our data in order to calculate FDR values, which we are able to control 379 

using the tuning parameter delta, allowing us to define our cutoff for identification of 380 

altered metabolites [29]. PLS-DA VIP measures the importance of each variable after 381 

supervised dimensional reduction using a partial least squares projection [30,31]. Given 382 

that the average squared VIP score is 1.0, we followed the field standard of considering 383 

VIP scores greater than 1.0 as significantly altered and confirmed its predictive 384 
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probabilities using a leave-one-out cross validation method [32]. RF is a machine 385 

learning model often used for regression and classification. We tuned an RF model 386 

using bootstrap sampling to generate 500 random classification trees. Since this model 387 

only uses a subset of the available data to generate trees, we were able to robustly limit 388 

overfitting as well as potential outliers [33]. An MDA score was calculated using the 389 

unbiased out-of-bag classification error for each metabolite predictor, representing its 390 

predictive importance for the model. The reference MDA of 0 signifies that the predictor 391 

has no predictive importance in the model. Therefore, a metabolite with an MDA > 0 392 

represents that the loss of that metabolite from the model will result in a decrease in 393 

predictive ability of the RF model, which we used as our cutoff for identifying 394 

discriminant metabolites. In order to confirm our pathway analysis findings from the 395 

discriminant metabolite lists generated from each of our statistical models, we further 396 

refined our list of metabolites by taking only those that were common across all four 397 

feature selection methods.  398 

 399 

Pathway Analysis 400 

 Custom data mining using BioPython’s KEGG API was used to collect super 401 

metabolic pathway data for hierarchical clustering similar to what has previously been 402 

described [34]. Further sub-pathway analysis was performed using MetaboAnalyst 5.0, 403 

initially on the total filtered metabolite set from the KEGG database for mus musculus. 404 

We used a Global Test for enrichment and out-degree centrality for topology analysis. 405 

Using the hit values from the MetaboAnalyst output, we calculated a percent affected 406 

score for each pathway to prevent identification of significantly altered pathways with 407 
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fewer than 20% of their metabolites altered. Significant sub-pathways were also filtered 408 

using an FDR adjusted P-value < 0.05 and impact greater than 0.25. Confirmation of 409 

sub-pathway alterations after induction of mitochondrial fusion was performed after 410 

running continued pathway analyses of each discriminant metabolite set generated from 411 

our four different statistical methods as well as our overlapped metabolite dataset.  412 

 413 

Statistical Analysis 414 

Data manipulation and statistical analyses were performed using MetaboAnalyst 415 

5.0 [35], R version 4.0.2, and the Pandas, NumPy, and SciPy libraries in python 3.8. 416 

Metabolite concentration values were normalized based on the control group for each 417 

respective experimental group and log-transformed and pareto-scaled to approximate a 418 

normal distribution. 2D PCA and PLS-DA scores plots were generated using 419 

MetaboAnalyst. Heatmaps were generated with the python Seaborn package using a 420 

euclidean distance measure and ward algorithm. Volcano plots were generated using 421 

the EnhancedVolcano package from Bioconductor in R [36].  422 
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