Hillemanns et al.

RESEARCH

AMES: Automated evaluation of sarcomere structures in cardiomyocytes

Maximilian Hillemanns^{1*}, Heiko Lemcke^{2,3}, Robert David^{2,3}, Thomas Martinetz⁴, Markus Wolfien¹ and Olaf Wolkenhauer^{1,5,6}

*Correspondence:
maximilian.hillemanns@uni-
rostock.de
¹ Department of Systems Biology
and Bioinformatics, Faculty of
Computer Science and Electrical
Engineering, University of Rostock

Full list of author information is

available at the end of the article

18051 Rostock Germany

Abstract

Background:: Arrhythmias are severe cardiac diseases and lethal if untreated. To serve as an in vitro drug testing option for anti-arrhythmic agents, cardiomyocytes are being generated in vitro from induced pluripotent stem cells (iPSCs). Unfortunately, these generated cardiomyocytes resemble fetal cardiac tissue rather than adult cardiomyocytes. An automated tool for an unbiased evaluation of cardiomyocytes would highly facilitate the establishment of new differentiation protocols to increase cellular maturity.

Results:: In this work, a novel deep learning-based approach for this task is presented and evaluated. Different convolutional neural networks (CNNs) including 2D and 3D models were trained on fluorescence images of human iPSC-derived cardiomyocytes, which were rated based on their sarcomere content (sarcomerisation) and the orientation of sarcomere filaments (directionality) beforehand by a domain expert. The CNNs were trained to perform classifications on sarcomerisation, directionality ratings, and cell source, including primary adult and differentiated cardiomyocytes. The best accuracies are reached by a 3D model with a classification accuracy of about 90 % for sarcomerisation classification, 63 % for directionality classification, and 80 % for cell source classification. The trained models were additionally evaluated using two explanatory algorithms, IGrad and Grad-CAM. The heatmaps computed by those explainability algorithms show that the important regions in the image occur inside the cell and at the cellular borders for the classifier, and, therefore, validate the calculated regions. **Conclusion::** In summary, we showed that cellular fluorescence images can be analyzed with CNNs and subsequently used to predict different states of sarcomere maturation. Our developed prediction tool AMES (https://github.com/maxhillemanns/AMES) can be used to make trustworthy predictions on the quality of a cardiomyocyte, which ultimately facilitates the optimized generation of cardiomyocytes from iPSCs and improves the quality control in an automated, unbiased manner. The applied workflow of testing different CNN models, adjusting parameters, and using a variety of explanatory algorithms can be easily transferred to further image based quality control, stratification, or analysis setups. Keywords: Deep Learning; Fluorescence Image Analysis; Cardiomyocytes; Sarcomere Structures; Reasonable AI

З

Hillemanns et al.

Page 2 of 14

¹Background

1

26

2 ²Differentiation, generation, and maturation of cardiomyocytes and pacemaker cells ³Cardiomyocytes, the muscle cells of the heart, can be generated by various methods³ ⁴in wet lab conditions: i) the differentiation of adipose tissue-derived mesenchymal⁴ ⁵stem cells [1], ii) the differentiation of murine or human embryonic stem cells [2, 3],⁵ ⁶and iii) the reprogramming of somatic cells [4], especially induced PSCs (iPSCs).⁶ ⁷It is also possible to extract adult cardiomyocytes from murine hearts for compar-⁷ ⁸ative analyses. These programming methods produce a cardiomyocyte aggregate,⁸ ⁹where some cells possess so-called pacemaker abilities and some do not. In recent⁹ ¹⁰approaches, the amount of non-pacemaker cells in this aggregate is still at around ¹⁰ $^{11}20 \%$ [5, 6]. Moreover, the electrophysiological properties of these cells resemble¹¹ ¹²fetal cardiac tissue instead of adult cardiomyocytes [7]. The maturation level of 12 ¹³cardiomyocytes may be critical for drug development, as immature cardiomyocytes¹³ 14 ¹⁴are far more sensitive to potassium-channel blockers [8]. ¹⁵ In general, fully developed cardiomyocytes possess a well aligned and highly orga-¹⁵

¹⁶nized sarcomere network [9]. Longer sarcomere structures correlate to an improved ¹⁶ ¹⁷cardiac mechanical function [10]. Likewise, the mechanical, as well as the electrical ¹⁷ ¹⁸function, are also dependent on the orientation of myofibrils and subsequently the ¹⁸ ¹⁹sarcomere structures in a cell [11]. This orientation depends on the cell shape and ¹⁹ ²⁰the principal stress directions in the cell [12].

²¹ In order to validate and evaluate cardiomyocyte generation protocols, scientists²¹ ²²need to examine the maturity of these cell aggregates. Hence, the need for an easily²² ²³applicable method to distinguish between different maturation states is apparent²³ ²⁴[13]. ²⁴ ²⁵

²⁶Cellular image analysis with deep learning

²⁷One possible approach to distinguish between different maturation states of car-²⁷ ²⁸diomvocytes can be the analysis of cellular images with a variety of deep learning²⁸ ²⁹(DL) applications. The main approaches commonly used refer to image segmen-²⁹ ³⁰tation (partitioning an image into meaningful parts or objects), object tracking³⁰ ³¹(identifying and following an object through a time series), augmented microscopy³¹ ³²(extraction of latent information from biological images), and, finally, image classi-³² ³³fication. Deep learning image classification has been used on a variety of different³³ ³⁴cells and tasks, like identifying changes in cell state [14], sorting cells into different³⁴ ³⁵phenotypes [15, 16, 17], and distinguishing between differentiated and undifferen-³⁵ ³⁶tiated cells on bright-field images [18]. By using DL, it is also possible to extract³⁶ ³⁷feature vectors from cellular images in order to cluster these vectors and gain insight³⁷ ³⁸on morphological patterns [19]. In comparison to classical machine learning (ML)³⁸ ³⁹approaches like support vector machines (SVMs) [20] or logistic regression [21], DL³⁹ ⁴⁰has shown to be more efficient at cell analysis tasks. In many cases, ML or DL is⁴⁰ ⁴¹only applied after features were extracted from the images [20, 22]. In this study,⁴¹ ⁴²DL was used directly on the images.

⁴³ Transfer learning is also commonly used in biological image analysis due to the⁴³
 ⁴⁴lack of available training data. In transfer learning, a neural network pretrained on⁴⁴
 ⁴⁵another data set is applied to a new data set and the weights are retrained. Con-⁴⁵
 ⁴⁶volution Neural Networks (CNNs) are neural networks, which are able to extract⁴⁶

Hillemanns et al.

Page 3 of 14

¹features or patterns from images themselves, without any need for sophisticated ²preprocessing. CNNs combine this extraction part with the ability to make classifi-² ³cation based upon these extractions. They were introduced by Bengio and Lecun in ⁴1997 [23]. In cellular image analysis, CNNs are mainly used for image segmentation ⁵and not image classification [24, 25]. For image classification, fully connected layers ⁶are transferred after the convolutional layers to translate these features into a la-⁶ ⁷bel. The labels that will be used here are different maturation degrees of sarcomere7 ⁸structures that have been introduced by a biological domain expert. ⁸

10Explainability analysis of image analysis models

¹¹As CNNs modulate highly nonlinear functions, they are too complex to allow for¹¹ ¹²straightforward interpretability. This is referred to as the black box problem. A clas-¹² 13sifier may produce good classification results, but its inner workings and reasoning13 14are unattainable [26]. The question "Why does this model decide the way it does?" 14 15 plays an increasingly important role, especially in the life sciences. In the last few 15 16 years, a lot of algorithms have been developed to lift the lid of the black box. They 16 17can be sorted by two main criteria: local vs. global explanation and model-specific₁₇ 18vs. model-independent. Local explanations are computed with the model, a data₁₈ 19point and an output. In most cases, this is the predicted output of the model, al-19 $_{20}$ though a different label can be used to find weaknesses in the model (e.g., finding₂₀ $_{21}$ outputs the model might confuse for each other) [27]. Global explaining approaches $_{21}$ $_{22}$ take the model itself into account. An example would be the calculation of fea- $_{22}$ ₂₃ture importances in Random Forests [28]. Model-independent approaches can be₂₃ ₂₄applied on every classifier, while model-specific explaining algorithms are designed ₂₅ for one type of classifiers, e.g., SVMs or CNNs. Two examples for local explaining₂₅ ₂₆algorithms are Sensitivity Analysis (SA) and Layer-Wise Relevance Propagation₂₆ $_{27}$ (LRP). They both produce a heatmap with pixels relevant to the classification [29]. $_{27}$ This study compares and evaluates different CNN architectures upon their ability₂₈ 20 correctly identify cardiomyocyte's differentiation status/quality. Furthermore, a20 accomparison between a 2D and 3D analysis of fluorescence images is made and ex- $_{34}$ plainability methods will be applied onto the classifiers to investigate the reasoning $_{31}$ $_{32}$ for a certain cellular stratification. In the end, it will be examined whether the $_{32}$ $_{33}$ predictions match the biological criteria for differentiated cardiomyocytes. 33

³⁴Results

34 35

10

³⁶ Individual model development and classification ³⁶ Figure 1 shows the categorical accuracies, validation accuracies, and confusion ma-³⁷ trices on the test set for the singular 2D model on all classification tasks. All ac-³⁸ curacies have a rather logarithmic progression over time, a typical training curve. ³⁹ For sarcomerisation classification, the training accuracy reached a plateau at almost ⁴⁰ 100 % after around 100 epochs. It took the validation accuracy around 80 epochs to ⁴¹ reach a value of around 70 %, where it remained for the rest of the training epochs. ⁴² The confusion matrix for sarcomerisation classification has its highest values along ⁴² the diagonal, with the next highest values in row 2, column 1 and 3, which means ⁴³ that most of the data set is correctly classified. The accuracy of sarcomerisation ⁴⁵ classification on the test data set is 68.68 %. The training accuracy for direction-⁴⁵ ality classification settled at almost 100 % after around 150 epochs. The validation

Hillemanns et al.

10

11

Images/Figure1.png

Figure 1 Accuracy plots and confusion matrices for the singular model. Shown are the categorical training (train, blue) and validation (val, orange) accuracies over time as well as the confusion matrices computed on the test set. (a-b): Sarcomerisation classification; (c-d): Directionality classification; (e-f): Cell source classification

Images/Figure2.png

Figure 2 Confusion matrices for the one-vs-all ensemble model. Shown are the confusion matrices computed on the test set. (a): Sarcomerisation classification; (b): Directionality classification; (c): Cell source classification

11

10

¹² ¹³accuracy reached a value of around 60 % after approximately 120 epochs. Again,¹³ ¹⁴the highest value per row lies along the diagonal of the confusion matrix. Direc-¹⁴tionality classification has an accuracy of 57.95 % on the test data set. Cell source ¹⁵classification's training accuracy reached a plateau of almost 100 % after about 110 ¹⁶epochs. The validation accuracy settled at around 75 % after approximately 130 ¹⁷aepochs. In the confusion matrix computed on the test data set, the highest values ¹⁸are located on the diagonal. The accuracy of cell source classification on the test ¹⁹data set is 74.85 %.

In Fig. 2, the confusion matrices computed on the test set for the 2D ensemble 21 model are shown. For all three classification tasks, the highest value per row lies on the diagonal. Sarcomerisation and directionality classification each have one cell 23 classified as none of the ratings. The accuracy of sarcomerisation classification on the test data set is 70.93 %. It is 64.16 % for directionality classification and 82.06 % ²⁰ percent for cell source classification. As the individual classifiers were trained succes-26 sively, no single training/validation accuracy for the whole model can be computed. They are, however, computed for each individual classifier in the model. The first sarcomerisation classifier, a one-vs-all model for rating "1", has a final training 29 accuracy of 99.78 % and a final validation accuracy of 91.10 % after 1000 epochs of training. The second classifier, for rating "2" respectively, settled at a training $^{31}_{\rm accuracy}$ of 99.53 % and a validation accuracy of 85.23 %. For classifiers 3 and 4, 32 the final training accuracies are 97.12 % and 99.56 %, while the final validation 33 accuracies are 78.44 % and 92.90 %, respectively.

³⁴ The first directionality classifier has a final training accuracy of 99.66 % and a final ³⁴ 35 validation accuracy of 84.44 %, each after 1000 epochs of training. For classifiers 2³⁵ 36 and 3, final accuracies settled at 99.75 % and 99.16 % (training) and 81.91 % and ³⁶ 37 81.33 % (validation). The fourth directionality classifier reached a final training ac-³⁷ 38 curacy of 96.89 % and a final validation accuracy of 84.79 %.

³⁹The first cell source classifier is an one-vs-all model for the cell lineage "adult". It ³⁹ ⁴⁰has a final training accuracy of 99.96 % and a final validation accuracy of 97.10 % ⁴⁰ ⁴¹after 1000 epochs of training. For the "iPSC" classifier, the final training accuracy ⁴¹ ⁴²is 99.89 % and the final validation accuracy 97.53 %. The training accuracy for ⁴² ⁴³the "neonatal" classifier reached 99.67 %, while the validation accuracy reached ⁴³ ⁴⁴92.84 %, each after 1000 epochs.

⁴⁵ The accuracy plots for the 3D model based upon the singular model, also follow⁴⁵ ⁴⁶a typical training trend (see Fig. 3). For sarcomerisation classification, the training⁴⁶

Hillemanns et al.

10

25

40

Images/Figure3.png

Figure 3 Accuracy plots and confusion matrices for the 3D model. Shown are the categorical training (train, blue) and validation (val, orange) accuracies over time as well as the confusion matrices computed on the test set. (a-b): Sarcomerisation classification; (c-d): Directionality classification; (e-f): Cell source classification

Images/Figure4.PNG

Figure 4 Comparison of the weighted f1-scores between all evaluated models.

10

11 11 accuracy reached 100~% after 50 epochs, while the validation accuracy remained at around 78 % after 100 epochs. The confusion matrix has its highest values along the 13 diagonal, which means that the vast majority of images (90.91 %) were correctly 14 classified. For directionality classification, the training accuracy is almost 100~%after 500 epochs. The validation accuracy reaches a peak at about 68 % after around 150 epochs and then slowly declines to around 62 % after 500 epochs. The accuracy 17 of directionality classification on the test data set is 62.60 % and the confusion matrix has its highest values along the diagonal with a notable peak in the last 19 element of the second row. The training accuracy for cell source classification is 20 100 % after 500 epochs of training, while the validation accuracy settles at around 80 % after 70 epochs. In the confusion matrix computed on the test set, the highest 22 values are located along the diagonal and in the second column of rows 4 and 5. 23 The accuracy for cell source classification on the test set is 79.04 %. 24 24

Performance Comparison

26 The weighted f1-scores for the classifiers evaluated in this study are summarized in Fig. 4. It is different from the normal multi-class f1-score, as the per-class f1-scores are not only averaged, but also weighted according to the occurrence of their re-29 spective class. For the singular 2D model, directionality classification performs with a weighted f1-score of 57.96 %, while sarcomerisation classification reaches 67.33 %, and cell source classification reaches 74.81 %. Sarcomerisation classification yields $\frac{1}{32}$ 32 the second best results for the 2D ensemble model (70.16 %), while directionality $\overline{_{33}}$ classification reaches 64.19 %. This model performs best on cell source classification $\frac{1}{34}$ by achieving a weighted f1-score of 82.06 %. Directionality classification for the \sin_{35} 35 gular 3D model has a weighted f1-score of 62.63 %, while the weighted f1-score for 36 $\frac{3}{37}$ cell source classification is 79.14 %. The weighted f1-score for sarcomerisation classification lies at 90.87 %. Table 1 shows the test accuracies and weighted f1-scores computed on the test data set for all evaluated models. 39

Table 1 Test accuracies and weighted f1-scores for the models evaluated in this study. All values⁴¹are presented in percent [%] and were computed on the respective test set. For the two transfer⁴¹
41
42
models, only the final results after retraining all layers are presented. In each column, the lowest and
highest values are highlighted. (sarc: sarcomerisation, dir: directionality, cs: cell source)41

43								43
		Te	st acccura	асу	Weig	ghted f1-s	score	
44		sarc	dir	CS	sarc	dir	cs	44
45	2D singular model	68.68	57.95	74.85	67.33	57.96	74.81	45
10	2D ensemble model	70.93	64.16	82.06	70.16	64.19	81.94	10
46	3D singular model	90.91	62.60	79.04	90.87	62.63	79.14	46

Hillemanns et al.

Images/Figure5.png

Figure 5 IGrad and Grad-CAM heatmaps for a) sarcomerisation and b) directionality rating "4". Images were correctly classified as "4" by the singular 2D model.

Images/Figure6.png

Figure 6 Grad-CAM heatmaps for cell source classification. Images were correctly classified by the singular 2D model.

9 10

11 Explainability Heatmaps

¹²In order to understand the reasoning behind the singular 2D models decisions, the applainability algorithms iGrad and Grad-CAM were applied. In Fig. 5a, heatmaps $_{14}$ produced by IGrad as well as Grad-CAM for the singular 2D model can be seen. It $_{14}$ ₁₅ correctly classified these images with a rating of "4" for sarcomerisation, meaning this particular cell has a high degree of sarcomerisation. The heatmaps produced by IGrad have generally lower values than those produced by Grad-CAM. They lack areas of high importance, as the cells themselves have no impact on classification. There are however, slight accumulations around the edges of cells. When looking at the Grad-CAM heatmaps, the highest values lie inside the cell, with peaks around the edges. Almost the whole cell has a positive impact on classification. The heatmaps for the other classes can be seen in the supplemental material. 22 The heatmaps Grad-CAM produced for the directionality have their peaks located 23 inside the cardiomyocytes, while the one produced by IGrad barely have peaks at all (Fig. 5b). The IGrad heatmaps have very few values greater than zero. 25 The heatmaps produced by IGrad for the cell source have only very few values 26 greater than zero. Inside the cells, there are none visible. The Grad-CAM heatmaps ¹ have their highest values inside the cells for classes "adult" and "iPSC" and on the cellular border for class "neonatal" (see Fig. 6). Note that for "adult" and "iPSC" 29 Grad-CAM also highlights the borders of a cell. 30

³¹Discussion

³²Cardiomyocyte quality is determinable via CNNs

 33 When looking at the accuracies and the f1-scores of the models, it is clear that in 33 34 principle, the evaluation of cardiomyocytes using DL is possible. This is a promising 35 result, as in past approaches, neural networks mainly delivered well-suited results ³⁶on bright field microscopy images, as opposed to fluorescence images [20, 25]. The³⁶ ³⁷ classification regarding sarcomerisation, directionality, and even cell source yields ³⁸encouraging findings in terms of accuracy. Because of the balanced data set created ³⁸ ³⁹by data augmentation, the baseline classification accuracy (the model predicts every³⁹ 40 data point to belong to the majority class) lies at around 20 % for sarcomerisation 41 and directionality classification and at around 30 % for cell source classification. 41 ⁴²For all tasks, these baseline accuracies can be considerably outperformed. It also⁴² ⁴³appears that a shallow model is sufficient to tackle all classification tasks. The sin-⁴³ ⁴⁴gular 2D model has far less parameters than other, established image classification⁴⁴ ⁴⁵networks like the VGG-16 or MobileNet [30]. This suggests that the features ex-⁴⁵ ⁴⁶tracted by a CNN do not need to be overly specific or detailed to ensure an accurate⁴⁶

9 10

11

31 32 Hillemanns et al.

Page 7 of 14

¹classification of either sarcomerisation, directionality, or cell source. From a human¹ ²domain expert perspective, the rating of sarcomerisation and directionality are in^{-2} ³tuitively easy, as humans can easily spot parallel patterns and fractions of objects.³ ⁴Both are relatively easy features and so it is quite surprising that directionality⁴ ⁵classification consistently performs worse than sarcomerisation and cell source clas-⁵ ⁶sification. However, directionality classification, when looked at in detail, are two⁶ ⁷separate tasks. First, the main cellular axis has to be found, which may be easy⁷ ⁸for adult cardiomyocytes, but has its challenges for the other analyzed cell sources.⁸ ⁹Second, the sarcomere structures must be evaluated according to their axis, poten-⁹ ¹⁰tially leading to consequential errors, if the main axis is not determined properly.¹⁰ ¹¹This may be an explanation to why it is more difficult for neural networks to evalu-¹¹ ¹²ate on directionality than on sarcomerisation or cell source. It has been shown that¹² ¹³cardiomyocytes generated from iPSCs resemble fetal cardiomyocytes rather than¹³ ¹⁴adult ones [31]. Our analysis also confirms this finding, as all three analyzed cell¹⁴ ¹⁵types can be distinguished from each other, meaning that there is still an observable¹⁵ 16difference between primary and generated cardiomyocytes (see Figs. 1-3). 16 17Stochastic Gradient Descent, although being a widespread optimizer, has its prob-17 18 uses with large data sets and/or high dimensional feature space [32, 33]. The latter, 18 19high dimensional feature space, holds true for the data used in this work, especially 19 20 for 3D classification. The Adam optimizer tackles these problems and was conse-20 ²¹quently used for all models. The learning rate was set to 10⁻⁵ and made adaptive.²¹ 22Adaptive learning rates have been shown to boost classification results [34], which 22 ₂₃was also the case here. Another approach, increasing the batch size over training in-₂₃ 24stead of decreasing the learning rate, was not applied, although it showed promising24 ₂₅results in previous works [35]. For the applications in this study, it was not appli-₂₅ $_{26}$ cable, as the batch sizes cannot be increased arbitrarily because the images are too₂₆ ₂₇large in file size, especially for the 3D classification. Although transfer models have₂₇ $_{28}$ not been evaluated in this work, they have been applied onto cellular image analysis $_{28}$ ₂₉tasks in the past. For example, Dong et al. were able to correctly distinguish malaria₂₉ $_{30}$ infected cells from healthy ones using bright field microscopy with an accuracy of $_{30}$ $_{31}$ up to 98.13 % [20]. Cascio et al. built a transfer model, which was able to classify $_{31}$ ³²indirect immunofluorescence images of Human Epithelial type 2 (HEp-2) into fluo- $_{33}$ rescence intensity classes with an accuracy of 93.80 % [36]. HEp-2 is a marker for $_{33}$ antinuclear antibodies and, therefore, autoimmune diseases. Both approaches made ³⁵use of the AlexNet [37], which is rather simple in terms of architecture and number of parameters. 36

³⁶³⁷ 3D classification outperforms 2D classification in terms of accuracy
³⁷ 3D classification outperforms 2D classification in terms of accuracy
³⁸ The comparison between the 2D singular model and the 3D model, two similar
³⁹ models with different dimensionalities, shows a slight improvement in the classifica⁴⁰ tion accuracies when 3D images were analysed. An increase in model performance
⁴¹ comes to no surprise, as the images are bigger and able to store more information in
⁴² the additional dimension. However, they do not seem to become more complicated,
⁴³ as the same shallow architecture is able to extract features, which suffice for classifi⁴⁴ cation. The addition of a third dimension improves the classification marginally for
⁴⁴ directionality and cell source classification (about 5 % each) and drastically for sar⁴⁶ comerisation classification (about 20 %). The computation time however increases

Hillemanns et al.

Page 8 of 14

¹drastically. Training a classifier on 2D data for 500 epochs is a matter of hours, on¹ 2 3D data, it takes days. Interestingly, both 2D and 3D models take up about the² ³same storage space with around 6 megabytes. Still, the increase in computation³ ⁴time, not only for the training of the classifier, but also for image preprocessing,⁴ ⁵outweighs the improvement of classification accuracy at this point. There are two⁵ ⁶options for the application of this evaluation: Use the 2D classifier, and get quick,⁶ ⁷but slightly imprecise results, or use the 3D classifier, and get more sensitive and ⁷ ⁸accurate results at the expense of computation time. As computational hardware⁸ ⁹ is constantly improving, the difference in computation time might be significantly⁹ ¹⁰reduced in the future. 3D analysis has been long proven to outperform 2D analysis¹⁰ ¹¹on a wide range of tasks[38]. In the life sciences, 3D image analysis with DL is¹¹ ¹²often used for segmentation [39, 40, 41]. In this context, it has been shown that¹² ¹³3D segmentation outperforms the segmentation of all individual 2D slices [42]. 3D¹³ ¹⁴image classification approaches for biological images are rare. One example is the¹⁴ ¹⁵classification of functional connectomes by Khosla et al. They were able to correctly¹⁵ 16 classify 73.30 % of functional magnetic resonance images (fMRI) using a custom 16 ¹⁷build model trained on the Autism Brain Imaging Data Exchange (ABIDE) data¹⁷ ¹⁸set [43]. This is similar to the accuracies reached by 3D classification in this study¹⁸ ¹⁹(62.60 % to 90.91 %). 20 20

²¹Cellular borders are of high interest

21

²²The implementation of IGrad leads to no interpretable results. This could be due²² ²³to an error in the implementation of IGrad in the keras-explain package. Other pos-²³ ²⁴sible error sources could be the shallowness of the evaluated model, the proximity²⁴ ²⁵of a monochrome cellular image to the black image baseline or a combination of ²⁵ ²⁶these two. In contrast, the heatmaps produced by Grad-CAM are very informative, ²⁶ ²⁷although they lack detailed spatial information of pixel-wise impact on the classifi-²⁷ ²⁸cation. This is due to the shallow architecture of the evaluated model. The deeper²⁸ ²⁹a CNN is, the more specific the features in the last feature map are. The singular²⁹ ³⁰model simply seems not deep enough to extract detailed features from the images.³⁰ ³¹Still, it is apparent that the most important regions for all classification tasks are³¹ ³²within the cell. This is not surprising, as the sarcomere network lies within the cell³² ³³and thus, all valid decisions based upon this sarcomere network must be traceable³³ ³⁴to the cell itself. Interestingly, there are outlier images, though, whose Grad-CAM³⁴ ³⁵heatmaps locate the important regions to be outside of the cell. This could be due³⁵ ³⁶to "zero-filters", convolutional filters that learn to find background or, as in this³⁶ ³⁷case, black regions in the images. Especially for sarcomerisation, these filters can³⁷ ³⁸be useful, as they allow for reverse explanations. If a large part of the image and/or³⁸ ³⁹the cell is black, the sarcomerisation rating will probably be low. Cellular borders³⁹ ⁴⁰seem to be of high importance according to the heatmaps produced by Grad-CAM.⁴⁰ ⁴¹For all three classification tasks one can find examples of this (e.g., Fig. 5, Fig. 6).⁴¹ ⁴²This could hint at edge detection being learned by the networks. For sarcomerisa-⁴² ⁴³tion classification, this makes sense, as the network may recognize where the cells⁴³ ⁴⁴are on the image and, consequently, which areas in the image should have a dense⁴⁴ ⁴⁵sarcomere network. Adult cardiomyocytes tend to be elongated and thin, while car-⁴⁵ ⁴⁶diomyocytes generated from iPSCs resemble fetal cardiac muscle cells, which are⁴⁶

Hillemanns et al.

Page 9 of 14

11

Images/Figure7.png

Figure 7 Schematic overview of the study design. SIM: Structured Illumination Microscopy, IGrad: Integrated Gradients, Grad-CAM: Gradient-Weighted Class Activation Mapping

⁶more likely to be round or have irregular shapes [44]. Therefore, edge detection could⁶ ⁷benefit the distinction between these cell sources. In general, Grad-CAM produced⁷ ⁸heatmaps of the singular model that seemed to highlight regions in the image that⁸ ⁹would also be deemed important by human curators. ¹⁰

¹¹Conclusion

¹²In this work, a novel unbiased tool to evaluate the sarcomerisation, directionality,
¹³and cell origin of a cardiomyocyte is presented. Several different CNNs were trained
¹⁴on 2D and 3D fluorescence images of cardiomyocytes with the sarcomere network
¹⁴¹⁵stained. The cardiomyocytes used in this study were rated based on their sarcom-¹⁵
¹⁶erisation and the orientation of sarcomere structures (directionality) beforehand
¹⁶(CCRS scheme). The trained models were subsequently evaluated by feeding them
¹⁷into two explainability algorithms, IGrad and Grad-CAM, which highlight the areas
¹⁸in an image that are most important for the respective classification.

²⁰IGrad andGrad-CAM both produce heatmaps, where IGrad did not provide in-²⁰
²¹terpretable results in our data. The heatmaps produced with Grad-CAM have²¹
²²their highest values inside the cell and at cellular borders for all three classification²²
²³tasks, meaning that these regions are important for classification. However, these²³
²⁴heatmaps do not contribute to novel findings, but highlight that cells are being²⁴
²⁵recognized by the classifier.

²⁶In general, it is shown that cellular fluorescence images can be analysed with CNNs.²⁶ ²⁷A classifier was built that is capable of predicting 82 % of cardiomyocyte origins,²⁷ ²⁸71 % of sarcomerisation ratings, and 64 % of directionality ratings correctly. This²⁸ ²⁹classifier can be used to make independant and trustworthy predictions on the qual-²⁹ ³⁰ity of generated cardiomyocytes based on the sarcomere network. This underlying³⁰ ³¹work will significantly benefit the unbiased evaluation of cardiomyocytes, as a fast³¹ ³²and reliable tool for cardiomyocyte aggregates is now available.³³

³⁴Methods

³⁵In this study, 2D and 3D fluorescence images of cardiomyocytes were analyzed with
³⁶CNNs. These CNNs were trained to distinguish between different ratings for car-³⁶
³⁷diac muscle states, which were assigned to the cells beforehand. The CNNs were³⁷
³⁸evaluated according to their accuracy and fl-score. Additionally, the best perform-³⁸
³⁹ing model was analyzed with explainability algorithms in order to visualize the³⁹
⁴⁰network's behaviour and criteria for classification. The workflow is shown schemat-⁴⁰
⁴¹ically in Fig. 7.

⁴³Cell origin and image acquisition

42 43

34

⁴⁴A comparison of murine-derived cardiomyocytes (adult and neonatal) and human-⁴⁴ ⁴⁵derived induced pluripotent stem cells (iPSCs), which both differentiated into car-⁴⁵ ⁴⁶diomyocytes, serve as the basic sarcomere models in this work. This allows for a⁴⁶

Hillemanns et al.

Table 2	Antibodies	used f	or	immunostaining	of	cardiomyocytes.

Thermo Fisher Scientific, USA Images/Figure8.png		
Abcam plc, USA Secondary F(ab')2-Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibod Thermo Fisher Scientific, USA Images/Figure8.png	Туре	Antibody
Secondary F(ab')2-Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibod Thermo Fisher Scientific, USA	Primary	Sarcomeric <i>alpha</i> -actinin antibody ea53
Thermo Fisher Scientific, USA Images/Figure8.png		Abcam plc, USA
Images/Figure8.png	Secondary	F(ab')2-Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody
		Thermo Fisher Scientific, USA
		Images/Figure8.png
igure 8 Example images for all different sarcomerisation and directionality ratings.		
Sare o Example images for an americal sareomensation and anectionality ratings.	gure 8 Exami	ale images for all different sarcomerisation and directionality ratings
		se images for an americal successful and an ectionality ratings

10 validation of the iPSCs, which were differentiated and harvested by the RTC. ¹¹The cellular images used in this study were acquired using 3D fluorescence struc-11 tured illumination microscopy (SIM), which provides for resolutions of about 100 nm ¹³[45, 46]. Between 36 and 83 images have been taken and arranged into a z-stack¹³ ¹⁴ per cell. The x- and y-sizes of the images range from 564 to 2002 pixels and from ¹⁴ ¹⁵392 to 2027, respectively, depending on the size of the cell captured. In order to ¹⁵ ¹⁶obtain the 3D fluorescence images, the cells were stained as follows. At first, the ¹⁶ ¹⁷cells were fixed by adding pre-warmed 4 % paraformaldehyde (PFA) directly into¹⁷ ¹⁸the culture medium with a ratio of 1:1 for five minutes at 37 °C. The cells were¹⁸ ¹⁹washed two times with phosphate buffered saline (PBS) for 5 min each. After this,¹⁹ 20 they were permeabilized with 0.2 % Triton for five minutes and again washed twice²⁰ ²¹with PBS for five minutes each. Next, the immunostaining took place. Therefore,²¹ 22 the unspecific binding sites of the cells were blocked with 1 % bovine serum albu- 22 23 min (BSA) at room temperature for 60 min. The cells were then stained with the²³ ²⁴primary antibody against *alpha*-actinin (see Table 2), which is diluted in 1 % BSA,²⁴ 25 for 60 min at room temperature. *alpha*-actinin binds to the actin filaments of the 25 ²⁶sarcomeres and stabilizes the muscle contractile apparatus [47]. Two washes with²⁶ $^{27}0.2$ % BSA for five minutes each followed. Then, the cells were incubated with the²⁷ ²⁸secondary antibody (see Table 2), which was diluted in 1 % BSA, for 45 minutes at²⁸ 29room temperature. Again, the cells were washed, twice with 0.2 % BSA and twice²⁹ 30with PBS, each for five minutes. Coverslips were rinsed with distilled water and the30 31cells were embedded on slides using mounting medium containing DAPI. 31

33Introduction of a cardiomyocyte cell rating system (CCRS)

32 33

³⁴The cells in the fluorescence images have been rated regarding the orientation of ³⁴ ³⁵sarcomere structures relative to the longitudinal axis of the cell (directionality) and ³⁵ ³⁶their sarcomerisation, which both correlate to the maturity of a cardiomyocyte. "1" ³⁶ ³⁷marks the lowest rating and "4" the highest, with "2" and "3" as intermediate ³⁷ ³⁸steps. A cell with sarcomere structures parallel to the cell's longitudinal axis would ³⁸ ³⁹be marked as "1" for directionality, whereas a cell with perpendicular orientated ³⁹ ⁴⁰sarcomere structures would be marked as "4". Similarly, cells with a high degree ⁴⁰ ⁴¹were marked as "1". Example images for all ratings can be seen in Fig. 8.

⁴³Cardiomyocyte image processing, classification, and explaination

43

⁴⁴As the original images are three-dimensional, 2D images had to be created with Im-⁴⁴
 ⁴⁵ageJ (version 1.52a) [48]]. The common practice of reducing the dimension by a max-⁴⁵
 ⁴⁶imum illumination projection along the z-axis was used to obtain two-dimensional⁴⁶

Hillemanns et al.

1

2		ividual mode	is has been ca	alculated.		2
2		2				
3	Model	Total			nable	3
4	Woder		4			
7		5	5	5	6	1
5	2D singular model	1.517.489	1.517.510	1.517.105	1.517.126	5
6	2D ensemble model	3.004.020	3.775.025	3.002.996	3.753.745	6
0	3D singular model	1.406.193	1.406.214	1.405.809	1.405.830	0
7						7
8						8

Table 3 Comparison of the number of parameters between the different models used. For the ensemble model, the sum of the individual models has been calculated.

⁹images of the cardiomyocytes fluorescence stacks [49]. Image preprocessing con-⁹ ¹⁰sisted of resizing the images to a models respective input size and scaling the pixels¹⁰ ¹¹between 0 and 255. Data augmentation was implemented to increase the number of¹¹ ¹²data points. The augmentation was performed depending on the relative occurrence¹² ¹³of a class to simultaneously guarantee for a balanced data set. The class with the¹³ ¹⁴fewest data points was multiplied by a factor of 15 for 2D classification and 9 for 3D¹⁴ ¹⁵classification. This is because more augmented 3D images exceed the available stor-¹⁵ ¹⁶age space. Images were either flipped horizontally, vertically, rotated by a random¹⁶ ¹⁷degree or a combination of these three methods. This does not distort the image¹⁷ ¹⁸and allows validation of the results [50].

¹⁹Two different 2D classification approaches will be presented in the following: one¹⁹ ²⁰singular model with varying architectures and one ensemble model. The first model²⁰ ²¹is shallow, and consists of only three convolutional blocks, and, thus, has only a few²¹ ²²parameters. The second model makes use of an ensemble of neural networks. For²² ²³each class, a binary classifier was trained to distinguish between this class and all²³ ²⁴other classes. ²⁴

²⁵3D image classification is often accompanied by a task like depth perception (e.g.,²⁵ ²⁶human pose estimation [51]) or shape reconstruction (mesh/point cloud classifica-²⁶ ²⁷tion [52]). There are few cases, where 3D images are classified as a whole, mainly for²⁷ ²⁸medical purposes, but these approaches lack a common model used. Therefore, a²⁸ ²⁹native 3D classification model has been evaluated. The 3D model closely resembles²⁹ ³⁰the singular model. It is also made up from three blocks of 3D convolution, batch³⁰ ³¹normalization, max pooling, and dropout layers. The detailed architecture can be³¹ ³²seen in the appendix. The network was trained with the Adam optimizer with a³² ³³learning rate of 10-5, which decays by 10²8 each epoch. ³³

³⁴Table 3 shows a comparison between the parameters of each model. The number³⁴ ³⁵of parameters strongly influences the storage space of a model, as well as the time³⁵ ³⁶needed to train and test it. Models with fewer parameters are easier to implement³⁶ ³⁷and take less time to make predictions. ³⁷

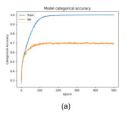
³⁸ Two different methods for explainability analysis were applied in this thesis: In-³⁸
 ³⁹tegrated Gradients (IGrad, [53]) and Gradient-weighted Class Activation Mapping³⁹
 ⁴⁰(Grad-CAM, [54]). Both methods allow for a pixel-wise decomposition of CNNs.⁴⁰

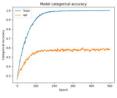
⁴¹Here, we made use of the keras-explain 0.0.1 package for Python 3.7 to implement⁴¹
⁴²both methods and compute the heatmaps [55]. The heatmaps were scaled between⁴²
⁴³0 and 255.

⁴⁴All models were initialized with random weights and biases following a uniform
 ⁴⁵distribution around zero. Native models were each trained for 500 epochs. The
 ⁴⁶code was implemented in Python 3.7.2 using Keras 2.1.6 with Tensorflow backend

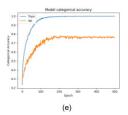
Hillemanns et al.

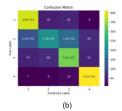
^{1} and scikit-learn (version 0.20.3) packages [56, 57, 58]. Tests were run on an nVidi	a^1
² GeForce GTX 2080 GPU with 8 GB RAM.	2
3	3
4	4
Ethics approval and consent to participate ⁵ Not applicable.	5
6	6
Consent for publication 7Not applicable.	7
⁸ Availability of data and materials ₉ The datasets used and analysed during the current study are available from the corresponding author on reasonabi	8
g the datasets used and analysed during the current study are available from the corresponding author on reasonabl request.	10 9
¹⁰ The python code used for analysis is available at github [59].	10
¹¹ Competing interests	11
$_{12}$ The authors declare that they have no competing interests.	12
13Funding	13
This work was supported by the EU Social Fund (ESF/14-BM-A55-0024/18, ESF/14-BM-A55-0027/18), the DF0 14 (DA1006 (c 1) the Social Fundation (C (21/12)) the SOCIAL Social Fundation (C (21/12)) the So	G 14
¹ (DA1296/6-1), the German Heart Foundation (F/01/12), the FORUN Program of Rostock Medical University 15(889001/889003), the Josef and Käthe Klinz Foundation (T319/29737/2017), the DAMP Foundation (2016-11),	15
and the BMBF (VIP+00240, 031L0106C). 16	16
17Author's contributions	17
Conceptualization, MH, TM, MW and OW; Formal analysis, MH; Funding acquisition, OW and RD; Investigation	,
¹⁸ MH and HL; Methodology, MH, HL, RD and MW; Supervision, RD, TM and OW; Visualization, MH; Writing — 19 ^{original} draft, MH, HL and MW	18
All authors have read and agreed to the published version of the manuscript.	19
20 Acknowledgements	20
²¹ Not applicable.	21
Author details	22
23 ¹ Department of Systems Biology and Bioinformatics, Faculty of Computer Science and Electrical Engineering,	23
University of Rostock 18051 Rostock Germany. ² Reference and Translation Center for Cardiac Stem Cell Therapy ²⁴ (RTC), Department of Cardiac Surgery, Rostock University Medical Center Schillingallee 69 18057 Rostock	[′] 24
₂₅ Germany. ³ Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University	25
Albert-Einstein-Straße 2 18059 Rostock Germany. ⁴ Institute for Neuro- and Bioinformatics, University of Lübeck ²⁶ Ratzeburger Allee 160 23562 Lübeck Germany. ⁵ Stellenbosch Institute of Advanced Study, Wallenberg Research	26
²⁷ Centre, Stellenbosch University 7602 Stellenbosch South Africa. ⁶ Leibniz-Institute for Food Systems Biology,	27
Technical University of Munich Lise-Meitner-Straße 34 85354 Freising Germany.	
28 References	28
²⁹ 1. Feng, Y., Yang, P., Luo, S., Zhang, Z., Li, H., Zhu, P., Song, Z.: Shox2 influences mesenchymal stem cell fat	
 in a co-culture model in vitro. Molecular medicine reports 14(1), 637–642 (2016) Dorn, T., Goedel, A., Lam, J.T., Haas, J., Tian, Q., Herrmann, F., Bundschu, K., Dobreva, G., Schiemann, N 	30 1.,
31 Dirschinger, R., et al.: Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity.	
 Stem cells 33(4), 1113–1129 (2015) Protze, S.I., Liu, J., Nussinovitch, U., Ohana, L., Backx, P.H., Gepstein, L., Keller, G.M.: Sinoatrial node 	32
33 cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nature biotechnolog	y 33
 35(1), 56-68 (2017) 4. Hu, YF., Dawkins, J.F., Cho, H.C., Marbán, E., Cingolani, E.: Biological pacemaker created by minimally 	34
invasive somatic reprogramming in pigs with complete heart block. Science translational medicine 6(245),	35
 245–9424594 (2014) ³⁶ 5. Jung, J.J., Husse, B., Rimmbach, C., Krebs, S., Stieber, J., Steinhoff, G., Dendorfer, A., Franz, WM., David 	J 36
 37 R.: Programming and isolation of highly pure physiologically and pharmacologically functional sinus-nodal 	u, 37
bodies from pluripotent stem cells. Stem cell reports $2(5)$, 592–605 (2014)	38
³⁸ 6. Rimmbach, C., Jung, J.J., David, R.: Generation of murine cardiac pacemaker cell aggregates based on es-cell-programming in combination with myh6-promoter-selection. Journal of visualized experiments: JoVE	
39 (96) (2015)	39
40 7. Blazeski, A., Zhu, R., Hunter, D.W., Weinberg, S.H., Zambidis, E.T., Tung, L.: Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and	
⁴¹ contractility. Progress in biophysics and molecular biology 110 (2-3), 166–177 (2012)	41
42 8. Tan, S.H., Ye, L.: Maturation of pluripotent stem cell-derived cardiomyocytes: a critical step for drug development and cell therapy. Journal of cardiovascular translational research 11 (5), 375–392 (2018)	42
 ⁴³ 9. Lemcke, H., Skorska, A., Lang, C.I., Johann, L., David, R.: Quantitative evaluation of the sarcomere network 	of ⁴³
human hipsc-derived cardiomyocytes using single-molecule localization microscopy. International journal of	44
molecular sciences 21 (8), 2819 (2020) 4510. Botcherby, E.J., Corbett, A., Burton, R.A., Smith, C.W., Bollensdorff, C., Booth, M.J., Kohl, P., Wilson, T.,	45

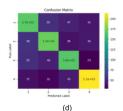

Botcherby, E.J., Corbett, A., Burton, K.A., Shinti, C.W., Bonchadon, C., Bostin, M.S., Lean, C., Landi, C., Statin, C.W., Bonchadon, C., Bostin, M.S., Lean, C., Landi, C., Statin, Statin, C., Statin, C., Statin, C., Statin, C., Statin, C., Stati

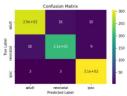

Hillemanns et al.

1 11.	Wong, J., Kuhl, E.: Generating fibre orientation maps in human heart models using poisson interpolation.	1
2	Computer methods in biomechanics and biomedical engineering 17(11), 1217-1226 (2014)	2
12. 3	Yuan, H., Marzban, B., Kit Parker, K.: Myofibrils in cardiomyocytes tend to assemble along the maximal	3
	principle stress directions. Journal of biomechanical engineering 139 (12) (2017) Marrie T.A. Naik, J. Eibban, K.S. Kong, X. Kiyana, T. Yakamari, K. Crecherg, A. Striated muscute	
415.	Morris, T.A., Naik, J., Fibben, K.S., Kong, X., Kiyono, T., Yokomori, K., Grosberg, A.: Striated myocyte structural integrity: Automated analysis of sarcomeric z-discs. PLoS computational biology 16 (3), 1007676	4
5	(2020)	5
6 ^{14.}	Sommer, C., Hoefler, R., Samwer, M., Gerlich, D.W.: A deep learning and novelty detection framework for	6
0	rapid phenotyping in high-content screening. Molecular biology of the cell 28 (23), 3428–3436 (2017)	
715.		7
8	O., Summers, H.D., <i>et al.</i> : Label-free leukemia monitoring by computer vision. Cytometry Part A 97 (4), 407–414 (2020)	8
916.	Doan, M., Sebastian, J.A., Caicedo, J.C., Siegert, S., Roch, A., Turner, T.R., Mykhailova, O., Pinto, R.N.,	9
	McQuin, C., Goodman, A., et al.: Objective assessment of stored blood quality by deep learning. Proceedings of	f
10	the National Academy of Sciences 117(35), 21381–21390 (2020)	10
11 ^{17.}	Godinez, W.J., Hossain, I., Lazic, S.E., Davies, J.W., Zhang, X.: A multi-scale convolutional neural network for	^r 11
1218	phenotyping high-content cellular images. Bioinformatics 33 (13), 2010–2019 (2017) Buggenthin, F., Buettner, F., Hoppe, P.S., Endele, M., Kroiss, M., Strasser, M., Schwarzfischer, M., Loeffler,	12
	D., Kokkaliaris, K.D., Hilsenbeck, O., <i>et al.</i> : Prospective identification of hematopoietic lineage choice by deep	
13	learning. Nature methods 14(4), 403–406 (2017)	13
1419.	Pawlowski, N., Caicedo, J.C., Singh, S., Carpenter, A.E., Storkey, A.: Automating morphological profiling with	14
15	generic deep convolutional networks. BioRxiv, 085118 (2016)	15
	Dong, Y., Jiang, Z., Shen, H., Pan, W.D., Williams, L.A., Reddy, V.V., Benjamin, W.H., Bryan, A.W.: Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells. In: 2017	740
16	IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp. 101–104 (2017). IEEE	10
¹⁷ 21.	Chen, C.L., Mahjoubfar, A., Tai, LC., Blaby, I.K., Huang, A., Niazi, K.R., Jalali, B.: Deep learning in	17
18	label-free cell classification. Scientific reports ${f 6}(1),$ 1–16 (2016)	18
	Zhang, H., Shao, X., Peng, Y., Teng, Y., Saravanan, K.M., Zhang, H., Li, H., Wei, Y.: A novel machine learning	g 19
19 23	based approach for ips progenitor cell identification. PLoS computational biology 15 (12), 1007351 (2019) LeCun, Y., Bengio, Y., <i>et al.</i> : Convolutional networks for images, speech, and time series. The handbook of	19
2025.	brain theory and neural networks 3361 (10), 1995 (1995)	20
2124.		21
22	International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241	22
	(2015). Springer	
2325.	Van Valen, D.A., Kudo, T., Lane, K.M., Macklin, D.N., Quach, N.T., DeFelice, M.M., Maayan, I., Tanouchi, Y., Ashley, E.A., Covert, M.W.: Deep learning automates the quantitative analysis of individual cells in live-cell	23
24	imaging experiments. PLoS computational biology $12(11)$, 1005177 (2016)	24
25 ^{26.}	Binder, A., Bach, S., Montavon, G., Müller, KR., Samek, W.: Layer-wise relevance propagation for deep	25
	neural network architectures. In: Information Science and Applications (ICISA) 2016, pp. 913–922. Springer,	
26	??? (2016) Pack & Binder A. Manteura C. Klausekan F. Müller K. P. Samak W. On nivel wire evaluations for	26
27 ^{27.}	Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, KR., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one 10 (7), 0130140 (2015)	27
2828.		28
20	measure. Bioinformatics 26 (10), 1340–1347 (2010)	20
²⁹ 29.		29
30	interpreting deep learning models. arXiv preprint arXiv:1708.08296 (2017) Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.:	30
30. 31	Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint	31
32	arXiv:1704.04861 (2017)	32
31.	Karbassi, E., Fenix, A., Marchiano, S., Muraoka, N., Nakamura, K., Yang, X., Murry, C.E.: Cardiomyocyte	
33	maturation: advances in knowledge and implications for regenerative medicine. Nature Reviews Cardiology	33
³⁴ 32.	17(6), 341–359 (2020) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)	34
3533.	Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y.: On optimization methods for deep	35
	learning. In: ICML (2011)	
³⁶ 34.		r ³⁶
37	speech recognition. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6724, 6739 (2013) IEEE	37
3835	6724–6728 (2013). IEEE Smith, S.L., Kindermans, PJ., Ying, C., Le, Q.V.: Don't decay the learning rate, increase the batch size. arXiv	/38
	proprint arXiv:1711.00480.(2017)	
³⁹ 36.	Cascio, D., Taormina, V., Cipolla, M., Bruno, S., Fauci, F., Raso, G.: A multi-process system for hep-2 cells	39
		40
37. 41	Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks.	41
	Advances in neural information processing systems 25 , 1097–1105 (2012) Chang, K.I., Bowyer, K.W., Flynn, P.J.: Face recognition using 2d and 3d facial data. In: Workshop in	42
	Multidimonal User Authentication Pp25-32 (2003). Citeseer	
⁴³ 39.	Castilla, C., Maška, M., Sorokin, D.V., Meijering, E., Ortiz-de-Solorzano, C.: Segmentation of actin-stained 3d	43
44	fluorescent cells with filopodial protrusions using convolutional neural networks. In: 2018 IEEE 15th	44
4540.	International Symposium on Biomedical Imaging (ISBI 2018), pp. 413–417 (2018). IEEE Ciçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: learning dense volumetric	45
	segmentation from sparse annotation. In: International Conference on Medical Image Computing and	
46	Computer-assisted Intervention, pp. 424–432 (2016). Springer	46

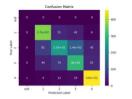

Hillemanns et al.

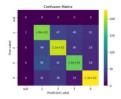

¹ 41. 2	Weigert, M., Royer, L., Jug, F., Myers, G.: Isotropic reconstruction of 3d fluorescence microscopy images using convolutional neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 126–134 (2017). Springer	1 2
³ 42. 4	Patravali, J., Jain, S., Chilamkurthy, S.: 20-3d fully convolutional neural networks for cardiac mr segmentation. In: International Workshop on Statistical Atlases and Computational Models of the Heart, pp. 130–139 (2017).	
_	Springer	-
5 _{43.} 6	functional comportance in Dean Learning in Medical Image Analysis and Multimedal Learning for Clinical	5 6
744.		7
8	Nguemo, F., Müller-Ehmsen, J., Hescheler, J.: Electrophysiological and morphological maturation of murine fetal cardiomyocytes during electrical stimulation in vitro. Journal of cardiovascular pharmacology and	8
9 4E		9
45. 10	Lukosz, v.W., Marchand, M.: Optischen abbildung unter überschreitung der beugungsbedingten auflösungsgrenze. Optica Acta: International Journal of Optics 10 (3), 241–255 (1963)	10
	Gustafsson, M.G., Shao, L., Carlton, P.M., Wang, C.R., Golubovskaya, I.N., Cande, W.Z., Agard, D.A., Sedat, J.W.: Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination.	
12 47	Biophysical journal 94 (12), 4957–4970 (2008) Sjöblom, B., Salmazo, A., Djinović-Carugo, K.: α -actinin structure and regulation. Cellular and molecular life	12
13 ^{47.} 1448.	sciences 65 (17), 2688–2701 (2008)	13 14
	methods 9(7) 671–675 (2012)	
¹⁵ 49. 16	Medalia, O., Weber, I., Frangakis, A.S., Nicastro, D., Gerisch, G., Baumeister, W.: Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298 (5596), 1209–1213 (2002)	16
50. 17		17
18 ^{51.}	33 (21), 4322 4324 (2013)	18
1952.		19
20	segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)	20
2153.		21
²² 54.	Machine Learning, pp. 3319–3328 (2017). PMLR	22
54. 23		23
	Computer Vision, pp. 618–626 (2017)	24
	Stars (/github.com/starscolog/korse-exhibition/2018)	
	Chollet, F., et al.: Keras. https://keras.io (2015)	25
2657. 27	M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint	26
2858.	arXiv:1603.04467 (2016) Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,	28
29	Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. the Journal of machine Learning	29
30 ^{59.}	Hillemanns, M.: AMES. https://github.com/maxhillemanns/AMES (2021)	30
31 Add	itional Files	31
Add	itional file 1 — Singular2D.png nitecture of the singular 2D model in Keras notation.	32
33		33
		34
Arcł 35	nitecture of the ensemble 2D model in Keras notation.	35
36444		36
	interture of the singular 3D model in Keras notation	37
38		38
	itional file 4 — CellSource-IGrad.png d heatmaps for cell source classification. Images were correctly classified by the singular 2D model.	39
40		40
41		41
42		42
43		43
44		44
45		45
46		46
		10

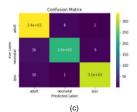




(c)





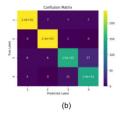

(f)

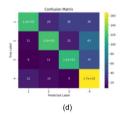
(a)

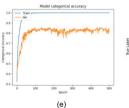
(b)

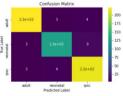
Model categorical accuracy

200

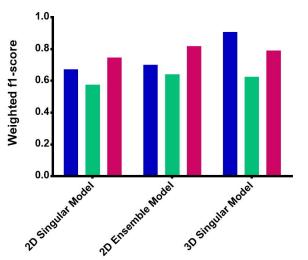

Epoch (C) 400 500


1.0


0.8


0.6

Train



(f)

DirectionalitySarcomerisationCell Source

original image: IGrad for class 4 Grad-CAM for class 4

(a)

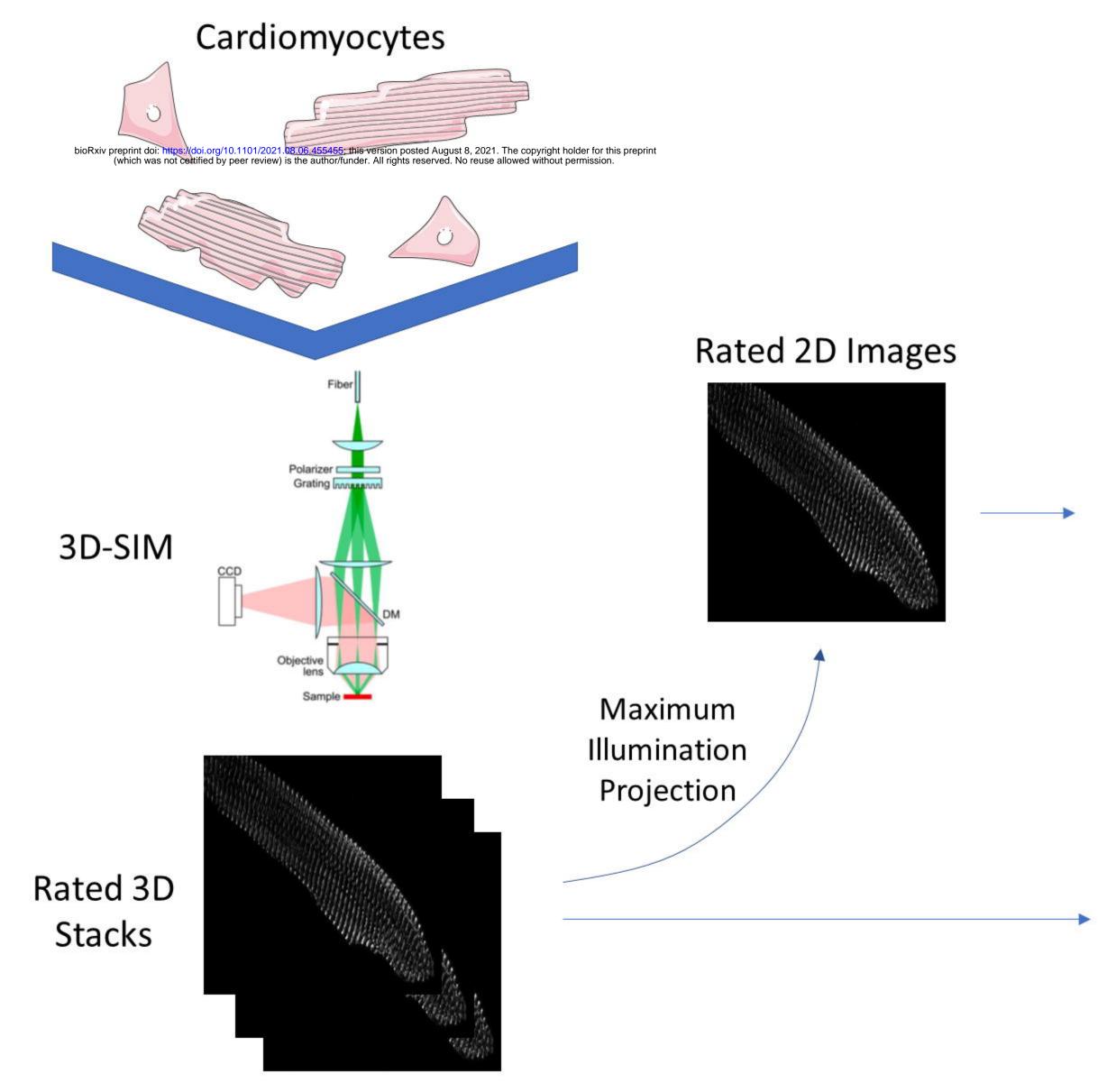
original image: IGrad for class 4 Grad-CAM for class 4

original image:

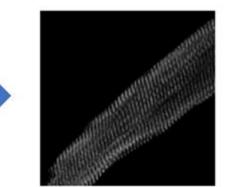
Grad-CAM for class adult

original image:

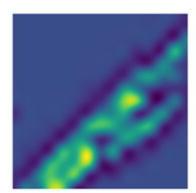
Grad-CAM for class neonatal

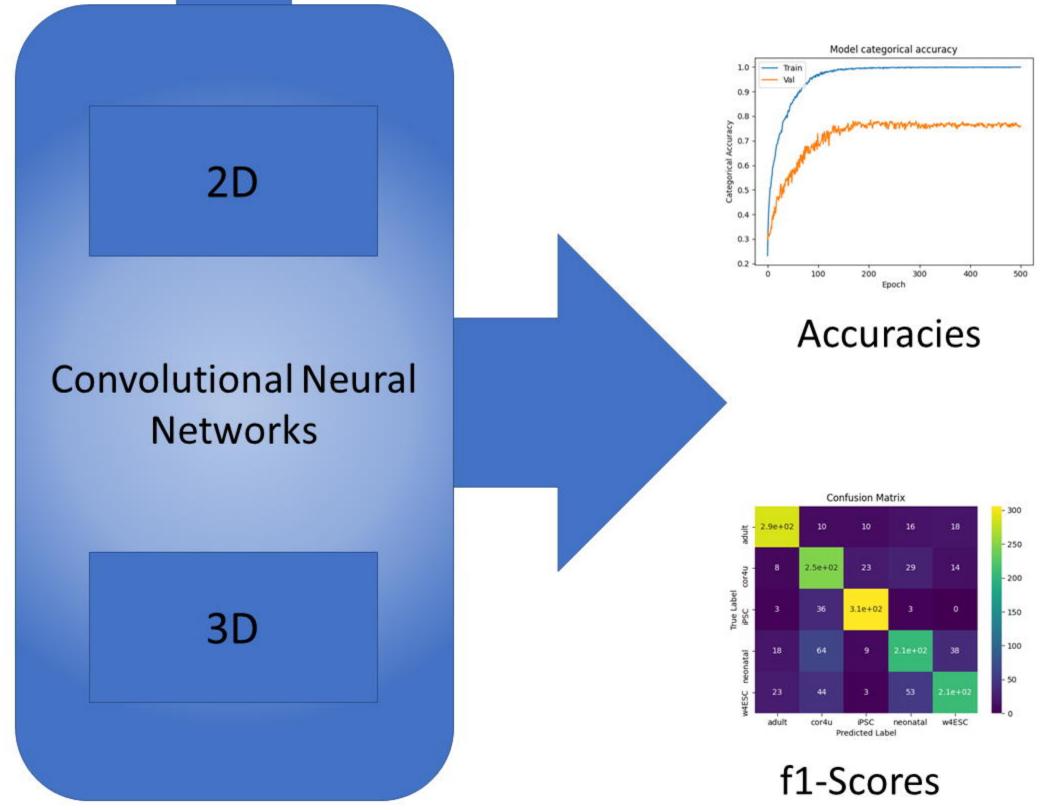

(b)

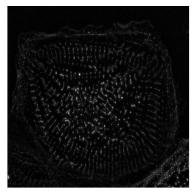
original image:

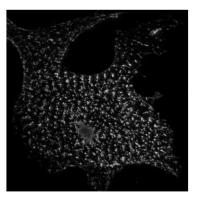


Grad-CAM for class ipsc

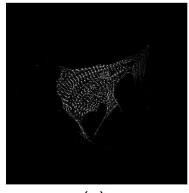


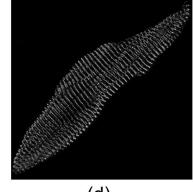

Explainability Analyis (IGrad, Grad-CAM)



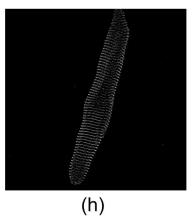


Explainability Heatmaps


(a)



 (\dagger)


(b)

(c)

(e)

(g)

original image:

IGrad for class adult

original image:

IGrad for class neonatal

original image:

IGrad for class ipsc

