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Abstract

Background:: Arrhythmias are severe cardiac diseases and lethal if untreated. To
serve as an in vitro drug testing option for anti-arrhythmic agents,
cardiomyocytes are being generated in vitro from induced pluripotent stem cells
(iPSCs). Unfortunately, these generated cardiomyocytes resemble fetal cardiac
tissue rather than adult cardiomyocytes. An automated tool for an unbiased
evaluation of cardiomyocytes would highly facilitate the establishment of new
differentiation protocols to increase cellular maturity.

Results:: In this work, a novel deep learning-based approach for this task is
presented and evaluated. Different convolutional neural networks (CNNs)
including 2D and 3D models were trained on fluorescence images of human
iPSC-derived cardiomyocytes, which were rated based on their sarcomere content
(sarcomerisation) and the orientation of sarcomere filaments (directionality)
beforehand by a domain expert. The CNNs were trained to perform classifications
on sarcomerisation, directionality ratings, and cell source, including primary adult
and differentiated cardiomyocytes. The best accuracies are reached by a 3D
model with a classification accuracy of about 90 % for sarcomerisation
classification, 63 % for directionality classification, and 80 % for cell source
classification. The trained models were additionally evaluated using two
explanatory algorithms, IGrad and Grad-CAM. The heatmaps computed by those
explainability algorithms show that the important regions in the image occur
inside the cell and at the cellular borders for the classifier, and, therefore, validate
the calculated regions.

Conclusion:: In summary, we showed that cellular fluorescence images can be
analyzed with CNNs and subsequently used to predict different states of
sarcomere maturation. Our developed prediction tool AMES
(https://github.com/maxhillemanns/AMES) can be used to make trustworthy
predictions on the quality of a cardiomyocyte, which ultimately facilitates the
optimized generation of cardiomyocytes from iPSCs and improves the quality
control in an automated, unbiased manner. The applied workflow of testing
different CNN models, adjusting parameters, and using a variety of explanatory
algorithms can be easily transferred to further image based quality control,
stratification, or analysis setups.

Keywords: Deep Learning; Fluorescence Image Analysis; Cardiomyocytes;
Sarcomere Structures; Reasonable AI
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Background
Differentiation, generation, and maturation of cardiomyocytes and pacemaker cells

Cardiomyocytes, the muscle cells of the heart, can be generated by various methods

in wet lab conditions: i) the differentiation of adipose tissue-derived mesenchymal

stem cells [1], ii) the differentiation of murine or human embryonic stem cells [2, 3],

and iii) the reprogramming of somatic cells [4], especially induced PSCs (iPSCs).

It is also possible to extract adult cardiomyocytes from murine hearts for compar-

ative analyses. These programming methods produce a cardiomyocyte aggregate,

where some cells possess so-called pacemaker abilities and some do not. In recent

approaches, the amount of non-pacemaker cells in this aggregate is still at around

20 % [5, 6]. Moreover, the electrophysiological properties of these cells resemble

fetal cardiac tissue instead of adult cardiomyocytes [7]. The maturation level of

cardiomyocytes may be critical for drug development, as immature cardiomyocytes

are far more sensitive to potassium-channel blockers [8].

In general, fully developed cardiomyocytes possess a well aligned and highly orga-

nized sarcomere network [9]. Longer sarcomere structures correlate to an improved

cardiac mechanical function [10]. Likewise, the mechanical, as well as the electrical

function, are also dependent on the orientation of myofibrils and subsequently the

sarcomere structures in a cell [11]. This orientation depends on the cell shape and

the principal stress directions in the cell [12].

In order to validate and evaluate cardiomyocyte generation protocols, scientists

need to examine the maturity of these cell aggregates. Hence, the need for an easily

applicable method to distinguish between different maturation states is apparent

[13].

Cellular image analysis with deep learning

One possible approach to distinguish between different maturation states of car-

diomyocytes can be the analysis of cellular images with a variety of deep learning

(DL) applications. The main approaches commonly used refer to image segmen-

tation (partitioning an image into meaningful parts or objects), object tracking

(identifying and following an object through a time series), augmented microscopy

(extraction of latent information from biological images), and, finally, image classi-

fication. Deep learning image classification has been used on a variety of different

cells and tasks, like identifying changes in cell state [14], sorting cells into different

phenotypes [15, 16, 17], and distinguishing between differentiated and undifferen-

tiated cells on bright-field images [18]. By using DL, it is also possible to extract

feature vectors from cellular images in order to cluster these vectors and gain insight

on morphological patterns [19]. In comparison to classical machine learning (ML)

approaches like support vector machines (SVMs) [20] or logistic regression [21], DL

has shown to be more efficient at cell analysis tasks. In many cases, ML or DL is

only applied after features were extracted from the images [20, 22]. In this study,

DL was used directly on the images.

Transfer learning is also commonly used in biological image analysis due to the

lack of available training data. In transfer learning, a neural network pretrained on

another data set is applied to a new data set and the weights are retrained. Con-

volution Neural Networks (CNNs) are neural networks, which are able to extract
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features or patterns from images themselves, without any need for sophisticated

preprocessing. CNNs combine this extraction part with the ability to make classifi-

cation based upon these extractions. They were introduced by Bengio and Lecun in

1997 [23]. In cellular image analysis, CNNs are mainly used for image segmentation

and not image classification [24, 25]. For image classification, fully connected layers

are transferred after the convolutional layers to translate these features into a la-

bel. The labels that will be used here are different maturation degrees of sarcomere

structures that have been introduced by a biological domain expert.

Explainability analysis of image analysis models

As CNNs modulate highly nonlinear functions, they are too complex to allow for

straightforward interpretability. This is referred to as the black box problem. A clas-

sifier may produce good classification results, but its inner workings and reasoning

are unattainable [26]. The question ”Why does this model decide the way it does?”

plays an increasingly important role, especially in the life sciences. In the last few

years, a lot of algorithms have been developed to lift the lid of the black box. They

can be sorted by two main criteria: local vs. global explanation and model-specific

vs. model-independent. Local explanations are computed with the model, a data

point and an output. In most cases, this is the predicted output of the model, al-

though a different label can be used to find weaknesses in the model (e.g., finding

outputs the model might confuse for each other) [27]. Global explaining approaches

take the model itself into account. An example would be the calculation of fea-

ture importances in Random Forests [28]. Model-independent approaches can be

applied on every classifier, while model-specific explaining algorithms are designed

for one type of classifiers, e.g., SVMs or CNNs. Two examples for local explaining

algorithms are Sensitivity Analysis (SA) and Layer-Wise Relevance Propagation

(LRP). They both produce a heatmap with pixels relevant to the classification [29].

This study compares and evaluates different CNN architectures upon their ability

to correctly identify cardiomyocyte’s differentiation status/quality. Furthermore, a

comparison between a 2D and 3D analysis of fluorescence images is made and ex-

plainability methods will be applied onto the classifiers to investigate the reasoning

for a certain cellular stratification. In the end, it will be examined whether the

predictions match the biological criteria for differentiated cardiomyocytes.

Results
Individual model development and classification

Figure 1 shows the categorical accuracies, validation accuracies, and confusion ma-

trices on the test set for the singular 2D model on all classification tasks. All ac-

curacies have a rather logarithmic progression over time, a typical training curve.

For sarcomerisation classification, the training accuracy reached a plateau at almost

100 % after around 100 epochs. It took the validation accuracy around 80 epochs to

reach a value of around 70 %, where it remained for the rest of the training epochs.

The confusion matrix for sarcomerisation classification has its highest values along

the diagonal, with the next highest values in row 2, column 1 and 3, which means

that most of the data set is correctly classified. The accuracy of sarcomerisation

classification on the test data set is 68.68 %. The training accuracy for direction-

ality classification settled at almost 100 % after around 150 epochs. The validation
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Images/Figure1.png

Figure 1 Accuracy plots and confusion matrices for the singular model. Shown are the
categorical training (train, blue) and validation (val, orange) accuracies over time as well as the
confusion matrices computed on the test set. (a-b): Sarcomerisation classification; (c-d):
Directionality classification; (e-f): Cell source classification

Images/Figure2.png

Figure 2 Confusion matrices for the one-vs-all ensemble model. Shown are the confusion
matrices computed on the test set. (a): Sarcomerisation classification; (b): Directionality
classification; (c): Cell source classification

accuracy reached a value of around 60 % after approximately 120 epochs. Again,

the highest value per row lies along the diagonal of the confusion matrix. Direc-

tionality classification has an accuracy of 57.95 % on the test data set. Cell source

classification’s training accuracy reached a plateau of almost 100 % after about 110

epochs. The validation accuracy settled at around 75 % after approximately 130

epochs. In the confusion matrix computed on the test data set, the highest values

are located on the diagonal. The accuracy of cell source classification on the test

data set is 74.85 %.

In Fig. 2, the confusion matrices computed on the test set for the 2D ensemble

model are shown. For all three classification tasks, the highest value per row lies

on the diagonal. Sarcomerisation and directionality classification each have one cell

classified as none of the ratings. The accuracy of sarcomerisation classification on

the test data set is 70.93 %. It is 64.16 % for directionality classification and 82.06 %

percent for cell source classification. As the individual classifiers were trained succes-

sively, no single training/validation accuracy for the whole model can be computed.

They are, however, computed for each individual classifier in the model. The first

sarcomerisation classifier, a one-vs-all model for rating ”1”, has a final training

accuracy of 99.78 % and a final validation accuracy of 91.10 % after 1000 epochs

of training. The second classifier, for rating ”2” respectively, settled at a training

accuracy of 99.53 % and a validation accuracy of 85.23 %. For classifiers 3 and 4,

the final training accuracies are 97.12 % and 99.56 %, while the final validation

accuracies are 78.44 % and 92.90 %, respectively.

The first directionality classifier has a final training accuracy of 99.66 % and a final

validation accuracy of 84.44 %, each after 1000 epochs of training. For classifiers 2

and 3, final accuracies settled at 99.75 % and 99.16 % (training) and 81.91 % and

81.33 % (validation). The fourth directionality classifier reached a final training ac-

curacy of 96.89 % and a final validation accuracy of 84.79 %.

The first cell source classifier is an one-vs-all model for the cell lineage ”adult”. It

has a final training accuracy of 99.96 % and a final validation accuracy of 97.10 %

after 1000 epochs of training. For the ”iPSC” classifier, the final training accuracy

is 99.89 % and the final validation accuracy 97.53 %. The training accuracy for

the ”neonatal” classifier reached 99.67 %, while the validation accuracy reached

92.84 %, each after 1000 epochs.

The accuracy plots for the 3D model based upon the singular model, also follow

a typical training trend (see Fig. 3). For sarcomerisation classification, the training
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Images/Figure3.png

Figure 3 Accuracy plots and confusion matrices for the 3D model. Shown are the categorical
training (train, blue) and validation (val, orange) accuracies over time as well as the confusion
matrices computed on the test set. (a-b): Sarcomerisation classification; (c-d): Directionality
classification; (e-f): Cell source classification

Images/Figure4.PNG

Figure 4 Comparison of the weighted f1-scores between all evaluated models.

accuracy reached 100 % after 50 epochs, while the validation accuracy remained at

around 78 % after 100 epochs. The confusion matrix has its highest values along the

diagonal, which means that the vast majority of images (90.91 %) were correctly

classified. For directionality classification, the training accuracy is almost 100 %

after 500 epochs. The validation accuracy reaches a peak at about 68 % after around

150 epochs and then slowly declines to around 62 % after 500 epochs. The accuracy

of directionality classification on the test data set is 62.60 % and the confusion

matrix has its highest values along the diagonal with a notable peak in the last

element of the second row. The training accuracy for cell source classification is

100 % after 500 epochs of training, while the validation accuracy settles at around

80 % after 70 epochs. In the confusion matrix computed on the test set, the highest

values are located along the diagonal and in the second column of rows 4 and 5.

The accuracy for cell source classification on the test set is 79.04 %.

Performance Comparison

The weighted f1-scores for the classifiers evaluated in this study are summarized in

Fig. 4. It is different from the normal multi-class f1-score, as the per-class f1-scores

are not only averaged, but also weighted according to the occurrence of their re-

spective class. For the singular 2D model, directionality classification performs with

a weighted f1-score of 57.96 %, while sarcomerisation classification reaches 67.33 %,

and cell source classification reaches 74.81 %. Sarcomerisation classification yields

the second best results for the 2D ensemble model (70.16 %), while directionality

classification reaches 64.19 %. This model performs best on cell source classification

by achieving a weighted f1-score of 82.06 %. Directionality classification for the sin-

gular 3D model has a weighted f1-score of 62.63 %, while the weighted f1-score for

cell source classification is 79.14 %. The weighted f1-score for sarcomerisation clas-

sification lies at 90.87 %. Table 1 shows the test accuracies and weighted f1-scores

computed on the test data set for all evaluated models.

Table 1 Test accuracies and weighted f1-scores for the models evaluated in this study. All values
are presented in percent [%] and were computed on the respective test set. For the two transfer
models, only the final results after retraining all layers are presented. In each column, the lowest and
highest values are highlighted. (sarc: sarcomerisation, dir: directionality, cs: cell source)

Test acccuracy Weighted f1-score
sarc dir cs sarc dir cs

2D singular model 68.68 57.95 74.85 67.33 57.96 74.81
2D ensemble model 70.93 64.16 82.06 70.16 64.19 81.94
3D singular model 90.91 62.60 79.04 90.87 62.63 79.14
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Images/Figure5.png

Figure 5 IGrad and Grad-CAM heatmaps for a) sarcomerisation and b) directionality rating
”4”. Images were correctly classified as ”4” by the singular 2D model.

Images/Figure6.png

Figure 6 Grad-CAM heatmaps for cell source classification. Images were correctly classified by
the singular 2D model.

Explainability Heatmaps

In order to understand the reasoning behind the singular 2D models decisions, the

explainability algorithms iGrad and Grad-CAM were applied. In Fig. 5a, heatmaps

produced by IGrad as well as Grad-CAM for the singular 2D model can be seen. It

correctly classified these images with a rating of ”4” for sarcomerisation, meaning

this particular cell has a high degree of sarcomerisation. The heatmaps produced

by IGrad have generally lower values than those produced by Grad-CAM.They lack

areas of high importance, as the cells themselves have no impact on classification.

There are however, slight accumulations around the edges of cells. When look-

ing at the Grad-CAM heatmaps, the highest values lie inside the cell, with peaks

around the edges. Almost the whole cell has a positive impact on classification. The

heatmaps for the other classes can be seen in the supplemental material.

The heatmaps Grad-CAM produced for the directionality have their peaks located

inside the cardiomyocytes, while the one produced by IGrad barely have peaks at

all (Fig. 5b). The IGrad heatmaps have very few values greater than zero.

The heatmaps produced by IGrad for the cell source have only very few values

greater than zero. Inside the cells, there are none visible. The Grad-CAM heatmaps

have their highest values inside the cells for classes ”adult” and ”iPSC” and on the

cellular border for class ”neonatal” (see Fig. 6). Note that for ”adult” and ”iPSC”,

Grad-CAM also highlights the borders of a cell.

Discussion
Cardiomyocyte quality is determinable via CNNs

When looking at the accuracies and the f1-scores of the models, it is clear that in

principle, the evaluation of cardiomyocytes using DL is possible. This is a promising

result, as in past approaches, neural networks mainly delivered well-suited results

on bright field microscopy images, as opposed to fluorescence images [20, 25]. The

classification regarding sarcomerisation, directionality, and even cell source yields

encouraging findings in terms of accuracy. Because of the balanced data set created

by data augmentation, the baseline classification accuracy (the model predicts every

data point to belong to the majority class) lies at around 20 % for sarcomerisation

and directionality classification and at around 30 % for cell source classification.

For all tasks, these baseline accuracies can be considerably outperformed. It also

appears that a shallow model is sufficient to tackle all classification tasks. The sin-

gular 2D model has far less parameters than other, established image classification

networks like the VGG-16 or MobileNet [30]. This suggests that the features ex-

tracted by a CNN do not need to be overly specific or detailed to ensure an accurate
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classification of either sarcomerisation, directionality, or cell source. From a human

domain expert perspective, the rating of sarcomerisation and directionality are in-

tuitively easy, as humans can easily spot parallel patterns and fractions of objects.

Both are relatively easy features and so it is quite surprising that directionality

classification consistently performs worse than sarcomerisation and cell source clas-

sification. However, directionality classification, when looked at in detail, are two

separate tasks. First, the main cellular axis has to be found, which may be easy

for adult cardiomyocytes, but has its challenges for the other analyzed cell sources.

Second, the sarcomere structures must be evaluated according to their axis, poten-

tially leading to consequential errors, if the main axis is not determined properly.

This may be an explanation to why it is more difficult for neural networks to evalu-

ate on directionality than on sarcomerisation or cell source. It has been shown that

cardiomyocytes generated from iPSCs resemble fetal cardiomyocytes rather than

adult ones [31]. Our analysis also confirms this finding, as all three analyzed cell

types can be distinguished from each other, meaning that there is still an observable

difference between primary and generated cardiomyocytes(see Figs. 1-3).

Stochastic Gradient Descent, although being a widespread optimizer, has its prob-

lems with large data sets and/or high dimensional feature space [32, 33]. The latter,

high dimensional feature space, holds true for the data used in this work, especially

for 3D classification. The Adam optimizer tackles these problems and was conse-

quently used for all models. The learning rate was set to 10̂-5 and made adaptive.

Adaptive learning rates have been shown to boost classification results [34], which

was also the case here. Another approach, increasing the batch size over training in-

stead of decreasing the learning rate, was not applied, although it showed promising

results in previous works [35]. For the applications in this study, it was not appli-

cable, as the batch sizes cannot be increased arbitrarily because the images are too

large in file size, especially for the 3D classification. Although transfer models have

not been evaluated in this work, they have been applied onto cellular image analysis

tasks in the past. For example, Dong et al. were able to correctly distinguish malaria

infected cells from healthy ones using bright field microscopy with an accuracy of

up to 98.13 % [20]. Cascio et al. built a transfer model, which was able to classify

indirect immunofluorescence images of Human Epithelial type 2 (HEp-2) into fluo-

rescence intensity classes with an accuracy of 93.80 % [36]. HEp-2 is a marker for

antinuclear antibodies and, therefore, autoimmune diseases. Both approaches made

use of the AlexNet [37], which is rather simple in terms of architecture and number

of parameters.

3D classification outperforms 2D classification in terms of accuracy

The comparison between the 2D singular model and the 3D model, two similar

models with different dimensionalities, shows a slight improvement in the classifica-

tion accuracies when 3D images were analysed. An increase in model performance

comes to no surprise, as the images are bigger and able to store more information in

the additional dimension. However, they do not seem to become more complicated,

as the same shallow architecture is able to extract features, which suffice for classifi-

cation. The addition of a third dimension improves the classification marginally for

directionality and cell source classification (about 5 % each) and drastically for sar-

comerisation classification (about 20 %). The computation time however increases
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drastically. Training a classifier on 2D data for 500 epochs is a matter of hours, on

3D data, it takes days. Interestingly, both 2D and 3D models take up about the

same storage space with around 6 megabytes. Still, the increase in computation

time, not only for the training of the classifier, but also for image preprocessing,

outweighs the improvement of classification accuracy at this point. There are two

options for the application of this evaluation: Use the 2D classifier, and get quick,

but slightly imprecise results, or use the 3D classifier, and get more sensitive and

accurate results at the expense of computation time. As computational hardware

is constantly improving, the difference in computation time might be significantly

reduced in the future. 3D analysis has been long proven to outperform 2D analysis

on a wide range of tasks[38]. In the life sciences, 3D image analysis with DL is

often used for segmentation [39, 40, 41]. In this context, it has been shown that

3D segmentation outperforms the segmentation of all individual 2D slices [42]. 3D

image classification approaches for biological images are rare. One example is the

classification of functional connectomes by Khosla et al. They were able to correctly

classify 73.30 % of functional magnetic resonance images (fMRI) using a custom

build model trained on the Autism Brain Imaging Data Exchange (ABIDE) data

set [43]. This is similar to the accuracies reached by 3D classification in this study

(62.60 % to 90.91 %).

Cellular borders are of high interest

The implementation of IGrad leads to no interpretable results. This could be due

to an error in the implementation of IGrad in the keras-explain package. Other pos-

sible error sources could be the shallowness of the evaluated model, the proximity

of a monochrome cellular image to the black image baseline or a combination of

these two. In contrast, the heatmaps produced by Grad-CAM are very informative,

although they lack detailed spatial information of pixel-wise impact on the classifi-

cation. This is due to the shallow architecture of the evaluated model. The deeper

a CNN is, the more specific the features in the last feature map are. The singular

model simply seems not deep enough to extract detailed features from the images.

Still, it is apparent that the most important regions for all classification tasks are

within the cell. This is not surprising, as the sarcomere network lies within the cell

and thus, all valid decisions based upon this sarcomere network must be traceable

to the cell itself. Interestingly, there are outlier images, though, whose Grad-CAM

heatmaps locate the important regions to be outside of the cell. This could be due

to ”zero-filters”, convolutional filters that learn to find background or, as in this

case, black regions in the images. Especially for sarcomerisation, these filters can

be useful, as they allow for reverse explanations. If a large part of the image and/or

the cell is black, the sarcomerisation rating will probably be low. Cellular borders

seem to be of high importance according to the heatmaps produced by Grad-CAM.

For all three classification tasks one can find examples of this (e.g., Fig. 5, Fig. 6).

This could hint at edge detection being learned by the networks. For sarcomerisa-

tion classification, this makes sense, as the network may recognize where the cells

are on the image and, consequently, which areas in the image should have a dense

sarcomere network. Adult cardiomyocytes tend to be elongated and thin, while car-

diomyocytes generated from iPSCs resemble fetal cardiac muscle cells, which are

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.06.455455doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455455


Hillemanns et al. Page 9 of 14

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Images/Figure7.png

Figure 7 Schematic overview of the study design. SIM: Structured Illumination Microscopy,
IGrad: Integrated Gradients,Grad-CAM: Gradient-Weighted Class Activation Mapping

more likely to be round or have irregular shapes [44]. Therefore, edge detection could

benefit the distinction between these cell sources. In general, Grad-CAM produced

heatmaps of the singular model that seemed to highlight regions in the image that

would also be deemed important by human curators.

Conclusion
In this work, a novel unbiased tool to evaluate the sarcomerisation, directionality,

and cell origin of a cardiomyocyte is presented. Several different CNNs were trained

on 2D and 3D fluorescence images of cardiomyocytes with the sarcomere network

stained. The cardiomyocytes used in this study were rated based on their sarcom-

erisation and the orientation of sarcomere structures (directionality) beforehand

(CCRS scheme). The trained models were subsequently evaluated by feeding them

into two explainability algorithms, IGrad and Grad-CAM, which highlight the areas

in an image that are most important for the respective classification.

IGrad andGrad-CAM both produce heatmaps, where IGrad did not provide in-

terpretable results in our data. The heatmaps produced with Grad-CAM have

their highest values inside the cell and at cellular borders for all three classification

tasks, meaning that these regions are important for classification. However, these

heatmaps do not contribute to novel findings, but highlight that cells are being

recognized by the classifier.

In general, it is shown that cellular fluorescence images can be analysed with CNNs.

A classifier was built that is capable of predicting 82 % of cardiomyocyte origins,

71 % of sarcomerisation ratings, and 64 % of directionality ratings correctly. This

classifier can be used to make independant and trustworthy predictions on the qual-

ity of generated cardiomyocytes based on the sarcomere network. This underlying

work will significantly benefit the unbiased evaluation of cardiomyocytes, as a fast

and reliable tool for cardiomyocyte aggregates is now available.

Methods
In this study, 2D and 3D fluorescence images of cardiomyocytes were analyzed with

CNNs. These CNNs were trained to distinguish between different ratings for car-

diac muscle states, which were assigned to the cells beforehand. The CNNs were

evaluated according to their accuracy and f1-score. Additionally, the best perform-

ing model was analyzed with explainability algorithms in order to visualize the

network’s behaviour and criteria for classification. The workflow is shown schemat-

ically in Fig. 7.

Cell origin and image acquisition

A comparison of murine-derived cardiomyocytes (adult and neonatal) and human-

derived induced pluripotent stem cells (iPSCs), which both differentiated into car-

diomyocytes, serve as the basic sarcomere models in this work. This allows for a
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Table 2 Antibodies used for immunostaining of cardiomyocytes.

Type Antibody
Primary Sarcomeric alpha-actinin antibody ea53

Abcam plc, USA
Secondary F(ab’)2-Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody

Thermo Fisher Scientific, USA

Images/Figure8.png

Figure 8 Example images for all different sarcomerisation and directionality ratings.

validation of the iPSCs, which were differentiated and harvested by the RTC.

The cellular images used in this study were acquired using 3D fluorescence struc-

tured illumination microscopy (SIM), which provides for resolutions of about 100 nm

[45, 46]. Between 36 and 83 images have been taken and arranged into a z-stack

per cell. The x- and y-sizes of the images range from 564 to 2002 pixels and from

392 to 2027, respectively, depending on the size of the cell captured. In order to

obtain the 3D fluorescence images, the cells were stained as follows. At first, the

cells were fixed by adding pre-warmed 4 % paraformaldehyde (PFA) directly into

the culture medium with a ratio of 1:1 for five minutes at 37 °C. The cells were

washed two times with phosphate buffered saline (PBS) for 5 min each. After this,

they were permeabilized with 0.2 % Triton for five minutes and again washed twice

with PBS for five minutes each. Next, the immunostaining took place. Therefore,

the unspecific binding sites of the cells were blocked with 1 % bovine serum albu-

min (BSA) at room temperature for 60 min. The cells were then stained with the

primary antibody against alpha-actinin (see Table 2), which is diluted in 1 % BSA,

for 60 min at room temperature. alpha-actinin binds to the actin filaments of the

sarcomeres and stabilizes the muscle contractile apparatus [47]. Two washes with

0.2 % BSA for five minutes each followed. Then, the cells were incubated with the

secondary antibody (see Table 2), which was diluted in 1 % BSA, for 45 minutes at

room temperature. Again, the cells were washed, twice with 0.2 % BSA and twice

with PBS, each for five minutes. Coverslips were rinsed with distilled water and the

cells were embedded on slides using mounting medium containing DAPI.

Introduction of a cardiomyocyte cell rating system (CCRS)

The cells in the fluorescence images have been rated regarding the orientation of

sarcomere structures relative to the longitudinal axis of the cell (directionality) and

their sarcomerisation, which both correlate to the maturity of a cardiomyocyte. ”1”

marks the lowest rating and ”4” the highest, with ”2” and ”3” as intermediate

steps. A cell with sarcomere structures parallel to the cell’s longitudinal axis would

be marked as ”1” for directionality, whereas a cell with perpendicular orientated

sarcomere structures would be marked as ”4”. Similarly, cells with a high degree

of sarcomerisation were marked as ”4”, as opposed to ones with a low level, which

were marked as ”1”. Example images for all ratings can be seen in Fig. 8.

Cardiomyocyte image processing, classification, and explaination

As the original images are three-dimensional, 2D images had to be created with Im-

ageJ (version 1.52a) [48]]. The common practice of reducing the dimension by a max-

imum illumination projection along the z-axis was used to obtain two-dimensional
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Table 3 Comparison of the number of parameters between the different models used. For the
ensemble model, the sum of the individual models has been calculated.

Model

Number of parameters
Total Trainable

Output neurons
5 5 5 6

2D singular model 1.517.489 1.517.510 1.517.105 1.517.126
2D ensemble model 3.004.020 3.775.025 3.002.996 3.753.745
3D singular model 1.406.193 1.406.214 1.405.809 1.405.830

images of the cardiomyocytes fluorescence stacks [49]. Image preprocessing con-

sisted of resizing the images to a models respective input size and scaling the pixels

between 0 and 255. Data augmentation was implemented to increase the number of

data points. The augmentation was performed depending on the relative occurrence

of a class to simultaneously guarantee for a balanced data set. The class with the

fewest data points was multiplied by a factor of 15 for 2D classification and 9 for 3D

classification. This is because more augmented 3D images exceed the available stor-

age space. Images were either flipped horizontally, vertically, rotated by a random

degree or a combination of these three methods. This does not distort the image

and allows validation of the results [50].

Two different 2D classification approaches will be presented in the following: one

singular model with varying architectures and one ensemble model. The first model

is shallow, and consists of only three convolutional blocks, and, thus, has only a few

parameters. The second model makes use of an ensemble of neural networks. For

each class, a binary classifier was trained to distinguish between this class and all

other classes.

3D image classification is often accompanied by a task like depth perception (e.g.,

human pose estimation [51]) or shape reconstruction (mesh/point cloud classifica-

tion [52]). There are few cases, where 3D images are classified as a whole, mainly for

medical purposes, but these approaches lack a common model used. Therefore, a

native 3D classification model has been evaluated. The 3D model closely resembles

the singular model. It is also made up from three blocks of 3D convolution, batch

normalization, max pooling, and dropout layers. The detailed architecture can be

seen in the appendix. The network was trained with the Adam optimizer with a

learning rate of 10-5, which decays by 10̂-8 each epoch.

Table 3 shows a comparison between the parameters of each model. The number

of parameters strongly influences the storage space of a model, as well as the time

needed to train and test it. Models with fewer parameters are easier to implement

and take less time to make predictions.

Two different methods for explainability analysis were applied in this thesis: In-

tegrated Gradients (IGrad, [53]) and Gradient-weighted Class Activation Mapping

(Grad-CAM, [54]). Both methods allow for a pixel-wise decomposition of CNNs.

Here, we made use of the keras-explain 0.0.1 package for Python 3.7 to implement

both methods and compute the heatmaps [55]. The heatmaps were scaled between

0 and 255.

All models were initialized with random weights and biases following a uniform

distribution around zero. Native models were each trained for 500 epochs. The

code was implemented in Python 3.7.2 using Keras 2.1.6 with Tensorflow backend
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and scikit-learn (version 0.20.3) packages [56, 57, 58]. Tests were run on an nVidia

GeForce GTX 2080 GPU with 8 GB RAM.
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Additional Files
Additional file 1 — Singular2D.png

Architecture of the singular 2D model in Keras notation.

Additional file 2 — Ensemble2D.png

Architecture of the ensemble 2D model in Keras notation.

Additional file 3 — Singular3D.png

Architecture of the singular 3D model in Keras notation.

Additional file 4 — CellSource-IGrad.png

IGrad heatmaps for cell source classification. Images were correctly classified by the singular 2D model.
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