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Highlights 12 

• Centrifugal feedback shapes the temporal structure of neuronal firing in 13 
piriform cortical cells 14 

• Feedback controls information to piriform cortex by restructuring the ratio 15 

of excitatory and inhibitory synaptic inputs in the bulb  16 

• Centrifugal feedback restructures how identity and timing of glomerular 17 
activity is represented in temporal patterns of activity in piriform cortex  18 

• Temporal information improves behavioral performance in accuracy and 19 
reaction time of odor discrimination   20 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.06.455459doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455459
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

3 

 

Summary 21 

 In chemical sensation, multiple models have been proposed to explain how 22 

odors are represented by patterns of neuronal activity in the olfactory cortex.  One 23 
hypothesis is that the identity of combinations of active neurons within specific 24 
sniff-related time windows are critical for encoding information about odors. 25 

Another model is that patterns of neural activity evolve across time and it is this 26 
temporal structure that is essential for encoding odor information.  Interestingly, 27 
we found that top-down feedback to the olfactory bulb dictates what information is 28 

transmitted to the olfactory cortex by switching between these two strategies.  29 
Using a detailed model of the early olfactory system, we demonstrate that 30 
feedback control of inhibitory granule cells in the main olfactory bulb influences the 31 

balance between excitatory and inhibitory synaptic currents in mitral cells, thereby 32 
restructuring the firing patterns of piriform cortical cells across time. This resulted 33 

in performance gains in both the accuracy and reaction time of odor discrimination 34 

tasks. These findings lead us to propose a new framework for early olfactory 35 
computation, one in which top-down feedback to the bulb flexibly controls the 36 

temporal structure of neural activity in olfactory cortex, allowing the early olfactory 37 
system to dynamically switch between two distinct models of coding.  38 

  39 
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Introduction 40 
Sensory information is encoded in the spiking activity of populations of neurons.  41 

An open question is what aspects of this spiking neural activity convey stimulus 42 
information (encoding) and how neurons at later processing stages read out this 43 
information (decoding) (Paninski et al., 2007).   In the olfactory system for example, 44 

one model of neural coding posits that the temporal patterns of principal neurons 45 
in the main olfactory bulb (MOB) are relayed to and encoded for in the olfactory 46 
cortex, and this timing is critical for odor representation (Chong and Rinberg, 2018; 47 

Haddad et al., 2013; Laurent, 2002).  By contrast, another model has proposed 48 
that these temporal patterns across the principal neurons of MOB are transformed 49 
into combinatorial patterns of activity in the olfactory piriform cortex.  Within 50 

discrete time windows related to a sniff cycle, this combinatorial code provides 51 
information about odor identity and concentration, serving as the neural basis for 52 
olfactory encoding (Bolding and Franks, 2017; Stern et al., 2018; Stettler and Axel, 53 

2009).  Each model has experimental support and draws upon theoretical 54 
frameworks that make them appealing, but it remains unclear how these models 55 

may be used in different behavioral contexts, and the extent to which they are 56 
instantiations of an overarching framework of computing. 57 

Much of what is understood about the neural coding for volatile chemicals 58 

comes from studies dissecting early olfactory circuits in rodents.  Volatile 59 
molecules bind to olfactory receptor neurons (ORNs) in the nasal epithelium, with 60 

the firing of ORNs encoding the identity and the concentration of odors (Buck and 61 
Axel, 1991; Malnic et al., 1999).   Each ORN expresses one of ~1500 odorant 62 
receptors, and the axons of these ORNs converge onto one to two dense neuropil 63 
structures called glomeruli in MOB (Mombaerts et al., 1996).  The mitral/tufted cells 64 

(M/T cells) are the main output neurons of MOB and receive direct excitatory input 65 

from ORNs via their apical dendrites at a single glomerulus.  Each odorant 66 
activates a unique subset of glomeruli with different onset latencies, which in turn 67 
gives rise to odor-specific patterns of M/T cells (Bathellier et al., 2008; Cury and 68 
Uchida, 2010; Paoli et al., 2018; Spors and Grinvald, 2002).  As a result, 69 
ensembles of activated M/T cells vary in both the identity (which cells fire) and 70 

timing (when they fire), a code described as spatiotemporal (Uchida et al., 2014). 71 
Although the temporal dynamics of M/T firings have been extensively 72 

observed in MOB (Baker et al., 2019; Gire et al., 2013a; Shusterman et al., 2011), 73 
it remains an open question if and how downstream neurons read out these 74 
temporal patterns from the MOB.  M/T cell axons project to the olfactory piriform 75 

cortex without apparent spatial organization (Sosulski et al., 2011), such that each 76 

piriform cortical cell receives input from multiple activated glomeruli (Davison and 77 
Ehlers, 2011).  As animals actively sample their environment, sniffing acts as a 78 
metronome organizing both the timing and sequence of odor-evoked responses of 79 
M/T cells being relayed to the piriform cortex (Bathellier et al., 2008; Shusterman 80 

et al., 2011).  Interestingly, although the M/T cell activity can occur throughout the 81 

sniff cycle, some studies have shown that responses of piriform cortical cells have 82 

much narrower windows of activity, often occurring as a transient burst of spikes 83 
shortly after the onset of inhalation (Bolding and Franks, 2017; Miura et al., 2012).  84 
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This timing is controlled by intracortical inhibition, which suppresses the activity of 85 
piriform cortical cells following an initial transient burst correlated with the activation 86 

of the earliest glomeruli.  Consequently, piriform cortical cells are largely 87 
unresponsive to M/T cell input from the glomeruli that are activated later in the sniff 88 
(Bolding and Franks, 2017; Miura et al., 2012; Stern et al., 2018).  The 89 

combinational pattern of activated piriform cells within that transient burst is 90 
sufficient to represent odor identity during discrete windows of opportunity (Bolding 91 
and Franks, 2017; Gire et al., 2013b).  Such a framework suggests that the 92 

temporal information that represents odors in MOB is transformed into a 93 
combinatorial pattern of piriform cells.  Studies have identified both the behavioral 94 
readouts (Chong and Rinberg, 2018; Wilson et al., 2017) and the circuit 95 

mechanisms (Bolding and Franks, 2018; Stern et al., 2018) that support this 96 
combinatorial/ensemble code in piriform cortex.  97 

Several predictions fall from this model of olfactory coding.  First, piriform 98 

cells should not be sensitive to the differences in the timing of successively later 99 
activated glomeruli.  Second, animal behaviors should be less sensitive to the 100 

patterns of activity of later glomeruli, since piriform cortex is involved in establishing 101 
odor perception and odor decision-making (Gire et al., 2013b; Mori and Sakano, 102 
2021).  Recently, both physiological and behavioral studies have challenged these 103 

predictions.  For example, in transgenic mice expressing channelrhodopsin-2 in 104 
ORNs, varying the stimulation timing of two spots corresponding to two different 105 

glomeruli on the dorsal surface of MOB triggers different responses in both the 106 
identity and timing of piriform cortical cells (Haddad et al., 2013).  Thus, some 107 
temporal structure of glomerular activation is preserved in the activity of piriform 108 
cortical cells.  Recent behavioral studies in mice also show that animals can report 109 

differences in the relative timing in glomerular activation (Ackels et al., 2021; 110 

Chong et al., 2020; Rebello et al., 2014; Smear et al., 2011).  As a result, 111 
information encoded in the temporal structure of glomerular activity is still available 112 
to the piriform cortex, and that animals can use these differences in piriform cortical 113 
cell activity to guide their behavior.  However, it remains unknown how the circuitry 114 
within and between MOB and piriform cortex implement these computations.   and 115 

Are these different results indicative of computations implemented by different 116 
circuits?  Do different behaviors activate different networks in the early olfactory 117 
system, and is it this difference that leads to these different results?  Or is it some 118 
combination of both? 119 

One clue is that nearly all of these studies have focused on the feedforward 120 

projections from the MOB to the piriform cortex.  Accumulating evidence has 121 

shown that some of the largest inputs to the granule cells of the bulb come from 122 
piriform cortex, which sends centrifugal projections back to MOB (Boyd et al., 123 
2012; Chen and Padmanabhan, 2020; Oswald and Urban, 2012; Otazu et al., 124 
2015; Padmanabhan et al., 2016, 2019; Shipley and Adamek, 1984).  Could 125 

different findings on how piriform cortex codes for odor information be reconciled 126 

by examining the role of feedback from piriform cortex to the bulb?   To test this, 127 

we built a realistic spiking neuronal network model that recapitulated the circuit 128 
architecture within and between MOB and piriform cortex and studied how 129 
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centrifugal feedback influenced odor information encoded by the piriform cell 130 
population.  We hypothesized that different experiments might engage centrifugal 131 

feedback in different ways (because of/owing to behavioral training, the kind of 132 
odor discrimination or detection task that the animals are being asked to perform, 133 
etc.). These differences in the weight of centrifugal feedback to MOB could then 134 

determine how much odor information is conveyed by the temporal patterns of 135 
MOB input.  In studying this network, we found that centrifugal feedback allowed 136 
the timing of glomerular activation to be represented in the dynamics of piriform 137 

cortical cells and enabled piriform cortex to enhance odor information gained from 138 
the spatiotemporal patterns of MOB input.  Furthermore, a model of decision 139 
making (called the sequential probability ratio test) revealed that the information 140 

gain in piriform cortex could improve behavioral performance in an odor 141 
discrimination task, a result that linked neural coding to behavior.  Together, our 142 
results show that feedback projections allow differences in glomerular identity and 143 

timing to be encoded for in the temporal patterns of piriform cortical cells.  We 144 
propose that feedback serves to flexibly sculpt the temporal organization of piriform 145 

cortical cell activity to change between combinatorial and temporal codes based 146 
on the animal’s behavioral demands and the information available about the odors.  147 
Different amount of feedback control could be related to differences the animal’s 148 

internal state (arousal, attention, etc.), learning, and memory. 149 
 150 

Results 151 
Odors activate distinct spatiotemporal patterns of glomeruli. 152 

To understand the functional role of centrifugal feedback from piriform cortex (PCx) 153 

to the main olfactory bulb (MOB) in shaping the temporal structure of olfactory 154 
coding, we built a spiking neuronal network model that recapitulated the circuit 155 

architecture of both the MOB and the PCx (Fig.1A, STAR Methods).  Our model 156 
captured essential features of the early olfactory system’s architecture, including 157 
the predominance of inhibitory granule cells (GCs) in the bulb (outnumbering M/T 158 
cells 10 to 1), the distributed connections between M/T cells and GCs, the random 159 

projections of M/T cells to the piriform cortex, the local inhibitory populations in the 160 

cortex and feedback from the piriform cortex to the bulb.  Additionally, we matched 161 
the biophysical properties of all the cells throughout the circuit including such 162 
features as M/T biophysical diversity (STAR Methods) and glomerulus-specific 163 
long latency inhibition of granule cells (Fig.S1) based on previous experimental 164 
findings (Kapoor and Urban, 2006; Padmanabhan and Urban, 2014; Soucy et al., 165 

2009).  A schematic illustration of the network architecture was shown in Fig.1A 166 
which allowed us to build a model to investigate the role of centrifugal processing 167 
in olfaction (STAR Methods). 168 

Next, we defined a time window corresponding to a single sniff, that was 169 
both ethologically and behaviorally relevant, and allowed us to study the dynamics 170 

of this network in both the MOB and PCx  (Rinberg et al., 2006; Uchida and 171 

Mainen, 2003; Wesson et al., 2008).  Model odors presented during a 250ms 172 
window (corresponding to a 4Hz sniff) were designed to match the activation 173 
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patterns of glomeruli by odorants, both in term of the identity (5~6% of all glomeruli) 174 
and timing (different onset latencies and durations) (Vincis et al., 2012).  Neural 175 

responses of all the cells in the network were then simulated to study the effects 176 
of feedback on the dynamics of the bulb and the cortex.     177 

Once activated, all the M/T cells associated with that glomerulus received 178 

correlated ORN input that subsequently decayed over time (Fig.1B and Fig.S2).  179 
The earliest glomerulus provided the strongest drive to the M/T cells, consistent 180 

with previous studies (Johnson and Leon, 2007; Soucy et al., 2009; Wachowiak 181 
and Cohen, 2001).  Odors could thus be defined by the combinatorial pattern of 182 
the activated glomeruli (identity) and their onset latencies (timing) (Fig.1C1 and 183 
Fig.1D1), recapitulating the spatiotemporal structure of glomerular responses to 184 

natural odors (Meister and Bonhoeffer, 2001; Rubin and Katz, 1999).  For example, 185 
the two representative odors in Fig.1B differed in the identity of the earliest 186 

glomerulus as well as the timing of the third glomerulus.  We generated 300 total 187 
model odors to capture some of the diversity of activation patterns of glomeruli.  188 
Although most odor pairs (>80%) were weakly anti-correlated due to the 189 

sparseness of glomerular activation, we identified numerous examples of strongly 190 
correlated pairs (Fig.1C2 and Fig.1D2) corresponding to distinct odors that had 191 
large overlap in both the identify and timing of glomerular activation.  The 192 

correlation coefficients between pairs of odors (𝑛 =  44,850) spanned the range 193 

from −0.1  to 0.9  (Fig.1C3 and Fig.1D3), covering a complete range of input 194 

similarities.  This allowed us to dissect how the circuits of the MOB, PCx, and 195 
centrifugal connections between them affected the neural representations of these 196 
different odors. 197 

 198 

Centrifugal feedback modulates the output of MOB via granule cells. 199 

Previous studies have shown that centrifugal feedback can impact olfactory bulb 200 
activity via the granule cell population (Boyd et al., 2012; Markopoulos et al., 2012).  201 

To understand the functional role of this centrifugal feedback in modulating the 202 
output of MOB, we modeled a silencing experiment by simulating the dynamics of 203 

MOB neurons when the centrifugal synaptic weights to GCs were set to zero, 204 
versus when centrifugal feedback from PCx corresponded to weights measured in 205 
experiments.  As only the top-down connections from PCx to MOB were silenced 206 
in our experiments, all other network connectivity including the local excitatory and 207 

inhibitory synapses in either area was preserved.  Such an approach allowed us 208 

to evaluate the input-specific relationship between feedback and activity in much 209 
the same way that a pharmacological inactivation or optogenetic silencing 210 
experiment may have been done.    211 

In response to one example model odor (Odor-1 in Fig,1B), the M/T 212 

population firing rate increased transiently after the activation of the earliest 213 

glomerulus (Fig.2A1, bottom) and decayed subsequently due to the firing of 214 
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inhibitory GCs (Fig.2A2) when centrifugal feedback was OFF.  With centrifugal 215 
feedback turned ON, however, the M/T population firing rate maintained long-216 

lasting dynamics (Fig.2B1, bottom), despite the ramping increase of GC firings 217 
(Fig.2B2).  Dissecting the firings of individual cells revealed that some M/T cells 218 
were enhanced by centrifugal feedback, thus firing persistently throughout a sniff 219 

cycle, while other M/T cells were largely suppressed by feedback, only firing 220 
sparsely (Fig.2A1 and Fig.2B1, top).  In this example, the M/T cells enhanced by 221 
centrifugal feedback were driven by odor-activated glomeruli.  Consistent with 222 

previous studies (Boyd et al., 2012; Otazu et al., 2015), we found that feedback 223 
could influence the activity patterns of both the excitatory M/T cells and the 224 
inhibitory GC neurons in the MOB.   225 

In individual neurons, and by extension, the activity of the network, 226 
dynamics are determined by the relative ratio of excitatory and inhibitory synaptic 227 

drive (Nelson and Valakh, 2015). To study how these synaptic changes 228 
contributing to changes in the dynamics of the network, we plotted the voltages 229 
and various synaptic inputs for two representative M/T cells in Fig. 3A1 and 230 

Fig.3B1.  The example cell receiving glomerular input (M/T 1) only fired transiently 231 
at the early phase of the glomerular input for feedback OFF but kept firing 232 
throughout glomerular activation when feedback was ON.  By contrast, the cell not 233 

receiving glomerular input (M/T 2) fired spontaneously when feedback was OFF 234 
but was silenced when centrifugal feedback was turned ON.  A different model 235 

odor would activate a different subset of glomeruli, with different subsets of M/T 236 
cells enhanced and suppressed by centrifugal feedback.  To understand the effect 237 
of centrifugal feedback on M/T cells across all 300 model odors (Fig.S2), we 238 

compared the odor-evoked responses of each cell between feedback ON and OFF 239 
(Fig.2C and Fig.S3).  The feedback-induced changes in M/T firing rates were 240 

bimodally distributed, with one mode corresponding to the M/T cell responses 241 
enhanced by feedback and the other mode corresponding to the M/T cell 242 
responses that were suppressed.  Centrifugal feedback effectively increased the 243 
signal-to-noise ratio of the MOB output by selectively enhancing the firing of M/T 244 

cells driven by odor-activated glomeruli and suppressing the activity of M/T cells 245 

not connected to the stimulated glomeruli. 246 

Furthermore, we found that similar to M/T cells, centrifugal feedback 247 
resulted in both enhancement and suppression of firing rates among the GCs 248 
(Fig.2D and Fig.S3) even though all centrifugal inputs were excitatory.  249 

Suppression of GC firing arose from GCs receiving heterogenous disynaptic 250 

inhibition from other GCs as has been previously reported (Fig.3A2 and Fig.3B2 251 
(Boyd et al., 2012).  One example cell, GC 1 (Fig.3A2 and Fig.3B2) received larger 252 
centrifugal input and smaller GC inhibition than another example cell, GC 2, such 253 
that the former was enhanced while the latter was suppressed.  Balances between 254 
excitatory and inhibitory inputs have long been thought to be essential for 255 

stabilizing the dynamics of a network (Chen and Padmanabhan, 2020; Ozeki et al., 256 

2009).  We found that feedback played a role in stabilizing this balance.  To 257 
quantify this, we calculated the ratio of excitatory and inhibitory synaptic inputs for 258 
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each cell (Fig.3C and Fig.3D), a measurement that reflected the balance across 259 
all inputs to each cell during a sniff.  Positive values indicated that a cell’s 260 

subthreshold membrane dynamics were dominated by excitation, while negative 261 
values corresponded to a net inhibitory drive, with zero corresponding to a balance 262 
of the two.  When feedback was OFF, almost all M/T cells were dominated by 263 

inhibition and all GCs were dominated by excitation (Fig.3C).  However, when 264 
feedback was turned ON, the synaptic drive to both M/T cells and GCs became 265 
bimodally distributed (Fig.3D).  The two peaks for GCs were located on opposite 266 

sides of zero, with one subpopulation of GCs dominated by excitation and the other 267 
dominated by inhibition.  Feedback therefore drove single cells largely with 268 
excitation or inhibition, but balanced these forces across the network.  As a result, 269 

although M/T cells formed distributive connections with GCs in MOB, centrifugal 270 
feedback from PCx engaged functionally distinct subpopulations of local inhibitory 271 
interneurons by shaping the ratio of excitatory to inhibitory inputs (E/I) thereby 272 

modulating the firing activity of M/T cells. 273 

Centrifugal feedback controls the temporal dynamics of PCx, leading to a 274 

circuit that is critical for pattern separation. 275 

Piriform cortex has been shown to be essential for integrating odor information 276 

from individual glomeruli to form odor perception (Gottfried, 2010; Miura et al., 277 
2012; Stettler and Axel, 2009) and has a critical role in guiding behaviors (Choi et 278 
al., 2011).  We next wanted to know how restructuring the dynamics of the M/T 279 

cells that are the inputs to piriform cortex by centrifugal projections impacted the 280 
dynamics of PCx itself.  281 

First, when centrifugal feedback was OFF, piriform cortical cells (PCs) 282 
increased their population firing rates, peaking ~16ms after the activation of the 283 
earliest glomerulus (Fig.4A).  This activity was sharply truncated by the local 284 

feedback inhibitory (FBI) cells which were recruited within PCx, similar to previous 285 
work (Stern et al., 2018).  These results are consistent with the model wherein a 286 
temporal to combinatorial remapping occurs as odor representations are relayed 287 

from MOB to piriform cortex.  When centrifugal feedback was turned ON however, 288 
we found that PCs fired persistently throughout the sniff cycle (including over 289 

activation of multiple temporally staggered glomeruli) (Fig.4B).  Furthermore, FBI 290 
cells were only sparsely recruited, and no longer truncated the activity of PCs 291 

(Fig.S4).  Across an array of different odors, with different patterns and timings of 292 

glomerular activity, centrifugal feedback to MOB resulted in a persistent and 293 
prolonged firing in PCs (Fig.4C, 𝑛 = 300 odors).  To quantify these dynamics in 294 

the piriform cell population, we considered three quantities that captured the 295 
overall temporal structure of the trial-averaged firing rate of PCs in response to 296 
each odor: the peak firing rate, the delay between the peak and the activation time 297 
of the earliest glomerulus, and the decay rate from the peak to the baseline firing 298 

rate (Fig.4D).  With centrifugal feedback turned ON, the peak firing rate of PCs 299 

decreased significantly (Fig.4E1), characterized by a smaller subset of cells 300 
responding to odor presentation.  However, firing across this sparser population 301 
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persisted longer with smaller decay rates (Fig.4E2).  Interestingly, centrifugal 302 
feedback also reduced the response latency of piriform cells to the earliest 303 

glomerular activation (Fig.4E3, bottom).  This effect arose entirely from the 304 
information relayed from the bulb to the piriform cortex, as centrifugal feedback 305 
had no significant effect on the response latency of the M/T cells receiving direct 306 

input from the glomeruli (Fig.4E3, top).  These data highlighted the impact 307 
centrifugal feedback had on the temporal structure of activity patterns in PCx. 308 

Thus far however, these results only tell us that centrifugal feedback can 309 
alter the dynamics of activity in the PCx, leaving open whether such differences 310 
are actually relevant for the coding of odor information in the early olfactory system.   311 
To address this question, we needed an experimental framework that would allow 312 

us to quantify coding.  One such approach is an odor discrimination task where an 313 
animal is presented with two odors of varying similarity and trained to respond to 314 

one of these stimuli.  The more similar the two odors, the more overlapping their 315 
neural representations will be.  One measure of computation then is how network 316 
activity makes these two representations more unique in the patterns of piriform 317 

cortex.   318 

To simulate such an experiment, we first presented two model odors 319 

(Fig.1B) to the network and studied the responses of PCs.  When feedback was 320 
OFF, both odors evoked a transient burst of spikes followed by a sharp truncation 321 
and persistent suppression in PCx.  As a consequence, the PC population firing 322 

rates were largely overlapping (Fig.5A).  When centrifugal feedback was turned 323 
ON however, the PC population firing rates to different odors deviated significantly 324 
from one another across time (Fig.5B).  As these differences reflected differences 325 

in the identity and spike timing of large ensembles of PCs, we used a 326 
dimensionality reduction method,  principal component analysis (PCA, STAR 327 

Methods), to visualize the population responses (10,000 dimensions with each 328 
corresponding to a single PCs) within a low dimensional space defined by the first 329 
three components (Fig.5C and Fig.5D).  Odor presentation resulted in trajectories 330 

that began at the origin and extended outward as glomeruli were activated, and 331 
then returning to baseline at the conclusion of the sniff cycle.  Importantly, the 332 

ensemble trajectories of the two odors (Fig.5D) became more separable when 333 
centrifugal feedback was turned ON as compared to when feedback was OFF.  334 
This was consistent across a number of pairs of odors (data not shown) and 335 
showed that the dynamics of PCs were strongly shaped by the centrifugal inputs 336 

to the granule cell layer in MOB.  This feedback made the population 337 

representations of odors more unique in piriform cortex, an operation central to 338 
pattern separation (Braganza et al., 2020; Chen and Padmanabhan, 2020; 339 
Gschwend et al., 2015). 340 

 341 

Information gain in odor perception achieved by centrifugal feedback 342 
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The previous example highlighted the ways in which changing the identify of 343 
glomeruli activated by two different odors resulted in differences in the encoding in 344 

PCx.  This was not surprising and would be predicted regardless of whether the 345 
system used a combinatorial or temporal code.  We thus wished to study how 346 
sensitive the neural representation of an odor in PCx was when the identity or 347 

timing of later activated glomeruli was changed.  A small change in the 348 
concentration or chemical structure could result in small changes in either the 349 
identity or timing of different glomeruli.  By defining odors not in terms of their 350 

chemical structures, but in terms of their glomerular activation patterns, we 351 
systematically explored how differences between two odors that activate different 352 
glomerular patterns impact coding in PCx (Carey et al., 2009; Chong et al., 2020; 353 

Gire et al., 2013b; Smear et al., 2011; Soucy et al., 2009; Spors and Grinvald, 354 
2002).   355 

First, we systematically varied either the identity, timing, or both in the 356 
activated glomeruli across a total of 192 different model odors.   The PC population 357 
responses to repeated presentations of one odor were visualized as low-358 

dimensional trajectories (thin curves in Fig.6A1).  In this example, single-trial PC 359 
population responses to each odor at a single time were a cluster of points 360 
distributed within the space reflecting the variability across trials of a given odor, 361 

and variability between different odors.  At each of these moments in time, we 362 
assessed the differences between the two distributions by projecting the points 363 

onto an optimal linear decoder (Fig. 6A2, STAR Methods).  The more separable 364 
the two distributions were, the more accurately the odor could be decoded from 365 
the PC responses, and thus the more information was encoded in PCx.  Thus, at 366 

any given time during a sniff cycle, we could measure the amount of odor 367 
information in PCx by calculating the Kullback-Leibler Divergence 𝐷𝐾𝐿  (STAR 368 

Methods), which measures the overlap between two probability distributions.  The 369 
more distinct two odor representations, the larger the 𝐷𝐾𝐿.  For example, at a given 370 

time ( 𝑡 = 31𝑚𝑠 ), the PC responses to Odor-1 and Odor-2 were more easily 371 

distinguishable when the centrifugal feedback switched ON, giving rise to more 372 

separable distributions of the PC responses (Fig.S5). 373 

We first considered odor pairs that differed only in the identity of a single 374 
glomerulus.  When the identity of the earliest activated glomerulus (G1) was 375 
different (Fig.6B1), the 𝐷𝐾𝐿  increased rapidly regardless of whether centrifugal 376 

feedback was ON and OFF (Fig.6B2, left).  In these examples,  the information in 377 

the spiking activity corresponding to the different representations of the two odors 378 
was sufficient to distinguish them, independent of whether centrifugal feedback 379 
was ON or OFF.  This was consistent with previous finding that the first glomerulus 380 
activated carried the bulk of information about each of the odors (Wesson et al., 381 
2008; Bolding and Franks, 2017; Chong et al., 2020).  Interestingly, when 382 

centrifugal feedback was ON the 𝐷𝐾𝐿 had a larger magnitude and remained high 383 

even after the first glomerulus was no longer active (Fig.6B2, right), suggesting 384 
that centrifugal feedback enhanced and maintained odor information gains across 385 
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the sniff cycle, even when the biggest differences in glomerular activation had 386 
already happened.   For odor pairs differing in the identity of either the second or 387 

third activated glomerulus (G2 in Fig.6C1 and G3 in Fig.6C2), we observed a 388 
significant increase in 𝐷𝐾𝐿 for feedback ON as compared to feedback OFF.  As a 389 

result, small differences in either the functional groups between the two odors 390 

being discriminated or the concentration that would result in these small 391 
differences in the activation of the second or third glomeruli could provide 392 
information to the piriform cortex when feedback was ON (Schaefer and Margrie, 393 

2007).   394 

If PCx could represent differences in glomerular identity as differences in 395 

the timing of piriform activity patterns, we wished to determine if centrifugal 396 
feedback could also enable PCx to encode the differences in the activation timing 397 
of glomeruli.  To do this, we presented model odors which activated the same 398 

subset of glomeruli but with different onset latencies (∆𝑡 = 15𝑚𝑠).  Similar to the 399 

identity differences, switching centrifugal feedback ON significantly increased the 400 

𝐷𝐾𝐿  for odors differing in the activation timing of either the second or third 401 

glomerulus (Fig.6D).   402 

We summarized these differences across a wide range of pairs of odors 403 

using the cumulative 𝐷𝐾𝐿 over the sniff cycle, which served as a measurement of 404 

the total amount of information gained from the differential activation of glomeruli 405 
between the odor pairs (Fig.6E and Fig.6F).  When centrifugal feedback was ON, 406 
we found a significant increase in the information in spiking patterns across odors 407 
that differed in either the identify or timing over the three glomeruli activated during 408 
a sniff (Fig.6E and Fig.6F).  Activating centrifugal feedback increased the 409 

information gain between two different odors regardless of their similarity (Fig.6G), 410 
meaning that the gains were a general feature arising from the architecture of a 411 
network with centrifugal feedback to inhibitory cells in the bulb.  Our results 412 
revealed a novel functional role for centrifugal feedback; effective encoding of 413 
glomerular identity and timing using both the temporal structure and the 414 

combinatorial patterns of cell activity in the piriform cortex. 415 

 416 

Centrifugal feedback improves behavioral performance in odor 417 
discrimination 418 

Our analysis thus far focused on quantifying the information encoded by the PC 419 
ensembles, leaving open the question of whether this information could be utilized 420 

by animals in decision making.  For example,  what, if any effect would controlling 421 
centrifugal feedback have on an animal’s behavioral performance when asked to 422 
distinguish between two odors?  How does the centrifugal feedback circuit control 423 
either the accuracy (how often mistakes are made) or the reaction time (how long 424 

a response is reported) in an odor discrimination task?  Such behavioral 425 

measurements are routinely performed in animal experiments, and can act as a 426 
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proxy for the information in piriform cortex that animals actually have access to 427 
(Abraham et al., 2010; Uchida and Mainen, 2003). 428 

We thus bridged the gap between neural coding and behavior by using a 429 
two-alternative forced-choice (2AFC) task (STAR Methods) and then applying the 430 
sequential probability ratio test (SPRT) (Bogacz et al., 2006; Gold and Shadlen, 431 

2007) to model behavioral performance.  In such a task, on each trial, a randomly 432 
chosen odor (Odor-1 or Odor-2) was presented, with the odor onset aligning to the 433 

start of a sniff.    At each time during a sniff cycle, noisy momentary evidence was 434 
gained from observing the PC responses sampled from the odor-evoked 435 
probability distribution (Fig.7A1 and Fig.7A2).  A choice was made when the 436 
accumulated evidence reached one of the decision boundaries (Fig.7A3) and the 437 

reaction time was recorded to account the decision and a motor delay (normally 438 
distributed with mean = 50𝑚𝑠 and std = 5𝑚𝑠).  Since only one sniff has been 439 

shown to be sufficient for the animal to make decisions of maximum accuracy 440 
(Uchida and Mainen, 2003; Wesson et al., 2008), the model was constructed to 441 

report which odor was presented by the end of a single sniff (Odor-1 or Odor-2). If 442 
neither decision boundary was reached before the end of the sniff, the choice was 443 
made by chance (𝑃(Odor-1) = 𝑃(Odor-2) = 0.5), equivalent to a random guess 444 

that the animal might make because it could not distinguish between the two odors. 445 

To examine how the accuracy and reaction time of discrimination were 446 

influenced by odor similarity, we varied the glomerular timing between two odors 447 
by 5𝑚𝑠 increments in each glomerulus.  The larger the difference in glomerular 448 

timing, the more different the two odors were.   Such differences corresponded 449 
experimentally to either differences in odor concentration or odor identity (Meister 450 

and Bonhoeffer, 2001; Schaefer and Margrie, 2007) in a discrimination task 451 

requiring the animal to discriminate between two similar odors, or between different 452 
concentrations of a single odor.   In each case the differences the animal perceives 453 
would be due to subtle differences in the timing of the activated glomeruli.  First, 454 
when we simulated increasing differences in timing of the first glomerulus (G1) 455 

between the two odors, the accuracy increased and the reaction time reduced 456 

regardless of whether centrifugal feedback was OFF or ON (Fig.7B1), a result 457 
consistent with previous studies (Palmer et al., 2005; Uchida and Mainen, 2003).  458 
However, for any given difference in glomerular timing associated with two different 459 
odors, switching centrifugal feedback ON increased the accuracy and reduced the 460 

reaction time, corresponding to an improvement in the animals’ behavioral 461 

performance in discrimination.  For subsequent glomeruli, differences in the timing 462 
of glomerular activity could occur bidirectionally, i.e., glomerulus 2 (G2) activated 463 
by odor 1 could occur either earlier (negative values) or later (positive values) than 464 
G2 for odor 2 (Fig.7B2 and Fig.7B3).  For both timing shifts associated with G2 or 465 
G3, the discrimination performance was improved when the centrifugal feedback 466 

was turned ON.  Interestingly, shifting the G2 or G3 latencies earlier resulted in 467 

larger changes in accuracy and reaction time as compared to shifting them later, 468 
providing further mechanistic support for the importance of the earliest activated 469 
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glomeruli in guiding odor discrimination behaviors  (Chong et al., 2020; Wilson et 470 
al., 2017).  A temporal shift of −45𝑚𝑠 in G2 latency for one odor would mean that 471 

G2 becomes the first one activated, making it G1.  The resultant alternation in the 472 
order of glomerular activation would render the differences between the two odors 473 
differences in glomerular identity rather than timing.  As a consequence, we 474 

observed a significant jump in accuracy (over 10%  increase from −40𝑚𝑠  to 475 

−45𝑚𝑠) as well as a decline in the reaction time (over 50𝑚𝑠 reduction from −40𝑚𝑠 476 

to −45𝑚𝑠 ), echoing the important role of the earliest activated glomerulus in 477 

establishing odor perception.  Our results revealed the essential role that 478 

centrifugal feedback had in shaping how odor information could guide animal 479 
behavior, in this example for an odor discrimination task. 480 

481 
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Discussion  482 

Using a spiking neuronal network model that recapitulated the details of circuit 483 
architecture within and between MOB and piriform cortex (PCx), we identified a 484 
novel role of centrifugal feedback: enabling PCx to extract information about odors 485 
from both the identify and timing of activation patterns across mitral and tufted (M/T) 486 

cells.  When the centrifugal feedback weights were “turned off”, piriform cortical 487 
cells (PCs) responded transiently to the earliest activated glomerulus, consistent 488 

with the models of olfactory coding in the piriform cortex whereby the combinatorial 489 
pattern of activated cells are used to represent odors (Stern et al., 2018).  When 490 
the centrifugal feedback weights to the local inhibitory interneurons (GCs) in MOB 491 
were artificially “turned on”, we found that PCs fired persistently throughout odor 492 

presentation. The temporal structure of PC cells reflected the successive activation 493 
of M/T cell population by different glomeruli and was informative about odors.  494 

When the activity patterns across the piriform cortical cell population responding 495 
to different odors were compared, these were more separable with feedback ON 496 
which enhanced the information encoded in the population.  This effect proved 497 

robust to variation in identify or timing differences in either the earliest or later 498 
activated glomeruli over the course of a sniff.  Furthermore, in an odor 499 
discrimination task, we found that the increased information in PCx activity patterns 500 

resulted in improved behavioral performance in both accuracy and reaction time.   501 

The coding strategy used by the olfactory piriform cortex to represent odor 502 

information remains an open question in sensory neuroscience, in part because 503 
many plausible strategies has been proposed based on the structure of neural 504 
circuits and the activity patterns in the early olfactory system. Features of odors, 505 

including their identity and concertation, are represented in the temporal patterns 506 
of glomerular activation (Baker et al., 2019; Rubin and Katz, 1999; Spors and 507 

Grinvald, 2002; Vincis et al., 2012), and result in differences in the identity and 508 
timing of activated mitral and tufted cells (Bathellier et al., 2008; Cury and Uchida, 509 
2010; Kay and Laurent, 1999).  In the piriform cortex, studies suggest this temporal 510 

information from the bulb is remapped onto a combinatorial pattern of activity 511 
across piriform cells (Bolding and Franks, 2017; Stern et al., 2018; Stettler and 512 

Axel, 2009).  Such a coding strategy is attractive for a number of reasons.  First, 513 
the random connectivity of mitral/tufted cells to individual piriform cortical neurons 514 
provides an anatomical underpinning for such a combinatorial code (Sosulski et 515 
al., 2011).  Second, such an architecture may be one biological implementation of 516 

compressed sensing, a mathematical framework for optimal encoding (Babadi and 517 

Sompolinsky, 2014; Ganguli and Sompolinsky, 2012; Stevens, 2015).  Finally, 518 
neurophysiological studies show that the local inhibition within the cortex (Bekkers 519 
and Suzuki, 2013) truncates the activity of piriform cortical neurons, restricting 520 
patterns of neuronal firing to narrow windows of opportunity (Bolding and Franks, 521 
2017; Miura et al., 2012).  These packets of information would represent the 522 

identity and concentration of odors in the environment (Bolding and Franks, 2017; 523 

Gire et al., 2013b), not unlike network packets used to transmit information in 524 
digital communication. 525 
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Although this framework has provided a number of insights into the ways in 526 
which olfactory information may be encoded, results from recent studies may merit 527 

a reevaluation and refinement of this model.  First, as experimental studies control 528 
the odor onset and offset, often with relation to the sniff, such a design establishes 529 
a temporal bound over which piriform cortical cell activity can be thought to be 530 

informative.  Natural odor plumes fluctuate across multiple spatial and temporal 531 
scales (Ackels et al., 2021; Lewis et al., 2021), often resulting in fluctuations in 532 
odor concentration that are informative about the composition or location of an 533 

odor source (Celani et al., 2014; Moore and Atema, 1991; Riffell et al., 2014; 534 
Schmuker et al., 2016; Szyszka et al., 2014).  In these natural examples, a single 535 
window corresponding to odor onset and offset would be difficult to define, and 536 

subsequent strategies for identifying time windows during which to optimal decode 537 
piriform cortical activity would be problematic.  Second, a number of studies have 538 
shown that animals use information nested in the timing of glomerular activation of 539 

different odors to guide behavior (Chong et al., 2020; Rebello et al., 2014; Smear 540 
et al., 2011), meaning at the very least, there are circuits in the early olfactory 541 

system that are sensitive to timing differences and that these differences are 542 
behaviorally meaningful.  Previous studies have shown that rodents can be trained 543 
to discriminate between highly similar odors and their accuracy is strongly 544 

correlated with reaction time, often known as the speed-accuracy trade-off 545 
(Rinberg et al., 2006; Uchida and Mainen, 2003).  Accuracy significantly increases 546 

when the mice sample the odor stimulus for longer periods of time (Ackels et al., 547 
2021), suggests information is gained throughout the odor presentation, rather 548 
than only at the onset of an odor presentation (or encounter) or within a narrow 549 
sniff-locked time window; further evidence for the importance of temporally 550 

structured activity.   551 

Each of these models/frameworks provides some generalized rules as to 552 
how the brain uses the structure of neuronal activity to encode information about 553 
stimuli.  Here we demonstrate that these two models are instantiations of a single 554 
flexible circuit in the early olfactory system, one in which feedback or centrifugal 555 

input from piriform cortex to the bulb restructures what critical features of activity 556 

patterns are relayed to the olfactory cortex. 557 

If for example two odors in a discrimination task are markedly different, a 558 
combinatorial code would be sufficient for piriform cortex to distinguish between 559 
the two.  In this example, weak centrifugal input to the bulb would result in piriform 560 

cortical cells being sensitive only to the input from M/T cells driven by the earliest 561 

activate glomerulus.  However, in cases where an odor discrimination task is 562 
complex, for example because the two odors activate highly overlapping 563 
populations of glomeruli, or because small differences in concentration need to be 564 
detected, a change in the top-down weight of centrifugal feedback to the granule 565 
cells could have a number of effects on neuronal firing that would be 566 

computationally beneficial (Chen and Padmanabhan, 2020; Schaefer and Margrie, 567 

2007).  First, centrifugal feedback would thus enhance the signal-to-noise ratio of 568 
MOB output, increasing the information content of signals leaving the bulb.  569 
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Second, by encoding the dynamics of later activating glomeruli in the firing of 570 
piriform cortical cells, feedback would effectively allow time to be an additional 571 

dimension with which an animal can gain information about the odors in the 572 
environment.  Such a strategy could serve two purposes; (1) encoding the fast 573 
fluctuations that occur in odor plumes and using this information to identify an odor 574 

source or to track an odor trail; (2) using time to gain additional information about 575 
an odor even if its identity or concentration does not change significantly over sniffs.    576 

We have remained agnostic about the biological mechanisms that flexibly 577 
turn on and off centrifugal feedback, instead focusing on the functional 578 
consequences and computational benefits.  There are however several ways that 579 
the flexible control of feedback weights could be implemented.  On short time 580 

scales, neuromodulators acting on the granule cell dendrites could be critical for 581 
controlling the magnitude of feedback.  Studies on neuromodulators in the bulb 582 

have found that serotonin can modulate glomerular activity by acting on short axon 583 
cells (via 5HT 2C receptors) (Brill et al., 2016; Petzold et al., 2009), and can also 584 
modulate the odor responses of mitral and tufted cells on fast, sub-second time 585 

scales (Kapoor et al., 2016).  Neuromodulation could therefore impact either 586 
presynaptic release or the postsynaptic receptor population at the synapses 587 
between centrifugal feedback axons and granule cell dendrites, effectively 588 

changing the strength of top-down inputs to the bulb.  Another possible mechanism 589 
is through synaptic plasticity and learning which can act on time scales from hours 590 

to weeks.  Several studies have shown that piriform cortex is involved in olfactory 591 
learning processes (Cohen et al., 2008; Hasselmo and Bower, 1990; Litaudon et 592 
al., 1997), and long-term potentiation (LTP) and plasticity observed in this region 593 

can regulate the bulb activity (Cauthron and Stripling, 2014).  If for example, the 594 
synaptic weights were selectively increased between centrifugal inputs and 595 

subsets of granule cells activated during an odor discrimination task, then the 596 
resultant changes in granule cell inhibition onto M/T cells would reflect the learned 597 
discrimination (Abraham et al., 2010).  In such a framework, the switching between 598 
feedback ON and OFF would be more akin to a change in the synaptic weights 599 

over the course of learning that increased the influence of some centrifugal fibers 600 

on the granule cell population.  On even longer time scales, changes in the weights 601 
of centrifugal feedback may be instantiated by adult neurogenesis (Lledo et al., 602 
2006).  Granule cells are constantly born and added to mature olfactory circuits 603 
throughout animal’s lifespan (Arenkiel et al., 2011; Deshpande et al., 2013).  Both 604 
the integration and the response properties of these adult-born granule cells 605 

(abGCs) are highly dependent on sensory experience and learning (Alonso et al., 606 
2006; Lepousez et al., 2014; Livneh et al., 2009; Rochefort et al., 2002).  A recent 607 
study shows that the learning-dependent plasticity observed in abGCs may require 608 
piriform feedback activity, a disruption of which during leaning significantly 609 
suppresses the apical spine density increase of abGCs (Wu et al., 2020).  These 610 

data illustrate the importance of top-down inputs on the abGCs and could be the 611 

mechanism by which feedback is switched ON and OFF. 612 
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These mechanisms point to the ways in which centrifugal feedback could 613 
influence animal behavior on diverse time scales, from longer time scales 614 

corresponding to learning novel odors through repeated training to shorter time 615 
scales corresponding to behaviors that are sensitive to fluctuations in the animal’s 616 
internal state (Chockanathan et al., 2021).  As a consequence, piriform cortex may 617 

not only structure the temporal structure of information it receives, but it may also 618 
deploy this restructuring according to different coding strategies.  Such variability 619 
would manifest differently depending on how different experimental paradigms 620 

engage feedback circuits based on the behavioral tasks that the animal is asked 621 
to perform (Ackels et al., 2021; Bolding and Franks, 2018; Boyd et al., 2012; Chong 622 
et al., 2020; Gill et al., 2020; Otazu et al., 2015; Wu et al., 2020).  Here we propose 623 

that these differences reveal a novel system for sensory processing, one wherein 624 
the coding strategy is flexibly shifted, possibly in service of different ethological 625 
demands that are constantly placed on the animal in natural settings, but 626 

selectively amplified in lab based on the specific experiments performed.       627 
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Figures and Tables  842 

 843 

Figure 1.  Spiking network schematics and odor definition.  844 

(A). Schematics of the MOB–PCx network architecture. In the main olfactory bulb (MOB), glomeruli 845 
(G) in glomerular layer (gl) relay sensory information to the mitral/tufted cells (M/T) in mitral cell 846 
layer (mcl).  M/T cells receive inhibition from granule cells (GCs) in granule cell layer (gcl). In 847 
piriform cortex (PCx), piriform cortical neurons (PCs) in layer 2 (l.2) and feedforward inhibitory 848 
neurons (FFI) in superficial layer (l.1) receive direct feedforward excitation from MOB. Local 849 
inhibitory neurons (FBI) in deeper layer (l.3) provide feedback inhibition of PCs. Excitatory 850 
synapses are denoted by green boxes and inhibitory synapses are in red. All recurrent connections 851 
between cells of the same type are omitted for clarity. The thick connecting lines from PCs to GCs 852 
correspond to centrifugal feedback from PCx to MOB.  853 

(B). Glomerular input patterns for two representative odors. The color bar indicates the magnitude 854 
of glomerular input.  The triangles on top indicate the activation timing of the three glomeruli. Left, 855 
Odor-1: G1: 52 ms, G2: 74 ms, G3: 101 ms. Right, Odor-2: G1: 52 ms, G2: 74 ms, G3: 110 ms. 856 

(C). Magnitude of glomerular input for 30 example odors across 50 glomeruli. (C1): each column 857 
corresponds to one odor and the two columns highlighted correspond to the two odors shown in 858 
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(B). (C2): pairwise correlation of magnitude between different odors. (C3): histogram of the pairwise 859 
correlation of magnitude in (C2).  860 

(D). Similar to (C) but for glomerular activation timing of each odor. In addition to a large proportion 861 
of weakly anticorrelated odor pairs, the odor table we defined also captures a number of highly 862 
correlated odor pairs. 863 

  864 
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 865 

 866 

Figure 2.  Centrifugal feedback modulates M/T firings by controlling granule cell population.  867 

(A). Firings of MOB cells in response to a representative odor with centrifugal feedback OFF. (A1): 868 
raster plot of M/T cells in an example trial (top). Each row corresponds to the spike train of one M/T 869 
cell. Each tick mark is a spike. The blue dashed line indicates the activation timing of the earliest 870 
glomerulus for the representative odor. Bottom: population firing rate of all M/T cells (mean ± SD, 871 
𝑛 = 10 trials). (A2): similar to (A1) but for GCs.  872 

(B). Similar to (A) but for centrifugal feedback ON. Three groups of M/T cells driven by odor-873 
activated glomeruli fire persistently throughout a sniff while others only fire sparsely.  874 

(C). Histogram of the feedback-induced changes in the firing rates of each M/T cells (𝑛 = 1250 875 
cells) across all model odors (𝑛 = 300 odors). Positive values of the firing rate change signify 876 
enhancement by feedback while negative values signify suppression. Centrifugal feedback 877 
enhances a subset of M/T cells while suppresses others. 878 

(D). Similar to (C) but for GCs. GCs are both enhanced and suppressed by changes in the 879 
centrifugal feedback, suggesting functionally distinct subpopulations of local inhibitory interneurons 880 
in MOB.  881 
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 882 

Figure 3. Centrifugal feedback modulates the interaction between excitatory and inhibitory 883 
(E/I) synaptic inputs in MOB cells. 884 

(A). Voltage trace (top black) and synaptic inputs (bottom) for two example M/T cells and GCs when 885 
centrifugal feedback is OFF. (A1): M/T 1 receives glomerular input (cyan trace) from an odor-886 
activated glomerulus; M/T 2 only receives weakly fluctuating glomerular input from a non-activated 887 
glomerulus. (A2): similar to (A1) but for two example GCs. Centrifugal feedback (purple trace) in 888 
them is zero. 889 

(B). Similar to (A) but for centrifugal feedback ON. (B1): the same M/T cells as in (A1) but M/T 1 890 
fires persistently throughout glomerular activation and M/T 2 remains silenced when feedback is 891 
ON. (B2): the same two example GCs as in (A2).   892 

(C). Histogram of the overall domination of excitatory and inhibitory synaptic inputs during a sniff 893 
for M/T cells (left) and GCs (right) when feedback is OFF. Glomerular input is not included in the 894 
excitation for M/T cells. Positive values mean a cell receives more excitation during a sniff and 895 
negative value means the net synaptic input is inhibition. M/T cells are dominated by inhibition and 896 
all GCs are dominated by excitation when feedback is OFF 897 

(D). Similar to (C) but for feedback ON. Excitatory centrifugal feedback to GCs is included in the 898 
excitation for GCs. Centrifugal feedback introduces bimodal distributions in the E/I balance for M/T 899 
cells and GCs, revealing different functionally defined subpopulations of cells. 900 
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 902 

Figure 4. Centrifugal feedback unravels the temporal structure in the firings of piriform cells. 903 

(A). Firings of piriform cells (PCs) in response to a representative odor with centrifugal feedback 904 
OFF. PCs fire with a transient burst of spikes that are sharply truncated by local FBIs and followed 905 
by persistent suppression. Population firing rates: (mean ± SD, 𝑛 = 10 trials). 906 

(B). Similar to (A) but for centrifugal feedback ON. Persistent dynamics of PCs arise due to  907 
centrifugal feedback. FBI cells are only sparsely activated.  908 

(C). PC population firing rate in response to all model odors (mean ± SD, 𝑛 = 300 odors). The 909 
traces of feedback OFF and ON are normalized to have the same amplitude of peak. 910 

(D). Schematic illustration to quantify the dynamics of the PC population firing rate in response to 911 
a single odor (𝑛 = 300 odors). Peak: the first peak in the trial-averaged population firing rate (𝑛 =912 
10 trials). Slope: the slope of a linear function (oblique dashed line) fitted to the mean firing rate 913 
between the Peak and the first time when it drops below baseline (firing rate preceding the 914 
activation of the earliest glomerulus). Delay: the latency between the Peak and the activation time 915 
of earliest glomerulus defined by the odor (vertical dashed line with a triangle on top). 916 

(E). Comparison of PC dynamics between centrifugal feedback OFF vs. ON. (E1). Peak firing rate. 917 
Error bar: ± SD (***𝑝 < 0.001 Wilcoxon signed rank test). Connecting lines for 30 example odors 918 
are shown. (E2). Similar to E1 but for Slope. (E3). Histogram of the Delay across 300 odors. Top: 919 
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M/T cells; bottom: PCs. Centrifugal feedback reduces the responses latency of PCs without 920 
affecting that of M/T cells.  921 

  922 
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 923 

Figure 5. Centrifugal feedback increases the separation between piriform cell responses to 924 
different odors. 925 

(A). Piriform cell (PC) responses to Odor-1 and Odor-2 (Fig.1B) with centrifugal feedback OFF. Top 926 
and middle: raster plot of piriform cell responses to Odor-1 and Odor-2 in an example trial. Bottom: 927 
population firing rates of PCs responding to two odors (mean ± SD, 𝑛 = 10 trials). The firing rate 928 
separations between Odor-1 and Odor-2 are nonsignificant (ns: 𝑝 > 0.05 Wilcoxon rank-sum test).  929 

(B). Similar to (A) but for centrifugal feedback ON (mean ± SD, 𝑛 = 10 trials). The firings of PCs 930 
are persistent throughout successive glomerular activation of both odors. The firing rate between 931 
Odor-1 and Odor-2 are significant different during 70 − 90𝑚𝑠  and 120 − 140𝑚𝑠  (** 𝑝 < 0.01 932 
Wilcoxon rank-sum test). 933 

(C). Low-dimensional projections of ensemble trajectories of PCs onto the first three principal 934 
components when centrifugal feedback is OFF. Each trace corresponds to a single-trial PC 935 
response to one of the odors (color coded). Trajectories for different odors are tangled and non-936 
separable. 937 

(D). Similar to (C) but for centrifugal feedback ON. Centrifugal feedback pushes apart the low-938 
dimensional trajectories evoked by different odors and makes them more separable.   939 
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 940 

Figure 6. Centrifugal feedback enhances odor information gain in PCx.  941 

(A). Schematic for quantifying the odor information encoded by the piriform cell (PC) population 942 
responses. (A1): odor-evoked PC responses in the low-dimensional space (thick trace: trial-943 
averaged responses; thin trace: single-trial responses). The PC responses at a single time step 𝑡 944 
are clusters of points visualized for simplicity on a 2D plane (grey). At each time point, 𝛾𝑡 is the 945 
optimal linear decoder onto which the points are projected. (A2): PC responses for two different 946 
odors are projected onto 𝛾𝑡 and form two probability distributions generated from multiple trials for 947 
each odor. The Kullback–Leibler Divergence (𝐷𝐾𝐿(𝑡)) can be used to quantify the separation 948 
between the two distributions as they vary over time. 949 

(B). The 𝐷𝐾𝐿  for odor pairs which differ only by the identity of the first glomerulus G1. (B1): 950 
Schematic of the glomerular activation patterns for a pair of model odors (color coded). Glomerular 951 
identity is denoted by the vertical position of boxes: G1 boxes for the two odors are non-overlapping 952 
and thus they have different glomerular identity; G2 boxes (and G3) are overlapping and thus they 953 
have the same identity. Staggered rectangles indicate glomerular activation. (B2): left: 𝐷𝐾𝐿 for one 954 
example odor pairs when centrifugal feedback is ON or OFF (mean ± SD, 𝑛 = 10 trials). Right: the 955 
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difference of 𝐷𝐾𝐿 between centrifugal feedback ON and OFF (∆𝐷𝐾𝐿 = ON−OFF) across different 956 
odor pairs differing in G1 identity (mean ±  SD, 𝑛 =  19  odor pairs). Positive values mean 957 
centrifugal feedback enhances odor information encoded in PCx as compared to feedback OFF. 958 

(C). Similar to (B) but for the identity difference only in G2 or G3. (C2): top: schematics of the 959 
glomerular activation patterns for a pair of model odors differing in G2 identity. Middle: 𝐷𝐾𝐿 for one 960 
example odor pair (mean ± SD, 𝑛 = 10 trials). Bottom: ∆𝐷𝐾𝐿  across different odor pairs (mean ± 961 
SD, 𝑛 =  11  odor pairs). (C3): similar to (C2) except bottom: ∆𝐷𝐾𝐿  (mean ± SD, 𝑛 =  18  odor 962 
pairs). 963 

(D). Similar to (C) but for timing differences in G2 or G3 by ∆𝑡 = 15𝑚𝑠. In the schematics, the boxes 964 
for G1, G2 or G3 are overlapping but the staggered rectangles shift by ∆𝑡.  965 

(E): Cumulative 𝐷𝐾𝐿 over a sniff cycle to quantify the total amount of information in PCx for odor 966 
pairs differing in the identity of single glomerulus (data in (B) and (C)) Identity difference in G1, G2 967 
or G3 is denoted by different shapes. The cumulative 𝐷𝐾𝐿 for feedback ON is above the utility line 968 
(dotted), revealing that centrifugal feedback enhances odor information regardless of the identity 969 
difference in either the earliest or later glomerulus. 970 

(F): Similar to (E) but for odor pairs differing in the activation timing of single glomerulus (data in 971 
(D)). Centrifugal feedback enhances odor information regardless of the timing difference in either 972 
the earliest or later glomerulus. 973 

(G). Similar to (E) but for odor pairs with a combination of identity difference and timing difference 974 
in one or multiple glomeruli. Each circle denotes one odor pair, and the color represents the 975 
pairwise correlation between the two odors, thus similarity. Across all odor similarity, Centrifugal 976 
feedback enhances odor information encoded in PCx. 977 

 978 

  979 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.06.455459doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455459
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

35 

 

 980 

Figure 7. Centrifugal feedback improves behavioral performance in odor discrimination.  981 

(A). Decision making modelled as an evidence accumulation process according to SPRT. (A1): the 982 
time-varying probability distribution of piriform cell (PC) responses to two example odors which 983 
differ only in activation timing of G1 by 35𝑚𝑠. (A2): the distributions sliced at 𝑡 = 70𝑚𝑠 in (A1). A 984 
sample 𝑦∗  is generated by the distribution of Odor-1 (assuming Odor-1 is presented). The 985 
momentary evidence at this time step is calculated by the log likelihood ratio of the sample. (A3): 986 
example traces of the accumulated evidence over time for centrifugal feedback ON or OFF. A 987 
decision is made when the threshold ±𝐵 is reached. Otherwise, a choice is made by chance at the 988 
end of the sniff. 989 

(B). The accuracy and reaction time as a function of the timing differences in glomerular activation 990 
(mean ± SD, 𝑛 =  10 agents). (B1): timing differences in G1 activation. (Odor-1, G1: 40𝑚𝑠, G2: 991 
86𝑚𝑠, G3: 177𝑚𝑠; Odor-2, G1: 40𝑚𝑠 + ∆𝑡, G2/G3: same as Odor-1). (B2): timing differences in G2 992 
activation. (Odor-1, G1: 40𝑚𝑠, G2: 78𝑚𝑠, G3: 113𝑚𝑠; Odor-2, G2: 78𝑚𝑠 ± ∆𝑡, G1/G3: same as 993 
Odor-1). (B3): timing differences in G3 activation. (Odor-1, G1: 54𝑚𝑠, G2: 81𝑚𝑠, G3: 120𝑚𝑠; Odor-994 
2, G3: 120𝑚𝑠 ± ∆𝑡, G1/G2: same as Odor-1).  995 

  996 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.06.455459doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455459
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

36 

 

STAR Methods 997 

RESOURCE AVAILABILITY 998 

Lead contact 999 

Further information and requests for resources and reagents should be directed to 1000 

and will be fulfilled by the Lead Contact, Krishnan Padmanabhan 1001 
(krishnan_padmanabhan@urmc.rochester.edu). 1002 

Materials availability 1003 

This study did not generate new unique reagents. 1004 

Data and code availability 1005 

• Model odors defined in this paper and other simulation results are publicly 1006 

available as of the date of publication. The DOI is listed in the key resources 1007 
table.  1008 

• All original code is publicly available as of the date of publication. DOIs are 1009 

listed in the key resources table. 1010 

• Any additional information required to reanalyze the data reported in this 1011 
paper is available from the lead contact upon request. 1012 

 1013 
METHOD DETAILS 1014 

Organization and architecture of the model  1015 

The MOB consisted of 50 glomeruli (G) corresponding to the olfactory 1016 
receptor neuron (ORN) inputs into the MOB (Mombaerts et al., 1996).  Each 1017 

glomerulus was connected to 25 mitral/tufted (M/T) cells for a total 1250 M/T cells.  1018 
Within the MOB, a local population of 12,500 inhibitory granule cells (GCs) formed 1019 
reciprocal and lateral inhibitory connections with M/T cells.  Individual M/T cell 1020 

“projections” formed random excitatory connections with 10,000 piriform cortical 1021 
cells (PCs) in PCx.  These PCs in turn “projected” back to the olfactory bulb, 1022 

provided excitatory centrifugal feedback (thick lines in Fig.1A) onto the inhibitory 1023 
granule cells in the bulb.  Within PCx, two types of inhibitory interneurons were 1024 
included: a population of 1250 feedforward inhibitory neurons (FFIs) that received 1025 
excitatory input from M/T cells and inhibited both PCs and other FFIs, and a 1026 

population of 1250 local feedback inhibitory neurons (FBIs) that received input 1027 
from a random subset of PCs and subsequently inhibited PCs and other FBIs. 1028 

Voltage dynamics of individual neurons 1029 

The voltage dynamics of individual cells in the network are modeled as spiking 1030 

neurons (Izhikevich, 2003) described by a two-dimensional (2D) system of ordinary 1031 
differential equations of the form, 1032 
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𝑑𝑣

𝑑𝑡
= 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼

𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝑣 − 𝑢)

                                           (1) 1033 

with the after-spiking resetting 1034 

if 𝑣 ≥ 30𝑚𝑉, then 𝑣 ← 𝑐, 𝑢 ← 𝑢 + 𝑑                                       (2) 1035 

Here 𝑣  represents the voltage (mV) of the neuron and 𝑢  represents a 1036 

dimensionless membrane recovery variable accounting for the activation or 1037 
inactivation of ionic currents; 𝑡 is time and has unit of 𝑚𝑠; 𝑎, 𝑏, 𝑐 and 𝑑 are the 1038 

parameters by tuning which various firing patterns can be generated; 𝐼 represents 1039 

synaptic currents or injected dc-currents to the neuron. 1040 

We choose to use this neuron model to simulate the voltage dynamics of 1041 

individual neurons because: 1). It combines the biological plausibility of the 1042 
Hodgkin–Huxley neuron model and the computational efficiency of leaky integrate-1043 

and-fire neuron model, allowing us to simulate tens of thousands of spiking 1044 
neurons simultaneously in our network; 2). Different combinations of the parameter 1045 
values 𝑎, 𝑏, 𝑐 and 𝑑 can reproduce a diversity of firing patterns of neurons of known 1046 

types, so we can capture the biophysical diversity in the firing properties for 1047 
different types of neurons in olfactory system, such as the mitral/tufted (M/T) cells 1048 

and granule cells in the main olfactory bulb (MOB), and piriform cortical cells and 1049 
other local inhibitory interneurons in piriform cortex (PCx).  In order to achieve 1050 
heterogeneity such that different cells within the same type exhibit different 1051 
dynamics, we introduced randomness in the parameter assignment (see Table-1).  1052 

The 𝑟𝑖 is a random variable uniformly distributed on the interval [0,1] and 𝑖 denotes 1053 

the neuron index.  For example, the parameter 𝑎 will be distributed on the interval 1054 

[0.02, 0.1] within which various firing patterns can emerge.  We also used 𝑟𝑖
2 or 𝑟𝑖

4 1055 

to bias the distribution to different extent for different cell types.  Within the same 1056 

cell type, the parameters span a wide range of values to achieve heterogeneity in 1057 
cell dynamics.   1058 

Table-1 Parameters of Izhikevich neuron model for different cell types 1059 

 M/T cells GCs PCs FFIs/FBIs 

𝑎 0.1 − 0.08𝑟𝑖
4 0.1 − 0.08𝑟𝑖

2 0.02 + 0.08𝑟𝑖 0.1 − 0.08𝑟𝑖
2 

𝑏 0.2 0.2 0.2 0.2 

𝑐 −65 −65 + 15𝑟𝑖
2 −65 −65 + 15𝑟𝑖

2 

𝑑 2 + 6𝑟𝑖
4 2 8 − 6𝑟𝑖 2 

 1060 

Synaptic input 𝐼 to each neuron depends on the neuron type.  For a cell 𝑖 in 1061 

MOB, 𝐼𝑖 is a linear superposition of various sources 1062 

𝐼𝑖 = 𝐼𝑖
𝑚𝑐−𝑒𝑥 + 𝐼𝑖

𝑔𝑐−𝑖𝑛
+ 𝐼𝑖

𝑜𝑠𝑛 + 𝐼𝑖
𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

+ 𝜉𝑖                                     (3) 1063 
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Here, 𝐼𝑖
𝑚𝑐−𝑒𝑥  represents excitation from M/T cells and exists for both M/T cells and 1064 

GCs.  For GCs, when a M/T cells fires, the excitatory post-synaptic current (EPSC) 1065 

𝐼𝑖
𝑚𝑐−𝑒𝑥 into different GCs are delayed by different latencies, resulting in different 1066 

spiking latencies of GCs (Fig.S1), consistent with previous experimental findings 1067 

in the olfactory bulb granule cell network (Kapoor and Urban, 2006).  The 𝐼𝑖
𝑔𝑐−𝑖𝑛

 1068 

represents inhibition from GCs and exists for both M/T cells and GCs.  𝐼𝑖
𝑜𝑠𝑛 1069 

represents glomerular input and only exists for M/T cells.  When a glomerulus is 1070 
activated by a model odor, it provides correlated inputs 𝐼𝑖

𝑜𝑠𝑛 to the M/T cells driven 1071 

by that glomerulus (Fig.S2).  𝐼𝑖
𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

 represents excitatory centrifugal input from 1072 

piriform cells and is non-zero only for GCs when feedback is ON.  We set it to zero 1073 
for all GCs when feedback is OFF.  The 𝜉𝑖  represents Gaussian white noise input 1074 

with zero mean and standard deviation 𝜎 = 1.75 for M/T cells and 𝜎 = 0.8 for GCs. 1075 

Similarly, for a cell 𝑖 in PCx, 𝐼𝑖 is composed of 1076 

𝐼𝑖 = 𝐼𝑖
𝑚𝑜𝑏 + 𝐼𝑖

𝑝𝑐−𝑒𝑥 + 𝐼𝑖
𝑖𝑛 + 𝜂𝑖                                                (4) 1077 

where 𝐼𝑖
𝑚𝑜𝑏 represents input from M/T cells in MOB and only exists for piriform 1078 

cortical cells (PCs) and feedforward inhibitory neurons (FFIs); 𝐼𝑖
𝑝𝑐−𝑒𝑥

 represents 1079 

excitation from PCs and exists for both PCs and feedback inhibitory neurons 1080 

(FBIs); 𝐼𝑖
𝑖𝑛 represents inhibition from local inhibitory neurons including FFIs and 1081 

FBIs; 𝜂𝑖 represents Gaussian white noise input (zero mean and standard deviation 1082 

𝜎 = 0.9) and only exists for PCs.   1083 

Each action potential fired by a presynaptic neuron will evoke a jump in the 1084 

corresponding synaptic inputs of all its postsynaptic targets by an amount equal to 1085 
the appropriate synaptic strength.  For example, action potentials of a M/T cell 1086 
induce jumps in the excitatory currents of their postsynaptic target neurons, 1087 

including 𝐼𝑖
𝑚𝑐−𝑒𝑥 in M/T cells and GCs in MOB, and 𝐼𝑖

𝑚𝑜𝑏 in FFIs and PCs in PCx.  1088 

These synaptic inputs then decay to zero with time constant 10𝑚𝑠.  The height of 1089 

the jump is determined by the pairwise synaptic strength between any two neurons 1090 

and their values are given in the synaptic weight matrix which will described in the 1091 
next section. 1092 

Synaptic strength and model network architecture 1093 

The MOB consists of 50 glomeruli, each of which drives 25 M/T cells, thus a total 1094 

1250 M/T cells in MOB.  Besides, a local population of 12,500 inhibitory GCs 1095 
formed reciprocal and lateral inhibitory connections with M/T cells.  Thus, within 1096 

the MOB, we have a weight matrix 𝐖𝑚𝑜𝑏 of 13,750 by 13,750 with its entry 𝑊𝑚𝑜𝑏
𝑖𝑗

 1097 

representing the synaptic strength from presynaptic neuron 𝑗  to postsynaptic 1098 

neuron 𝑖.  Depending on the cell type, this matrix 𝐖𝑚𝑜𝑏 can be partitioned into four 1099 

sub-matrices, i.e., from M/T cell to M/T cell, from M/T cell to GC, from GC to M/T 1100 
cell and from GC to GC.  The specific value of each entry in 𝐖𝑚𝑜𝑏 was assigned 1101 

randomly according to two parameters we chose for each sub-matrix.  One is the 1102 
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connection density (the percentage of non-zero synaptic weights) and the other is 1103 
the average synaptic strength (mean of a uniform distribution from which individual 1104 

synaptic weights are sampled).  Each sub-matrix has its own value of the 1105 
connection density and average synaptic strength.  In particular, the connection 1106 
density and average synaptic strength between M/T cells driven by the same 1107 

glomerulus are higher than between M/T cells driven by different glomeruli. 1108 

Individual M/T cell “projections” form random excitatory connections with 1109 

10,000 PCs and 1250 FFIs in PCx, giving rise to a feedforward weight matrix 𝐖𝑓𝑓 1110 

of 11,250 by 1250.  Within PCx, PCs form recurrent excitations with each other.  1111 

The FFIs inhibit both PCs and other FFIs, and another population of 1250 FBIs 1112 
that receive input from a random subset of PCs inhibit PCs and other FBIs.  1113 

Therefore, we have a matrix 𝐖𝑝𝑐𝑥 of 12,500 by 12,500 that identifies all synaptic 1114 

weights between cells in PCx.  PCs “project” back to the MOB, providing excitatory 1115 

centrifugal feedback to GCs, giving rise to a feedback weight matrix  𝐖𝑓𝑏 of 12,500 1116 

by 10,000.  Under the condition of centrifugal feedback OFF, this 𝐖𝑓𝑏 is set to be 1117 

a zero matrix.  The connection density and average synaptic strength for all sub-1118 
matrices can be found in Table-2.  1119 

Table-2 Network parameters controlling the connectivity between cell types 1120 

 Connection density Average synaptic strength 

MCtoMC (same glomerulus) 0.8 0.25 

MC2GC 0.3 0.25 

GC2MC 0.02 -0.4 

GC2GC 0.05 -0.1 

MC2PC 0.5 0.06 

MC2FFI 0.2 0.2 

PC2GC 0.9 0.03 

PC2PC 0.01 0.1 

FFI2PC 0.1 -0.1 

FBI2PC 0.8 -0.1 

FFI2FFI 0.01 -1.0 

PC2FBI 0.02 0.3 

FBI2FBI 0.02 -0.5 

 1121 

Model odor definition 1122 

Model odors are defined by the combinatorial patterns of glomeruli which are 1123 
activated successively with different glomerular timing, a pattern recapitulating the 1124 
spatiotemporal structure of odor inputs (Rubin and Katz, 1999; Meister and 1125 
Bonhoeffer, 2001).  Specifically, when a model odor is presented, three glomeruli 1126 
will be activated (6% of all glomeruli) and all the M/T cells associated with those 1127 

glomeruli will receive correlated glomerular input 𝐼𝑜𝑠𝑛 which lasts for 90ms (Fig.1B 1128 
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and Fig.S2).  A table of 300 model odors were defined as the odor inputs to our 1129 
network Fig.S2).   1130 

Network dynamics simulation 1131 

The network dynamics are governed by a large set of differential equations of the 1132 
form Eqn.(1) coupled by the pairwise synaptic weights between different neurons.  1133 

These equations were numerically solved using the first-order Euler’s method with 1134 

a uniform step size ∆𝑡 = 1𝑚𝑠.  The initial conditions were obtained by first running 1135 

the network without glomerular input (𝐼𝑖
𝑜𝑠𝑛 = 0) but only with noisy input (𝜉𝑖  and 𝜂𝑖) 1136 

for 600𝑚𝑠.  This allowed the network to reach a steady state determined by its 1137 

intrinsic dynamics.  Afterwards we simulated the network using model odors for 1138 
250𝑚𝑠 which is roughly the duration of one sniff cycle.  The network spiking activity 1139 

within this period were used for later analysis.  1140 

Balance between excitatory and inhibitory synaptic inputs 1141 

To understand the balance between excitatory and inhibitory synaptic inputs for 1142 
MOB cells, we computed the overall amount of excitatory and all inhibitory inputs 1143 
to each cell.  The excitatory sources for M/T cells include the recurrent MC 1144 

excitations 𝐼𝑖
𝑚𝑐−𝑒𝑥 ; for GCs they include excitation from M/T cells 𝐼𝑖

𝑚𝑐−𝑒𝑥  and 1145 

excitatory feedback input 𝐼𝑖
𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

 when centrifugal feedback is turned ON.  The 1146 

inhibitory source for both M/T cells and GCs is the 𝐼𝑖
𝑔𝑐−𝑖𝑛

.  For each MOB cell, the 1147 

areas under the excitatory and inhibitory synaptic inputs averaged over 10 trials 1148 

are computed respectively and an algebraic sum of the two are taken.  This value, 1149 

as referred to E/I balance in Fig.3C and Fig.3D, was a measurement of the overall 1150 
driving effect of the excitatory and inhibitory inputs on each cell during a sniff.  1151 
Positive (negative) values for a cell indicated that it was dominated by excitation 1152 
(inhibition) and a zero simply corresponded to a balance.   1153 

Principal component analysis (PCA) 1154 

Spiking activity of each piriform cells (PCs) was binned into a 5𝑚𝑠 sliding time 1155 

window and averaged across trials (each model odor was presented in 10 trials). 1156 

To perform the PCA analysis, we first concatenated the responses of all piriform 1157 

cell (PCs) to all 300 model odors under both conditions of feedback OFF and ON, 1158 

resulting in a matrix of 10,000 PCs by 247 time bins × 300 odors × 2 conditions .  1159 

Response covariance matrices ( 10,000 by 10,000 ) were computed for this 1160 

concatenated matrix (after subtracting the mean responses).  This gave us a single 1161 

set of eigenvectors, thus the same eigenspace into which PC responses for both 1162 
feedback OFF and ON can be projected and compared.  Each 10,000-dimensional 1163 

PC response vector was then projected onto the first 3 principal eigenvectors for 1164 
visualization (Fig.5) and the first 50 principal eigenvectors for computations (Fig.6 1165 

and Fig.S5). 1166 

Kullback–Leibler divergence 𝑫𝑲𝑳 1167 
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To quantitively assess the effect of centrifugal feedback on odor processing in the 1168 
PCx, we computed the instantaneous Kullback–Leibler divergence 𝐷𝐾𝐿 for each 1169 

odor pair presented.  We used three types of odor pairs: 1). odor pairs with identity 1170 
differences in a single glomerulus (19 pairs in G1, 11 pairs in G2 and 18 pairs in 1171 
G3); 2). odor pairs with timing differences in a single glomerulus (19 pairs in G1, 1172 

11 pairs in G2 and 18 pairs in G3); 3). odor pairs with both identity and timing 1173 
differences in multiple glomeruli (192 pairs in total with different correlations in 1174 
latency). 1175 

For a given odor pair, each of the odors was presented for 100 trials and 1176 
the responses of PCs were recorded and then projected to the first 50 principal 1177 

eigenvectors.  At each time step, the PC responses to each odor gave rise to a 1178 
cluster of points in the 50-dimensional space, with each point in the cluster 1179 
corresponding to a single-trial response.  The separation between the two clusters 1180 

at time 𝑡 were computed using the Kullback–Leibler divergence 𝐷𝐾𝐿 (𝑡) between 1181 

the distributions of the two clusters along the optimal readout dimension 𝜸𝑡 1182 

(Fig.6A), which was computed from multiplying the inverse covariance matrix 𝚺𝑡
−1 1183 

(50 by 50) of the two clusters with the vector connecting the cluster means ∆𝝁𝑡 1184 

(50 by 1).  Note that since the PC responses evolved over time, the clusters of 1185 

points and thus the optimal readout dimension 𝜸𝑡 (as well as 𝚺𝑡
−1 and ∆𝝁𝑡) also 1186 

varied with time.  Therefore the 𝐷𝐾𝐿(𝑡) was a function of time (Fig.6).   1187 

Standard Kullback–Leibler divergence is not symmetric therefore depends 1188 
on the order of the two distributions.  To correct that, we therefore symmetrized it 1189 
by computing (Masuda and Doiron, 2007) 1190 

𝐷𝐾𝐿(𝑡) =
𝐾𝐿𝑡(O1||O2)∙𝐾𝐿𝑡(O2||O1)

𝐾𝐿𝑡(O1||O2)+𝐾𝐿𝑡(O2||O1)
                                           (5) 1191 

where O1 and O2 represent Odor-1 and Odor-2, and  1192 

𝐾𝐿𝑡(O1||O2) = ∑ P𝑡(𝑦|Odor − 1)𝑦 𝑙𝑜𝑔
P𝑡(𝑦|Odor−1)

P𝑡(𝑦|Odor−2)
                       (6) 1193 

is the standard Kullback–Leibler divergence between the distribution P𝑡(𝑦|Odor −1194 

1) and P𝑡(𝑦|Odor − 2), which are built from those single-trial PC responses to the 1195 

two odors at time step 𝑡.  We computed the 𝐷𝐾𝐿(𝑡) for feedback OFF and ON using 1196 

the same procedure described above.  Accumulated 𝐷𝐾𝐿 (𝑡) (Fig.6E-Fig.6G) was 1197 

computed as the area under mean 𝐷𝐾𝐿(𝑡) over a sniff cycle. 1198 

Sequential probability ratio test (SPRT) 1199 

To make predictions on animal’s behavioral performance under the condition of 1200 
feedback OFF or ON, we applied the sequential probability ratio test (Gold and 1201 
Shadlen, 2007) and simulated the decision-making process of a model agent in a 1202 

two-alternative forced-choice (2AFC) task.  In such a task, on each trial, the model 1203 

agent was presented with a randomly chosen odor (Odor-1 or Odor-2) and was 1204 
required to respond which odor was presented by the end of a single sniff.  We 1205 
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chose three different model odors as the original odor (Odor-1) from the table of 1206 
300 model odors we defined.  We then shifted the activation timing of a single 1207 

glomerulus by 5𝑚𝑠 increment/decrement in the three original odors.  Therefore, 1208 

the odor pairs here were composed of one original odor and its counterpart which 1209 
had the timing of the same glomerulus shifted by different amount of time (Fig.7).   1210 

First, similar to the computation of 𝐷𝐾𝐿(𝑡), for a given odor pair, each of the 1211 

odors was presented for 100 trials and at each time step, the two distributions 1212 

P𝑡(𝑦|Odor − 1)  and P𝑡(𝑦|Odor − 2)  were obtained from the single-trial PC 1213 

responses along the optimal readout dimension.  We then fit a normal distribution 1214 

to the two distributions respectively and we used the same standard deviation 𝜎 in 1215 

the normal distribution for both odors, which allowed us to generate samples more 1216 
efficiently.  According to SPRT, the agent’s decision process was depicted as the 1217 
accumulation of noisy momentary evidence over time until a threshold was 1218 

reached, or the stimulus was extinguished.  Supposing we generated a sample 𝑦∗ 1219 

at time step 𝑡, the momentary evidence was then computed as 1220 

𝑒𝑣(𝑡) = 𝑙𝑜𝑔
P̃𝑡(𝑦∗|Odor−1)

P̃𝑡(𝑦∗|Odor−2)
                                               (7) 1221 

Here, P̃𝑡  denoted the fitted normal distribution.  A choice was made when the 1222 

accumulated evidence ∑ 𝑒𝑣(𝑡)𝑡  reached one of the decision boundaries ±𝐵𝑑 1223 

(Fig.7A3) and the reaction time was recorded by adding a residual motor delay, 1224 
which was normally distributed with mean = 50𝑚𝑠 and std = 5𝑚𝑠.  We generated 1225 

1000 samples 𝑦∗  at each time step for each model agent (10 agents in total).  1226 

Therefore, each agent performed 1000 trials for the same pair of odors.  For each 1227 

agent, we computed the accuracy as the proportion of correct choices among the 1228 
1000 trials.  The average reaction time across the 1000 trials was reported as the 1229 

reaction time for that agent.  Parameter values used in SPRT analysis are listed in 1230 
Table-3. 1231 

Table-3 Parameters used in SRRT: boundary and noise level 1232 

 G1 G2 negative G2 positive G3 negative G3 positive 

𝐵𝑑 2.20 2.20 1.39 1.39 1.39 

𝜎 11 12 10 7.5 7.5 

 1233 

QUANTIFICATION AND STATISTICAL ANALYSIS 1234 

Statistical tests for significance were performed with a two-sided Wilcoxon rank 1235 
sum test (ranksum function in MATLAB) when samples were independent (Fig.5A 1236 
and Fig.5B) and with a two-sided Wilcoxon signed rank test (signrank function in 1237 

MATLAB) for paired samples (Fig.4E1 and Fig.4E2). Correlation coefficients 1238 

between two variables were computed as the Pearson correlation coefficient 1239 
(corrcoef function in MATLAB).  Statistical significance was defined by a p value < 1240 

0.05. The statistical details (correlation coefficient, p value, sample size n) are 1241 
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provided in the figures, figure legends, or the text of the Results section. The 1242 
specific meaning of the sample size n is clarified when used. 1243 
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