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ABSTRACT
In-silico modeling of patient clinical drug response (CDR) promises to revolutionize personalized
cancer treatment. State-of-the-art CDR predictions are usually based on cancer cell line drug
perturbation profiles. However, prediction performance is limited due to the inherent differences
between cancer cell lines and primary tumors. In addition, current computational models
generally do not leverage both chemical information of a drug and a gene expression profile of a
patient during training, which could boost prediction performance. Here we develop a Patient
Adapted with Chemical Embedding (PACE) dual convergence deep learning framework that a)
integrates gene expression along with drug chemical structures, and b) is adapted in an
unsupervised fashion by primary tumor gene expression. We show that PACE achieves better
discrimination between sensitive and resistant patients compared to the state-of-the-art linear
regularized method (9/12 VS 3/12 drugs with available clinical outcomes) and alternative
methods.

GLOSSARY: GCN, Graph Convolutional Network. MorganFP, Morgan Fingerprint. SMILES,
Simplified Molecular Input Line Entry System for annotating chemical structures using character
strings. ML/DL, machine learning/deep learning, CDR, Clinician Drug Response. CDI
Cell-line-Drug-IC50. EM Expression Module. DM Drug Module. PM Prediction Module. OOD Out
of Distribution. CL Cell Line.

INTRODUCTION
INTRODUCTION
Precision medicine promises to revolutionize cancer treatment by improving clinical drug

response (CDR) prediction. CDR prediction could be greatly facilitated by cutting-edge
high-throughput sequencing technologies, which provide comprehensive and individualized
omics profiles. Based on these omics profiles, several CDR prediction approaches have been
proposed. For instance, Tissue-Guided Lasso TG-LASSO1 integrates tissue-of-origin
information with gene expression profiles for CDR prediction. DeepDR2, on the other hand,
predicts CDR from mutation and expression profiles.

However, as another crucial component for CDR prediction, the chemical properties of
drugs have been under-utilized. Although the traditional Morgan Fingerprint molecular
representation3 has been used to integrate drug chemical information for CDR prediction, it
cannot adaptively learn alternative representations of drug chemical properties as it is a static
representation of the molecule and does not dynamically extract features for the desired
prediction task. For example, CDRscan, similarly to TG-LASSO, does not take advantage of the
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diverse patient RNA-Seq profiles that are published on The Cancer Tumor Atlas (TCGA), and is
not evaluated to address if the model can be applied for drug response prediction to patients,
which is what such a model would be used for in practice. In addition, CDRscan uses Morgan
Fingerprints to represent key molecular substructures using an explicitly defined featurization. A
limitation of this specific methodology is its inability to adaptively learn alternative
representations that may be beneficial to the particular task in hand4. DrugCell also uses
Morgan Fingerprints to represent drugs along with an Visible Neural Network (VNN) embedded
in Gene Ontology (GO) terms, which provides interpretable results5, but it is also not evaluated
on patients.

Graph Convolutional Network (GCN)6 representations emerge as a powerful alternative
for encoding drug chemical properties. GCN adaptively learns chemical information by
generalizing the convolution operation from a grid of pixels to a graph, where each node can
have a variable number of neighbors. GCNs have been used to explore drug-target interactions
and side effect predictions - the two most important factors for developing a new drug. For
instance, Decagon uses GCN to predict potential side effects of a drug 7. Such methodological
advances provide novel insights in incorporating drug chemical properties during CDR
prediction.

The majority of CDR prediction algorithms are trained with cancer cell line (CL) drug
preturbation profiles. CLs have long served as models to study molecular mechanisms of
cancer, because they maintain valuable molecular information of the primary tumor from which
they were derived. CLs offer the advantages of being easily grown, relatively inexpensive, and
amenable to high-throughput  assays. Data generated from CLs can then be used to link cellular
drug response to molecular features, where the ultimate goal is to build predictive signatures of
patient outcomes 8. Various models have been developed to predict patient CDR from the
molecular profiles of CLs 9–11. However, these models only show limited success in certain drugs
12 13. Therefore, developing a model based on CL molecular features to predict CDR in patients
for most drugs remains challenging 14. One major difficulty for such cross-domain CDR
prediction is the prominent differences between cell lines and primary tumors 15–19. Recent
advances in domain adaptation aim at aligning domains to tackle domain alignment problems,
such as batch effect correction to reconcile differences across laboratories and studies 20. Mean
Maximum Discrepancy (MMD) 21 has shown promising results in aligning domains in an
unsupervised manner 22. Such a technique could be used to align CL and patient tumors in
developing drug response models that are more clinically focused.
Inspired by the advanced GCN-based drug chemical information encoding, as well as the
MMD-based domain adaptation, we develop a drug response predictor using Patient Adaptation
and Chemical Embedding (PACE). This deep learning framework uses a GCN to dynamically
learn chemical information of each compound, and is adapted to implicitly align the CL
expression representation with that of a patient sample of the same tissue of origin. Thus, the
model does not assume that CL and patient samples are drawn from the same distribution. We
achieve this by using Mean Maximum Discrepancy (MMD) to align the latent spaces produced
by CL expression and patient expression vectors. Such a technique has been successfully
applied in previous studies 23–25 in transferring generalizable features across domains 26. We
trained our model on 142,351 of CL-drug-IC50 (CDI) pairs where each CL vector was paired with
a random patient expression vector of the same tissue of origin. We used a Graph Convolutional
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Network (GCN) to encode drug information and pair it with the patient adapted expression
information in order to predict IC50. To evaluate our model, we collected a curated CDR dataset
with patient outcome information on response to 12 drugs in total. Our model achieved superior
performance (9/12 drugs) compared to alternative PACE models and the state-of-the-art linear
method (3/12 drugs) in significantly discriminating between sensitive and resistant patients.

RESULTS

Overview of PACE and evaluation strategy
The PACE deep learning framework consists of three modules: an Expression Module

(EM), Drug Module (DM), and Prediction Module (PM). As shown in Figure 1A, the EM is
composed of fully connected layers and learns highly informative features from gene expression
vectors. The DM is composed of a GCN and learns highly informative features for each atom
from the graph representation of chemical compounds. Atom-level features are then aggregated
to represent information about the compound as a whole (see METHODS). Given the success
GCNs have had in computational chemistry and biology applications 27–29, we posited that the
DM could learn a general graph embedding that would extend to drugs unseen during training.
The PM is composed of a fully connected layer and takes the information learned from the EM
and DM as input to predict log(IC50). We included gene expression information, the drug used,
and the associated IC50 value from the Genomics of Drug Sensitivity in Cancer (GDSC) project
30. The model was trained with “CDI tuples” -- Cell line, Drug SMILES, IC50 -- indicating which
drug was applied to a particular cell line and what that cell line’s response was to the drug.

Our goal is to extrapolate drug response from cell lines to patients. Hence, the model
needs to generate an out-of-distribution (OOD) embedding space (for patient samples)
representing a distribution not present in the training data (of cell lines). Inspired by 23, and
recent advances in the field of domain adaptation26, we used maximum mean discrepancy
(MMD) to adapt the latent distribution produced by the EM so that cell line gene expression is
aligned to patient gene expression. Each CL was paired with a TCGA tumor sample’s gene
expression vector of the same tissue of origin (see Supplemental Table 1/2), which has been
shown to play a key role in a tumor’s treatment and progression. Restricting cell lines to match
the tissue of origin of primary tumors resulted in 531 cell lines treated across 310 drugs,
amounting for 142,351 CDI pairs. Cell lines and tumors that did not have a matching tissue of
origin were not included in training. Each cell line was paired with a random primary tumor
sample of the same tissue with the goal of creating a general enough adaptation of EM’s latent
space.

To test the efficacy of adapting the EM with patient gene expression via MMD, we
constructed a non-adapted version of PACE for comparison purposes. In addition, we also
compared our model to one in which the DM uses Morgan Fingerprints (MorganFP),
representing a more conventional molecular encoding. Altogether, we created three alternative
models closely related to PACE -- PACE-Morgan, noPACE, and noPACE-Morgan (see Table 1).
Alternative models with an adapted EM should provide a poorer fit to the cell line data, yielding
poorer performance in cell lines, compared to non-adapted models because the adapted
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models attempt to fit the distribution of both cell lines and patients. On the other hand, the
adapted models should perform better in the patient setting.

Table 1. All alternative models used and their specifications

EM DM Name

Adapted GCN PACE

Adapted MorganFP PACE-Morgan

Not adapted GCN noPACE

Not adapted MorganFP noPACE-Morgan

Figure 1. Deep learning model architecture. (A) Graphic overview of the proposed deep learning framework.
Expression Module (EM) extracts highly informative features for the input expression vectors for both CCLE and
TCGA via shared weights. These two compact expression representations are compared with each other via Mean
Maximum Discrepancy (MMD) to diminish the distance between them, thereby aligning the two representations. The
Drug Module (DM) encodes the molecule and pools the most informative nodes (atoms) to also create a highly
informative compact representation. Finally, the CCLE expression representation and the drug representation are
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concatenated together and passed to the Prediction Module (PM) that makes the final log(IC50) prediction for each
CDI pair. (B) Per drug predictive performance, which is quantified by theSpearman Rho between actual and predicted
log(IC50) across all perturbed cell lines. GCN-MMD is compared against MORGAN-MMD (left), GCN-NoMMD
(middle), MORGAN-NoMMD (right). Each point represents a drug. Points above the diagonal represent better
performance by GCN-MMD.

Combining domain adaptation and graph encoding preserves performance in cell lines
while increasing the accuracy of predicting patient response for more drugs.

We compared the Spearman Rho achieved by our proposed PACE model to all the other
variations for cell lines treated by each drug in our dataset  (Figure 1B). We found that although
PACE does better compared to PACE-Morgan for the majority of the drugs (points above the
diagonal), the non adapted versions (noPACE and noPACE-Morgan) achieve a higher
correlation (points below the diagonal). Nevertheless, when comparing across all 142,351 CDI
pairs, the proposed model and the alternatives achieved comparable results (Supplementary
Fig. 1). This suggests that MMD adaptation preserves the prediction performance of drug
response in CL while yielding superior discrimination performance in the patient setting (shown
next).

In addition to the models described in the previous section, we compared PACE to the
state-of-the-art TG-LASSO1 model, which is a linear regularized method to predict clinical drug
response (CDR). To evaluate all of the models in the patient setting, we followed the same
evaluation presented in the TG-LASSO study1. We used the same curated CDR dataset
consisting of 531 patients treated across 24 drugs labeled with the type of response indicated
for each patient. The majority of patients in this dataset (70%) were treated with a single drug,
while the rest were given two or more. Patients with stable disease and clinical progressive
disease were labeled as resistant (R), whereas those with partial or complete response were
labeled as sensitive (S). After following the same filtering steps and retaining samples for which
we had expression information, 506 patients across 12 drugs remained. To measure the
performance of the methods, we asked if their predicted log(IC50) drug response (a continuous
measure)  correlated to the drug response labels (R/S) (a categorical measure) in the CDR
dataset (see METHODS). Specifically, a one sided Mann-Whitney U test was used to determine
whether the predicted log(IC50) for the true resistant (R) patients is significantly larger than that
of true sensitive (S) patients.

As shown in Figure 2A, MMD adaptation produces an embedding that can discriminate
between resistant and sensitive patients across more drugs compared to all other models that
lack such adaptation. The combination of patient information adaptation with MMD and GCN for
drug embedding had better correlation to patient response than all the alternative methods
examined (Figure 2A, Supplementary Fig 2). Specifically, PACE showed significant
discrimination between resistant and sensitive patients (p<0.05) for nine out of the twelve drugs
compared to six by noPACE (Figure 2A). Similarly, PACE-Morgan predicted six drugs ,
compared to five by noPACE-Morgan (Supplementary Fig. 2). TG-LASSO was the worst
performing method with three drugs predicted significantly.

We also observed that regardless of the method used, cisplatin, etoposide, and
paclitaxel were predicted correctly. In contrast, bicalutamide, bleomycin, and docetaxel were not
predicted correctly by any of the methods. We further observe that CDR prediction using MMD
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adaptation improved CDR prediction for cisplatin, doxorubicin, gemcitabine, paclitaxel,
tamoxifen, temozolomide, and vinorelbine suggesting that tissue of origin may play a crucial role
for these drugs. However, for gemcitabine, tamoxifen and vinorelbine, using the MorganFP drug
encoding did not achieve significant CDR prediction in patients, even with MMD adaptation,
further suggesting that the appropriate drug embedding is needed for such a task
(Supplementary Fig. 2).

Lastly, we found that for the hard to predict bicalutamide PACE and PACE-Morgan
produced predicted IC50 values with the correct direction (predicted IC50 for resistant patients
should be higher than that of sensitive patients) (Figure 2B, Supplementary Figure 3A). The
non-adapted variants of PACE (noPACE, noPACE-Morgan) produced predicted IC50 values with
the incorrect direction (Supplementary Figure 3B/C). This is also evident by the direction of the
difference between the median of sensitive predicted IC50 and sensitive predicted IC50, which we
term as ΔIC50 (Supplementary Table 3). The ΔIC50 for bleomycin was also observed to be the
most negative in the PACE models compared to the noPACE models. PACE-Morgan produced
the most negative ΔIC50 for docetaxel compared to the noPACE models, however for this hard to
predict drug PACE produced a ΔIC50 in the wrong direction.

Taken together, these results suggest that the combination of patient adaptation via
MMD and a combination of the chemical embedding learned from GCN produced a highly
informative model that can be extended to the patient setting.
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Figure 2. TCGA CDR performance comparison with framework variants and with TG-LASSO. We compare our
model with the unregularized alternative and with the state-of-the-art TG-LASSO linear method. GCN-MMD yields the
best resistant-sensitive discrimination performance in the TCGA CDR dataset (A) Bar plots showcasing p-value,
corresponding to the one-sided Mann-Whitney U test, determined by averaging 10 independent predictions made by
each model. (B) Box plots reflecting the distribution of estimated log(IC50) values using GCN-MMD for resistant or
sensitive patients. The p-values here also correspond to a one-sided Mann-Whitney U test.
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Cell line diversity is more important than drug diversity for patient CDR prediction.
Next, we asked if gene expression information or drug information has a bigger impact in

predicting drug response in patients. To this end, we created two different drop out experiments
-- one where all the CDI pairs for a cell line were withheld and another in which all the CDI pairs
for a drug were withheld. For the cell line dropout experiment, we created training sets with
20%, 40%, 60%, and 80% of the total cell lines (531). For the drug dropout experiment, we
measured the performance of a method in predicting the twelve CDR drugs having never seen
those same drugs during training. To this end, we removed the 12 drugs present in the CDR
dataset and then created training sets in cell lines that included 20%, 40%, 60%, and 80% of the
remaining 298 drugs. For each of the training sets, the model was trained ten independent times
on each fold. The ten independent cell line-trained models were then applied to the patient CDR
dataset, and the average predicted log(IC50) was computed. The Mann-Whitney U test was used
to evaluate the discrimination between labeled resistant and sensitive patients (see
METHODS).

As summarized in Figure 3A, lack of gene expression information had a bigger impact
compared to lack of drug information across all drugs in our CDR dataset. This is likely caused
by the vast difference in complexity and variance between the gene expression profiles and the
compound structures. The robustness (measured by the variance of the p-value across 10 fold
cross validation) of the model suffers more with 20% of the CLs included in training compared to
the same percentage of drugs included in training (Supplementary Figure 4A/B). Addition of
more CLs in the training set drastically improves robustness of the model as shown by the
decreasing variance of the p-value across all 10 folds, indicative of the crucial role expression
information plays in predicting drug response (Supplementary Figure 4A). This result also
suggests that the GCN needs a small amount of graph examples in the training set to be able to
generalize well to new graphs not seen in the training set. Additional graph examples improved
the robustness of the prediction of all but five drugs: bicalutamide, bleomycin, gemcitabine,
sorafenib, and tamoxifen in the CDR dataset (Supplementary Figure 4B) with the variance in
p-value decreasing slightly. We conducted an additional experiment, where only the 12 CDR
drugs were removed from training and reported minimal reduction in CDR prediction
performance (Figure 3B). It is crucial to note that the small improvements in CDR prediction
from additional training molecules can be explained by the fact that most of the CL have been
treated by most of the drugs (median number of CL = 498.5). This means that most of the
variability in gene expression has been seen by the model even when 20% of the drugs are
included in training (Supplementary Figure 4C), which leads to robust results in the CDR
dataset and is consistent with what we observed in the CL dropout experiment.
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Figure 3. Drug/Cell Line 10 fold cross validation dropout experiment. Dropping data, drug-wise and CL-wise to
test the limits of the model’s OOD inference ability in a 10-fold cross validation fashion. For each fold the training was
repeated 10 independent times. (A) Showing the variance of the -log(p-val) determined by the Mann-Whitney U test
for the difference between the predicted log(IC50) between resistant and sensitive patients across 4 conditions: 20%
of CL retained in training, 40% of CL retained in training, 60% of CL retained in training, and 80% of CL retained in
training. (B) Dropping only the 12 drugs in the CDR dataset. Variance results are displayed for all 12 drugs in the
CDR dataset.
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Top Predictions Recapitulate Knowledge on Targeted Therapy
Most of the drugs with CDR in patients that were tested here can be classified as

chemotherapy agents, with the exception of sorafenib (VEGFR inhibitor) and tamoxifen (ESR1
inhibitor). To assess the performance on targeted agents for well characterized cohorts, we
carried out an in-silico analysis on drugs with known biomarkers of response. We used
mutations as biomarkers of response for the TCGA cohorts where expression and mutation
information were available. For the cohorts where these were not available we used expression
as a biomarker of response to confirm that the model learns biologically meaningful information.
The idea here is that as a target gene’s expression increases, the drug’s predicted IC50 should
decrease accordingly, indicating an increase in sensitivity.

We collected mutation information from TCGA breast cancer (BRCA), melanoma
(SKCM) samples and LUSC/LUAD cohorts (combined and abbreviated as LUNG). We used
mutation information as a biomarker of sensitivity. We tested trametinib, olaparib, dabrafenib
and gefitinib on all of the aforementioned cohorts. Trametinib is a MEK inhibitor and used to
treat SKCM. Olaparib is a PARP1 inhibitor and used to treat BRCA1- or BRCA2-mutated breast
and ovarian (OV) cancers. Next, we examined the correlation between a drug’s predicted
log(IC50) and its target gene’s expression (after Z-score transformation of the gene expression
values). We specifically examined OV in this way due to the fact that we could not collect
sufficient OV samples with predicted BRCA1 or BRCA2 mutations, and thus could not use
BRCA1/2 mutation as a biomarker for OV and olaparib.

As expected, BRCA1 mutant samples were predicted to be more significantly sensitive
to olaparib compared to BRCA1 WT samples (Figure 4A), NRAS and MAP2K1 SKCM mutants
were predicted to be significantly more sensitive to trametinib compared to SKCM WT samples
(Figure 4B/E). NRAS SKCM mutants were additionally predicted to be more sensitive to
dabrafenib compared to NRAS WT samples (Figure 4C). Olaparib has been previously shown to
be effective in ATM mutated BRCA patients. Although our model was not able to predict this
association correctly, SKCM ATM mutated samples were predicted to be sensitive to olaparib
(Figure 4D). Lastly, LUNG cancer NRAS mutated samples were predicted to be more sensitive
to dabrafenib (Figure 4F).

Studies have pointed to PARP expression as a promising biomarker of olaparib
response31. When we examined the correlation between PARP1 z-score and the predicted
log(IC50) per disease, OV had a significantly negative Spearman Rho (rho=-0.48)
(Supplementary Figure 5A). Testicular cancer (TGCT) showed the strongest negative correlation
between PARP1 expression and predicted IC50 for olaparib, which has recently been in clinical
trials in combination with chemotherapy for TGCT32.

We further examined the predicted response of lapatinib and the correlation with the
expression of its target genes, EGFR and ERBB2 (gene expression first transformed . In-vitro
studies have previously shown that lapatinib inhibits cell proliferation and migration of breast
cancer cell lines expressing different levels of EGFR and ERBB2, and that cells overexpressing
ERBB2 were more sensitive33. Interestingly, our model predicted EGFR expression as a
stronger biomarker (Supplementary Fig. 5B) in BRCA patients compared to ERBB2 expression
(Supplementary Fig. 5C). Taken together, these results suggest that our model can recapitulate
the relationship of well characterized drugs with the appropriate biomarkers, and their
applicability in equally well-characterized cohorts.
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Figure 4. Functional Analysis. (A) Predicted log(IC50) for BRCA1 mutant and wild-type (WT) breast cancer (BRCA)
samples in-silico treated with olaparib. P-value corresponds to the one-sided Mann Whitney U test discriminating
between mutant and WT predicted log(IC50). (B) Predicted log(IC50) for NRAS mutant and wild-type (WT) melanoma
(SKCM) samples in-silico treated with trametinib. (C) Predicted log(IC50) for NRAS mutant and wild-type (WT)
melanoma (SKCM) samples in-silico treated with dabrafenib. (D) Predicted log(IC50) for ATM mutant and wild-type
(WT) melanoma (SKCM) samples in-silico treated with olaparib. (E) Predicted log(IC50) for MAP2K1 mutant and
wild-type (WT) melanoma (SKCM) samples in-silico treated with trametinib. (F) Predicted log(IC50) for NRAS mutant
and wild-type (WT) LUSC/LUAD (LUNG) samples in-silico treated with dabrafenib.
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DISCUSSION
In this study, we presented a new deep learning framework that uses both a graph

convolutional network (GCN) as a general encoding for drug information together with patient
information to aid in out-of-dataset prediction. During training, the method aligns cell-line and
patient gene expression domains using implicit tissue-driven adaptation together with drug
information to derive highly informative features for drug response prediction.

We showed that adapting tumor information with maximum mean discrepancy (MMD)
preserves performance in cell lines while improving the prediction of clinical drug response
(CDR) in patients regardless of the drug encoding used. We found that GCN’s embedding
extends to drugs that have not been seen in training. These results suggest that a combination
of implicit tissue-driven adaptation and a highly flexible drug encoding lead to improved
prediction performance in patient samples. Interestingly, we note that the drug dropout
experiments revealed that only 20% (298) of drugs are needed to yield robust generalization
performance. On the other hand, the cell line dropout experiments showed that a lack of cell line
diversity during training greatly impacts generalization of drug response in patients. We further
examined if our model can recapitulate some of the well known therapeutics for melanoma,
breast cancer, and lung cancer. We found that the model was able to predict MEK2 mutant
melanomas as significantly more sensitive to trametinib, a MEK inhibitor, compared to the WT
cohort. Similarly, BRCA1 mutants in breast cancer were significantly more sensitive to olaparib,
a first-line treatment to patients with such a mutation, compared to the WT cohort. #

Ideally, the type of models studied here should be trained on patient samples rather than
surrogates such as cell lines. However, at this time, an adequate amount of patient data is
lacking for any particular drug of interest as most patients receive the standard of care based on
the tissue of origin. For example, we attribute the poor performance in predicting sensitivity to
bicalutamide, bleomycin, and docetaxel to lack of adequate training data (Figure 2A). In the
coming years, single cell sequencing should improve the performance of predictive models.  For
example, promising results have been published by the MIX-seq study in which the sequencing
of cell lines before and after drug treatment has detailed the heterogeneity in response across
individual cancer cells36. Together with single-cell sequencing, human-derived xenografts and
3D human organoids should complement cell line studies to add needed realism for classifier
training; e.g. by including contributions from the microenvironment. #

The framework we presented can be extended to incorporate additional diverse
biological data as it becomes available. As expected, we found that accuracy depended heavily
on the presence of an appropriate cell line of a matching tissue type in the training data. Beyond
extending the training data to cover more cell lines, which will increase the diversity of patients
to which the method can be applied, other data types may also provide a boost in performance.
For example, the current work focuses on gene expression and does not consider genomic
alterations, such as mutations and structural variants, and the vulnerabilities that these may
introduce. Genetic dependency data generated from the ACHILLES project 37 for example are
now available for many of the same cell lines that our model was trained on. In theory,
incorporating synthetic lethality prediction into the model should improve drug response
prediction, as drugs that target synthetically lethal pairs should have a substantial impact on
drug response. Incorporating protein level information could also lead to improvements in
performance as many of the drugs target specific proteins whose expression may or may not be
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correlated with the gene’s RNA. The ongoing CPTAC project 38 is systematically quantifying
protein levels and phosphorylation states in cancer patients from TCGA. In addition, it has been
shown that proteome-level characterization of cell lines can aid in drug response prediction 39. It
is therefore evident that addition of proteomic data to our model could have a significant impact
on the prediction of drug response.

Lastly, increasing the interpretability of our model would be of great value. It would be
very informative to developers of new drugs if they could predict the pathways affected by
administration of a new treatment. Recent advances in developing more interpretable biological
models40,41 should help models like ours in providing generalizable and interpretable results.
Lastly, the GCN of our model uses only atom features for drug encoding. Other types of GCN,
such as GINEConv from this study 42, are more expressive and use both atom and bond
features, which could potentially create an even more generalizable drug embedding. We leave
the exploration of the most appropriate GCN for this task and the inclusion of an interpretable
EM to future studies.

METHODS
Overall Framework. Our model is an adapted dual convergence architecture that integrates
gene expression information with drug structure aimed at generalizing clinical drug response
(CDR) prediction in patients. It consists of three modules: Expression Module (EM), Drug
Module (DM) and Prediction Module(PM). Highly informative representations of gene expression
and drug structure are generated by the EM and DM, respectively. These representations are
jointly passed to the PM where the log(IC50) prediction is made. The model takes as input a cell
line (CL) expression vector (xc), a primary tumor expression vector (xt), and the compound that
was applied on the CL. The way the compound is presented as input to the model is explained
in the Morgan Fingerprint (MorganFP) Representation of Drugs and Graph Representation
of Drugs sections.

Expression Module (EM). The EM consists of 2 fully connected layers of 1024, and 100 nodes
with Rectified Linear Unit (ReLU) activation. BatchNormalization and Dropout of 0.35 are
applied on each layer. During training, the EM produces latent representations for both CL and
primary tumors via weight sharing as follows:

, and𝑓
𝐸𝑀

(𝑥
𝑐
;  θ

𝐸𝑀
) =  𝑧

𝑐

,𝑓
𝐸𝑀

(𝑥
𝑡
;  θ

𝐸𝑀
) =  𝑧

𝑡

where and represent the latent vectors of CL and primary tumor, respectively. 𝑧
𝑐

 𝑧
𝑡

Inspired by the field of domain adaptation, and driven by the need to generalize drug response
prediction to patients, we used a domain alignment method called Mean Maximum Discrepancy
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(MMD) 15. Specifically, the model tries to align to with the goal of making the cell line latent 𝑧
𝑐

 𝑧
𝑡

space more similar to the primary tumor latent space by minimizing the following loss:

,𝐿
𝑀𝑀𝐷
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𝑡
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𝑐
) − 𝑘(𝑧

𝑐
, 𝑧

𝑡
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where denotes the universal Gaussian kernel. Each and represent the same𝑘  𝑧
𝑐

 𝑧
𝑡

tissue-of-origin during training. Thereby, the model implicitly aligns CL and primary tumors in a
tissue driven manner.

MorganFP Representation of Drugs. We used the python library RDKit to generate Simplified
Molecular Input Line Entry System (SMILES) strings, which describe the structure of a molecule
using a single line of text, and compute MorganFP for each molecule in our datasets 43. SMILES
strings are simple string annotations that describe the structure of the molecule. MorganFP is
part of the Extended-Connectivity Fingerprints (ECFPs) family and are generated using the
Morgan algorithm 44,45. These fingerprints represent molecular structures and the presence of
substructures by means of circular atom neighborhoods (bond radius). In this study we used
radius 2 and constructed a 2048 long bit vector for each molecule. A radius of 2 takes into
account neighbors up to two atoms away when constructing the bit vector (fingerprint) of the
molecule.

Graph Representation of Drugs. We used RDKit to generate SMILES strings for each drug.

Next, we represented the SMILES string for each compound as a graph{𝑐
𝑗
} ∈ 𝐶

, where represents the set of nodes (nodes here are atoms on the𝐺 = {𝑉, 𝑋} 𝑉 = {𝑣
𝑗
}

molecule). An adjacency matrix represents the topological structure of each molecule with𝐴
denoting a bond between two atoms, otherwise . indicates the𝐴

𝑖,𝑗
= 1 𝐴

𝑖,𝑗
= 0 𝑥

𝑖
∈ 𝑋

vector of features for each atom on the compound. The features (189 in total) used for each𝑣
𝑖

compound can be found in Table 2.

z

Table 2. Description of Atomic Features

Atom feature Size Description
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Atom symbol 19 [As, B, Br, C, Cl, F, Hg, I, K, N, Na, O, P, Pt, S, Sb, Se, V, Zn]
(one-hot)

Atomic Number 119 Atomic number of each atom (one-hot)

Chirality type 4 [UNSPECIFIED, R, S, OTHER]

Degree 11 Number of covalent bonds (one-hot)

Formal Charge 12 Electrical charge (one-hot)

Hydrogens 9 Number of connected hydrogens (one-hot)

Radical Electrons 5 Number of radical electrons (one-hot)

Hybridization 8 [UNSPECIFIED, sp, sp2, sp3, sp3d, sp3d2, OTHER] (one-hot)

Aromatic 2 Atom is an aromatic ring (one-hot)

Total 189 Total number of features

Drug Module (DM). The DM of the model aims at extracting highly informative features from
each molecule. This is done via either the MorganFP representation of the molecule, or the
graph representation of the molecule. For the former, the DM consists of one fully connected
layer, ReLU, BatchNormalization and Dropout. For the latter, we used the python library PyTorch
Geometric to produce data-driven molecular features using GCN 46. In particular, we used the
GCN architecture from 47. That architecture learns substructures of a given graph, and
relationships between graphs, which is crucial in this study as we aim to generate a general
embedding space for structurally diverse molecules presented in the drug response dataset.
This type of GCN falls under the spatial GCN category, which can generalize the learned
embedding to heterogeneous graphs 48,. We used one layer, followed by a pooling layer, which
aggregates highly informative nodes on the molecular graph 49. The DM consists of one layer
due to the small average size of the molecules (34 nodes). ReLU, BatchNormalization and
Dropout were applied here as well.

The purpose of the GCN is to map each to low dimensional vectors . The𝑣
𝑖

∈ 𝑉 𝑧
𝑖

∈ 𝑅
formal mapping is as follows:

,𝑓
𝐷𝑀

(𝐴, 𝑋; θ
𝐷𝑀

) → 𝑍

with for compound , where is the number of atoms, and is the dimension of𝑍 ∈ 𝑅𝑛×𝑑 𝑐
𝑗

𝑛 𝑑
the latent space produced by the GCN.
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Furthermore, to obtain a latent representation for graph , we computed both average and𝑧
𝑑

𝑐
𝑗

maximal features across and concatenated them with the following operation:𝑍

𝑧
𝑑

= 1
𝑛

𝑖=1

𝑛

∑ 𝑍
𝑖,𝑗

 ‖ 𝑚𝑎𝑥
1≤𝑖≤𝑛

𝑍
𝑖,𝑗( )

, where and denotes the concatenation operator. The dimensionality is doubled𝑧
𝑑

∈ 𝑅𝑛×2𝑑 ‖
due to concatenation of both average and maximal features for each graph.

Prediction Module (PM). The PM of the model consists of one fully connected layer, and aims
at predicting log(IC50) using highly informative features derived from the EM and DM. As such,
the operation carried out by the PM is the following:

𝑓
𝑃𝑀

= 𝑧
𝑐
‖𝑧

𝑑
; θ

𝑃𝑀( )

Our model updates the weights of EM, DM, and PM by minimizing the mean squared error
(MSE),

,𝐿
𝑀𝑆𝐸

= 1
𝑁

𝑖=1

𝑁

∑ 𝑦
𝑖

− 𝑦
𝑖( )2

where is the number of samples,𝑁

between the observed and predicted log(IC50), denoted by and , respectively, and .𝑦 𝑦 𝐿
𝑀𝑀𝐷

Hence, the overall loss minimized by the model is:

𝐿
𝑃𝐴𝐶𝐸

= 𝐿
𝑀𝑆𝐸

+ λ· 𝐿
𝑀𝑀𝐷

where controls the tradeoff between the goals of aligning the CL latent space with the primaryλ
tumor latent space, and achieving an accurate predicted log(IC50).
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Training Procedure and Tuning. Our model was implemented in Python with the PyTorch
API50 using the Adam optimizer 51 for gradient descent optimization. The training was allowed to
proceed for a maximum of 200 epochs. To control for overfitting EarlyStopping was used to
monitor the training loss for overfitting. Training was terminated after 10 epochs if the training
loss was not further minimized after 10 consecutive epochs, with a delta of 0.05. Dropout was
applied on a random 35% of nodes to further prevent overfitting. We used the Adam51 optimizer
for gradient descent optimization with a learning rate of 1E-4. Given the stochasticity of the
training procedure, and that we wanted to achieve considerable robustness with our model
when predicting CDR of patients, we repeated the training 10 independent times.

Due to the computational expense of training, the number of layers for the DM and PM
were fixed to one, and the number of layers of the EM were fixed to 2. We experimented with

the , and with the number of drug nodes for the DM. We found that and 200 drugλ λ = 0. 01
nodes were the best parameters for distinguishing sensitive from resistant patients in the CDR
dataset

CDR prediction in TCGA patients. We obtained the clinical drug response (CDR) of 531
TCGA patients across 24 drugs from this study 17. Following the same filtering steps as Huang
et al. resulted in 12 drugs. Finally, after filtering for patients for which we had gene expression
information resulted in 506 patients. Patients with “clinical progressive disease” or “stable
disease” were labeled as resistant (R). Those with “partial response” or “complete response”
were labeled sensitive (S). These are categorical variables, whereas our model predicts
log(IC50) which is a continuous variable. To test how well our model can be extended to OOD
samples, we grouped the predicted log(IC50) of each patient in the corresponding R or S bin.
Then, we tested if the predicted log(IC50) of the R patients was significantly larger than that of
the S patients by performing a one-sided nonparametric Mann Whitney U test. A summary of
the number of R and S patients for each drug is shown in Table 3.
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Table 3. Number of Resistant and Sensitive Patients in TCGA CDR dataset

Drug Num
Resistance

Num Sensitive N of CL in
Training

Mode of Action

bicalutamide 3 14 525 Androgen
receptor

antagonist

bleomycin 4 46 470 DNA synthesis
inhibitor

cisplatine 25 108 524 DNA synthesis
inhibitor

docetaxel 17 55 524 Tubulin
polymerization

inhibitor

doxorubicin 7 52 479 Topoisomerase
inhibitor

etoposide 10 71 484 Topoisomerase
inhibitor

gemcitabine 43 37 509 Ribonucleotide
reductase
inhibitor

paclitaxel 27 66 470 Tubulin
polymerization

inhibitor

sorafenib 13 2 470 FLT3 inhibitor

tamoxifen 4 14 520 ESR1 inhibitor

temozolomide 83 10 520 DNA alkylating
agent

vinorelbine 6 23 513 Tubulin
polymerization

inhibitor
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Drug/CL exclusion experiment. For dropout analysis, we created random train splits in a
10-fold cross validation. After training on each fold 10 independent times, we tested the
generalizability potential of our model in the CDR dataset for each fold, thereby producing 10
p-values (see CDR prediction in TCGA patients). For drug-centered dropout analysis, we
created train sets by first removing all 12 CDR drugs (bicalutamide, bleomycin, cisplatine,
docetaxel, doxorubicin, etoposide, gemcitabine, paclitaxel, sorafenib, tamoxifen, temozolomide,
and vinorelbine), and then retaining random 20%, 40%, 60%, and 80% of the remaining 298
drugs (310 drugs in total). Similar to the drug-centered dropout analysis, the CL-centered
dropout was carried out in a similar manner without removing the 12 CDR drugs.

Expression Datasets. We downloaded gene expression data of 1376 cell lines of the Cancer
Cell Line Encyclopedia (CCLE) project, along with their metadata 52, and 10,536 TCGA
pan-cancer tumors from the DepMap project 53 and UCSC Xena browser 54, respectively. All
expression values were represented as log2(TPM+1), where TPM denoted transcripts per million
reads of each gene in each sample. The gene space was intersected resulting in 31,501
common genes.

Drug Response Datasets. We downloaded release 8.1 of the GDSC project containing drug
response measured by the half maximal inhibitory concentration (IC50) from the DepMap project,
which has harmonized cell lines and drug names32,55. In total 974 cell lines tested across 398
drugs are included in this dataset, amounting to 387,626 cell line-drug-IC50 pairs (CDI pairs).
After intersecting for cell lines included in the CCLE RNA-seq compendium, selecting drugs for
which we could obtain SMILES string, removing CDI pairs representing combination therapies
and pairs with missing values for either drug name or IC50, 692 cell lines tested on 310 drugs
remained, amounting to 185,186 CDI pairs. All IC50 values were transformed to log scale
log10(IC50). After selecting for cell lines that represent the same tissue of origin as the TCGA
dataset (25 tumor types), 531 cell lines tested on 310 drugs amounting to 142,351 CDI pairs.
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