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Compared to convolutional or recurrent neural net-
works, the Transformer neural network used by Sapiens is 
built exclusively on attention mechanisms. Analogous to 
language modeling where attention weights reveal depend-
encies between words in a sentence, in Sapiens they reveal 
dependencies between residues in an antibody sequence. In 
a traditional machine learning context where residues on dif-
ferent positions in a sequence are considered input features, 
attention can be thought of as feature importance, with two 
important distinctions. First, unlike feature importance, at-
tention is not fixed but changes according to the input 
sequence. Second, attention can be calculated for a single po-
sition (importance of position A) as well as for a pair of 
positions (importance of position A in predicting position B). 
Attention is defined for a given input sequence using an at-
tention matrix, which contains the importance of each 
position (column) when predicting the residue at each posi-
tion (row).  

By inspecting the attention patterns, we evaluated 
the ability of Sapiens to capture long-range dependencies. To 
calculate an average attention matrix, we selected heavy 
chain sequences from IMGT mAb DB that had exactly 120 

residues and were composed of the same positions under 
AHo [36] numbering. Although the average attention matrix 
did not reveal many long-range residue contacts, some pat-
terns were clearly visible (Figure 4A, Supplementary Figure 
5). First, we observed that positions in framework regions 1-
4 were directing their attention mostly to their respective re-
gion compared to other regions (3.8, 3.7, 4.4 and 15.0 times 
higher attention on average in framework 1-4 respectively). 
Second, we observed that positions in CDR2 loop were di-
recting their attention towards the CDR1 and CDR2 loops as 
well as the DE loop compared to framework regions (2.4, 8.0 
and 3.2 times higher on average for CDR1, CDR2 and DE 
respectively). To illustrate the spatial proximity of these loop 
positions, we calculated attention weights from Asparagine 
on AHo position 59 of Pembrolizumab heavy chain and vis-
ualized these in the crystal structure (Figure 4B).  

Since we observed increased attention between an-
tibody loops that are not neighboring in the sequence but in 
the three-dimensional space, we thus concluded that Sapiens 
demonstrated the ability to capture long-range dependencies 
in antibody sequences.  

 

Figure 4: Attention within the Sapiens neural network captures long-range dependencies between antibody loops. 

 Attention weights of Sapiens when predicting Pembrolizumab heavy chain. Heatmap shows average of all attention heads in layer 
2/4 of the Transformer encoder. The matrix defines the contribution of all positions (columns) when predicting the residue at a 
given position (row) in the sequence. White rectangle highlights attention from AHo position 59 visualized in (B).  

 Visualization of attention from Asparagine on AHo position 59 within CDR2 loop of Pembrolizumab 3D structure (PDB 5B8C). 
Blue beams visualize all attention connections with weight over 0.02, diameter proportional to weight.  
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Sapiens achieves a balance of humanness  
and parental sequence preservation  

The challenge of humanization is improving humanness 
while preserving as much of the parental sequence as possi-
ble in order to preserve binding and affinity. Ultimately, the 
only way to evaluate reduced immunogenicity risks and pre-
served binding affinity and functional activity is through in 
vitro or even in vivo assays. Nevertheless, in silico evaluation 
of humanization methods is necessary at least as a primary 
filter that enables comparing and selecting between multiple 
humanized candidates.  

In this study, we define the humanness-preserva-
tion tradeoff as a way to evaluate the mutually competing 
goals of the increase in humanness and the preservation of 
the parental sequence. The first component, humanness in-
crease, was measured as the absolute difference in OASis 
identity score of the humanized sequence compared to the 
parental sequence. The second component, parental se-
quence preservation, was measured as percentage sequence 
identity between the parental and humanized sequence over-
all (Total preservation) and in Vernier zones (Vernier 
preservation).  

Since many humanized antibodies have been devel-
oped and tested, these can be used as standards for 
comparison. Primarily, their parental sequences (original se-
quences from mouse or other model organism) are needed in 
order to be able to produce and evaluate alternative human-
ized sequences. To that end, 7 pairs of parental-humanized 
sequences were first curated in [13] and recently expanded 
to 25 pairs in [18]. Thus, we used these 25 experimentally 
validated pairs as our first humanization benchmark. Analo-
gous to existing approaches, we measured performance in 
terms of overlap between the humanizing mutations made in 
the predicted and the experimentally validated sequence. 
Since a sequence can be successfully humanized in various 
ways, even across different germlines, we could not consider 
the experimentally validated sequence as a single ground 
truth. Nevertheless, by highlighting the level of agreement 
between the prediction and a human expert, we provided an 
additional layer of confidence in our humanization method. 

To define naïve baselines of automated humaniza-
tion within the humanness-preservation context, we 
implemented two humanization methods based on CDR 
grafting. A Straight CDR graft was created by inserting the 
Kabat CDR regions into nearest human germline frame-
works. Hence, this baseline prioritized humanness over 

parental sequence preservation. A Vernier CDR graft was 
created from the Straight CDR graft by additionally back-
mutating all Vernier zone positions to the parental residues. 
Hence, this baseline prioritized parental sequence preserva-
tion over humanness improvement. An illustration is 
provided in Supplementary Figure 6. 

To humanize an antibody using Sapiens, we di-
rectly leveraged the "recognize and repair" functionality of 
masked language modeling. First, we fed the Sapiens neural 
network with a variable region amino acid sequence. Using 
attention mechanisms, the network recognized non-human 
residues and output a position-by-residue probability matrix 
with one row for each position and one column for each of 
the 20 amino acid types. All possible mutations at all posi-
tions were therefore predicted with one pass through the 
network. We produced the final humanized sequence by tak-
ing the most probable predicted residue at each position, 
except in CDRs, where mutations were ignored and the orig-
inal parental sequence was preserved. CDR definitions were 
based on Kabat [37], but IMGT [38], Chothia [39] and North 
[40] definitions are also supported in BioPhi. Multiple itera-
tions of this process can be performed to humanize the 
sequence further. After one pass, we refer to a humanized 
sequence as Sapiens*1, with subsequent passes as Sapi-
ens*2, Sapiens*3, and Sapiens*4.  

In the BioPhi web platform, we implemented an in-
tegrated pipeline that humanizes sequences using Sapiens 
(with given number of iterations) or CDR grafting and eval-
uates their humanness using OASis (Supplementary Figures 
7,8). Additional back-mutations or forward mutations to the 
sequence can then be performed manually by the user 
through the BioPhi Designer interface, which suggests resi-
dues based on Sapiens score, positional residue frequency or 
nearest germline sequence (Supplementary Figure 9). 

We report the humanization results of the 25 anti-
body pairs in Figure 5. We used OASis identity curves to 
report on humanness of the humanized sequences across dif-
ferent prevalence thresholds (Figure 5A). As expected, most 
human-like sequences on average were produced by Straight 
CDR grafting. The average OASis curve of Sapiens*3 inter-
sected with that of experimental sequences, indicating 
comparable humanness, followed by Vernier CDR grafting 
with marginally lower humanness. Interestingly, based on 
OASis, the Hu-mAb method achieved distinctively lower 
humanness compared to other methods. Since Hu-mAb se-
quences were optimized to achieve the same Hu-mAb 
humanness scores as the experimental sequences, we further 
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investigated this by comparing Hu-mAb scores to T20 and 
OASis identity scores. When comparing each pair of human-
ized sequences (Hu-mAb optimized and experimentally 
validated), both T20 and OASis identity were lower for the 
sequence that underwent Hu-mAb score optimization, even 
though they were designed to achieve the same Hu-mAb 
score (Supplementary Figure 10). The discrepancy suggested 
that the Hu-mAb metric was no longer an unbiased estimator 
when applied to Hu-mAb-optimized sequences. 

Next, we evaluated the humanness-preservation 
tradeoff, visualizing the humanness increase compared to the 
preservation of parental sequence. The increasing Sapiens it-
erations produced the expected trend of increased humanness 
and decreased preservation. Sapiens*3 achieved the same 
humanness as experimental sequences (+34% absolute in-
crease), while achieving higher preservation of the full 
variable region (86% and 80% respectively, Figure 5B) and 
same preservation of Vernier zones (86%, Figure 5C).  

To provide a breakdown of these average preserva-
tion results, we calculated preservation separately at each 

Kabat position (Supplementary Figure 11). We identified 
slight differences in preservation of different Vernier posi-
tions, where Sapiens*3 achieved higher preservation notably 
in H48, H67, H69 and H78, while achieving lower preserva-
tion notably in H27, H28, H30, H71 and H73.  

Finally, we evaluated the humanizing mutation 
overlap between the sequences produced by automated hu-
manization methods and those validated experimentally 
(Figure 5D, Supplementary Figure 12,13). For each human-
izing mutation to the parental sequence, we determine 
whether it was shared (made in predicted as well as experi-
mental sequence) or whether it was only made by either one 
of the methods. Sapiens*1, *2 and *3 achieved highest frac-
tions of shared mutations (humanizing mutation precision, 
Table 2). To further validate the probabilistic properties of 
Sapiens predictions, we evaluated the predicted Sapiens 
score of humanizing mutations and back-mutations made in 
the experimental sequences. We observed that most muta-
tions achieved the first or second highest Sapiens score 
(Supplementary Figure 14).  

 
Figure 5: Sapiens achieved a balanced humanness-preservation tradeoff on 25 antibodies with known parental sequences. 

 Humanness of parental and humanized sequences evaluated using OASis identity curves. Each curve shows average across the 25 
sequences, highlighted area spans between 25% and 75% quantiles. 

 Humanness-preservation tradeoff. X axis shows humanness improvement – average difference in OASis medium identity of the 
humanized and parental sequence. Y axis shows total parental sequence preservation (average percent sequence identity of human-
ized and parental sequence). Sapiens*1,*2,*3 and *4 refer to 1, 2, 3 and 4 humanization iterations respectively.  

 Humanness-preservation tradeoff in Vernier zones. X axis same as in (B), Y axis shows parental sequence preservation in Vernier 
zones. Dashed gray line shows axis between two extremes: Straight CDR graft (all Vernier residues humanized, more human but 
less preserved) and Vernier CDR graft (all Vernier residues back-mutated, less human but more preserved). 

 Average overlap of humanizing mutations made in predicted sequence and in experimentally validated sequence.  
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While we report average results, deviation across 
the 25 antibodies was substantial. To facilitate readers' closer 
inspection, we provide the 25 predicted humanized se-
quences in the Supplemental Information, along with the 
individual antibody results of the humanness-preservation 
tradeoff (Supplementary Figure 15) and T20 humanness 
(Supplementary Figure 16). 

Taken together, based on the in silico evaluation, 
BioPhi provides a toolbox of automated humanization meth-
ods that are competitive with manual humanization by 
expert. Moreover, guided by the predictive tools, users can 
perform further adjustments to the final sequence and pro-
duce multiple sequence variants. 

Sapiens rediscovers humanizing mutations of 
152 therapeutic antibodies 

To evaluate Sapiens and other humanization methods on a 
larger scale, we reconstructed putative parental sequences of 
152 humanized antibody therapeutics. Humanized antibod-
ies generally contain framework regions of human origin and 
CDRs of parental origin (usually mouse). Therefore, we de-
veloped a parental sequence reconstruction strategy based on 
sequence similarity of CDR regions against all 169,870,516 
non-human sequences in OAS, and applied it to 152 human-
ized sequences from TheraSAbDab [41] (see Methods).  

To evaluate the fidelity of the reconstructed paren-
tal sequences, we compared these with known parental 
sequences of 22/152 antibodies which were present in the 
Hu-mAb 25 pairs dataset. On average, the reconstructed se-
quences achieved 92% average heavy chain sequence 
identity and 93% average light chain sequence identity with 
the known parental sequences. Since each parental sequence 
was already very similar to the humanized sequence that was 
used to perform the reconstruction (80% heavy chain identity 
and 82% light chain identity on average in the 22 pairs), total 
sequence identity could overestimate the recovery perfor-
mance. Therefore, we also measured sequence identity based 
only on mutated positions – positions that were different be-
tween the humanized sequence and the parental sequence. In 
that regard, our strategy correctly recovered 65% mutations 
in the heavy chain and 72% in the light chain (where a ran-
dom baseline would recover 5% since there are 20 residues 
to choose from). Finally, we compared the CDR-based re-
covery to a strategy based on full sequence homology. 
Parental sequences recovered that way achieved only 78% 
and 82% sequence identity with the known heavy chain and 
light chain sequences respectively, correctly recovering 37% 

and 66% framework mutations respectively. Therefore, we 
conducted the following analysis on the CDR-homology-
based results. 

Similar to the 25 pairs dataset, we used the 152 re-
constructed parental sequences as input to each 
humanization method and evaluated their ability to redis-
cover the humanized therapeutic sequences. We evaluated 
each method based on two scenarios. In the first scenario, the 
humanization method was not instructed with any specific 
germline and needed to choose it automatically. In the sec-
ond scenario, the humanization method was instructed with 
a specific germline gene corresponding to the known human-
ized therapeutic sequence, simulating a use-case when the 
germline is requested manually by the user.  

With automatic germline selection, each humaniza-
tion method selected the target germline in a different 
fashion. In CDR grafting, we selected the germline V and J 
genes with highest sequence identity to the input sequence. 
In Hu-mAb, the germline family was selected based on 
which of the Hu-mAb models achieves highest score on the 
input sequence. In Sapiens, germline selection was implicit 
– the neural network was not provided with any germline an-
notations during training, any germline knowledge was 
trained directly from the repertoire sequence corpus. Conse-
quently, Sapiens predicted humanizing mutations that 
maximized the likelihood of seeing the sequence in the train-
ing corpus, conditioned on the particular input sequence. 
Sapiens*1 achieved the same humanness as experimental se-
quences (+30% absolute increase), while achieving higher 
preservation of the full variable region (89% and 84% re-
spectively, Figure 6A) as well as in Vernier zones (89% and 
87% respectively, Figure 6B). Sapiens*1 also achieved the 
highest fraction of mutations shared with the experimental 
sequence (Figure 6C, Table 2). Compared to other methods, 
Hu-mAb achieved lower overlap due to frequently choosing 
different germline genes.  

With manual germline selection, the target germline 
gene corresponded to the germline of the humanized thera-
peutic sequence. In this scenario, the responsibility of the 
humanization method was reduced mostly to determining 
which positions in the sequence should be humanized and 
which should be back-mutated (remain parental), since to a 
large extent, the residues themselves were already defined 
based on the chosen germline. In Sapiens and CDR grafting, 
we provided the germline genes (e.g. IGHV1-46 and IGHJ4 
for heavy chain, IGKV1-39 and IGKJ1 for light chain), and 
determined the allele based on highest sequence identity of 
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each germline sequence with the humanized therapeutic se-
quence. In Hu-mAb, we provided only the V germline family 
(e.g. IGHV1 and IGKV1) since more fine-grained selection 
was not supported. Since Sapiens was trained on all 
germlines of a given chain type combined, there was no di-
rect way to choose the target germline for Sapiens 
humanization. To circumvent this issue, we generated Sapi-
ens predictions by first performing Vernier CDR grafting to 
the target germline, and then applying Sapiens to humanize 
the sequence further and resolve potential issues at region 
boundaries. Sapiens*1 achieved higher humanness than ex-
perimental sequences (+34% and +30% absolute increase 
respectively) at the cost of achieving lower preservation of 
the full variable region (83% and 84% respectively, Figure 
6D) as well as in Vernier zones (83% and 87% respectively, 
Figure 6E). Interestingly, with manual germline assignment, 
Vernier CDR grafting achieved comparable humanness to 
experimental sequences (+30% absolute increase) and 

superior preservation in full variable region (85% and 84% 
respectively) and in Vernier zones (100% and 87% respec-
tively). Highest mutation overlap with experimental 
sequences was achieved by Vernier CDR grafting followed 
by Sapiens*1 (Figure 6F, Table 2). In eight cases, Sapiens*1 
predicted a sequence that differed in only one mutation from 
the experimental sequence, and in one case the sequences 
were identical (Supplementary Figure 18). This was more 
than Vernier CDR grafting which produced one case with 
one mutation difference and one case where the sequence 
was identical (Supplementary Figure 19).  

Using a personal computer with 8 cores, we were 
able to humanize the 152 antibodies using the BioPhi web 
interface in 5.2 minutes. We thus concluded that BioPhi was 
able to humanize sequences at scale while recovering high 
overlap with therapeutic sequences, with target germlines 
automatically assigned or manually selected by the user.  
 

 

 

Figure 6: Evaluation of humanization methods on a large scale using 152 humanized therapeutic antibodies with putative 
parental sequences. In automatic germline selection (A-C), target germlines were chosen by the humanization method. In 
manual germline selection (D-F), target germline was set based on the germline of the humanized therapeutic sequence.  

 and (D) Humanness-preservation tradeoff. X axis shows humanness improvement – average difference in OASis medium identity 
of the humanized and parental sequence. Y axis shows total parental sequence preservation – average percent sequence identity of 
humanized and parental sequence. 

 and (E) Humanness-preservation tradeoff in Vernier zones. X axis same as in (A) and (D), Y axis shows parental sequence preser-
vation in Vernier zones. Dashed gray line shows axis between two extremes: Straight CDR graft and Vernier CDR graft. 

 and (F) Overlap of predicted and therapeutic (experimentally validated) humanizing mutations.  
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   Humanness improvement Preservation Humanizing mutation 

precision 
  Method OASis T20 Total Vernier Total Vernier 

25
 k

no
w

n 
pa

irs
 

Experimental +34% +13% 80% 86% - - 
Sapiens*1 +30% +10% 89% 90% 77% 49% 
Sapiens*2 +33% +12% 86% 87% 74% 42% 
Sapiens*3 +34% +12% 86% 86% 73% 40% 
Sapiens*4 +34% +13% 86% 86% 72% 40% 
Hu-mAb +14% +6% 89% 91% 72% 54% 

Straight graft +36% +14% 83% 80% 65% 35% 
Vernier graft +32% +11% 85% 100% 70% - 

 Experimental +30% +11% 84% 87% - - 

15
2 

pu
ta

tiv
e 

pa
irs

 

A
ut

om
at

ic
 

ge
rm

lin
e Sapiens*1 +30% +10% 89% 89% 72% 48% 

Hu-mAb +4% -1% 93% 94% 36% 25% 
Straight graft +33% +13% 84% 80% 64% 36% 
Vernier graft +29% +11% 87% 100% 70% - 

M
an

ua
l 

ge
rm

lin
e Sapiens *1 +34% +13% 83% 83% 82% 49% 

Hu-mAb +15% +3% 90% 93% 65% 48% 
Straight graft +35% +13% 82% 76% 81% 45% 
Vernier graft +30% +11% 85% 100% 89% - 

Table 2: Evaluation of humanization methods. Separately for each column, values above 75% percentile are marked green, 
values below 25% percentile are marked red. Humanness change was computed as average absolute difference of OASis 
medium identity (or T20 score) of the humanized sequence and the parent sequence. Therefore, an increase of +34% refers to 
the absolute change in the humanness score (e.g. from 40% to 74%), not a relative change. Parental preservation was calculated 
as sequence identity of the parental and humanized sequence under Kabat numbering, in full sequence or Vernier regions only. 
Humanizing mutation precision was calculated as number of mutations made both in predicted sequence and in experimentally 
humanized sequence, divided by total number of mutations made in the predicted sequence. 

Discussion 

We developed BioPhi, an open platform for protein engi-
neering that integrates novel humanization and humanness 
evaluation methods. The BioPhi automated humanization 
workflow enables antibody humanization in bulk using a 
novel humanization method based on deep learning on large-
scale natural antibody repertoires (Sapiens) or canonical hu-
manization methods based on CDR grafting. In silico 
evaluation demonstrated that the sequences produced by our 
humanization methods are competitive with those validated 
experimentally and produced by expert methods. Humanized 
sequences can further be adjusted manually using the BioPhi 
Designer functionality. The BioPhi humanness report ena-
bles humanness evaluation using a novel method based on 9-
mer peptide search (OASis) and traditional methods based 
on nearest germline sequence identity and positional residue 

frequency. This enables identifying non-human peptides and 
residues and suggest viable point mutations based on human-
ness criteria that are interpretable while exposing the vast 
sequence diversity of natural antibody repertoires. As an ex-
tensible platform that integrates data-driven methods, BioPhi 
is poised to grow as new datasets become available that con-
tinue to connect the two parallel lines of research — adaptive 
immune repertoire sequencing and antibody engineering. 

Established humanness evaluation methods can dis-
tinguish between human and non-human sequences, but lack 
granularity or interpretability. Existing methods based on ho-
mology [9][10] are interpretable but lack granularity since 
they only provide a single score for each chain. Moreover, 
these underperformed in our analysis compared to more re-
cent approaches such as IgReconstruct [17], which could be 
attributed to the modest size of their reference sequence li-
braries. Interestingly, Germline content, a baseline method 
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we implemented based only on percent sequence identity to 
nearest human germline performed comparably to recent 
methods while providing both an interpretable and granular 
score. Nevertheless, antibody germlines provide orders of 
magnitude smaller sequence space than antibody repertoires, 
making them more restrictive for antibody engineering ap-
plications. Although Hu-mAb [18] has outperformed all 
other methods including ours by a narrow margin on human-
ness classification (97.7% and 96.6% ROC AUC 
respectively for Hu-mAb and OASis medium identity) and 
on immunogenicity prediction (0.34 and 0.28 R2 respec-
tively), we identified two drawbacks. Firstly, Hu-mAb 
produces only a single score per chain. This could be ad-
dressed by providing the user with the change of predicted 
score upon mutation, as implemented in the Hu-mAb human-
ization protocol. Secondly, the Hu-mAb score is not 
interpretable. Although random forest models are robust es-
timators thanks to their randomized ensemble architecture, 
this makes their individual predictions difficult to interpret. 
In contrast, OASis provides a high-accuracy humanness 
score that is both granular and interpretable, guided by the 
principles of foreign protein recognition via the processing, 
display and recognition of peptides.  

To be able to compare humanization methods, in 
this study we mostly reported average performance results 
across multiple sequences. However, we acknowledge that 
the deviation in performance across sequences is substantial. 
Different methods were more successful in different cases, 
further encouraging the assembly of a diverse arsenal of hu-
manization methods. We imagine this will be enabled by our 
open-source BioPhi platform.   

When evaluating the performance of an automated 
humanization method, it is crucial to compare it to simple but 
realistic baselines. Such comparison has not been performed 
in previous studies [13][18]. In this study, we implemented 
two baseline methods based on CDR grafting – the Straight 
CDR graft, which achieved high humanness while preserv-
ing parental sequence in Kabat CDRs, and the Vernier CDR 
graft, which produced less human sequences in exchange for 
additionally preserving all parental residues in Vernier 
zones. Both methods performed remarkably well in terms of 
the overlap with experimentally validated sequences, espe-
cially when supplied with the target germline gene.  

When humanizing a sequence iteratively by human-
ness score optimization, the produced sequence should be 
validated by an independent humanness score, since even 
small errors in humanness estimation will be amplified 

during its optimization. We believe this was the cause of in-
ferior OASis and T20 scores for sequences produced by 
steepest descent optimization in Hu-mAb as compared to re-
sults achieved by Sapiens or expert. This further supports our 
decision to develop separate methods for humanization and 
humanness evaluation.  

Due to its laborious nature, humanization is tradi-
tionally performed after the candidate pool has been reduced 
to a handful of sequences by multiple rounds of binding as-
says, functional assays and basic biophysical 
characterization. As these candidate pools are growing with 
the advent of high-throughput protein production and screen-
ing, automated humanization and other antibody engineering 
methods can help exploring a larger and more diverse se-
quence space earlier in the process. In the first phase, 
automated methods can serve as a guide for human-assisted 
batch humanization and engineering. Ultimately, as their 
performance improves, they can be combined with other pre-
diction tools to perform holistic in silico antibody 
engineering that will enable humanizing a sequence together 
with engineering desired properties. In that view, the multi-
ple stages of experimental validation would be used for 
iterative optimization of the candidate pool on all required 
properties at once, rather than devising separate stages for 
affinity optimization, developability optimization, liability 
mitigation, and de-immunization.  

Sapiens is trained with a general goal of recogniz-
ing masked or mutated residues and repairing them based on 
the sequence context. This mechanism could be applied in 
conjunction with additional optimization criteria to explore 
vast search spaces of mutations for different antibody engi-
neering tasks. For example, joint optimization of humanness 
and structural stability prediction was previously used to pro-
duce successful humanized candidates [12]. Sapiens could 
also be used to propose viable point mutations for post-trans-
lational modification liability mitigation, both in frameworks 
and CDRs. More developable molecules could be produced 
by enriching the Sapiens training set for sequences with 
properties linked to favorable developability profiles [28] or 
pairing Sapiens with homology modeling and structure-
based developability prediction methods [30].  

Since datasets with target measurements are sparse 
and the input space is enormous, the protein engineering field 
has started showing interest in unsupervised or self-super-
vised learning, inspired by the recent progress in natural 
language processing. By training deep neural networks on 
large databases of unlabeled sequences, compact numeric 
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representations of proteins can be created, enabling transfer 
learning on problems with substantially smaller datasets. No-
tably, this was recently demonstrated in MSA Transformer 
[25], where residue-residue contact information emerged di-
rectly from attention weights after unsupervised learning on 
multiple sequence alignments. In Sapiens, we have not ob-
served any emergence of such a strong signal, although a 
pattern of attention from the CDR2 loop to CDR1 and DE 
loops was clearly present, corresponding to the three-dimen-
sional structure of antibody loops. More work is yet to be 
done on the representation learning of antibody sequences – 
curating databases of sequences with favorable properties, 
optimizing neural network architectures and hyperparame-
ters, and more importantly, inventing large-scale self-
supervised tasks that are predictable yet complex enough to 
force the model to create meaningful inner representations 
using unlabeled data. 

Analogous to natural language processing, antibody 
humanization and protein engineering methods in general are 
lacking a single “ground truth”, which makes their in silico 
evaluation and consequently their improvement challenging. 
Even though in isolation, the humanness-preservation 
tradeoff achieved by Sapiens is comparable to expert, we un-
derstand that further experimental validation is necessary. 
However, as artificial-intelligence-driven tools such as natu-
ral language translation have demonstrated, even before an 
automated approach achieves human-level performance, it 
can provide value to the community and create novel oppor-
tunities for a new generation of advanced tools and 
approaches. 

Methods 

OASis peptide database  Unaligned amino acid sequences 
were obtained in JSON format from unpaired OAS database 
(accessed Nov 2019). Next, studies with human subject in-
formation were selected. Only subjects containing at least 
10,000 redundant complete sequences for given chain type 
were selected, which yielded 118,713,869 sequences from 
231 subjects (225 with available heavy chains, 154 with light 
chains, 148 with both) from 26 studies. For each OAS sub-
ject, all overlapping 9-mer peptides were extracted from the 
amino acid sequences. Heavy chain peptides that appeared 
only in one subject were removed (corresponding to mini-
mum prevalence of 1% of subjects). An inverted index data 

 
1 http://www.bioinf.org.uk/abs/shab/ 
2 https://dm.lakepharma.com/bioinformatics 

structure was created where each distinct peptide points to a 
list of subjects in which it appears together with the number 
of occurrences. This was stored along with a subject 
metadata table in an SQLite database (22GB uncompressed) 
with an index on the peptide field to speed up querying (less 
than 1ms per peptide single-threaded). 

Diversity evaluation  Germline sequences were down-
loaded from IMGT Gene-DB “F+ORF+in-frame P amino 
acid sequence” for homo sapiens (containing 60 IGHD, 13 
IGHJ, 406 IGHV, 9 IGKJ, 108 IGKV, 12 IGLJ and 98 IGLV 
genes). Overlapping 9-mer peptides were extracted sepa-
rately from each gene. 

A representative sample of OAS sequences for the 
UMAP visualization was generated by randomly sampling 
each OAS subject for 25 aligned sequences from each heavy 
V gene family and 15 aligned sequences from each light V 
gene family, only complete sequences were considered. This 
yielded 39,965 variable heavy and 41,845 variable light 
chain sequences. Germline V gene sequences with IMGT 
gaps were collected from IMGT Gene-DB. UMAP embed-
ding [33] was generated by precomputing an all-by-all 
pairwise sequence identity matrix, where only positions 
shared by both sequences were considered (to handle miss-
ing J region in the germline sequences).  

Evaluation of humanness metrics  Therapeutic sequences 
with species information were downloaded from IMGT mAb 
DB [35] by querying for all records having an INN request 
number and IG Receptor Type. OASis identity curves across 
all prevalence thresholds were calculated for 198 human, 229 
humanized, 63 chimeric and 13 murine therapeutics. Statis-
tical significance of differences in OASis medium identity 
between each group was calculated using two-sided Mann-
Whitney U test. 

Ability to separate human and non-human se-
quences was evaluated using a ROC curve. The expected 
output was 0.0 for negative class (229 humanized, 41 
humanized/chimeric, 63 chimeric, 13 mouse, 6 caninized 
and 3 felinized therapeutics) and 1.0 for positive class (198 
human therapeutics), the predicted output was directly the 
humanness score. Humanness scores of each therapeutic 
were calculated as averages of the scores of their chains.  

Web services were used for Z-score1, T202, Hu-
mAb 3  and IgReconstruct 4  (January 2021). AbLSTM was 

3 http://opig.stats.ox.ac.uk/webapps/humab 
4 http://meilerlab.org/index.php/servers/IgReconstruct 
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executed only on heavy chain sequences using the pretrained 
heavy chain models from the code repository5 . Germline 
content was calculated by aligning the sequence using IMGT 
numbering in ANARCI [42] and computing the percent se-
quence identity with a concatenation of the nearest human V 
and J gene from IMGT Gene-DB [32]. MG scores were ob-
tained by correspondence with the authors. No 
implementation of HSC [11] was publicly available, there-
fore it was not included in the evaluation. Humanness scores 
and sequences used for evaluation are provided in Supple-
mentary Table 1. 

Correlation with clinical immunogenicity was eval-
uated on a dataset curated in Hu-mAb study [18], sequences 
were obtained from IMGT mAb DB [35]. Sequence for ca-
tumaxomab was not available, therefore only 217/218 
therapeutics were included. Explained variance (R2) was cal-
culated after transforming each score to the output range 
using a simple linear regressor. MHC II binding was pre-
dicted using netMHCIIpan 3.1 [43]. A peptide was 
considered binding if it was predicted below 10 percentile in 
any of DRB1*0101, 0301, 0401, 0701, 0801, 1101, 1301, 
1501 (same alleles as in [28]). Reported immunogenicity 
along with humanness scores and sequences used for evalu-
ation are provided in Supplementary Table 2. 

OASis humanness metric  First, all overlapping 9-mer pep-
tides were extracted from the input antibody and queried 
against the OASis database using exact match. Next, the hu-
man prevalence of each peptide was calculated as number of 
subjects containing the given peptide (at least once) divided 
by the total number of subjects for the given chain type. Fi-
nally, a single OASis identity score for the input sequence 
was calculated as the fraction of peptides with prevalence 
over a user-specified threshold. OASis percentile score was 
calculated as the percentile of the OASis identity among the 
544 therapeutic antibodies collected from IMGT mAb DB. 
Using a simple benchmark on a personal computer with 8 
cores, BioPhi command-line interface was able to evaluate 
OASis humanness of 1,000 antibodies in 14 minutes. 

Sapiens training corpus  Unaligned variable region amino 
acid sequences were downloaded from OAS database (ac-
cessed Nov 2019). A heavy chain training set was extracted 
by sampling 20 million unaligned redundant amino acid se-
quences from all 38 human heavy chain OAS studies from 
2011-2017. The training sequences originated from 24% 

 
5 https://github.com/vkola-lab/peds2019 

unsorted, 10% IGHA, 1% IGHD, 1% IGHE, 35% IGHG and 
30% IGHM isotypes. A validation set was extracted by sam-
pling 20 million sequences from all 5 human heavy chain 
studies from 2018. The validation sequences originated from 
33% unsorted, 16% IGHA, 1% IGHD, 1% IGHE, 20% IGHG 
and 28% IGHM isotypes. A light chain training set was ex-
tracted by taking all 19,054,615 sequences from all 14 
human light chain OAS studies from 2011-2017. A valida-
tion set was extracted by taking all 33,133,386 sequences 
from both 2 human light chain OAS studies from 2018. Stud-
ies from 2019 were left out to enable future comparison with 
new methods on an independent test set. 

Sapiens architecture and training procedure Sapiens was 
implemented and trained using fairseq [44] and its RoBERTa 
module [45]. The Transformer encoder contained 4 layers, 8 
attention heads, embedding dimensionality of 128, feed for-
ward network embedding dimensionality of 256. Other 
parameters of the network were based on RoBERTa defaults. 
In total, the network contained 568,857 tunable weights. 
Training procedure was based on “masked_lm” training task 
with 15% masking probability. Label-smoothed cross-en-
tropy with epsilon of 0.1 was used to avoid penalizing the 
model for making incorrect yet plausible predictions, reflect-
ing the inherent unpredictability of the sequence. A 10% 
dropout and variable rates of weight decay were used to 
avoid overfitting. Separate models were trained for the heavy 
chain and the light chain. The heavy chain model was trained 
for 700 epochs (166 epochs with learning rate of 1e-4, then 
further with learning rate of 1e-3) using Adam with default 
parameters. The light chain model was trained for 300 
epochs with learning rate of 1e-04. No hyperparameter tun-
ing was performed. Towards the end of the training 
procedure, the increase of validation performance started 
slowing down, but still did not plateau, suggesting that addi-
tional training or less conservative regularization techniques 
could improve performance further. 

Although antibody sequences are commonly num-
bered and aligned for machine learning applications 
[13][18][26], unaligned sequences were used for three rea-
sons. First, such alignment is only applicable to antibodies 
and T-cell receptors, so it would render the method inappli-
cable to other domains in the future. Second, while alignment 
can help relate conserved positions to each other, it can also 
conceal motifs found in a particular sequence by fragmenting 
it with artificial gaps. Thirdly, by using an unaligned 
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sequence, the model was forced to recognize the conserved 
positions on its own and therefore learn a richer inner repre-
sentation. Nevertheless, evaluation of alternative training 
and validation schemes was not performed in this study, so 
aligned sequence input as well as other subsampling and val-
idation split strategies could also be considered.  

Sapiens attention visualization   Attention weights were 
collected from 64 heavy chain sequences from IMGT mAb 
DB that were 120 amino acids in length and were composed 
of the following AHo positions: 1-7, 9-27, 29-33, 39-61, 65-
113, 133-149. Attention weights for each of the 64 sequences 
were extracted from the Sapiens network, averaged across 
subjects and attention heads in each layer. An increase in at-
tention to a given region was calculated by comparing mean 
attention to all positions in the given region compared to 
mean attention to all positions in other regions. Attention 
weights for Pembrolizumab heavy chain were visualized in 
its PDB structure 5B8C using ProVis [46] and nglview [47].   

CDR grafting   IMGT-aligned human germline V and J gene 
sequences were collected from IMGT Gene-DB. The graft-
ing process consisted of five steps. First, the input sequence 
was IMGT-aligned using ANARCI. Next, the nearest human 
V and J gene sequences were selected based on sequence 
identity (optionally filtered for sequences from specified 
gene or gene family), and merged into a single sequence with 
IMGT gaps. Next, the input and germline sequences were re-
numbered to a user-specified numbering scheme (Kabat by 
default). In Straight CDR grafting, CDR residues from the 
input sequence (now based on the renumbered scheme) were 
inserted at the corresponding positions in the germline se-
quence. In Vernier CDR grafting, parental Vernier zone 
residues are grafted along with the CDRs, in other words, 
these were additional “back-mutations”. Vernier zones were 
defined based on [8]. Both methods were released in a new 
open-source package AbNumber6.  

Humanization methods evaluation  Validation set of 25 
humanized sequences paired with their known parental se-
quences and Hu-mAb predictions was acquired from the Hu-
mAb study [18]. Hu-mAb predictions from the 152 putative 
parental sequences were generated using the Hu-mAb web 
server (March 2021). Humanness of predicted sequences 
was evaluated using OASis and the T20 web server. Human-
ness change was computed as average absolute difference of 

 
6 https://github.com/prihoda/AbNumber  

OASis medium identity of the humanized sequence and the 
parental sequence. Parental preservation was calculated as 
average sequence identity of the parental and humanized se-
quence under Kabat numbering. To produce Venn diagrams 
that evaluate humanizing mutation overlap between the ex-
perimentally validated sequence and a predicted sequence, 
all mutations from parent to the experimental or predicted 
sequence were pooled together and classified into three cat-
egories: 1) Shared mutations were made in both the 
experimental and the humanized sequence (identical resi-
dues on the same Kabat position) 2) Experimental only 
mutations were made only in the experimental sequence 3) 
Predicted only mutations were made only in the predicted 
sequence. Finally, humanizing mutation precision was cal-
culated as number of shared mutations divided by total 
number of predicted mutations. Using a simple benchmark 
on a personal computer with 8 cores, BioPhi command-line 
interface was able to humanize 1,000 antibodies in 2.3 
minutes (using Sapiens without OASis evaluation). 

Recovering 152 putative parental sequences  Records with 
“-zumab” suffix were collected from TheraSAbDab, totaling 
164 humanized therapeutics. To estimate which positions 
(apart from CDRs) in the humanized therapeutic sequences 
came from their parental sequence, framework residues with 
<1% positional frequency were identified. The frequency 
was calculated based on a subset of 4 million human OAS 
sequences created by sampling 10,000 complete sequences 
from each OAS subject. On average there were 1.3 rare 
framework residues in the heavy chain and 1.0 in the light 
chain.  

Each humanized sequence was IMGT-aligned us-
ing ANARCI and compared against all 169,870,516 non-
human IMGT-aligned sequences from OAS (94.3% from 
mouse, 2.5% from rat, 1.8% from rabbit, 0.8% from rhesus 
and 0.7% from camel). The putative parental sequence tem-
plate was selected based on highest sequence identity in 
CDRs. In case multiple sequences with same CDR identity 
were found, the one with highest framework identity was se-
lected. To preserve only high-confidence matches, 
therapeutics with less than 60% CDR identity with the near-
est match in heavy or light chain were discarded, yielding 
152 final pairs. The final putative parental sequence was as-
sembled by grafting CDRs and the identified non-human 
residues of the humanized sequence into the parental OAS 
hit, essentially performing reverse CDR grafting. This 
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produced a fully non-human sequence with CDRs and other 
non-human residues from the humanized therapeutic and 
frameworks from the non-human OAS hit. For 22/152 ther-
apeutics, known parental sequences were obtained from [18]. 
Sequence identity was calculated as percentage of identical 
residues in the known and recovered parental sequence using 
Kabat numbering. Recovery mutation accuracy was calcu-
lated as number of framework positions that agreed between 
the two parental sequences while being mutated in the hu-
manized sequence, divided by the total number of mutated 
positions. Putative parental sequences are provided in Sup-
plementary Table 3. 

Availability 

BioPhi web application is available at 
https://biophi.dichlab.org 

BioPhi code repository is available at 
https://github.com/Merck/BioPhi 

The code and data supporting this analysis are available at 
https://github.com/Merck/BioPhi-2021-publication  
and in the Supplementary Information. 
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