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Abstract 
Cardiac directed differentiation of human induced pluripotent stem cells consistently produces a mixed 
population of cardiomyocytes and non-cardiac cell types even when using very well-characterized protocols. 
We wondered whether differentiated cell types might result from intrinsic differences in hiPS cells prior to the 
onset of differentiation. By associating individual differentiated cells that share a common hiPS cell precursor, 
we were able to test whether expression variability in differentiated cells was pre-determined from the hiPS cell 
state. Although within a single experiment, differentiated cells that share an hiPS cell progenitor were more 
transcriptionally similar to each other than to other cells in the differentiated population, when the same hiPS 
cells were differentiated in parallel, we did not observe high transcriptional similarity across differentiations. 
Additionally, we found that substantial cell death occurred during differentiation in a manner that suggested 
that all cells were equally likely to survive or die, suggesting that there was no intrinsic selection bias for cells 
descended from particular hiPS cell progenitors. These results led us to wonder about how cells grow out 
spatially during the directed differentiation process. Labeling cells by their expression of a few canonical cell 
type marker genes, we showed that cells expressing the same marker tended to occur in patches observable 
by visual inspection, suggesting that cell type determination across multiple cell types, once initiated, is 
maintained in a cell-autonomous manner for multiple divisions. Altogether, our results show that while there is 
substantial heterogeneity in the initial hiPS cell population, that heterogeneity is not responsible for 
heterogeneous outcomes, and that the window during which cell type specification occurs is likely to begin 
shortly after the seeding of hiPS cells for differentiation. 
 
 
Background/Introduction 
Differentiation of human induced pluripotent stem (hiPS) cells is highly variable even when using standardized 
protocols and produces heterogeneous samples that are unfit for regenerative medicine or research models 
without further selection. Even within clonal cell lines, differentiation outcomes can be highly variable, pointing 
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to a role for non-genetic factors in cell type determination (D’Antonio-Chronowska et al. 2019; Dubois et al. 
2011; Volpato et al. 2018; L. Yang et al. 2008; Elorbany et al. 2021). We call a cell “determined" if, barring any 
further environmental change, it will ultimately differentiate to a particular cell type. It remains unknown when in 
the differentiation process (during or even before) these non-genetic factors act to cause cells to adopt a 
particular cell type.  

An important example is the differentiation of hiPS cells into cardiac tissue. Numerous groups have 
developed and optimized differentiation protocols, leading to vast improvements in yield and efficiency of 
cardiomyocyte generation. However, protocols still consistently produce a mixed population of cardiomyocytes 
and non-cardiomyocytes, leading many groups to attempt to isolate cardiomyocytes post-facto with metabolic 
selection or cell sorting (Park et al. 2013; Tohyama et al. 2013; Hemmi et al. 2014; Dubois et al. 2011; Uosaki 
et al. 2011; Fuerstenau-Sharp et al. 2015). Additionally, substantial cell death concomitant with cell growth is 
routinely observed during differentiation, and it is not known whether certain cells are predetermined to survive 
(Qiu et al. 2017). In vivo evidence suggests that multipotent precursors that generate a variety of cardiac cells, 
including cardiomyocytes, vascular endothelial cells, and smooth muscle cells (but not cardiac fibroblasts), 
choose a fate at a point prior to gastrulation (Meilhac et al. 2004; Devine et al. 2014; Lescroart et al. 2014; 
Ivanovitch et al. 2021; Zhang et al. 2021). That timing of cell type determination is earlier than would have 
been expected from previous markers proposed based on in vitro differentiation of cultured hiPS cells; hence, 
the timing of determination to these different cell types during directed differentiation remains unknown and 
may be earlier than has been previously suggested (L. Yang et al. 2008; Kattman, Huber, and Keller 2006; Wu 
et al. 2006; Moretti et al. 2006; Bu et al. 2009; Bondue et al. 2008; Misfeldt et al. 2009). 

It has been suggested that the ultimate heterogeneity in cell types may result from intrinsic differences 
in pluripotent stem cells even before differentiation begins (Hong et al. 2011; Tonge et al. 2010; Loh and Lim 
2011). Along these lines, recent results challenge the traditional notion that all pluripotent cells have the same 
developmental potential. Even amongst human embryonic stem cells that possess equivalent levels of 
pluripotency markers like Oct4, interconvertible subpopulations identified by differential expression of other 
marker genes predicted biased differentiation toward distinct cell types (Hong et al. 2011; Canham et al. 2010; 
Tonge et al. 2011; Allison et al. 2018; Blauwkamp et al. 2012). At the same time, the proportion of 
differentiated cell types resulting from stem cells initially found in these different expression states (defined as 
the levels of expression of all genes in a cell) was shown to be strongly modulated by extrinsic cues such as 
stem cell culture media and cell-matrix adhesion substrate (J. B. Lee et al. 2015; Blauwkamp et al. 2012; 
Stavish et al. 2020; Yu et al. 2018). Hence, it remains unresolved whether certain hiPS cells are intrinsically 
primed to become specific cell types following cardiac differentiation, or if cell type determination occurs later 
along the path of differentiation following extrinsic cues.  

One way to answer this question is to longitudinally track cells and their fates through the differentiation 
process. Single cell transcriptome profiling has revealed considerable variability in the expression states of 
both human pluripotent stem cells and the cells that result from their directed differentiation into 
cardiomyocytes (Friedman et al. 2018; Churko et al. 2018; Narsinh et al. 2011; Hough et al. 2014). However, it 
is difficult to know at what point a newly apparent transcriptomic signature signifies a determination event. The 
use of DNA barcodes combined with single cell RNA-sequencing to track the clonal history and expression 
state of a cell simultaneously (Biddy et al. 2018; Weinreb et al. 2020) enables one to map heterogeneity over 
time to specific clonal populations. Such techniques can reveal when putative cell type determination events 
occur by combining barcoding with experimental designs that ask whether “identical twin” cells adopt the same 
cellular states under various conditions. However, such experiments have not been performed in the context of 
cardiac differentiation. 

Here, by connecting individual cardiac differentiated cells that share a common hiPS cell progenitor, we 
show that, although within a single differentiation experiment cells that share an hiPS cell progenitor tend to 
adopt more similar expression states than expected by chance, cells sharing an hiPS cell progenitor that are 
seeded across parallel differentiations do not adopt similar cell types. Moreover, cells all have an equal chance 
to survive cardiomyocyte differentiation regardless of whether or not they share an hiPS cell progenitor, 
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suggesting no intrinsic bias for survival versus death. Taken together, these results suggest that final cell type 
determination has not yet occurred in the hiPS cell population but instead occurs once the differentiation 
process is underway.  
     
        
Results 
Single cell RNA sequencing following cardiomyocyte directed differentiation of hiPS cells reveals an increase 
in the heterogeneity of cellular expression states. 
 
We wanted to measure the extent to which different expression states arise after differentiating genetically 
identical hiPS cells. We used a well-established cardiac differentiation protocol (Laflamme et al. 2007; Zhu et 
al. 2010; Zhu, Van Biber, and Laflamme 2011; Palpant et al. 2015; Shanmughapriya et al. 2018; Palpant et al. 
2017) that uses small molecules and growth factors to efficiently push cells through stage-specific transitions 
as they become cardiomyocytes (Figure 1A). We used PENN123i-SV20 hiPS cells as the parental cell line for 
this study (W. Yang et al. 2015) and chose to transcriptionally profile single cells on day 14 or 15 of 
differentiation, shortly after we began to observe contractile activity and cardiomyocyte-specific gene 
expression. While many groups metabolically select for cardiomyocytes at this stage with glucose-depleted 
and/or lactate-enriched media (Park et al. 2013; Tohyama et al. 2013; Hemmi et al. 2014; Dubois et al. 2011; 
Uosaki et al. 2011; Fuerstenau-Sharp et al. 2015), we chose to forgo this step as we wanted to preserve the 
non-cardiomyocyte cell types that may otherwise be lost. Following quality control analysis, we captured a total 
of 17,599 differentiated cells with droplet-based single cell RNA sequencing (10X Chromium platform v3), from 
which we captured the expression of 24,728 genes in 17,599 cells. We used Seurat v4 (Hao et al. 2020) to 
cluster cells by expression similarity into 15 clusters, and used Uniform Manifold Approximation and Projection 
(UMAP) to visualize the transcriptional differences between these cells (Figure 1B). Using canonical marker 
genes, we were able to attribute putative cell types to several of these clusters, including fibroblasts, 
cardiomyocytes, cardiac progenitors, epicardium, or epithelium (Figure 1C, Supplementary figure 1A).  

Seeing the heterogeneity in gene expression across individual cells following differentiation, we 
wondered how this level of variability compared with variability in the initial hiPS cell population. After 
appropriate normalization and variance stabilization (see methods), we performed principal component 
analysis on both our differentiated cell dataset as well as a separate dataset consisting of 1,198 
undifferentiated hiPS cells. In a differentiated population consisting only of one final cell type and its 
intermediates, we would expect a single primary axis of variation associated with cell type maturity. In this 
hypothetical case, there may only be one “significant” principal component explaining the majority of the 
variance in that system. In contrast, a highly variable population consisting of many cell types would be likely to 
have multiple axes of variation, each explaining some non-negligible proportion of the total variance. We found 
that the dropoff in fraction of variance explained per principal component was steeper for the hiPS cell sample 
as compared to the differentiated sample (i.e. fewer principal components that were distinguishable from 
randomized data), suggesting that through directed differentiation, the differentiated population became more 
variable than their initial states (Figure 1D). 
 
 
Related hiPS cells sometimes show similar expression states upon cardiac directed differentiation  
 
The fact that we observed an increase in the variability of gene expression states as hiPS cells differentiate 
towards cardiac cell types led us to wonder, how are the progeny of individual hiPS cells distributed across 
differentiated cell expression states? One possibility is that cell type determination occurs early in or even 
before differentiation and is then maintained. In that case, differentiated clones (i.e. sets of cells that share an 
hiPS cell precursor) would tend to show similar expression states following cardiac directed differentiation. At 
the other extreme, cell type determination may occur so late in differentiation, or fail to be maintained through 
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cell divisions, such that related cells belonging to a single clone would be found randomly distributed across all 
possible differentiated expression states. (Such random, late determination could be due either to variable 
intrinsic factors that lead to differences between related cells in determination or to microenvironmental 
differences that instruct related cells to adopt different expression states.) While single cell RNA sequencing 
alone is agnostic to relationships between cells, combining it with lentiviral barcoding of individual hiPS cells 
and their progeny enabled us to track the differentiated expression states associated with particular hiPS cells. 
We thus were able to ask: are differentiated cells derived from the same initial barcoded hiPS cell more similar 
to each other in expression state than to the differentiated population as a whole? 

We followed the example of previous methods that use lentivirally integrated DNA barcodes to mark 
cells that are descended from a common progenitor (Biddy et al. 2018; Weinreb et al. 2020). These barcodes 
lie in the 3’ untranslated region of a reporter transgene such that they are transcribed by the target cell and all 
its progeny and can be captured by single cell RNA-sequencing. We previously generated such a barcode 
library for use with Rewind, a method that allows for the direct profiling of rare cells of interest through the 
combination of genetic barcoding with RNA fluorescence in situ hybridization (Emert et al. 2021). Using this 
barcode library, which consists of random 100-mers in the 3’ untranslated region of a green fluorescent protein 
(GFP) transgene, we transduced hiPS cells prior to seeding for cardiac differentiation. We harvested the 
differentiated cells 16 days later, sorted for GFP positive cells to enrich specifically for those that expressed a 
lentiviral barcode, and sequenced the GFP positive cells (Figure 2A). As transcripts of the GFP transgene are 
captured by single cell RNA sequencing, we were able to recover and connect Rewind barcodes to individual 
cells through analysis of GFP transcript 10x sequencing reads (Supplementary figure 2A). We also profiled 
some of our GFP negative cell population and found the populations to be transcriptionally indistinguishable. 
Through this process, we were able to both profile the expression state of individual differentiated cells and 
determine which differentiated cells were descended from the same barcoded hiPS cell progenitor. 

We wondered whether differentiated cells deriving from the same barcoded hiPS cell would be more 
transcriptionally similar to each other than to the differentiated population at large. To address this question, we 
analyzed the 49 barcode clones consisting of at least 20 cells following cardiac directed differentiations 
(consisting of two replicate differentiations, with 30 and 19 barcode clones respectively). We asked whether 
differentiated cells that shared a barcode were more clustered in gene expression space than a matched 
number of cells randomly sampled from the same pool of cells labeled by these 30 or 19 barcodes. As a proxy 
for gene expression space, we used the Seurat cluster assignments described in Figure 1B. Since the clusters 
contain different numbers of cells, and different proportions of cells in each cluster are barcoded, we calculated 
the distribution of each barcode across clusters, accounting for differences in cluster size and barcode diversity 
(see Methods) to generate “cluster probability distributions” for each barcoded clone (Supplementary figure 
2B).  

As a metric of similarity, we chose to use the Jensen-Shannon distance, an entropy-based 
measurement that has been used previously to calculate cell type or tissue-specificity scores (Cabili et al. 
2011; Mellis et al. 2021). The Jensen-Shannon distance metric (Fuglede and Topsoe 2004) quantifies the 
relative distance between 2 probability distributions (not assuming any ordinality to the individual bins), where a 
distance of 0 denotes 2 identical distributions and a distance of 1 denotes maximally different distributions. For 
each of the 49 barcodes, we averaged 1000 random samples of a matched number of cells, generating a 
roughly uniform distribution of normalized proportions, and then queried the Jensen-Shannon distance 
between the observed barcode cluster probability distribution as compared to the average randomly sampled 
distribution (Figure 2B). To determine the significance of these Jensen-Shannon distance values, we also 
calculated the Jensen-Shannon distance for 1000 additional random samples of a matched number of cells. 
We found that for all but 2 barcodes, the calculated Jensen-Shannon distance from the observed barcode 
distribution to the random distribution was significantly (p < 0.05) greater than what we might expect from 
random chance, suggesting that cells that share a barcode tend to cluster more than would be seen by random 
chance. 
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Even so, the degree to which final expression states were similar between cells within a clone varied 
from barcode to barcode. Sometimes cells belonging to a barcode clone predominantly localized to a single 
specific cluster (ex. barcode B20 in cluster 4), while other times, a barcoded clone had a broad distribution 
across many clusters, although its constituent cell expression states were still more similar than random (ex. 
barcode B1). We wondered if certain clusters had a greater propensity to encompass all the cells within a 
clone descended from a given barcoded hiPS cell than others. We found that the expression clusters with the 
strongest tendency to encompass all of a barcoded clone were clusters 4, 8, 3, and 12 (Supplemental figure 
2C). While cluster 3’s behavior is likely artifactual and driven by its small size, clusters 4, 8, and 12 are 
sizeable enough to not be swayed by the behavior of a couple cells and also happen to represent putative 
cardiomyocytes, cardiac precursors, and epithelial cells, suggesting that these cell types may have stronger 
determination upon seeding for differentiation. Taken together, the tendency for cells within some barcoded 
clones to share more similar expression states than would be seen by random chance suggests that cell type 
determination can occur early in or before cardiac directed differentiation, at least for some ultimate cell types. 
 
 
Survival during cardiac directed differentiation does not depend on initial hiPS cell differences. 
 
Many cells die during the process of cardiac directed differentiation, with only a fraction of initial cells giving 
rise to the final population of differentiated cells (see Methods). The substantial amount of cell death during 
differentiation led us to wonder, are the progeny of certain hiPS cells predetermined to survive, or does the 
selection process occur randomly?  

To test whether hiPS cells might be predetermined to survive directed differentiation, we allowed 
barcoded hiPS cells to divide 3-4 times before splitting them in thirds (the number of divisions was chosen to 
ensure cells derived from each hiPS cell precursor were represented in each split). Two of the thirds were 
seeded in two separate wells to be differentiated in parallel, while the final third was harvested for genomic 
DNA and sequenced to determine the barcodes present in the initial population of hiPS cells—the numbers of 
initial barcodes recovered were roughly what we anticipated based on our estimate of the number of viruses 
used for barcode transduction. We sequenced the genomic DNA to identify the barcodes present in day 15 
cells from each of the two parallel differentiations (Figure 3A). If survival were predetermined by the intrinsic 
state of an hiPS cell precursor and inherited by its progeny, then the progeny of the same hiPS precursors 
would survive across parallel differentiations and we would recover a significant (i.e. greater than random 
chance) overlap in barcodes found in each split. We checked whether our data were consistent with pure 
chance by constructing simulations of barcode dynamics during the division and survival process of cardiac 
directed differentiation—we extracted and estimated the abundance of barcode sequences from the initial hiPS 
cell genomic DNA and used the binomial distribution to computationally ‘split’ normalized barcode reads into 
two populations, modified by a loss coefficient to account for cell survival (see Methods). Across multiple 
barcoded differentiations, our observed overlap between differentiated splits was not substantially different 
from what we observed when simulating survival as a random binomial process (Figure 3B, Supplementary 
figure 3A). Upon running this simulation 1000 times and comparing the observed fraction overlap for each split 
to the simulated distribution assuming random survival, we found no meaningful differences between the two 
(Supplementary figure 3B), showing that our data did not necessitate the need to postulate heritable survival 
during differentiation. 

Consistent with random survival during differentiation, even when barcodes were shared between 
differentiation splits they were not always present in similar abundance. In our single cell RNA sequencing 
experiment described above, the two replicate differentiations were seeded from the same pool of transduced 
hiPS cells. In that experiment, we queried whether surviving cells across differentiations were clones derived 
from the same hiPS precursors and found an even starker lack of concordance in abundance of the same 
barcode across differentiations (Figure 3D, Supplementary figure 3D). This lower barcode overlap may be due 
to subsampling as a result of the lower multiplicity of infection used for the single cell RNA-sequencing 
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experiment and subsequent sorting for GFP positive cells (Supplementary figure 3C). Regardless, across 
multiple experiments we found that our data suggest that barcoded hiPS cells do not display intrinsic bias for 
survival or death during cardiac directed differentiation. 
 
 
Determination of differentiated expression states occurs after seeding of hiPS cells for cardiac directed 
differentiation 
 
We wondered whether, independent from their ability to survive, hiPS cells prior to seeding for differentiation 
were already “primed” to become specific cell types following cardiac directed differentiation. Our earlier 
analysis (Figure 2) demonstrated that differentiated cells descended from the same hiPS cell tended to have 
more similar expression states than less related differentiated cells, such that cell type determination must be 
occurring early in or before cardiac directed differentiation. Early determination could mean that cell type 
determination was occurring at the level of the hiPS precursor, such that intrinsic differences in hiPS 
precursors led to differences in differentiated expression state (i.e. priming). Alternatively, at least some cell 
type determination could occur shortly after seeding for differentiation, potentially driven by newly induced 
intrinsic differences or cell-extrinsic cues such as paracrine signaling from neighbor cells or local differences in 
small molecule concentration. In the intrinsic case, cell type determination has already occurred within hiPS 
cells such that they are already predisposed toward certain differentiated expression states when seeded for 
differentiation. Operationally, we can ask: if we seeded the same cells twice for differentiation, scrambling 
extrinsic cues like neighboring cells and position in between, would the same initial hiPS cells attain the same 
final expression states? This type of priming in other systems can be maintained through multiple cell divisions 
(i.e. is heritable (Weinreb et al. 2020; Shaffer et al. 2020; Emert et al. 2021)), so making the assumption that it 
would hold for our system, we split sibling hiPS cells into two parallel differentiations. If expression states were 
predetermined by intrinsic differences in hiPS cell precursors, then the progeny of these separated siblings 
would be more transcriptionally similar to each other than to progeny of less related hiPS cells. Accordingly, to 
test whether these heritably primed cells exist, we transduced hiPS cells with barcode-laden lentivirus and 
allowed them to divide approximately three times before splitting them to be seeded for two parallel 
differentiations. On day 14 of differentiation, we used a GFP sort to enrich for cells from each parallel 
differentiation that have lentiviral barcode transcripts and performed single cell RNA sequencing on those GFP 
positive cells, from which we identified clones that survived differentiation in both splits (Figure 4A). 
 To address the question of whether these separated clones were more similar to each other than to a 
randomly selected distinct clone of cells, we once again chose to use the Jensen-Shannon distance. This time, 
instead of measuring the distance of an observed distribution of cells belonging to a clone across clusters from 
the roughly uniform random cluster probability distribution, we compared the two cluster probability 
distributions associated with the same barcoded clone in parallel differentiations. For the 18 barcode clones 
consisting of at least 5 cells in each split, we calculated the pairwise Jensen-Shannon distances between all 
cluster probability distributions (Figure 4B). The Jensen-Shannon distance values between separated clones 
labeled by the same barcode (on the diagonal in Figure 4B) were in the same range as the distances between 
clones labeled by distinct barcodes (off the diagonal in Figure 4B) for all but two barcodes. This was also borne 
out by visual inspection of the cluster probability distributions for barcoded clones, which generally appeared 
quite different between splits (Figure 4C). The overall trend towards dissimilar cluster probability distributions 
between clones that were differentiated separately suggests that final differentiated expression state is not 
broadly predetermined by intrinsic differences in hiPS cell precursors, at least at this time scale. The 
exceptions to this trend were barcodes B1 and B2, which displayed higher within-clone similarity across split 
differentiations; interestingly, these barcode clones contained many more cells than the other barcode clones 
in our analysis. Even if we were to take the B1 and B2 results without caveats, we could only interpret them to 
mean that a small subset of hiPS cells may be primed to take on certain ranges of final expression states. In 
contrast, when performing this analysis on barcoded vemurafenib-treated melanoma cells, a system with 
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known heritable predetermination of the final cell state (Shaffer et al. 2020; Schuh et al. 2020; Emert et al. 
2021), barcoded clones in one split were far more similar (i.e. had lower Jensen-Shannon distance values) to 
the related clones in the other split than to clones labeled by a distinct barcode (Supplemental figure 4A). We 
conclude that, in most cases, cells sharing an hiPS cell progenitor that are seeded across parallel 
differentiations do not take on more transcriptionally similar profiles than would be expected by random 
chance.  
 
 
Spatial organization of cell type markers is consistent with early, maintained cell type determination in 
cardiomyocyte differentiation. 
 
We did not find widespread heritable predetermination of expression state upon cardiac directed differentiation 
that we could trace back to the hiPS cell state. At the same time, differentiated cells that shared a barcode 
tended to display more clustered gene expression states than would be seen by random chance. These 
findings suggested that cell type determination during cardiac directed differentiation generally occurred some 
time after hiPS cell seeding, but it remained unclear why some barcoded clones had relatively homogeneous 
expression states while others displayed a wide range of expression states. Clones with strong homogeneity in 
expression states likely initiated cell type determination early and uniformly adopted and maintained the 
associated expression states throughout differentiation. However, for the clones with more variability in 
expression states across constituent cells, there are two potential drivers for this expression state variability. 
One possibility is that, among the more variable clones, cell type determination is initiated later after 
constituent cells have divided and diverged in expression states, such that individual cells adopt and maintain 
a variety of expression states. Relatedly, a multipotent cell could, over multiple cell divisions, progressively 
lineage-restrict and give rise to multiple cell types with disparate cell type expression over the differentiation 
time course all within the same clone. Alternatively, cell type determination could be initiated early in these 
more variable clones but the expression state could be poorly maintained, such that over time, derived cells 
adopt a variety of different expression states.  

To distinguish these possibilities, we performed single-molecule RNA fluorescence in situ hybridization 
(RNA FISH) on cells in their differentiation wells for multiple cell type markers and looked to see whether cell 
types grew out in patches as a proxy for the maintenance of cell expression states. We hypothesized that, if 
cell type determination initiated early in differentiation and the associated expression states were maintained 
through much of the cellular expansion observed in differentiation, we would observe large patches of cells of 
the same type (i.e. expressing high levels of the same marker). If instead cell type determination occurred late 
but associated expression states were maintained for the remainder of differentiation, we would expect to see 
small patches of cells of the same type. In contrast, if cell expression states were not maintained through the 
cell growth observed in differentiation, we would observe large swaths of cells consisting of interspersed cell 
types in the differentiation well (Figure 5A). On day 12 of differentiation, shortly before our previous timepoints 
and 4 days after we first noticed contractile activity, we imaged cells to capture prevalence of contractile 
activity before fixing the cells in their wells (Supplementary Movies 1 and 2). We probed for the expression of 5 
canonical cell type marker genes by single-molecule RNA FISH—TNNT2 for cardiomyocytes, LUM for 
fibroblasts, EPCAM for epithelial cells, ISL1 (Cai et al. 2003; Moretti et al. 2006) which is expressed in cardiac 
progenitors, and WT1 for epicardium (Zhou et al. 2008). We stained nuclei with DAPI and then imaged multiple 
positions throughout each well, capturing expression of each marker gene in at least 17 images. To determine 
patch size, we counted the number of nuclei associated with cell patches displaying marker gene expression 
within each image (Figure 5B). 
 All queried cell types were associated with a range of cell patch sizes, with a substantial number of 
patches larger than 20 cells in size (Figure 5C). While the most common patch size was between 1 and 5 cells 
for all cell types, different cell types displayed differing frequencies of large patches (sometimes composed of 
hundreds of cells) such that the vast majority of imaged EPCAM-high (96%), TNNT2-high (86%), and LUM-
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high (86%) cells were found in patches with upwards of 20 cells. Indeed, of the profiled cell types, EPCAM-high 
cells were most commonly in very large patches (64% of imaged cells belonged to patches with upwards of 
100 cells), while WT1-high cells tended towards smaller patch sizes (48% of cells belonged to patches with 10 
cells or fewer). While we cannot comment on the precise timing of cell type determination, it seemed that once 
a cell type determination was made, that determination was maintained in a cell autonomous manner for at 
least some divisions, resulting in patches of marker expression observable by visual inspection. A prediction 
from our earlier finding that cardiomyocytes, cardiac precursors, and epithelial cells might have stronger cell 
type determination upon seeding for differentiation (Supplementary figure 2C) is that these cell types should 
grow out in larger patches. We confirmed this prediction from our RNA FISH results, where we observed that 
TNNT2-high, ISL1-high, and EPCAM-high cells all were found in patches on average of 15 or more cells, 
whereas WT1-high cells were found in patches of 6 cells, on average. Less likely explanations for the observed 
marker patterns may be that similar cell types migrated towards each other to form these patches, or that 
unrelated, non-dividing cells in close proximity were all induced to become similar cell types. Interestingly, our 
cell type markers displayed a range of distribution patterns, suggesting that determination may be initiated in 
distinct ways for different cell types. While further analysis will be necessary to definitively answer the 
questions proposed, our results are suggestive of a model of cardiac differentiation in which cell type 
determination occurs with different initiation times between cell types, following which this determination is 
maintained in a largely cell-autonomous manner. 
 
 
Discussion 
Here we have demonstrated that cell type determination across multiple cardiac and non-cardiac cell types of 
interest occurs only after seeding for cardiac directed differentiation, with intrinsic differences between hiPS 
cell precursors playing little to no role. Nor does there appear to be an intrinsic bias among individual hiPS 
cells toward survival or death. Given our experimental design, where we split recently divided sibling hiPS cells 
across parallel differentiations, we should have been able to detect any intrinsic predetermination that was 
maintained through at least 3-5 cell divisions, suggesting that extrinsic factors such as location in the 
differentiation well or local inductive cues are likely more pertinent to final cell type determination, though we 
cannot exclude the possibility that intrinsic effects on shorter time scales may also be important.  
 While differences in the hiPS cell population likely do not predetermine final cell type following cardiac 
directed differentiation, the finding that, within a differentiation, cells that share an hiPS cell progenitor tend to 
adopt expression state trajectories more similar than random, suggests that cell type determination can occur 
early enough to allow for multiple cell divisions after the determination is made, at least for some cell types. 
Additionally, expression states characteristic of cardiomyocytes, cardiac precursors, or epithelial cells seem to 
be largely restricted to certain clonal populations and vice versa—barcoded clones for which a plurality of cells 
became one of these 3 cell types were the most internally similar, while other clones comprised a more 
random distribution of types. It may thus be that cardiomyocytes, cardiac precursors, and epithelial cell types 
have earlier initiation of determination. These results were largely recapitulated by our single-molecule RNA 
FISH-based analysis of how differentiated cell types are spatially distributed, where we found that all queried 
cell types (cardiomyocytes, fibroblasts, epithelial cells, cardiac progenitors, and epicardial cells) were present 
in patches that were observable by visual inspection, suggesting that cell types, once determined, are 
maintained in a cell-autonomous way across multiple cell divisions. 

There are multiple models that might explain both the variability we observed in marker patch size by 
RNA FISH and the variable degree to which clonally related cells share similar final expression states. One 
possible interpretation of these data is that cell type determination may begin at various times during 
differentiation, with some determination for some cells (and cell types) occurring early in differentiation before 
dividing numerous times and accounting for larger cluster sizes and other cells becoming determined later after 
many divisions. Alternatively, there may exist differences in division rate between cells generating large and 
small cluster sizes despite similar timing of cell type determination, or small clusters may be generated by 
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migrating cells. Additionally, although cell type seemed to be maintained for at least some divisions across all 
queried cell types, it is interesting to note that our cell type markers were found in patches with widely varying 
numbers of cells, suggesting that the initiation of cell type determination may vary by cell type. For instance, in 
a model where cell type determination is ongoing over time, one possibility is that cells have a constant 
probability per unit time (i.e., rate) of determining to become any of the queried cell types. The cell types 
associated with larger clusters (ex. epithelial) may in that case be associated with higher rates of initiation than 
cell types tending toward smaller clusters (ex. epicardial). Alternatively, cell types associated with smaller 
clusters may be less proliferative. 
 We propose a model in which at least some cardiac cells are determined early in differentiation. This 
model is supported by another recent finding that perturbations at the stage of cardiac mesoderm specification 
during directed differentiation led to no significant changes to the overall proportion of cardiomyocytes and 
non-myocytes (J. H. Lee et al. 2017), suggesting that cells may determine whether they are cardiac or non-
cardiac cell types in the first few days of directed differentiation. Such a model would also be consistent with in 
vivo experiments that point to the existence of a cardiac multipotent cell prior to gastrulation (Meilhac et al. 
2004; Lescroart et al. 2014; Devine et al. 2014; Ivanovitch et al. 2021; Zhang et al. 2021). Simultaneously, 
strict spatiotemporal patterning of EPCAM at the onset of murine gastrulation and in embryonic stem cell 
differentiation has been shown to direct the appropriate segregation of EPCAM positive endoderm and EPCAM 
negative mesoderm and is necessary for cardiomyocyte production (Sarrach et al. 2018). Our finding that 
EPCAM-high cells tended more than any other queried cell type to be present in larger patches following 
directed differentiation and adjacent to but not co-expressed with TNNT2 is consistent with proposed models in 
which EPCAM-high cells are also determined in the first few days of directed differentiation and facilitate 
cardiomyocyte maturation, potentially through physical contact or secreted factors (Uosaki et al. 2012; 
Holtzinger, Rosenfeld, and Evans 2010; Foley et al. 2006). In our work, we were unable to disentangle time 
from the number of cell divisions since cell type determination. Further work following clonal cells in space and 
time as they proceed through directed differentiation will be required to map the timing and additional details of 
cell type determination. 
 It is often anecdotally noted that substantial cell death occurs during the cardiac directed differentiation 
process (Qiu et al. 2017), but heretofore it has not been known how this relates to the starting population of 
hiPS cells. Because efficiency in the field is often measured by percentage of differentiated cells that display 
markers or contractile activity, no comment is made about the extent of selection that may occur prior to this 
point. Here we show that, during cardiac directed differentiation only a fraction of hiPS precursor cells 
contribute to the final differentiated population. It could be that all cells within particular barcode clones are all 
fated for extermination, or alternatively that cells are probabilistically selected out from within cells across all 
barcode clones equally. We cannot fully distinguish between these possibilities; however, our data suggest the 
latter scenario is more likely. We note that we recovered a smaller proportion of barcodes from differentiated 
cells in our single cell RNA-sequencing experiments than in our genomic DNA barcode sequencing and 
subsequently observed a smaller proportion of overlapping barcodes between parallel differentiations. One 
contributor to this process may have been transgene silencing, which we found does not occur in a barcode-
specific manner (Supplementary figure 3C), such that when profiling barcodes from GFP positive cells alone 
we subsampled to some extent the total progeny of any hiPS progenitor cell. This subsampling was potentially 
compounded by our use of a lower multiplicity of infection so as to meet the technical requirements of single 
cell RNA-sequencing lanes; because we started with a smaller initial number of barcodes in our hiPS 
progenitor population, if we assume a constant low level of cell/barcode loss, our barcode recovery from 
differentiated cells may have been more affected than experiments where we had more initial barcodes (i.e. 
higher MOI). 
 We focused on cell type determination during cardiac directed differentiation of hiPS cells because the 
protocols are well-characterized, and there are distinct cell types that form following differentiation of clonal cell 
lines. It will be interesting in the future to apply our framework to later starting populations in cardiac directed 
differentiation to narrow down the timing of cell type determination. Additionally, we are increasingly able to 
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differentiate hiPS cells to recapitulate numerous other human tissues. Application of our framework to other 
tissue populations may reveal universal characteristics of cell type determination during differentiation.  
 
 
Methods 
Cell culture 
Generation and maintenance of hiPS cell culture 
PENN123i-SV20 hiPS cell line was generated as previously described (W. Yang et al. 2015), thawed, and 
maintained in feeder-free conditions on Geltrex (ThermoFisher, cat. A1413301)-coated dishes in StemMACS 
iPS Brew-XF medium (Miltenyi, cat. 130-104-368) supplemented with 1% penicillin/streptomycin (Invitrogen, 
cat. 15140-122). We performed all hiPS culture incubations at 37°C, 5% CO2, 5% O2 and changed the medium 
every 48 hours. For maintenance, we split cells every 4-5 days at a 1:10 ratio using StemMACS Passaging 
Solution XF (Miltenyi, cat. 130-104-688).  
 
Cardiac directed differentiation of hiPS cells 
To perform cardiac directed differentiation we adapted standard protocols as previously described (Mellis et al. 
2021; Shah et al. 2021; Palpant et al. 2017; Laflamme et al. 2007). Briefly, we grew undifferentiated hiPS cells 
in feeder-free conditions for 4-5 days until they reached ~75% confluency. At this point we used a 4 minute 
incubation with Accutase (Sigma, cat. A6964) to detach hiPS cells and subsequently counted and seeded cells 
onto Geltrex (ThermoFisher, cat. A1413301)-coated 12-well plates at a density in the range of 3-7x105 cells 
per well in iPS-Brew + 2µM Thiazovivin (Sigma, cat. SML1045-5MG). Alternatively, for RNA FISH experiments, 
we seeded cells onto Geltrex-coated Nunc Lab-Tek 8-well chambered coverglass (Thermo Scientific, cat. 12-
565-470) at a density of 4-5x104 cells per well. At this time (Day -2) we moved cells to incubators set to 37°C, 
5% CO2, and ambient O2. After 24 hours, we changed the culture medium to iPS-Brew + 1µM Chiron 99021 
(Cayman Chemical, cat. 13122) and incubated cells for another 24 hours. On Day 0 to induce cardiac 
differentiation, we replaced the medium with RPMI/B27-insulin (RPMI 1640 (Invitrogen, cat. 11875085) with 
2% B-27 Supplement Minus Insulin (Life Technologies, cat. 17504-044)) medium supplemented with 100ng/mL 
recombinant human/mouse/rat activin A (R&D systems, cat. 338-AC- 010) and incubated cells for 18 hours. On 
Day 1, we changed the medium to RPMI/B27-insulin supplemented with 10ng/ml BMP4 (Peprotech, cat. AF-
120-05ET) + 1uM Chiron 99021 and incubated cells for 48 hours. On Day 3, we changed the medium to 
RPMI/B27-insulin supplemented with 1uM Xav 939 (Tocris Bioscience, cat. 3748), and incubated cells for 
another 48 hours. During this incubation, substantial cell death was typically observed, as noted in the 
protocol. On Day 5, we replaced the medium with RPMI/B27-insulin without supplementary cytokines for 72 
hours. For every 2 days after, we replaced the medium with RPMI/B27+insulin (2% B-27 Supplement Minus 
Insulin (Invitrogen, cat. 17504044)) + 0.5% penicillin/streptomycin + 1% L-glutamine (Invitrogen, 25030-081). 
We typically observed spontaneously beating activity beginning between Days 8 and 12.  
 
Barcode lentivirus library generation 
Barcode libraries were constructed as previously described (Emert et al. 2021). Full protocol available at 
https://www.protocols.io/view/barcode-plasmid-library-cloning-4hggt3w. Briefly, we modified the LRG2.1T 
plasmid, kindly provided by Junwei Shi, by removing the U6 promoter and single guide RNA scaffold and 
inserting a spacer sequence flanked by EcoRV restriction sites just after the stop codon of GFP. We digested 
this vector backbone with EcoRV (NEB) and gel purified the resulting linearized vector. We ordered PAGE-
purified ultramer oligonucleotides (IDT) containing 30 nucleotides homologous to the vector insertion site 
surrounding 100 nucleotides with a repeating “WSN” pattern (W = A or T, S = G or C, N = any) and used 
Gibson assembly followed by column purification to combine the linearized vector and barcode oligo insert. We 
performed 9 electroporations in total of the column-purified plasmid into Endura electrocompetent Escherichia 
coli cells (Lucigen) using a Gene Pulser Xcell (Bio-Rad), allowing for recovery before plating serial dilutions 
and seeding cultures (200mL each) for maxipreparation. We incubated these cultures on a shaker at 225 rpm 
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and 32ºC for 12-14 hours, after which we pelleted cultures by centrifugation and used the EndoFree Plasmid 
Maxi Kit (Qiagen) to isolate plasmid according to the manufacturer’s protocol, sometimes freezing pellets at -
20ºC for several days before isolating plasmid. Barcode insertion was verified by polymerase chain reaction 
(PCR) from colonies from plated serial dilutions. We pooled the plasmids from the 9 separate cultures in equal 
amounts by weight before packaging into lentivirus. 
 
Lentivirus packaging and transduction 
To package lentivirus we adapted protocols that have been previously described (Emert et al. 2021; Torre et 
al. 2021). Prior to plasmid transfection, we grew HEK293FT cells to 80-90% confluency in 10x15-cm plates in 
DMEM containing 10% FBS without antibiotics. For each 15-cm plate, we added 184 µL of polyethylenimine 
(Polysciences, cat. 23966) to 1.15 mL of Opti-MEM (Thermo Fisher Scientific, cat. 31985062), separately 
combining 11.5 µg of VSVG and 17.25 µg of pPAX2 and 16.89 µg of the barcode plasmid library in 1.15 mL of 
Opti-MEM before incubating both solutions at room temperature for 5 minutes. We mixed both solutions 
together by vortexing and incubated the combined plasmid-polyethylenimine solution at room temperature for 
15 minutes. We added 2.509 mL of the combined plasmid-polyethylenimine solution dropwise to each 15-cm 
dish. After 7 hours, we aspirated the media from the cells and added fresh DMEM containing 10% FBS and 5% 
penicillin/streptomycin. The next morning, we aspirated the media, washed the cells with 1x DPBS, and added 
fresh DMEM containing 10% FBS and antibiotics. Approximately 9 hours later, we transferred the virus-laden 
media to an empty, sterile DMEM bottle and added another 10-15mL of DMEM containing 10% FBS and 
antibiotics to each plate. We collected virus-laden media twice more over the next 25 hours and, during this 
time, stored the collected media at 4ºC. After the final collection, we filtered the virus-laden media through a 
0.22µm PES filter and then concentrated viral particles by ultracentrifugation at 24,000 rpm for 1.5 hours (4ºC) 
with an SW-32Ti swinging bucket rotor (Beckman Coulter). We resuspended the viral pellet in iPS-Brew at 
1/200th the original supernatant volume and then stored 50-100 µl aliquots at -80ºC. 
 In preparation for transduction of hiPS cells, we grew undifferentiated cells in feeder-free conditions for 
4-5 days until they reached ~75% confluency. The day prior to transduction, we used a 4 minute incubation 
with Accutase to detach hiPS cells and subsequently counted and seeded cells onto Geltrex-coated 6-well 
plates at a density of 1x105 cells per well in iPS-Brew + 2µM Thiazovivin. The next day, to transduce hiPS 
cells, we added freshly thawed (on ice) virus-laden media (diluted 1:100 in iPS-Brew for all volumes < 10 µl) 
and polybrene (final concentration, 6 µg/mL) to the cells that had been seeded the day prior. We incubated the 
cells with virus for 6-8 hours and then removed the media, washed the cells with 1x DPBS and added 3 mL of 
iPS-Brew to each well. We determined viral titers by measuring the percentage of GFP positive cells by flow 
cytometry, 48 hours after transduction with serial dilutions of concentrated virus. We also determined titers for 
virus-laden media that had been stored at 4ºC for 4 days following fresh thaw on ice. We used dilutions of virus 
that produced less than 40% GFP positive cells to calculate the multiplicity of infection (MOI) and titer. 
 For single cell RNA sequencing experiments, we used an estimated MOI of 0.04, resulting in 
approximately 3,900-7,800 initial barcodes. For genomic DNA barcode sequencing experiments, we infected 
cells on two days with estimated MOIs of 0.1, 0.23 or 0.5, and 1.0. 
 
Single cell isolation and flow sorting 
On the day of collection, we used 0.25% trypsin-EDTA (Gibco, cat. 25200-056) to lift cells. To quench 
trypsinization we used RPMI 1640 +20% FBS following which we used pipetting to generate a single cell 
suspension. After a 1xDPBS (Invitrogen, cat. 14190-136) wash, we pelleted then resuspended cells in 
fluorescence-activated cell sorting (FACS) buffer consisting of 1% BSA + 2mM EDTA (from 0.5M EDTA (Life 
Technologies, cat. 15575-020)) in 1xDPBS, supplemented with 2µM Thiazovivin and 1x Antibiotic-antimycotic 
(Gibco, cat. 15240-062). Cells were sorted on a MoFlo Astrios machine (Beckman Coulter). In preparation for 
single cell RNA-sequencing, after gating for live cells and singlets, we collected 15,000 events from each of 
two GFP positive populations and 300,000 events from each of two GFP negative populations.  
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Single cell RNA-sequencing 
With the day 14 sorted cells, we used the 10X Genomics single-cell RNA-seq kit v3. Briefly, we spun down and 
resuspended both sorted GFP positive populations in their entirety according to the Chromium Next GEM 
Single Cell 3ʹ Reagent Kits v3.1 manufacturer directions (10X Genomics) targeting 10,000 cells for recovery. 
To match these numbers, we counted 15,000 cells from one of the GFP negative populations and 
resuspended them in the same way. With the help of the Wistar Genomics Facility, we generated gel beads-in-
emulsion (GEMs) using the 10X Chromium system (10X Genomics, Pleasanton, CA). From these GEMs we 
extracted barcoded cDNA according to the post-GEM RT-cleanup instructions and amplified cDNA for 11 
cycles. With 10µl of this amplified cDNA we proceeded with fragmentation, end-repair, poly A-tailing, adapter 
ligation, and 10X sample indexing per the manufacturer’s protocol. We quantified libraries using the Qubit 
Fluorometer (Thermo Fisher) and Bioanalyzer (Agilent) analysis prior to sequencing on a NextSeq 500 
machine (Illumina) using 28 cycles for read 1, 55 cycles for read 2, and 8 cycles for each index. 
 
Bioinformatics processing of single cell RNA-sequencing expression data 
Upon downloading our NextSeq sequencing run(s) we mapped reads to the original transcripts and cells using 
the cellranger pipeline v4.0.0 by 10X Genomics. We began by using cellranger mkfastq with default 
parameters to demultiplex raw base call files into library-specific FASTQ files. To align FASTQ files to the 
GRCh38p13 human reference genome and extract gene expression counts matrices, we used cellranger count 
based on Gencode v32 annotation, filtering and correcting cell identifiers and unique molecular identifiers 
(UMI) with default settings. Prior to filtering, we recovered 6,117 and 4,856 estimated differentiated cells for 
each of our GFP positive samples, respectively, and 6,645 estimated differentiated cells for our GFP negative 
samples. From here on out, most of our single cell expression analysis was done in Seurat v4 (Hao et al. 
2020). Within each experimental sample, we removed genes that were present in less than 3 cells and cells 
with less than or equal to 200 or greater than or equal to 10,000 genes. Post filtering, we performed 
normalization and variance stabilization within each sample using Seurat’s SCTransform algorithm 
(Hafemeister and Satija 2019). We integrated all differentiated samples according to the Satija lab’s integration 
workflow (https://satijalab.org/seurat/articles/integration_introduction.html), anchoring to the 5,000 most 
variable genes. We used this integrated dataset to generate data dimensionality reductions by principal 
component analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP), using 50 principal 
components for UMAP generation. We also tested integration using 1,000, 2,000, and 7,000 variable genes. 
Although there were small differences between dimensional reductions generated from integrated datasets 
anchored to 1,000 vs 2,000 vs 5,000 genes (somewhat expected, per Satija lab instructions to use 3,000 or 
more feature anchors), we noticed essentially no differences in the dimensional reductions resulting from 
integration with 5,000 and 7,000 features, leading us to select the former.  
 To generate Seurat clusters for further analysis, we tested a range of resolutions with Seurat’s 
FindClusters command between 0.4 and 1.2 (recommended for datasets of around 3,000 cells) and examined 
the resulting clusters as visualized on UMAP. We chose to focus on clusters generated using a resolution of 
0.5 as these best captured a putative cardiomyocyte cluster (based on high TNNT2 and ACTC1 expression) as 
well as grouped together dividing cells (high expression of MKI67). The processed data following filtering, 
normalization, and clustering was used as the input to select marker genes for each cluster as compared to all 
other cells using FindAllMarkers with the parameters “only.pos = TRUE, min.pct = 0.25” to select for only 
genes with positive expression in at least 25% of the cells within a cluster. We selected 2-3 of these markers 
per cluster to generate a heatmap of normalized RNA expression using the RNA@data slot of our Seurat 
object and the ComplexHeatmap package (Gu, Eils, and Schlesner 2016).  
 
Principal component analysis of differentiated and iPS single cell RNA-sequencing data sets 
We sorted hiPS cells and sequenced, filtered, and normalized the resulting dataset in Seurat as described for 
the differentiated cells above, resulting in 1,198 cells for analysis. As before, we used SCTransform to 
normalize and variance-stabilize the dataset and then performed principal component analysis using Seurat’s 
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RunPCA command, using the 5000 variable features used to normalize the object. To get total variance for 
each dataset (i.e. both the hiPS cell dataset and the integrated differentiated cell dataset), we took the sum of 
the variance estimates per row of the SCT@scale.data matrix (where each row represented a gene). We 
calculated the eigenvalues by squaring the standard deviations per principal component stored by Seurat 
following PCA generation. To calculate the fraction of variance explained per principal component, we divided 
each of our eigenvalues by the total variance, using ggplot2 to plot the fraction of variance explained for each 
of the first 10 principal components. To estimate how much variance could be explained by pure chance, we 
also ran PCA on randomized data. 
 
Barcode recovery from single cell RNA-sequencing data 
To extract barcode information from our GFP positive cells, we used another 10µl of the amplified cDNA. With 
this cDNA, we ran an extra PCR “side reaction” using, on one side, a range of primers that target the 3’ UTR of 
GFP (Supplementary Table 1) and on the other side a primer that targets a region introduced through the 
library preparation called “Read 1” (18 cycles using NEBNext Q5 Hot Start HiFi PCR Master Mix (New England 
Biolabs)). These primers amplify a region that contains both the 10X cell-identifying sequence as well as the 
lentivirally introduced 100 bp barcode, enabling us to connect barcode clone information to the expression 
information indexed to each 10X cell-identifying sequence. Following this we performed a 0.7x bead 
purification (Beckman Coulter SPRIselect) before pooling final libraries at equimolar ratios for sequencing on a 
NextSeq 500 machine using 26 cycles for read 1, 124 cycles for read 2, and 8 cycles for each index. 
 
Bioinformatics processing of barcoded single cell data 
We recovered barcodes from our side reaction sequencing data using custom shell and python scripts 
available on Dropbox at the link below in the directory “10XbarcodepipelineScripts”. These scripts search 
through each read searching for sequences complementary to the side reaction library preparation primers, 
filtering out reads that lack the GFP barcode sequence, have too many repeated nucleotides, or do not meet a 
phred score cutoff. To merge highly similar barcode sequences (that may have diverged due to sequencing 
and/or PCR errors), we took the first 30 base pairs of each barcode sequence and used STARCODE software 
(Zorita, Cuscó, and Filion 2015), available at https://github.com/gui11aume/starcode, to merge sequences with 
Levenshtein distance ≤ 6, summing the counts and keeping only the most abundant barcode sequence. 
 To assign barcodes to individual cells, we performed a series of filtering steps. We first filtered out all 
barcodes that were associated with fewer than 2 unique molecular identifiers (UMI). We expected no more 
than 1 barcode per cell given the low MOI used to transduce hiPS cells, but the depth of sequencing required 
to recover maximal barcode information can lead to spurious assignment of multiple barcodes per cell. We 
selected only the barcodes associated with ≥30% of the total number of UMIs assigned to each individual cell, 
in many cases resolving the multiple barcodes issue by leaving only a single dominant barcode. We kept only 
unique cell-barcode pairs, filtering out any cells that were still assigned multiple barcodes. Altogether, we were 
able to recover barcode information for 5,860 of the 10,973 GFP positive cells (~53%). These 5,860 cells 
shared 1,024 unique barcodes, substantially fewer than the estimated 3,900-7,800 initial barcodes. 
 
Derivation of Seurat cluster probability distributions and Jensen-Shannon distance analysis 
For within differentiation barcode clonal analysis, we looked at barcodes labeling at least 20 cells following 
cardiac directed differentiation within either of the 2 differentiations. We found that only two cells labeled by 
these barcodes were found in Seurat cluster 14 and so removed this cluster from our analysis, focusing on 
clusters 0 through 13. This resulted in separate datasets of 1,576 total cells associated with 30 barcodes and 
950 total cells associated with 19 barcodes. For each barcode clone within a dataset, we found how its 
associated cells partitioned across Seurat clusters 0 through 13. We then divided the raw number of cells per 
cluster by the total number of cells found in that cluster within that dataset (i.e. how many of the 1,576 or 950 
total cells partitioned into that Seurat cluster), then normalized all cluster proportions to sum to 1 to get 
“probability distributions” for each barcoded clone.  
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To generate the probability distributions we might expect from random chance, we averaged the results 
from the normalization as above of 1000 random samples of a matched number of cells from the total 1,576 or 
950 cells in the dataset, noting that for all barcodes this distribution was approximately uniform. We calculated 
the Jensen-Shannon distance between our observed barcode probability distribution and the averaged random 
probability distribution largely as previously described (Arumugam et al. 2011, 2014), the one exception being 
that we chose to use log base 2 to calculate the Kullback-Leibler divergence, such that maximally different 
samples would have a Jensen-Shannon distance of 1. To determine the significance of our calculated Jensen-
Shannon distance, we took another 1000 random samples of a matched number of cells, and for the 
probability distribution associated with each random sample, calculated the Jensen-Shannon distance from the 
averaged random probability distribution.  
 For analyses of barcode clone distribution across differentiations, we filtered for barcode clones 
labeling at least 5 cells in each split following parallel cardiac directed differentiations, resulting in 1,450 total 
cells belonging to 18 sets of barcoded clones. None of these cells were found in Seurat cluster 14, so it was 
once again omitted from our analysis. For each barcode, we generated separate probability distributions as 
above for the cells found in each split, normalizing per cluster by the number of cells out of the 1,450 in the 
analysis found in that cluster. We calculated the Jensen-Shannon distances as above between each barcode 
probability distribution and the 18 probability distributions associated with the other split and visualized these 
distances in a heatmap, where the Jensen-Shannon distances associated with the same barcode across 
parallel splits are found on the diagonal.  
 
Barcode library preparation from genomic DNA and subsequent sequencing 
We prepared barcode libraries from genomic DNA as previously described (Emert et al. 2021). Briefly, we 
isolated genomic DNA from cells, a subset of which had barcodes, using the QIAmp DNA Mini Kit (Qiagen, cat. 
51304) per the manufacturer’s protocol. Extracted DNA was stored at -20ºC for days to weeks for some of the 
samples before the next step. We then performed targeted amplification of the barcode vector using custom 
primers containing Illumina adaptor sequences, unique sample indices, variable-length staggered bases, and 
an ‘UMI’ consisting of 6 random nucleotides (NHNNNN). Although these ‘UMIs’ are not true unique molecular 
identifiers, we found that, as previously described, they appeared to modestly normalize read counts and 
increase reproducibility. To reduce PCR amplification bias, we determined the number of cycles for each cell 
type by first performing a separate quantitative PCR (qPCR) and selecting the number of cycles needed to 
achieve one-third of the maximum fluorescence intensity for serial dilutions of genomic DNA. We then 
performed multiple PCR reactions using the remaining total isolated genomic DNA utilizing this cycle 
information, followed immediately by a 0.7x bead purification (Beckman Coulter Ampure XP). We pooled 
purified libraries, quantified them using the Qubit dsDNA High Sensitivity Assay (Thermo Fisher Scientific), and 
sequenced them on a NextSeq 500 using 150 cycles for read 1 and 8 cycles for each index. 
 To check for silencing of transgenes, prior to isolating genomic DNA from one of our conditions (MOI 
1.0), we sorted out GFP positive and GFP negative cells from both sibling differentiation wells, preparing cells 
as described above. We sorted cells into 1xDPBS + 2µM Thiazovivin, collecting 439,000 GFP positive and 
953,000 GFP negative cells from one differentiation well and 737,000 GFP positive and 1,500,000 GFP 
negative cells from the other. Barcodes were found in both GFP positive and GFP negative sorted conditions, 
suggesting that transgene silencing does not occur in a barcoded clone (i.e. integration site)-specific manner. 
Because our GFP positive and GFP negative cell populations have indistinguishable expression profiles by 
single cell RNA sequencing (described above), we concluded that there likely were not major differences 
between barcoded cells that continued to transcribe their barcodes and those that did not, such that our 
analyses of barcoded cell distributions were likely representative of the barcoded population as a whole. 
 
Computational analyses of barcode genomic DNA sequencing data 
We recovered barcodes from sequencing of our genomic DNA barcode libraries, with some adaptations to our 
pipeline as previously described (Emert et al. 2021). Briefly, we used custom Python scripts available at 
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https://github.com/arjunrajlaboratory/timemachine to search for barcode sequences that pass a minimum 
length and phred score cutoff. Along with counting total reads for each barcode, we also count the number of 
‘UMIs’ incorporated into the library preparation primer sequences (see above section). As before, we do not 
believe that these ‘UMIs’ tag unique barcode DNA molecules, but empirically they slightly improve correlation 
in barcode abundance among replicate libraries. We took the first 30 base pairs of each STARCODE (Zorita, 
Cuscó, and Filion 2015) software to merge sequences with Levenshtein distance ≤ 8, summing counts across 
merged sequences and keeping the most abundant barcode sequence. We further filtered out all barcodes 
containing three unknown bases (“NNN”) in a row. 
 To approximate the number of barcodes that would overlap between splits by random chance, we 
extracted initial barcode sequences and estimated their initial abundance by ‘UMI’ number per barcode, where 
these ‘UMIs’ serve as a potentially more accurate proxy for initial cell numbers than read count. We then used 
the binomial distribution to computationally ‘split’ these initial barcode ‘UMIs’ into two populations, each then 
modified by a loss coefficient to account for cells that were lost during differentiation and experimental 
manipulation. We chose a loss coefficient for which the simulation resulted in overlap values between initial 
barcode pool and barcodes recovered from either differentiated split matching those found experimentally. 
Between 22% and 66% of initial barcodes were also found in differentiated samples (i.e. “survival 
proportion”)—although highly variable across experiments, the survival proportion tended to vary less between 
the 2 splits associated with each initial barcoded sample. Using the loss coefficient, we determined how much 
overlap between simulated splits might be expected due to chance alone. 
 
Single-molecule RNA FISH 
TNNT2 and LUM probes were used as previously described (Mellis et al. 2021; Padovan-Merhar et al. 2015). 
For our other genes of interest, we designed complementary oligonucleotide probe sets using custom probe 
design software written in MATLAB as previously described (Rouhanifard et al. 2018; Shaffer et al. 2018; 
Emert et al. 2021) and ordered oligonucleotides with a primary amine group on the 3’ end from Biosearch 
Technologies (see Supplementary Table 2 for probe sequences). We pooled all complementary 
oligonucleotides for each gene (14-32 oligonucleotides, depending on gene length and favorable binding 
regions) to make a probe set, coupling the resulting probe set to Cy3 (GE Healthcare), Alexa Fluor 594 (Life 
Technologies), or Atto647N (ATTO-TEC) N-hydroxysuccinimide ester dyes. We performed single-molecule 
RNA FISH as previously described (Raj et al. 2008). To fix cells, we aspirated media from differentiated cells, 
washed the cells once with 1x DPBS and then incubated the cells in fixation buffer (3.7% formaldehyde in 1x 
DPBS) for 10 minutes at room temperature. We then aspirated the fixation buffer, washed samples twice with 
1x DPBS, and added 70% ethanol before storing samples at 4ºC. For hybridization of RNA FISH probes, we 
rinsed samples with wash buffer (10% formamide in 2X SSC) before adding hybridization buffer (10% 
formamide and 10% dextran sulfate in 2X SSC) with standard concentrations of RNA FISH probes and 
incubating samples overnight with coverslips, in humidified containers at 37ºC. The next morning, we 
performed two 30-minute washes at 37ºC with wash buffer, after which we added 2X SSC with 50 ng/mL of 
DAPI. We mounted the sample for imaging in 2X SSC. 
 
Imaging 
We imaged RNA FISH samples on a Nikon TI-E inverted fluorescence microscope equipped with a SOLA SE 
U-nIR light engine (Lumencor), a Hamamatsu ORCA-Flash 4.0 V3 sCMOS camera, and 4x Plan-Fluor DL 4XF 
(Nikon MRH20041/MRH20045), 20x Plan-Apo λ (Nikon MRD00205) and 60x Plan-Apo λ (MRD01605) 
objectives. As multiple layers of cells are generated through cardiac directed differentiation, we acquired z-
stacks (0.5 µm spacing between slices) encompassing multiple complete cells at 60x magnification. To acquire 
different fluorescence channels we used the following filter sets: 31000v2 (Chroma) for DAPI, 41028 (Chroma) 
for Atto 488, SP102v1 (Chroma) for Cy3, and 17 SP104v2 (Chroma) for Atto 647N, and a custom filter set for 
Alexa 594. We tuned the exposure times depending on the dyes used: 500 ms for probes in Cy3, Atto 647N, 
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and Alexa 594 and 10 ms for DAPI probes. We also acquired images in the Atto 488 channel with a 200 ms 
exposure as a marker of autofluorescence. 
 We used the same microscope setup to take 4X magnification brightfield short videos demonstrating 
the prevalence of contractile activity prior to fixation of cells for RNA FISH. 
 
Image processing 
For each 60X image stack, we identified by eye the extent of RNA FISH signal and counted the number of 
DAPI-stained nuclei corresponding to each patch (i.e. adjacent cells expressing the same marker gene) of 
signal. We systematically biased ourselves against large cluster sizes in the following ways: (1) we included 
patches of cells that clearly continued outside the field of view of the image, (2) we did not count any DAPI 
stains as nuclei that were atypically small or in focus out of plane with RNA FISH signal), and (3) we deemed 
patches as separate if there appeared to be a clear bridge smaller than 3 cell widths or if we found even one 
cell that appeared to not express the marker gene between other patches. We kept separate counts for each 
marker gene such that a cell co-expressing two markers would be counted for both markers. 
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Data and Code Availability 
All data and remaining code for these analyses can be found at 
https://www.dropbox.com/sh/pcihymkterrvvz3/AACTEQWG2KKQw3bi0NqShsWYa?dl=0 and upon reasonable 
request to the corresponding author. All analyses were done in R. We used a selection of color-blind friendly 
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Additional files 
Supplementary figures 1-4 (see legends below) 
 
Supplementary Table 1: Primers used to recover barcodes from 10X RNA sequencing libraries.  
Supplementary Table 2: Sequences of the single molecule RNA FISH probes used in this study.  
 
Supplementary Movies 1 and 2: Contracting cardiomyocytes in wells used for single molecule RNA FISH 
marker studies. 
 
 
Figure legends 
 
Figure 1: Cardiac directed differentiation of hiPS cells results in extensive heterogeneity of cell expression 
states. 

a. We directed hiPS cells to differentiate toward cardiac cell types using a well-established monolayer 
small molecule protocol. 

b. We performed single cell RNA-sequencing on day 14 differentiated cells (n = 17,599 in total after 
filtering). We applied the UMAP algorithm to the first 50 principal components to visualize differences in 
gene expression. Cells are colored by clusters determined using Seurat’s FindClusters command at a 
resolution of 0.5 (i.e. “Seurat clusters, resolution = 0.5”). 

c. Heatmap showing normalized gene expression for 2-3 selected markers per Seurat cluster across all 
17,599 cells. Maintaining the organization provided by UMAP, we recolored each cell by its expression 
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of LUM, a fibroblast marker found largely in Seurat clusters 0-2, TNNT2, which marks the putative 
cardiomyocytes in Seurat cluster 4, ISL1, which marks cardiac progenitors in Seurat cluster 8, WT1, 
which marks epicardial cells in Seurat cluster 9, and EPCAM, which marks epithelial cells in Seurat 
cluster 12. 

d. Fraction of variance explained by each of the top 10 principal components for an hiPS cell single cell 
RNA-sequencing dataset (n = 1,198, top) and for the day 14 differentiated cell dataset. The red line 
indicates how much variance is explained when the data is randomized prior to PCA (i.e. noise, see 
methods for details). 

 
Figure 2: Differentiated clones from hiPS precursors sometimes cluster in expression state following cardiac 
differentiation.  

a. Schematic of barcoding approach for labeling hiPS cells prior to cardiac differentiation. For the 
experiment shown, we transduced 4,000-8,000 hiPS cells at an MOI of ~0.03 with the Rewind (Emert et 
al. 2021) barcode library. After 3 days (3-4 population doublings), we seeded cells for cardiac 
differentiation. On day 14 of cardiac differentiation, we performed single-cell RNA sequencing. We 
asked whether cells sharing a barcode were more transcriptionally similar on day 14 than randomly 
sampled barcoded cells. 

b. Table of all 49 barcode clones comprising 20 or more cells within a differentiation, ranked by 
homogeneity of expression states of constituent cells, as measured using the “Jensen-Shannon 
distance”. Specifically, here “Jensen-Shannon distance” refers to the observed Jensen-Shannon 
distance between the cluster probability distribution associated with each barcode and a random cluster 
probability distribution generated from 1000 samples of a matched number of cells. “Random mean +/- 
SD” refers to the mean and standard deviation of randomized Jensen-Shannon distances (see methods 
for details), which were used to calculate the “p-value” column. “Cells” refers to the number of 
constituent cells per barcode. Pullout plots for 4 of the profiled barcodes (teal background) labeling 
between 30-40 constituent cells, exhibiting a range of Jensen-Shanon distances (suggesting Jensen-
Shannon distance is not a product of cell number) are described as follows. Maintaining the 
organization provided by UMAP, we plotted all cells in the analysis (grey) and recolored cells 
corresponding to each featured barcode in teal. Also for each featured barcode, we plotted bar graphs 
for observed cluster probability distribution (teal) and the average random cluster probability distribution 
(grey). Finally, we plot histograms demonstrating the distribution of randomized Jensen-Shannon 
distances between random cluster probability distributions generated from 1000 additional random 
samples and the average random cluster probability distribution described above (grey) as compared to 
the observed Jensen-Shannon distance between the featured barcode cluster probability and the 
average random cluster probability distribution (teal vertical line).  

 
Figure 3: Cellular survival during cardiac directed differentiation is not dictated by differences in hiPS cells. 

a. Schematic representation of experimental workflow. Briefly, we transduced hiPS cells at a range of 
MOIs (0.1, 0.23, 0.5, or 1.0), then 3 days later (3-4 population doublings), we harvested a third of cells 
for immediate extraction of genomic DNA and split the remaining cells across two parallel cardiac 
differentiations. On day 15 of differentiation we harvested differentiated cells from both splits for 
genomic DNA extraction. We sequenced and recovered barcodes from the genomic DNA from each 
split, asking whether the number of overlapping barcodes between splits was greater than would be 
found by random chance (which would suggest that barcoded clones are predisposed to survival vs 
death). 

b. Comparison of the simulated random barcode overlap (middle number) across splits with the observed 
barcode overlap from the splits differentiated from hiPS cells transduced at an MOI of ~0.5 (the 
experimental condition with the highest observed barcode overlap). 
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c. Scatter plot showing the number of cells per split labeled by the top 100 barcode clones composed of 
the most cells. Maintaining the organization provided by UMAP, we plotted all barcoded cells (grey) and 
recolored cells corresponding to each of four featured barcodes (marked in red on the scatter plot) in 
two shades of pink corresponding to the two parallel splits. There is little concordance for most barcode 
clones between the number of cells that are recovered from each split following cardiac differentiation. 

 
Figure 4: Differentiated expression state is determined after hiPS cells are seeded for differentiation. 

a. Schematic representation of experimental workflow. Briefly, we transduced hiPS cells at an MOI of 
~0.03, allowed them to grow for 3 days (3-4 population doublings), and split them evenly across two 
parallel cardiac differentiations (split A and split B). On day 14 of differentiation we performed single-cell 
RNA sequencing on both splits. We asked whether barcoded clones present in both differentiations 
were also transcriptionally similar to get at the question of whether cell type determination occurs 
before or after seeding of hiPS cells for differentiation. 

b. Heatmap of pairwise Jensen-Shannon distances between cells associated with 18 barcodes in split A 
and the cells associated with the same 18 barcodes in split B. In general, separated clones sharing a 
barcode (bolded outline along the diagonal) had Jensen-Shannon distances in the same range as 
clones labeled by distinct barcodes (off the diagonal).  

c. Plots associated with the four featured barcodes outlined in pink in Figure 4B. Maintaining the 
organization provided by UMAP, we plotted all cells in the analysis (grey) and recolored cells 
corresponding to each of the four featured barcodes in two shades of pink corresponding to the two 
parallel splits. Also for each featured barcode, we plot bar graphs for observed cluster probability 
distribution in split A (light pink) and the observed cluster probability distribution in split B (magenta). 

 
Figure 5: Spatial organization of cell type markers is consistent with maintenance of cell type determination in 
cardiomyocyte differentiation. 

a. Schematic representations of how cell types might grow out during differentiation with and without 
maintenance of cell expression state (denoted by color). 

b. Representative images of TNNT2, LUM, EPCAM, ISL1, and WT1 single-molecule RNA FISH of cells 
fixed on day 12 of cardiac differentiation, demonstrating patches of cells (denoted using dotted lines - 
TNNT2 in green, LUM in red, ISL1 in pink, EPCAM in blue, and WT1 in yellow) with high marker 
expression. Nuclei in patches counted manually, guided by DAPI expression. Scale bars are 50µm. 

c. Frequency of patch sizes associated with each marker gene (bars colored to match dotted lines in 
Figure 5B). The mean patch size is denoted with a slightly darker colored vertical line. Total number of 
images and clusters analyzed per marker also indicated on each histogram. 

 
 
Supplementary figure legends 
 
Supplementary figure 1: Localization of additional cell type markers following cardiac directed differentiation in 
day 14 differentiated cells. 

a. Maintaining the organization provided by UMAP, we recolored each cell by its expression of a number 
of canonical cell type markers; some of these are also listed in the heatmap in Figure 1C while others 
are important in cardiac biology. 

 
Supplementary figure 2: Barcoded clone distribution across clusters. 

a. Maintaining the organization provided by UMAP, we recolored all cells in each differentiated split (A or 
B) profiled by 10X single-cell RNA sequencing (grey) and then recolored the cells for which a barcode 
was recovered in light pink (split A) or magenta (split B). Bar graphs demonstrating the distribution of 
barcoded cells across Seurat clusters in each split, colored the same way. 
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b. Explanation of how we derived cluster probability distributions from raw cell cluster distribution for each 
barcoded clone, using barcode B31B as an example.  

c. Heatmap demonstrating the normalized cell proportion across Seurat clusters for all barcodes in the 
analysis from Figure 2. Most clusters are associated with low normalized cell proportions (light purple) 
across barcodes, but clusters 4, 8, and 12 have more binary behavior (i.e. either high normalized cell 
proportion or very low normalized cell proportion). Cluster 3 does as well but is largely artifactual due to 
low cell numbers in that cluster. 

 
Supplementary figure 3: Neither survival nor transgene silencing are barcode-specific. 

a. Comparison of the simulated random barcode overlap across splits with the observed barcode overlap 
from the splits differentiated from hiPS cells from all other transduction conditions (MOI 0.1, MOI 0.23, 
MOI 1.0). 

b. Statistical analysis associated with the fraction of overlapping barcodes found after differentiation of 
cells transduced with an MOI of ~0.5 (Figure 3B). We found that there was no significant difference in 
overlap for split A. While we did find a significant difference in overlap for split B, the effect size of this 
difference was such that it may have stemmed from technical variation in barcode recovery and was 
deemed unlikely to be biologically relevant. 

c. Venn diagrams demonstrating the overlap in barcodes found in sorted GFP positive and GFP negative 
subpopulations following differentiation for each split from cells initially transduced at an MOI of ~1.0. 
Profound overlap between GFP positive and GFP negative subpopulations suggests that GFP 
transgene silencing does not occur in an integration-specific or clone-specific manner. 

d. Top 20 barcode clones comprising the most total cells across both splits, noting how many were 
recovered from each split. Pink (light pink for split A, magenta for split B) backgrounds associated with 
the barcodes that are represented on UMAP in Figure 3C. 

 
Supplementary figure 4:  

a. Heatmap of pairwise Jensen-Shannon distances between cells associated with 2 barcodes in split A 
and the cells associated with the same 2 barcodes in split B from a dataset previously shown to have 
heritable predetermination of the final cell state (vemurafenib-treated melanoma cells). Separated 
clones sharing a barcode (bolded outline along the diagonal) had much smaller Jensen-Shannon 
distances than clones labeled by distinct barcodes (off the diagonal), demonstrating their similarity. This 
similarity is also visible in the comparison for each barcode of bar graphs for observed cluster 
probability distribution in split A (light pink) and the observed cluster probability distribution in split B 
(magenta). Cluster probability distributions are visually similar between separated clones and visually 
distinct across cells labeled by different barcodes. 
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Figure 1. Cardiac directed differentiation of hiPS cells results in extensive heterogeneity of cell expression states. 
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Figure 2. Differentiated clones from hiPS precursors sometimes cluster in expression state following cardiac differentiation. 
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Figure 3. Cellular survival during cardiac directed differentiation is not dictated by differences in hiPS cells. (A) Schematic representation of 
experimental workflow. Briefly, we transduced hiPS cells at a range of MOIs (0.1, 0.23, 0.5, or 1.0), then 3 days later (3-4 population doublings), we 
harvested a third of cells for immediate extraction of genomic DNA and split the remaining cells across two parallel cardiac differentiations. On day 15 of 
differentiation we harvested differentiated cells from both splits for genomic DNA extraction. We sequenced and recovered barcodes from the genomic 
DNA from each split, asking whether the number of overlapping barcodes between splits was greater than would be found by random chance (which would 
suggest that barcoded clones are predisposed to survival vs death). (B) Comparison of the simulated random barcode overlap (middle number) across 
splits with the observed barcode overlap from the splits differentiated from hiPS cells transduced at an MOI of ~0.5 (the experimental condition with the 
highest observed barcode overlap). (C) Scatter plot showing the number of cells per split labeled by the top 100 barcode clones composed of the most 
cells. Maintaining the organization provided by UMAP, we plotted all barcoded cells (grey) and recolored cells corresponding to each of four featured 
barcodes (marked in red on the scatter plot) in two shades of pink corresponding to the two parallel splits. There is little concordance for most barcode 
clones between the number of cells that are recovered from each split following cardiac differentiation. 
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in parallel differentiations 
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i.e. high Jenson-Shannon 
      distance to each other
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Figure 4. Differentiated expression state is determined after hiPS cells are seeded for differentiation.
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Cell expression state is maintained across divisions: cells grow out into patches of the same type
Is cell expression state maintained across cell divisions during differentiation?

Cell expression state is not maintained across cell divisions: cell types are interspersed
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Figure 5. Spatial organization of cell type markers is consistent with maintenance of cell type determination in cardiomyocyte differentiation. 
(A) Schematic representations of how cell types might grow out during differentiation with and without maintenance of cell expression state (denoted by 
color). (B) Representative images of TNNT2, LUM, EPCAM, ISL1, and WT1 single-molecule RNA FISH of cells fixed on day 12 of cardiac differentiation, 
demonstrating patches of cells (denoted using dotted lines - TNNT2 in green, LUM in red, ISL1 in pink, EPCAM in blue, and WT1 in yellow) with high 
marker expression. Nuclei in patches counted manually, guided by DAPI expression. Scale bars are 50µm. (C) Frequency of patch sizes associated with 
each marker gene (bars colored to match dotted lines in Figure 5B). The mean patch size is denoted with a slightly darker colored vertical line. Total number 
of images and clusters analyzed per marker also indicated on each histogram.
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