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Significant Statement 

Memories are formed through a multi-phase process; an early initial acquired memory 

consolidates into a stable form over hours and days. While the underlying phase-

specific molecular pathways are fairly known, the neuronal activity changes during 

these different phases remain elusive. Here we studied this unknown by tracking 

cortical neuronal activity over 24h as the taste becomes aversive following association 

with malaise. We found that that the progression of activity changes is organization-

level dependent: The population response changed continuously; the population mean 

amplitude was time-locked to the acquisition and consolidation phases, and the 

quickening of the known ensemble state dynamics appear only after consolidation. 

Our results reveal the complex organizational-level neuronal interactions that underlie 

the progression of memory formation. 
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Abstract: 

Acquiring new memories is a multi-stage process. Ample of studies have 

convincingly demonstrated that initially acquired memories are labile, and only 

stabilized by later consolidation processes. These multiple phases of memory formation 

are known to involve modification of both cellular excitability and synaptic 

connectivity,  which in turn change neuronal activity at both the single neuron and 

ensemble levels. However, the specific mapping between the known phases of memory 

and the observed changes in neuronal activity remains unknown. Here we address this 

unknown in the context of conditioned taste aversion learning by continuously tracking 

gustatory cortex (GC) neuronal taste responses from alert rats in the 24 hours following 

a taste-malaise pairing. We found that the progression of neuronal activity changes in 

the GC depend on the neuronal organizational level. The population response changed 

continuously; these changes, however, were only reflected in the population mean 

amplitude during the acquisition and consolidation phases, and in the known 

quickening of the ensemble state dynamics after the time of consolidation. Together 

our results demonstrate how complex dynamics in different representational level of 

cortical activity underlie the formation and stabilization of memory within the cortex. 
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Introduction: 

Learning is not a discrete event, but rather a process which evolves over time (Bailey 

and Kandel, 1993; Dudai, 2004; Aceti et al., 2015; Klinzing et al., 2019). More than a 

century of human and animal research has identified several important phases in the 

progression of memory formation (Müller and Pilzecker, 1900; Dudai, 2004; Mcleod, 

2013; Klinzing et al., 2019; Haubrich et al., 2020), which prominently include: 1) 

acquisition of an initial, labile memory that is protein-synthesis independent; and 2) 

consolidation and stabilization of that memory through a process that requires protein 

synthesis.   

These learning dynamics have been mainly studied using the fear conditioning 

(FC) paradigm in rodents (Schafe et al., 1999; Li et al., 2005; Runyan and Dash, 2005; 

Johansen et al., 2011; Aceti et al., 2015; Kida, 2019). In this paradigm, the early 

memory is rapidly acquired in the hippocampus-entorhinal cortex (HIP-EC) network, 

and consolidation is achieved by transferring the memory into neocortical networks, 

thus becoming HIP-independent (Squire and Alvarez, 1995; Buzsáki, 1996, 2015; 

Eichenbaum, 2000; PW Frankland, 2005; Logothetis et al., 2014; Squire et al., 2015; 

Genzel et al., 2017; Rothschild et al., 2017; Klinzing et al., 2019; Liu and Kuzum, 

2019).  It is unclear, however, how this stage-wise process, which is ubiquitous across 

paradigms (Ji and Wilson, 2007; Ortega-Martínez, 2015; Rothschild et al., 2017; 

Klinzing et al., 2019), plays out in non-hippocampal forms of learning. .    

 One such hippocampal-independent learning is conditioned taste aversion (CTA) 

(Garcia et al., 1955; Dibattista, 1988; Dunn and Everitt, 1988; Gallo et al., 1992; 

Yamamoto et al., 1994; Bures, J., Bermúdez-Rattoni, F., & Yamamoto et al., 1998), a 

classical conditioning paradigm in which a novel, innately palatable, taste becomes 

aversive following pairing with malaise. CTA is subserved by a system that includes 

(but is not limited to) the pons, amygdala and gustatory cortex (GC) (Yamamoto et al., 

1994; Welzl et al., 2001; Bermúdez-Rattoni et al., 2004).  

While the behavioral taste avoidance reaction can be elicited within minutes of 

malaise induction (Parker et al., 1984; Spector et al., 1988) and persists for months 

(Berman et al., 2003), biochemical studies of the GC suggest the existence of both 

acquisition and consolidation phases occurring within the 24h immediately post 

learning: acquisition spans the first 3 hours following training, during which  protein 

synthesis inhibition does not disrupt the expression of early taste avoidance reaction, 

(Rosenblum et al., 1993; Ferreira et al., 2002; Moguel-González et al., 2008); 

consolidation happens 4-7h post training, and requires protein synthesis (Ferreira et al., 
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2002; Martinez-Moreno et al., 2011) and brain-derived neurotrophic factor (BDNF) – 

a molecular mediator for long-term synaptic plasticity (Ma et al., 2011; Xin et al., 

2014). These data suggest a distinct transition between the early memory acquisition 

and the late memory consolidation, both occurring in GC.   

The molecular pathways that underlie the formation and consolidation of 

memories act, at least in part, to change the synaptic strength connecting neurons 

(Aizenman et al., 2000; Martin et al., 2000; Bi and Poo, 2001; Dudai, 2002; Tye et al., 

2008; Tully and Bolshakov, 2010). In turn, these synaptic strength modulations change 

the firing rates of the postsynaptic neurons (most importantly, the rates in response to 

taste stimuli)—a change that is believed to constitute the memory itself and drive the 

learning-induced behavioral change. The presumed “instability” in the neuronal activity 

during the early acquisition and consolidation phases regularly caused researchers to 

wait at least 24 hours before testing for learning-related activity changes (Grossman et 

al., 2008; Moran and Katz, 2014). In the GC, neuronal activity inspected 24 hours after 

CTA induction indeed showed firing-rate changes (Yamamoto and Fujimoto, 1991; 

Yasoshima and Yamamoto, 1998; Moran and Katz, 2014). Interestingly, using CTA 

acquisition and extinction sequentially revealed that GC single neuron response 

changes poorly predict the behavioral change, but the population dynamic activity did 

so with high fidelity (Moran and Katz, 2014). Specifically, it was show that GC 

ensemble state dynamics become quicker following CTA, and slower with extinction 

(Moran and Katz, 2014). An appealing hypothesis is that CTA consolidation processes 

organize ongoing single neuronal changes into coherent and optimized ensemble 

dynamic responses. If that is the case, we will expect to observe the quicker population 

dynamics only following the consolidation phase. In addition, several other questions 

remain open regarding the nature of changes during the hours that follow CTA learning: 

Are the changes confined to some specific times or are they slowly accumulating? What 

is the relation between changes in the baseline activity and changes in the responses to 

the stimulus? What is the relation between neuronal activity changes and the 

biochemically-defined acquisition and consolidation phases?  

Here we answer these questions by continuously recording neuronal activity 

from the GC for 24 hours before and after a CTA training session in alert behaving rats; 

by periodically delivering taste stimuli throughout this interval, we were able to 

examine how the changes in the response of single neurons, population representations 

and ensemble state dynamics evolve across acquisition and consolidation. Our results 

show that the changes in the activation of these different organizational levels of the 

GC progress in distinct dynamics. Specifically, single-neuron responses increased 
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during both the acquisition and consolidation phases (but not during the time between 

them), population responses were continuously changing across the entire time, and the 

known quickening of the ensemble state dynamics appear only following consolidation. 

Our results demonstrate the complex interactions between the different organizational 

levels of the GC whose distinct progression over time underlie the establishment of a 

CTA memory.  

  

Methods 

Animals: 

Male and female Long-Evans adult rats (aged 3-4 months old; ~250g) were raised in 

groups of 2-4 same sex littermates in a 12H/12H light/dark cycle with the experiments 

performed in the light portion of the cycle. Following surgery, the rats were single 

housed in new cages and given wetted food pallets to help with recovery. Their weight 

was monitored to ensure proper recovery. Unless otherwise specified the rats had ad 

libitum access to chow and water. Rats were handled for 15 minutes a day for 3 days 

prior to the experiments in order to habituate them to human touch and reduce stress. 

All methods and experiments carried out in this study comply with the Tel Aviv 

University Institutional Animal Care and Use Committee guidelines. All efforts were 

made to minimize animal suffering. 

Surgery and post-surgery care: 

Anesthesia: Rats were temporarily anesthetized with isoflurane (0.5ml/300g) in 

an induction box, followed by an intraperitoneal injection of a ketamine-xylazine (KX, 

100 and 10 mg/kg, respectively, 1ml/250gr). Supplemental intraperitoneal injections 

(one-third of the induction dose) were administered as needed.  

Surgery: The anesthetized rat was placed in a stereotaxic frame, its scalp 

excised, and holes bored in its skull for the insertion of self-tapping ground screws. A 

craniotomy hole was drilled above the GC (AP = 1.4mm, ML = 5mm, relative to 

Bregma), and the dura was removed. A self-manufactured electrode with a micro-drive 

(Piette et al., 2012; Moran and Katz, 2014) was inserted 0.5 mm above the taste cortex 

(DV = -4.5 from dura). In addition, two intraoral cannulas (IOC, flexible plastic tubing, 

AM-Systems) were inserted bilaterally through the oral cavity lateral to the second 

molar tooth (Phillips and Norgren, 1970). The entire structure that included the 

electrode and IOCs was covered with dental acrylic.  
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Post-operative treatment: Following surgery, the rats were given subcutaneous 

injections of antibiotics (5mg/kg of Baytril 5%), pain relievers (1mg/kg of Meloxicam 

0.5%) and Saline (10ml/kg) to ensure hydration. The head wound margins were treated 

with antibiotic cream.  

Behavioral procedure: 

 The experimental procedure is illustrated in Fig. 2A. 

Acclimation (Acc) : After 7 days of recovery from surgery, rats were put into 

the experimental chamber where they received ad libitum water and food for 3 days of 

acclimation to the new environment.  

Habituation (Hab): Following the 3 acclamation days, the rats were connected 

to the recording system and the IOC was connected to an automatic, nitrogen pressure-

based, taste delivery system. The electrodes and the IOC were connected to a self-made 

dual commutator that provided uninterrupted, tangle-free, taste deliveries and 

electrophysiological signals. During the next 3 days the water bottle was removed, and 

the rats were habituated to drink water from a bottle for 20 minutes in the morning, and 

then to receive bihourly deliveries of 10 drops of water with 15s inter-taste interval 

through the IOC for a total of ~5ml per 24h. Control rats received saccharin in the bottle 

and the IOC deliveries instead of water during these days in order to familiarized them 

with the saccharin taste and inhibit the CTA learning (a latent inhibition effect) (Lubow, 

1973). On the 6th day (last day of Hab) we started recording GC neural activity for 

baseline measurements. There was no need for a control group that receives saline 

injection instead of LiCl as it was repeatedly shown that GC neuronal responses do not 

change significantly 24h after CTA (Moran and Katz, 2014).   

CTA Training: Both the experimental  group (Exp) and the taste-familiarized 

control group (Fam) went through the exact protocol of CTA training. On 9AM of the 

7th day (“Training”) all rats were offered a bottle with 0.15%  saccharin solution instead 

of water for 20min. In the hour that followed, the rats received 3 sessions in which 

saccharin drops were delivered through the IOC to obtain pre-CTA neuronal responses 

(20 minutes between sessions, 10 drops of 40µl saccharin 0.15% per session). At the 

end of the last delivery session the rats were subcutaneously injected with a 0.3M LiCl 

solution (1% body weight) to induce gastrointestinal malaise. 

Post-injection IOC protocol (24h): Following CTA induction, the protocol 

changes to give sessions consisting of 5 drops of saccharin and 10 drops of water 

distributed in a random order throughout the session (to reduce possible extinction 
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effects). These liquid delivery sessions were given twice during the first hour, then once 

every hour for 2h and then once every 2 hours until ~4AM. For the next 6 hours the rats 

had no access to liquids to increase motivation to drink in the following CTA test. The 

higher initial rate of taste sessions was aimed to probe quicker changes in the short 

acquisition phase. 

CTA Test: on 10AM of the 8th day the rats were given a 2-bottle test with water 

and 0.15% saccharin for 20min. The level of learning was measured by calculating the 

aversion ratio defined as the consumption of water divided by the total amount of 

liquids consumed (saccharin and water). Aversion ratio =
Water consumtion

Water+ Saccharin consumption
 

Acquisition and analysis of electrophysiological data 

Acquisition and pre-processing: Extracellular neuronal signals were collected 

from self-manufactured 32-wire electrodes (0.0015" formvar-coated Nichrome wire; 

AM Systems, WA, USA) positioned within the GC (Piette et al., 2012; Moran and 

Katz, 2014). The data was first collected by an Analog-to-Digital headstage amplifier 

(RHD2132, Intan Technologies, CA, USA) and then sampled at 30Khz by an Intan 

RHD2000 acquisition system and stored offline. Common noise was removed from 

each recorded channel using a common average reference (CAR) algorithm. Automatic 

spike sorting was first performed using the KlustaKwik python package, followed by 

manual curation with the Phy program (Rossant et al., 2016). The following stringent 

criteria were used to ensure that only well isolated and stable neurons will be analyzed: 

1) Discriminable action potentials of no less than 3:1 signal-to-noise ratio; 2) 

Continuous activity across the entire experiment. 3) Clear refractory period of 1ms in 

the autocorrelation function.    

Perfusion 

At the termination of the experiment the rats were anesthetized with KX 

solution and then perfused with saline (0.9% NaCl) followed by 4% formaldehyde 

solution. After fixation, the brain was extracted from the skull and left for 72 hours in 

a 30% sucrose formaldehyde solution at 4℃. 

Histology 

The fixed brains were cut to 50µm slices using a microtome (Fisher Scientific), 

plated on microscope slides, covered with DAPI containing preservative (Invitrogen 

Flouromount-G with DAPI) and left to dry for 24 hours. Localization of the electrode 
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bundle was accessed using a light binocular. Only rats with correct electrode 

localization within the GC were included in the study.  

Movement analysis 

Full HD (1080p) video recordings were made at 30fps throughout the entire 

experimental period using Logitech C920 camera. Following experiment termination, 

the videos were analyzed using the python Open-CV module. The movement of the rat 

across time was calculated by comparing the differences (in pixels) between adjacent 

frames of the video. Movement was then averaged over each second (30 frames), and 

over hours in order to compare between the groups. 

Single neuron response analysis 

To study changes in the single GC taste responses across time we divided each 

neuron’s spiking activity in the 3 secs post a taste event into consecutive 50ms bins. 

The trials were aggregated into experimental time epochs of pre-CTA, 1H, 2H, 3H, 3-

6H, 6-12H and 12-18H post-CTA, and were normalized by dividing the results by the 

mean BL activity in the 1 second before the aggregated responses. To identify neurons 

that were changed after 18h we compared pre-CTA and 12-18h taste responses using 

two-way ANOVA with session (pre-CTA and 12-18h) and response bins (50ms bins 

between 0-2500ms after taste stimulation) as main factors. Significant (p<0.01) session 

or interaction effects deemed the neuron as “Changed”, otherwise the neuron was 

classified as “Unchanged”. Changes in neuronal responses across the experiment time 

were similarly performed for the early epoch (EE, 200-800ms post taste delivery) and 

late epoch (LE, 1000-2500ms post taste delivery) response times. 

Assessment of spike train variability at baseline  

The Fano factor (FF) is regularly used to assess variability of spike trains. 

Poissonian  Spike trains were first binned into windows of 1s and the spikes in each bin 

was counted. The FF for every minute of recording during post-CTA time was 

calculated by dividing the variance of these counts by their mean in non-overlapping 

windows of 60s. 

Burst analysis 

A burst was defined as at least 3 consecutive spikes with inter-spike interval of 

less than 15ms. Bursts were identified and counted in the 3 seconds before (“BL 

bursts”) and after (“Response bursts”) each taste event. A burst ratio was calculated by 

dividing response burst counts by BL bursts counts, that depict the normalized change 

in bursting activity. 
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Ensemble response distance 

For each taste delivery event we constructed 3 population FR vectors: baseline, 

early response and late response. Each was an N-dimensional vector with N being the 

number of neurons in an ensemble recorded simultaneously from a certain rat. The 

value assigned to each cell in these vectors was the mean FR during either BL (baseline 

vector), EE (EE vector) or LE (LE vector). This procedure produced 3 MxN matrices 

with M the number of taste trials in a certain experimental phase. A reference vector 

�⃗�𝑒,𝑟𝑒𝑓 (Fig. 5A), where 𝑒 is one of the epochs (BL, EE or LE), was defined for each 

matrix by calculating the mean over the 30 Pre-CTA taste events (from the end of 

saccharin drinking until the LiCl injection). To assess the population changes over time 

we defined the “Norm distance” 𝑑𝑒,𝑡(�⃗⃗�𝑒,𝑡 , �⃗�𝑒,𝑟𝑒𝑓) =
ǁ�⃗⃗⃗�𝑒,𝑡 −�⃗⃗�𝑒,𝑟𝑒𝑓ǁ

ǁ�⃗⃗⃗�𝑒,𝑡ǁ +ǁ�⃗⃗�𝑒,𝑟𝑒𝑓ǁ
 ; where 𝑒 is one of 

the epochs, 𝑡 is the time of a block of taste trials, �⃗⃗�𝑒,𝑡 is the mean FR vector of the 𝑒 

epoch at block time t, �⃗�𝑟𝑒𝑓 is the mean pre-CTA reference vector and ǁ•ǁ denotes the 

Euclidean norm of the vector (Fig. 5C). To account for optional drift and BL changes 

we further normalized the “Norm distance” by performing element-wise subtraction of 

the BL distance series from the EE and LE series to form the “Normalized Population 

Response Distance” (NPRD) metric: 𝑁𝑃𝑅𝐷𝑒,𝑡(�⃗⃗�𝑒,𝑡 , �⃗�𝑒,𝑟𝑒𝑓) = 𝑑𝑒,𝑡(�⃗⃗�𝑒,𝑡 , �⃗�𝑒,𝑟𝑒𝑓) −

𝑑𝐵𝐿,𝑡(�⃗⃗�𝐵𝐿,𝑡 , �⃗�𝑒,𝑟𝑒𝑓), (Notations as defined above). We thus got 3 series of numbers 

representing the distances from the mean pre-CTA vector (vref) spanning the 

experimental time. 

Assessing the pattern of LE taste response increases and decreases in the population 

across time 

To understand the relation between LE increases and decreases in the population 

across time we first calculated the mean and standard deviation of LE responses (1000-

2500ms post taste delivery) for each neuron during the Pre-CTA phase. Next, the firing 

rate in the LE of each trial during post-CTA time was normalized to a z-score by 

subtracting the mean and dividing by the STD of pre-CTA phase. These values were 

then averaged for each neuron in each experimental phase. A large negative value 

indicated a strong decrease compared to pre-CTA, and a large positive value indicated 

a strong increase. To evaluate the relation between increases and decreases in the 

population over time we calculated the Pearson correlation between the percentage of 

neurons with z-score > 1 and those with a z-score < -1. 
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Ensemble state dynamics analysis  

We assessed the timing of underlying states using a Poissonian hidden Markov 

models (HMM) (Rabiner, 1989; Kemere et al., 2008; Moran and Katz, 2014). Our 

model was constructed from 3 consecutive feedforward states; one of the baseline, and 

two more for the early and late response states. Only a single baseline state was used 

(instead of 5 like in (Kemere et al., 2008)) since we previously found no difference 

between the results using different number of baseline states. Trials were grouped into 

5 experimental phases: Pre-CTA, 0-3H (CTA acquisition), 3-6H (intermediate), 6-12H 

(Consolidation) and 12-18H. HMM Training was performed separately for each 

recorded session and spiking activity of trials from a specific experimental phase. Spike 

trains were first compiled into 10ms bins to produce momentary spike rate sequences. 

Probability for maintaining the same state was randomly initialized to values between 

0.95 and 0.99 for baseline and early response states, and 1 for the late state. 

Accordingly, the initial probability of transitioning to the next state in the sequence was 

1-P(maintain state) for all states. Firing rates for the baseline, early and late states were 

initialized to the mean spontaneous rate in the 3 seconds preceding a taste delivery 

(baseline [BL]), mean firing rate during the first 200-800 ms of post-stimulus time 

(early epoch [EE]), and mean firing rate during the 1000–2500 ms post-stimulus time 

(late epoch [LE]), respectively. Training of the HMM was done by application of the 

forward-backward algorithm; the EM procedure incrementally refined the firing rate 

and the state transition matrix parameters. We repeated this HMM training procedure 

200 times while adding random changes to the initial conditions, eventually using the 

final state transitions and firing rate matrices with the highest likelihood. We then used 

the trained model to calculate the posterior probability of the ensemble being in each 

of the states at each point in time for each trial. At each time bin the ensemble was 

considered to be in the state which had the highest probability. 

LSTM classifier 

A long short-term memory (LSTM) classifier model (Sherstinsky, 2020) was 

created using Keras and TensorFlow packages in order to reveal the progression of 

changes in the population (see Fig. 6E). LSTM classifier was used since it uses 

sequential data as input, and is thus sensitive to the dynamics of the population. 

Specifically, the LSTM binary classifier was trained on the pre-CTA and 12-18H post-

CTA and later was used to classify intermediate phases. The model architecture had an 

input layer with 32 LSTM nodes which received an input matrix with a shape of 60xN; 

60 being the number of 50ms bins in 3 seconds response, and N is the number of 
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neurons. This layer had 15% dropout and 15% recurrent dropout, meaning that 15% of 

nodes were randomly deleted each training epoch, which was used to facilitate the 

acquisition of more general features. The LSTM layer was followed by 2 dense hidden 

layers with 32 and 16 nodes respectively using a ReLU activation function, after which 

we added Batch Normalization for faster training and a 15% dropout between the 

layers. The model output layer has 2 nodes with a softmax activation function. The  

model was trained on a randomly selected set of 70% pre-CTA and 12-18H post-CTA 

trials, with 15 random model initializations, and tested on the remaining 30% of the 

trials. The model was optimized using the rmsprop optimizer with 'binary cross entropy' 

and 'accuracy' as the loss and metric. Once the model was trained, it was used to predict 

the probability of each trial from all experimental times being classified as either pre-

CTA or 12-18H.   

Statistical analysis 

All statistical analyses were done using either a one or two-way ANOVA with 

a post-hoc analysis using the student’s T-tests. All results are expressed as means + 

SEM unless stated otherwise. When the results were not normally distributed, a-

parametric tests were used; Mann–Whitney for comparing two groups and Kruskal 

Wallis for comparison between several groups. Data will be available upon reasonable 

request. Significancy level was set to p<0.05 unless otherwise stated.  

Figure 1: Validation of electrode localization and neuron stability over time. A) Illustration 

of a rat connected to the experimental apparatus which consists of an Intra-Oral Cannula 

(IOC) delivering fluids (either water or saccharin) and an SPI cable connected to the 

implanted electrode in the gustatory cortex on one side and the Intan acquisition board on 

the other. Both the fluids and electrical cable pass through a dual-swivel component (for 

the electrical signal and the fluids) in order to allow for free movement of the rat in the 

chamber. B) localization of the electrode bundle in the gustatory cortex of rats admitted 

into the experiment marked as a red oval, GC is marked in cyan. C) The shape of all spikes 

of an example neuron collected across the entire experiment projected on a 2D space 

following PCA analysis. Different colors indicate waveforms from different timepoints 

throughout the recording session. Inlet shows the waveform corresponding to each time 

point. The spike projections are well clustered and far from the noise cluster (brown dot), a 

good indication of an isolated unit.    

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.08.455552doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.08.455552


13 
 

Results: 

In order to reveal the ongoing progression of GC neuronal activity changes 

following CTA learning we recorded ensembles of GC single neurons continuously for 

two consecutive days (48hrs, from 24h before until 24 after CTA training). To achieve 

this the rats were housed in a custom-built chamber equipped with a combined electric  

and fluid swivel (Fig 1A), which provided uninterrupted ongoing neural activity 

monitoring with precisely-timed taste deliveries onto the rat’s oral cavity. Post-

experiment electrode position assessment ensured correct localization of the electrode 

wires within the GC (Fig 1B). The recorded extracellular activity was processed offline 

to extract and sort neuronal spiking activity. Stringent criteria were employed to ensure 

that only units clearly isolated from the background noise across the entire recording 

time will be included in the experimental cohort (Fig 1C, see Materials and Methods 

section). 

 Naïve rats learn CTA but not when familiarized with the conditioned taste. 

The CTA protocol took 8 days (Fig 2A and the Methods section). Briefly, 

following acclimation to the recording cage the rats (Exp group, n=7) were habituated 

to drink water once a day in the morning from two water bottles for 20 minutes, and to 

receive bi-hourly deliveries of 15 drops of water through the IOC. On the CTA training 

 

Figure 2: Experimental protocol and behavioral results. A) experimental protocol, rats were 

implanted with single wire electrode bundles into the gustatory cortex, followed by 1-2 

weeks recovery. They were then moved into a custom experimental chamber in which they 

lived for the duration of the experiment. In the following 3 days the rats acclimated to the 

new environment. On the 4th day the rats received 10 30ul drops every 2 hours through an 

IOC to habituate them to the watering protocol. On day 7 (“Training”) the rats received a 

CTA training by dinking a saccharin solution from the bottles, followed 1h later by a LiCl 

injection to induce malaise. Following the LiCl injection, the rats received periodic intermixed 

saccharin and water drops in increasing intervals, starting from 20min and up to 2 hours. 

Eighteen hours after training IOC deliveries halted for 6 hours. On the 8th day, rats underwent 

a 2-bottle test to evaluate saccharin aversion. B) The consumption of both Exp and Fam rats 

was similar on the training day. C) Exp rats show a significantly higher aversion to saccharin 

on the test day. D) Movement of rats over time, calculated from continuous video recordings 

of the experimental cage, showed no difference between the groups.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.08.455552doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.08.455552


14 
 

day (day 7) the rats drunk a novel saccharin solution for 20 minutes from the two 

bottles, and 60 minutes later received a LiCl injection to induce malaise. Starting 

immediately  after the free saccharin drinking, the rats received scheduled, randomly  

ordered, intra-oral saccharin and water droplets to monitor neural responses (Fig 2A  

upper panel, see the Methods section for precise schedule). The level of learning was 

tested with a two-bottle test in the morning of the 8th day, one containing sacc and the 

other water. To control for neuronal changes that are not learning-related, we ran an 

additional group of rats that went through the exact same procedure as the Exp group, 

but were well-familiarized with saccharin (Fam group, n=7) and therefore should not 

develop CTA (Lubow, 1973). As expected, both groups drank similar amounts of 

saccharin during the pre-CTA session on the 7th day (Fig. 2B, 2-sided t-test, t=0.251, 

p=0.803), but the Exp group showed significantly higher aversion to saccharin than the 

Fam group after training (Fig 2C, Two-sided t-test, t=4.26, p=0.002). Neural activity 

across the entire brain, even in  primary sensory cotises, is highly affected by motor 

activity (Musall et al., 2019; Stringer et al., 2019). The use of the Fam control group  

that received the LiCl also controlled for movement-related biases. Indeed, video-based 

analysis of the rats’ movement indicated no significant difference between the groups 

over the post-training hours (Fig. 2D, Two-way ANOVA Group: F(1)=0.16 p=0.68, 

Group×Time F(1,9)=1.03 p=0.41). Together, these results confirm that while both 

groups went through the exact  CTA procedure, they differ in their CTA learning, thus 

setting the stage for further examination of the progression of changes in the GC 

neuronal activity that underlies the learning process.  

Learning does not alter the basal neuronal activity properties of the population 

over time 

We recorded 100 and 105 neurons from the Exp and Fam groups (Exp 14.3±3, 

Fam  15±3.3 neurons per animal), of which 78 and 76 neurons, respectively, were 

eventually used following stringent excluding criteria of stability and signal to noise  

ratio. Examples of basal activity across 10 hours from 4 neurons is depicted in figure 

3A. These examples show general fluctuation around the mean activity of each neuron, 

without significant drifts. The mean basal activity of all neurons of Exp and Fam groups 

showed fluctuation around 8 spikes/second (Fig. 3B), with no significant difference 

between the groups (Two-way ANOVA, Group F(1)=0.61 p=0.43, Group×Time 

F(1,9)=1.5 p=0.13). Learning-related changes might not only impact the basal fining  

rate of neurons, but also the variability of  a spike trains (the “regularity” of the spikes 

in a certain time window). Comparing the Fano factor (FF) that measures that 
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variability, however, revealed no 

difference between the groups (Fig. 

3C, Two-way  ANOVA: Group 

F(1)=0.31, p=0.574, Group×Time 

F(9)=1.52 p=0.13). Both groups 

displayed more regular firing rate in 

the hour following the LiCl injection as 

indicated by the lower FF values, and a 

return to a Poissonian pattern (irregular 

spike sequences, FF values near 1) 

thereafter  (Fig. 3C). The early low FF 

values are probably related to the LiCl-

induced sickness that is known to last 

for about an hour and is experienced by 

both groups. Together, the similarity in 

the movement and neuronal baseline 

activity characteristics of the two 

groups provides a good starting point 

for studying the temporal evolution of 

learning-related taste response 

changes.  

GC neurons change their responses to the conditioned taste following CTA in 

distinct post-CTA epochs 

When tested 18 hours after CTA induction, some of the GC neurons showed 

altered responses to the saccharin (Fig. 4A upper panel), while others remained 

unchanged (Fig. 4A lower panel), in accord with previous reports (Moran and Katz, 

2014). The response  changes were confirmed to be related to the learning; the mean  

firing rate in response to saccharin during the first 3 seconds increased significantly 

after 18 hours in the Exp, but not in the Fam group (Fig. 4B left, t-test Exp t(152)=2.85 

p=0.006, Fam t(152)=1.345, P=0.181) or the responses to water in both groups (Fig. 

4B, right, Two-way ANOVA, Group F(1)=0.97 p=0.32, Time F(1)=0.31 p=0.58 

Group×Time F(1,1)=0.87 p=0.35). Recording continuously over the 24 hours following 

CTA induction allowed scheduled inspection of the progression of neuronal response 

changes. Based on previous studies we partitioned the 24 hours following CTA 

Figure 3: Similar basic neuronal firing rate 

characteristics between the groups. A) Example firing 

rates over time with 1min bins of different neurons 

from both the Exp (left) and Fam (right) rats. B) mean 

FR of all neurons in both groups over the 10 hours 

following CTA training. C) Mean Fano-Factor of all 

neurons in both groups over 10 hours following the LiCl 

injection. Data are represented as mean ± SEM 
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induction into several phases: 0-3H (CTA acquisition), 3-6h (intermediate phase), 6-  

12H(consolidation) and 12-18H (post-consolidation). Figure 3C shows examples of 4 

neurons and their progression of response changes over time.  While the response of 

 

Figure 4: Changes in single neuron responses to the conditioned taste occur in many 

patterns but are most prominent as a biphasic change. A) Example of a neuron which 

changed its response to saccharin after CTA learning (upper) and a neuron which didn’t 

(lower) B). Averaged response magnitude to saccharin (left) increases in GC neurons 18h 

after CTA in Exp but not in Fam rats. Water response magnitude (right) are unchanged in 

both groups. C) Example neurons which change their response in various patterns over 

the hours following CTA training. D) Percentage of taste responsive neurons over the 18 

hours post-CTA training. E) Normalized bursting activity during taste responses over post-

CTA hours. F) The percentage of neurons which changed their response to the 

conditioned taste from the Pre-CTA response. Both groups show increased change 2 

hours post-CTA, but only neurons of the Exp group have sustained this change 6 hours 

post-CTA. G) Averaged response amplitude over time of neurons which had significantly 

different responses 18h post CTA compared to pre-CTA. Neurons in Exp rats show a bi-

phasic pattern (2-3 and 6-18 hours post-CTA). H) Population response amplitude over 

time of neurons which have similar responses between pre-CTA and 18H post CTA. 

Neurons in Exp rats show a transient increase 2 hours post CTA. I) breakdown of response 

amplitudes to EE (200-800ms) and LE (1000-2500ms) over hours post CTA shows that 

changes in the LE amplitude dominated overall amplitude changes over post-CTA time. 
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the neuron in Fig. 4Ci remained stable over the post-CTA time, the other examples 

show a diverse pattern of changes, both in the time when changes occurred, and in the 

direction of changes (increased or decreased). We conducted several more analyses in 

order to better describe the progression of changes in the single neuron level following 

CTA induction. Higher rate of taste session in the acquisition phase allowed hourly 

inspection of changes. Increased percentage of taste responsive neurons in the Exp 

group was found during the acquisition (2H) and following consolidation phase (6-

18H) (Fig. 4D, χ2 test: 2H χ(152)=11.64, p<0.001, 6-12H χ(152)=6.48, p=0.011; 12-

18H χ(152)=5.58 , p=0.018). Additionally, increased  neuronal bursting activity known 

to be associated with learning (Mason and Rose, 1988; Laviolette et al., 2005; Li et al., 

2007), was found in the same phases (Fig. 4E, Two-way ANOVA, Group F(1)=16.527 

p=0.0006, Time F(6)=3.8 p=0.001  Group×Time F(1,6)=1.66 p=0.13, t-test 3H 

t(152)=2.82 p=0.006, t-test 6-12H t(152)=2.94 p=0.0048, 12-18H t(152)=4.19, 

P=0.0001). Another measure that can demonstrate a change in the neuronal response is 

dissimilarity to the pre-CTA response. We found that the percentages of these neurons 

increased 2 hours post-CTA, followed by a decline an hour later in both groups (Fig. 

4F). However, while these percentages continue to decline in the Fam group during and 

after the consolidation epoch, they were significantly higher in the Exp group (Fig. 4F, 

χ2 test, 6-12H χ(152)=7.31, p=0.0068); 12-18H: χ(152)=6.34, p=0.012).  

How many neurons eventually changed their responses to Sac after 

consolidation? As expected, we found significantly more such neurons in the Exp group 

than in the Fam group (Exp: 23.1% [18/78], Fam: 7.9% [6/76], χ2 test,  χ(152)=6.34, 

p=0.0012). We considered the neurons that maintained a different response than the 

pre-CTA after 18 hours as part of the CTA memory engram (Dudai, 2004; Dudai et al., 

2015). We wanted to follow the activity of these neurons back to pre-CTA time and 

reveal the dynamic nature of their changes. To that end we calculated their response 

magnitude (normalized to baseline, see the Methods section) in different points in time 

over the post-CTA time. While neurons from the Fam group showed a low and constant 

response over time, neurons from the Exp group showed double-peak increased 

responses: one weaker during CTA acquisition and another stronger during and after 

consolidation (Fig. 4G, Two-way ANOVA, Group F(1)=25.375 p=10-6, Group×Time 

F(1,6)=3.04 p=0.007, t-test: 2H t(22)=2.87 p=0.011, 3H t(22)=2.45 p=0.021, 6-12H 

t(22)=2.922 p=0.007, 12-18H t(22)=8.52, P=5.26x10-9). Interestingly, the neurons that 

did not change their response following 18h did show a weak but significant response 

increase 2 hours post-CTA (Fig. 4H Two-way ANOVA, Group F(1)=0.53 p=0.468, 
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Group×Time F(1,6)=2.77 p=0.011, t-test 2H t(128)=2.44 p=0.016). This suggests that 

neurons that were part of the early, STM-related, part of the learning, may end up out 

of the final CTA memory engram. Lastly, previous studies showed that taste identity 

and palatability – the hedonic value of a taste – are coded sequentially in single neuronal 

responses: an early identity coding epoch (EE, 200-800 msec) is followed by late epoch 

(LE, 1000-2500 ms) that codes palatability. Since CTA alters the hedonic value of a 

taste, we expected that the progression of response magnitude changes depicted in Fig. 

4G is primarily the result of changes in the LE. When we measured magnitude changes 

separately for each of the neuronal epochs over time, we found that the double-peak 

change pattern is the result of LE changes (Fig. 4I), while in the Fam and Exp-EE, the 

magnitude remains generally unchanged. Together, these results suggest that in the 

single neuron level of the GC, changes are not accumulating slowly, but rather occur in 

two distinct epochs: the early acquisition  and the consolidation phases; changes which 

are attributed to alterations in the palatability-coding LE.  

Population response changes start immediately after CTA induction 

Inspecting changes in the communal amplitude of single neurons showed a 

biphasic pattern over the hours following CTA learning, however this type of averaging 

may hide more delicate changes in the population activation (e.g. balanced excitations 

and inhibitions that cancel each other out). To study the progression of ensemble-level 

changes we represented the ensemble activity (separately for the EE and LE) as the sum 

of N-dimensional vector, with N being the number of neurons recorded simultaneously 

from each rat (Fig. 5A. Top: EE or LE, bottom: BL, see the Methods section). The BL 

population activity was similarly represented (Fig. 5A, bottom). Figure 5B shows 

examples of these vectorized representations over time projected on a 2D plane (using 

PCA analysis) for Exp (left) and Fam (right) rats. These trajectories, color coded for 

the experimental time, show the evolution of the population activity changes, both for  

the LE response (top) and BL activity (bottom). While the Exp response trajectory (top  

left) appear to deviate more robustly from the initial pre-CTA representation, the 

trajectory of the Fam example shows unstructured, more random, advancements. To 

quantify this observation we calculated the “Normalized Population Response 

Distance” (NPRD, see the Methods section) metric that measures the difference 

between a population response at a certain phase and the pre-CTA response (Fig 5C, 

top), normalized to the population BL changes (Fig 5C, bottom). Low values of NPRD 

(around 0) indicate minor changes in the population. This indeed was the case for the 
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EE (the epoch that codes chemosensory information and not expected to change much)  

of both Fam and Exp groups, with no significant difference between the two groups 

Figure 5: Population responses to the conditioned taste change continuously. A) A 

vectorized representation of the ensemble activity (top: EE or LE, bottom: BL). Length of 

arrow indicates FR of a neuron in a certain epoch. Pink arrow indicates the sum of all vectors. 

B) Example of ensemble responses to saccharin (top) and BL (bottom) over experimental time, 

projected on a 2D PCA space, from Exp (left) and Fam (right) rats. Color represents time from 

CTA induction. While in the Exp rat the ensemble’s response vector seems to increase its 

distance from the origin, in the Fam rat the changes are more local. C) Illustration of the 

calculation of the “Norm distance” measure which calculates the Euclidean distance between 

the vectorize representation of the neuronal firing rate of the ensemble (Dresi or DBLi) at  

certain times (green arrows) and the corresponding pre-CTA reference vector Vref (pink 

arrow). D) NPRD of the LE across time. Exp rats showed increased deviation from pre-CTA 

values compared to the Fam group across all post-CTA times. E) NPRD calculation as in D, but 

Vref was set to the preceding phase of each phase tested. This way the calculated values 

represent the rate of change in the ensemble. The results show that the rate of change in the 

Exp group is higher than the Fam group during most of the post-CTA experimental time. F) 

Bottom: A heatmap representation of the response changes in the LE across all neurons in 

the Exp (left) and Fam (right) groups. Each voxel represents the normalized difference in the 

LE FR between pre-CTA and a certain time during the experiment, represented in Z-score. 

Neurons were ordered according to the Z-score values at each time slot. Colored lines 

represent ±1 z-score values. Top: The Exp group lines shows a correlation between increasing 

and decreasing responses which indicates a structured change in the network, while neurons 

from the Fam group show anti-correlation, suggesting a drift effect.  
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(Extended Fig. 5-1, Two-Way ANOVA, Group F(1)=2.7 p=0.09, Group×Time 

F(1,5)=0.36 p=0.87). In contrast, there was a significant difference between the groups 

in the palatability-rich LE (Fig. 5D, Two-Way ANOVA, Group F(1)=50.29 p=8.54x10-

22, Group×Time F(1,5)=9.33, p=4.26x10-15). Post-hoc analysis revealed that the LE 

NPRD was higher in the Exp group compared to the Fam group over the entire post-

CTA time (Fig. 5D, 2-sided t-tests; pre p=0.101, 1H p=0.039, 2H p=0.011, 3H p=0.038, 

3-6H p=3.3*10-12, 6-12H p=0.002). Is this deviation from pre-CTA population response 

the result of an early single event or the outcome of continuous changes? Investigating 

the rate of change (the change in the population response compared to the previous 

session) suggests that the population response kept changing over most of the post-CTA 

hours in the LE (Fig. 5E, Two-way ANOVA, Group: F(1)=63.1 p=8.06×10-15, 

Group×Time F(1,4)=2.5 p=0.04), but not for the EE (Extended Fig. 5-2). Surprisingly, 

the population response kept changing during the 3-6H phase (Fig. 5D, E), while the 

averaged magnitude response of single neurons showed a reduction during this time 

(Fig. 4H, I). These results suggest that the overall magnitude decline in the intermediate 

phase might not be a return of single neurons to their pre-CTA responses, but rather the 

result of some balancing processes. To further study this option, we ordered the neurons 

in each experimental time according to their Z-score deviation from pre-CTA responses 

during the LE (Fig. 5F). When we compared the fraction of neurons that changed their 

responses across the experiment, we found a distinct difference between the two groups: 

in the Fam group the percentages of neurons that increased and decreased were anti-

correlated (r=-0.49, the more increases, the less decreases and vice versa), while in the 

Exp group they were highly correlated (r=0.59, balanced changes of increases and 

decreases). So far our results suggest that the learning-induced amplitude increases in 

the LE of GC neurons is the result of continuous changes in the LE ensemble response 

representation; a progression that is characterized by structured balancing of increases 

and decreases of the FR in the neuronal population.     

 

Learning-induced ensemble state-dynamics quickening occurs only following 

CTA consolidation 

Apart from single neuronal firing rates, taste coding of identity and palatability 

in the GC were also found in ensemble state dynamics (Jones et al., 2007; Moran and 

Katz, 2014). Specifically, taste stimuli were shown to elicit sequences of ensemble 

activity states that were taste specific and faithfully track the hedonic value of the taste 
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such that aversive tastes are processed quicker than palatable tastes. This is also true  

for learned aversion; measured 24 hours after CTA training, the processing of the 

conditioned taste becomes quicker (Moran and Katz, 2014). Tracking the progression 

of ensemble dynamics changes may tell us a great deal about the role they play in CTA 

learning: if quicker ensemble dynamics appear as early as the single neurons, they will 

be linked to the aversion behavioral response, while if they appear late (after 6H), they 

are probably the result of learning-related consolidation processes. To test this we used 

hidden Markov models (HMM) – a method that was successfully used in previous 

studies to investigate ensemble dynamics (Abeles et al., 1995; Jones et al., 2007; 

Figure 6: Ensemble dynamics shift abruptly 6 hours post CTA learning. A) illustration of 

the 3-state transition matrix used for HMM analysis. B) examples over time of state 

probabilities from an Exp rat. C) mean state probabilities from all Pre CTA trials (left) and 

all Post CTA trials (right). D) mean transition times from EE to LE states. While in the Exp 

group we can see a quickening after 6 hours, in Fam rats there was no significant change. 

E) architecture of the LSTM network used to classify ensemble responses as either Pre 

or Post CTA. F) Probability to be classified by the LSTM network as either a pre or post 

CTA trial for trials from different experimental times. While trials from Fam rats show a 

slow transition between classifications, Exp rats show a clear and abrupt switch 6 hours 

after CTA learning. 
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Kemere et al., 2008; Ponce-Alvarez et al., 2012; Moran and Katz, 2014). For each rat a 

separate feed-forward 3-state HMM model (Fig. 6A) was trained, one for each 

experimental phase. Examples of single-trial state probabilities for the same ensemble 

of neurons across the different experiment times are shown in figure 6B. These 

examples show that during pre-CTA, 0-3H and 3-6H post-CTA the transition from the 

EE to the LE occur around 1300-1500 msec after taste experience, but much earlier, 

around 900 msec, during 6-12H after CTA training (Fig. 6B, bottom). This 

phenomenon was evident in the Exp group when we compared the averaged state 

probabilities across trials between pre-CTA (Fig. 6C, left) and 6-12H post-CTA 

training (Fig. 6C right). When we compare the transition time from the EE to the LE 

across groups to the experimental time, we found that while transition time remained 

constant across the experiment in the Fam group (One-way ANOVA, F(3)=1.47, 

p=0.21), it became significantly quicker than baseline in the Exp group (One-way 

ANOVA, F(3)=3.4, p=0.017), but only after 6-12 hours post-training (Fig. 6D, 2-sided 

t-test pre-CTA vs. 6-12h: t=2.12, p=0.034). Similar results were found when we used 

an artificial recurrent neural network to classify ensemble responses as either pre- or 6-

12H-post responses. Specifically, we trained a Long short-term memory (LSTM) model 

classifier using pre- and 12-24h-post ensemble responses to discriminate between the 

two response patterns (Fig. 6E). The advantage of LSTM over feed-forward models is 

that it takes into account the temporal structure of the data, and not only its values. After 

training reached above 95% correct classification, we fed trials recorded at times 

between these two time points to study the transition patterns. If changes accumulate 

slowly, we expect to see a steady transition between the start and end times, otherwise 

a sudden jump is expected. The results of this analysis show these two types of change 

patterns: while the probability to be classified as “Pre-CTA” tended to decrease steadily 

with time in the Fam group (Fig. 6 left), it remained high until 6H post training, and 

then transitioned abruptly to be classified as 12-24H in the 6-12H-post phase (Fig. 6F 

right), mimicking the HMM analysis results (Fig. 6D). Together, these results suggest 

that the neuronal FR rate changes that occurred throughout the post-training period (Fig. 

4I and 5E), are transformed into changes in the ensemble dynamics only late in the 

learning process, probably the results of a consolidation-related network 

reorganization.  

Discussion:  

Learning is a dynamic process, subserved by intracellular changes and 

intercellular connectivity modulations that in turn impact neuronal activity, and 
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consequently behavior behavior (Squire, 1984; Milner et al., 1998; Dudai, 2004). In the 

taste system, extensive lesion and biochemical research has shown that CTA develops, 

across the hours following the acquisition trial, from an initially labile memory (Ferreira 

et al., 2002; Moguel-González et al., 2008) to consolidated learning learning (Ferreira 

et al., 2002; Ma et al., 2011; Martinez-Moreno et al., 2011). The establishment of a 

novel memory must necessarily be accompanied by some neuronal activity changes 

that will generate the appropriate learned reaction; candidate response modulations can 

be observed early following the taste-malaise association (Yasoshima and Yamamoto, 

1998) and 24 hours later (Moran and Katz, 2014), but a systematic understanding of the 

dynamic progression of learning remains elusive.   

Here we directly evaluated neuronal response changes to the conditioned tastant 

across the first 24 post-training hours, and found that the progression of these changes 

differs depending on the level of analysis used. At the single neuron level, the mean 

neuronal response magnitude increased 2-3H post CTA induction, decreased for the 

next 3 hours (an “intermediate phase”), and increased again 6H post-CTA (Fig 4G): 

these increased net-activity epochs are a good match for the previously reported 

acquisition (Ferreira et al., 2002; Moguel-González et al., 2008) and CTA consolidation 

(Ferreira et al., 2002; Ma et al., 2011; Martinez-Moreno et al., 2011) epochs, 

respectively; furthermore, the changes were confined to the LE, a palatability-rich part 

of the GC neuronal responses (Fig. 4I) known to drive reactions to aversive tastes 

(Mukherjee et al., 2019). Sensitive ensemble-level analyses, meanwhile, revealed 

different progression patterns across learning. Vectorized representation of the 

population LE firing rate continued deviating from the pre-CTA representation even in 

the “intermediate phase” phase (Fig 5E, Extended Fig. 5-2), suggesting that the reduced 

response amplitude of single neurons during this phase did not reflect reversion to a 

pre-CTA state. Moreover, we show that despite these ongoing changes in the ensemble 

neuronal responses, the learning-related quickening of the ensemble state dynamics 

reported previously 24H following CTA (Moran and Katz, 2014), appear only after the 

CTA consolidation phase. Together, these three distinct temporal progressions of 

changes found in the different organizational and functional levels of the GC represent 

the complex and temporal-specific interactions in which the neurons, and the network 

they reside within, undergo to support learning.     

The evolution of memories and specifically the transition between short- and 

long-term memory haves been studied for decades (Squire, 1984; McGaugh, 2000; 

Dudai, 2004). The central role of the HIP in human contextual, semantic, and episodic 
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memory has made the HIP a primary brain region for investigation. Animal studies of 

these memory systems found an evolution of events that start with an early acquisition 

in the hippocampus (seconds to hours), an early consolidation phase which changes 

local hippocampal synapses (synaptic consolidation) and a late (hours to days) 

consolidation phase (system consolidation) in which the memory is moved to the cortex 

(e.g., the prefrontal cortex) and becomes more stable, and HIP-independent. This 

notion, however, does not hold for CTA, in which the HIP is not an essential component 

(Best and Orr, 1973; Krane et al., 1976; Gallo and Candido, 1995; Yamamoto et al., 

1995). Nonetheless, our and previous results suggest that while the dynamics of the 

learning seems faster in CTA (reaching a consolidated state in less than 24 hours), the 

memory processes seem to have many similarities, with the early memory acquisition, 

the involvement of balancing homeostatic processes and the late consolidation. This 

conserved structure of memory formation, despite differences in its implementation 

(timing and HIP-dependency) suggests a fundamental property of memory evolution, 

regardless of the system involved.  The difference between the underlying brain circuits 

of CTA and HIP-dependent learnings might stem from the many “abnormalities” of 

CTA in the family of classical conditioning learnings. For instance, CTA’s tolerance to 

long CS-US delays that is supported (at least in part) by GC circuits for taste memory 

trace formation (Burešová and Bureš, 1980; Welzl et al., 1990; Bermudez-Rattoni, 

2014) may involve similar function of the HIP in trace conditioning (Wallenstein et al., 

1998; Bangasser et al., 2006). Additionally, the HIP is essential in contextual learning 

(Kim and Fanselow, 1992; Phillips and LeDoux, 1992; Quinn et al., 2002), a factor 

which is less important in CTA (Bonardi et al., 1990). Nevertheless, the fact that both 

CTA acquisition and long-term consolidation happen in the same brain region is 

intriguing, and calls for further investigation.     

It is generally accepted that early memories are labile and then stabilize during 

consolidation processes. Mechanistically, the distinction between them relates mainly 

to protein synthesis: the early short-term memory does not depend on protein synthesis 

but memory consolidation does (Bailey et al., 2004; Dudai, 2004). Based on this 

criterion we partitioned the time following CTA into early short-term memory 

acquisition phase (0-3H), an intermediate phase (3-6H) and consolidation phase (6-

12H). The early acquisition phase (0-3H) corresponds with the time when the 

previously consumed novel taste and early CTA memories are formed through a 

conjunction of acetylcholine  (Miranda et al., 2000; Rodríguez-García and Miranda, 

2016), dopamine (Guzmán-Ramos et al., 2010), and glutamate (Rosenblum et al., 
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1997). Later these processes proceed to the activation of the ERK/MAPK pathways 

involved in the phosphorylation of NMDA receptors and CamKII (Yiannakas and 

Rosenblum, 2017). LiCl-induced malaise initiates an immediate increase in glutamate 

in the GC (Miranda et al., 2002; Ferreira et al., 2005), and an off-line increase in 

dopamine and glutamate about 90 minutes later (Guzmán-Ramos et al., 2010). 

Importantly, protein synthesis is not required for the early short-term CTA memory 

(Rosenblum et al., 1993; Moguel-González et al., 2008; Martinez-Moreno et al., 2011). 

Much less is known about the late CTA consolidation phase in the GC. A requirement 

for protein synthesis that starts 5H post-CTA mark its earliest time point (Martinez-

Moreno et al., 2011). The fact that the protein synthesis was, at least in part required 

for the synthesis of BDNF, (Ma et al., 2011; Martinez-Moreno et al., 2011) – a known 

modulator of memories specifically during consolidation (Bramham and Messaoudi, 

2005)– further support the relation of this phase to CTA consolidation. To reduce inter-

animal variability regarding the transition time into the consolidation phase, we chose 

6H post-CTA as the start time of CTA consolidation.  

In our study of neuronal activity, both single neurons and ensemble analyses 

shed light on how brains process and store sensory information, and how learning 

shapes these memories. In the GC, taste qualities such as taste presence, identity, 

palatability and familiarity are encoded in a sequence of short epochs of single neurons’ 

taste responses that span the 2-3 seconds following taste experience (Katz et al., 2001; 

Bahar et al., 2004; Sadacca et al., 2012). Whereas this epochal activity lives also in GC 

population ensemble dynamics (Jones et al., 2007), a clear distinction was found 

between the two levels of analysis in relation to changes following CTA learning: 

ensemble dynamics show high fidelity with behavior, and single neurons response 

changes do not (Moran and Katz, 2014). These differences led us to hypothesize that 

the progression of learning might also play out differently in single neurons and 

ensemble dynamics. In fact, the time course of post-training response changes in single 

neurons coincides with the CTA acquisition and consolidation phases (Fig. 4D, 4E, 4F, 

4G) This, however, was the result of a non-uniform progression in the level of the 

neuron; neurons displayed different change pattern of their response across the 

experiment (Fig. 4C), and only their collective mean response was locked to the 

acquisition and consolidation phases (Fig.4G). Our results from the acquisition phase 

are in agreement with previous publication showing increased excitability in single GC 

neurons shortly after CTA induction (Yasoshima and Yamamoto, 1998). CTA 

consolidation-specific impact on single neurons activity were not studied before, but 
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post-consolidation increases in neuronal activity in other systems has been reported 

(Thompson et al., 1996; Aton et al., 2009). The relatedness of the GC amplitude 

increases to the learning is supported by the fact that they were confined to the LE 

response time (Fig. 4I), a response epoch of GC neurons know to code palatability 

information (Katz et al., 2001; Sadacca et al., 2012) and change following CTA (Moran 

and Katz, 2014). Together, the acquisition and consolidation phases seem to induce 

robust changes in the activity pattern of single GC neurons.  

The two memory phases were separated by the intermediate phase where there 

was a reduction in many parameters of single neurons activity (Fig. 4D-G), most 

notably the decrease in the overall response magnitude (Fig. 4G). One explanation to 

this phenomenon could be the return of the excited neurons closer to pre-CTA response 

levels. Alternatively, it may be the result of more complicated and continuous changes 

that balance excitations with and inhibitions across the population. Using vectorized 

representation of the population activity we found that the GC population responses 

start changing immediately after CTA learning and continue changing even during the 

intermediate phase (Fig. 5). This result, which supports the second alternative above, 

might corresponds to cellular and network-level homeostatic plasticity mechanisms that 

aim to rebalance the early potentiated activity following the early acquisition phase 

(Maffei and Fontanini, 2009; Turrigiano, 2011; Keck et al., 2017). Interestingly, it was 

recently shown that synaptic scaling, a form of homeostatic plasticity,  occurs at the 

same epoch and  is essential for the transition from general to specific CTA (Wu et al., 

2021). Comparing the relation between the number of neurons that increased or 

decreased their activity over the post-CTA hours further supported this hypothesis: 

while in the Fam group increases and decreases were anticorrelated (suggesting a drift 

effect), in the Exp group they were correlated (Fig. 5F), suggesting a structured and 

balanced change. While this is an appealing explanation, further direct investigation is 

required to support a specific role of homeostasis processes during the intermediate 

phase, and its role in the memory formation.   

In the past years it has become increasingly clear that the simultaneous dynamic 

activity of neuronal ensembles plays a vital role in brain functions. In the taste system, 

coherent transitions between neuronal ensemble activity states have been found to 

underlie innate taste-related behaviors (Jones et al., 2007; Miller and Katz, 2010; 

Jezzini et al., 2013; Mukherjee et al., 2019). By 24H after CTA, these ensemble state 

dynamics have become faster (Moran and Katz, 2014), allowing for earlier detection 

and rejection of aversive stimuli. Here we show that this phenomenon does not appear 
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until 6 hours after learning (Fig. 6D, F), following the late consolidation phase. It is 

important to note that rats display an aversive reaction to the taste-CS as early as 10-20 

minutes after LiCl injection (Parker et al., 1984; Spector et al., 1988). Therefore, the 

faster ensemble dynamics are probably not related to the aversion itself, or its associated 

motor actions, but rather to a new rearrangement of the network’s connectivity and 

neuronal excitability. Our data suggests that in the GC, the role of the CTA 

consolidation phase is to adjust the network’s parameters (neuronal excitability and 

connectivity) so that the ensemble’s state dynamics become quicker. While previous 

studies demonstrated the distinction between changes in the single neuron level and the 

ensemble following learning (Grewe et al., 2017), these were constrained to firing-rate-

based coding of the US and CS. Our study, on the other hand, emphasizes the 

ensemble’s dynamics as the pinnacle of the brain’s target.  

The ensemble states sequences found in the taste system (Jones et al., 2007; 

Moran and Katz, 2014; Mazzucato et al., 2015) other sensory systems (Ponce-Alvarez 

et al., 2012), the motor system (Abeles et al., 1995; Kemere et al., 2008), and high 

cognitive brain systems (Balaguer-Ballester et al., 2011) can be naturally modeled as 

activity transitions in attractor networks  (Hopfield, 1982; Amit, 1989).  In attractor 

networks the activity of the nodes quickly shifts between meta-stable states, rather than 

slowly ramping as information is integrated (Miller and Katz, 2010, 2013; Sadacca et 

al., 2016). Conceptually, the attractor network can be represented as a landscape with 

some local dips denoting the network’s states (Fig. 7) (Rolls, 2010). With some external 

stimulus (such as a taste or a tone), the network activity is pushed to take a certain 

Figure 7. Landscape representation of the neuronal network across learning. The meta-

stable states of the network are represented as local dips in the terrain. The neurons’ 

activity in response to a taste stimulation is some trajectory in the landscape (black line). 

A) Prior to learning the network configures such that sucrose stimulation drives the 

network from the sucrose state to the “consume” decision state. B) Early after training 

the network configuration changes to divert activity from the sucrose state to the 

“Reject” state. C) Following consolidation, the network is configured to process sucrose 

faster in order to quickly reject it upon detection.  
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trajectory within this landscape; but while the inter-trial sequence of states is mostly 

preserved, the transition times vary and depend on many factors including the network’s 

activity, history, and noise level. Using HMM techniques, previous studies revealed 

exactly this “hopping” network dynamics in GC ensemble activity that explained the 

observed trial-to-trial behavioral variability (Jones et al., 2007; Miller and Katz, 2010; 

Moran and Katz, 2014; Mazzucato et al., 2015; Sadacca et al., 2016). Importantly, in 

attractor networks, different network architectures and neuronal activity patterns can 

produce similar network output (such as reaching one of several “decision” states in the 

state-space landscape (Fig. 7B and 7C). This fact may explain the ongoing changes in 

the single-neuron and ensemble activity that still drive the same rejection behavior; 

while the network’s landscape keeps changing, the CS stimulus will still push the 

network to reach the “Reject”. The different network configurations may drive a similar 

reject behavior (Fig. 7B, C) in distinct dynamics. As we know from previous studies, 

CTA speeds-up ensemble state dynamics for faster ejection of the CS taste (Moran and 

Katz, 2014). Our current results show that this network phenotype displaying the 

quickening of network performance, happens at a time known to be related to CTA 

consolidation (Fig. 6D, F) (Ferreira et al., 2002; Ma et al., 2011; Martinez-Moreno et 

al., 2011). This result suggests a novel role of consolidation in memory processing: 

consolidation not only strengthens the memory, making it less labile, but also reshapes 

the network to change its dynamics (Fig. 7C).  

Overall, our results highlight the evolution of neuronal changes at different 

levels of analysis that follow a single trial of taste-malaise associated learning. They 

highlight the distinct progression of low-level (cellular response amplitudes), 

mesoscale (ensemble vectorized representations) and higher-level (network dynamics) 

changes during different phases of learning. These distinct progressions of change are 

known to underlie complex dynamical system, where the behavior of the system cannot 

be directly predicted from the behavior of its elements. Nevertheless, further studies are 

required to elucidate the fine changes in the inter-neuronal connectivity and internal 

excitability of the neurons that support the creation, stabilization, and maintenance of 

memories. 
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Supplementary material: 

 

 

Extended Figure 5-1: Early epoch population magnitude distance 

from Pre-CTA across the experiment. The distance magnitude of the 

population was calculated to evaluate the learning-induced changes the 

population response, as a whole, across the post-CTA hours. This 

calculation was performed separately for the early and late response 

epochs (200-800ms and 1000-2500ms post-stimulus time, respectively. 

See the methods section). The early epoch of GC neuronal taste responses 

is known to mainly code chemosensory information, and therefore should 

not change much following CTA learning. Accordingly, the values of the 

population distance hovered near 0, indicating overall a stagnant response 

of the population in this epoch. Also, no significant difference was found 

between the groups across post-CTA hours (Two-Way ANOVA, Group 

F(1)=2.7 p=0.09, Group×Time F(1,5)=0.36 p=0.87). Scale of the Y axis 

was set to match figure 5E in the main article. 
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Extended Figure 5-2: Rate of population response magnitude change 

over time in the EE. To evaluate the rate of change in the population 

response we first normalized each population response to its baseline 

activity, and then calculated the Euclidean distance between the current 

response and the mean of the previous block (i.e. 1H values were 

calculated vs pre-CTA, 2H were calculated vs 1H, etc.). Higher values 

mean a larger change across the population from the previous population 

response. No significant change between the groups was detected in the 

EE (Two-way ANOVA, Group: F(1)= 2.98 p=0.08), but there were 

significant Time and Interaction effects (p=0.0002 and p=0.02, 

respectively). * p<0.05. 
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