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Abstract

Summary: MiSDEED is a command-line tool for generating synthetic longitudinal multi-omics data from
simulated microbial environments. It generates relative-abundance timecourses under perturbations
for an arbitrary number of samples and patients. All simulation parameters are exposed to the user to
facilitate rapid power analysis and aid in study design. Users who want additional flexibility may also use

MiSDEED as a Python package.
Availability and implementation:
https://github.com/pchlenski/misdeed.
Contact: pac@cs.columbia.edu

MIiSDEED is written in Python and is freely available at

The behavior of the microbiome, greatly elucidated by improvements in
genome sequencing and data analysis, is generating considerable research
interest. For instance, the Human Microbiome Project (Turbaugh et
al., 2007) endeavors to collect data on a mass scale to investigate the
role of the microbiome in the context of human health and disease.
Despite improvements in sequencing, sample collection itself still incurs
significant overhead and many niches remain understudied. Furthermore,
microbial relative abundance data, the most typical form of data collected
in such studies, has a number of properties that make classical statistical
analysis challenging: it is longitudinal, compositional, noisy, and
stochastic (Antoine et al., 2019). The genetic power calculator (Purcell
et al., 2003) streamlined research in statistical genetics by facilitating
closed-form power analysis of hypothetical studies. Similarly, several
tools help design microbiome studies: Web-GLV (Kuntal et al., 2019)
enables researchers to visualize the dynamics of microbial systems using
assumed ecological parameters, and Mattiello et al. (2016) provide a
power calculator for case-control studies on microbial ecosystems near
equilibrium. The generalized Lotka- Volterra (gLV) modeling assumptions
underlying such tools are often used to generate synthetic data when
designing inference methods for microbial relative abundance data (Joseph
et al., 2020). Here we present MiSDEED: the Microbial Synthetic
Data Engine for Experimental Design, a flexible tool for generating
synthetic longitudinal data from dynamic simulated ecosystems. These

simulations can help investigators allocate resources in their study design,
determine how to salvage underpowered studies, and design novel
inference techniques with known ground truth.

MiSDEED’s synthetic data generator (drawn in Figure 1) samples
reads from probability distributions governed by gLV dynamics over a
discrete set of time points 7. Each generator has a set I of nodes which
may represent different data types (e.g. metagenomics and metabolomics
measurements of the same system) or two interacting ecosystems with the
same data type. Each node 7 € I is initialized with a fixed dimensionality
d;, a vector of growth rates E) and an initial abundance vector m .
A generator also has up to |I|? pairwise directed interactions between
nodes. An interaction A between some nodes ¢ and ¢’ is a matrix of
dimension d; X d;. Finally, the generator has a set J of interventions
which may be applied to any node ¢ € I such that each intervention
J has a vector 17; of intervention magnitudes and another vector b; of
responses to the intervention. If intervention j is applied to node ¢, then
LT} should have T" dimensions and b; should have d; dimensions. To aid
in parameter selection, MisDEED also contains convenience functions to
initialize random but stable interaction matrices (Allesina and Tang, 2012)
or to infer gLV parameters from known absolute abundance data (e.g. from
a small pilot dataset) (Stein et al., 2013). Once generator parameters have
been set, synthetic data can be produced in one of three ways: as a single
timecourse, as multiple timecourses from varying initial conditions, or
as multiple timecourses following a case-control split. In each case, the
generator numerically solves the following equations with a biological
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Fig. 1. (A) The graphical model underlying MiSDEED’s synthetic data engine. The 3 vectors are sampled from a multinomial distribution parameterized by the total number of reads

and the probability vector ;. (B) Simulated metagenomic (top) and metabolomic (bottom) relative-abundance timecourses with an intervention at ¢ = 20 (black line). This intervention

affects metabolite abundances directly and propagates into the metagenomics node gradually via metabolomics-metagenomics interactions. (C) 12 noiseless PCA-transformed case (red)

and control (blue) metagenomic trajectories show how interventions induce convergence to distinct fixed points.

Category Parameters

Generator Number of time points, number of nodes,

node names, node dimensions, time to first sample

Random interaction | C' (connectivity), d (negative self-interaction size)

matrices o (multivariate normal variance), p (multivariate
normal correlation)

Custom gLV Interaction matrices, growth rates, initial abundances,

parameters interventions and intervention responses

Synthetic data Biological noise variance, number of reads, time step

generation size, downsampling rate

Multiple samples Number of individuals, probability of 0-valued initial

abundances

Case-control Case-control ratio, intervention node, intervention

effect size

Table 1. Variable parameters in MiSDEED.
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Each timecourse contains three derived matrices of synthetic data: Z (latent
absolute abundances), X (latent relative abundances/probabilities), and Y
(relative abundances sampled from Y').

MiSDEED is designed to be used as a standalone command line tool.
The MiSDEED repository also contains the Python package underlying
MiSDEED, a handful of utility scripts to support data visualization and
learning gLV parameters, and a set of Jupyter notebooks showing common
uses of the MiSDEED Python package. MisDEED can produce, save, and
plot large amounts of synthetic data with varying initial conditions and
model assumptions. To support power analysis, many variables can freely
be changed by the user. These are listed in Table 1.

As an example use case, one may use a community matrix and
growth rates learned from a pilot dataset and initialize ‘metagenomics’ and
‘metabolomics’ nodes such that the latter has no intrinsic growth rates,
weak self-interactions, but strong interactions with the ‘metagenomics’
node according to some a priori assumptions. Perturbing metabolite
abundances directly, the user may investigate how many patients must be
enrolled in order to distinguish reliably between samples with and without
this perturbation applied.

MiSDEED is a flexible framework for rapidly generating large amounts
of realistic microbial trajectory data, thereby facilitating study design

without assuming the system being studied is at equilibrium. Future
development will focus on expanding code-free interfaces to MiSDEED;
more flexible modeling assumptions for broader use cases, including non-
uniform time points, individual variation in interaction matrices and growth
rates, and population clusters; alternatives to gLV-based modeling for
dynamics like mutualism; and investigation into the value of MiSDEED-
generated data for transfer learning and algorithm development.
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