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Abstract 

Motivation 

Loss-of-Function (LoF) variants in human genes are important due to their impact on clinical 

phenotypes and frequent occurrence in the genomes of healthy individuals. Current approaches 

predict high-confidence LoF variants without identifying the specific genes or the number of 
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copies they affect. Moreover, there is a lack of methods for detecting knockout genes caused by 

compound heterozygous (CH) LoF variants.  

Results 

We have developed the Loss-of-Function ToolKit (LoFTK), which allows efficient and automated 

prediction of LoF variants from both genotyped and sequenced genomes. LoFTK enables the 

identification of genes that are inactive in one or two copies and provides summary statistics for 

downstream analyses. LoFTK can identify CH LoF variants, which result in LoF genes with two 

copies lost. Using data from parents and offspring we show that 96% of CH LoF genes predicted 

by LoFTK in the offspring have the respective alleles donated by each parent. 

Availability and implementation: LoFTK is an open source software and is freely available to 

non-commercial users at https://github.com/CirculatoryHealth/LoFTK  

Contact: j.vansetten@umcutrecht.nl  

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1. Introduction 

Loss-of-function (LoF) variants are determined to have a critical effect on gene function by 

inactivating protein-coding genes (MacArthur and Tyler-Smith 2010). Remarkably, recent 

analyses of the human genome have uncovered that individuals harbor many dozens of LoF 

variants, including stop-gained, frameshift variants and splice site disruptions (Balasubramanian 

et al. 2011; MacArthur et al. 2012). On average, LoF variants are deleterious, and thus usually tend 

to be found at very low frequencies in the human population. These variants can have a profound 

impact on the gene transcripts and translated proteins. The association of LoF variants with 

complex diseases and phenotypic traits may lead to the discovery and validation of novel 
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therapeutic targets (MacArthur et al. 2012). However, hundreds of LoF variants were  found to be 

functionally neutral with no detectable influence on phenotypes (1000 Genomes Project 

Consortium et al. 2012; Lek et al. 2016). 

Several difficulties emerge when evaluating LoFs on a broad scale. False positives in the prediction 

of LoF variants can arise due to artifacts that may occur during genotype calling, mapping, and 

annotation (MacArthur et al. 2012). To annotate high-confidence (HC) LoF variants only, Loss-

Of-Function Transcript Effect Estimator (LOFTEE) (Karczewski et al. 2020) can be used. 

LOFTEE is a plugin implemented in the Ensembl Variant Effect Predictor (VEP) (McLaren et al. 

2016) that imposes stringent filtering criteria to annotate HC LoF variants, eliminate nonsense 

mutations that are unlikely to impact protein function, and exclude LoF variants that are enriched 

with annotation artifacts. However, LoF variants discovery can also be used to predict single-copy 

losses (heterozygous LoF variants) that inactivate a single copy of a gene, or two-copy losses that 

completely knockout a gene. Two-copy losses can be caused by homozygous and compound 

heterozygous (CH) LoF variants. CH variants appear when parents both donate a LoF-causing 

allele that locates at different loci in the same gene (Kamphans et al. 2013). There is mounting 

evidence that CH LoF variants have a role in complex diseases. For example, both homozygous 

and  CH LoF variants have been found to increase the risk of autism spectrum disorder (Yu et al. 

2013; Lim et al. 2013). Current tools, such as LOFTEE, merely annotate HC LoF variants and 

generate a standard VEP output,  but do not distinguish between single-copy LoF genes and two-

copy LoF genes. 

Here we present an open source tool, the Loss-of-Function ToolKit (LoFTK), which allows 

efficient and automated prediction of LoF variants from genotyped and sequenced genomes. 

LoFTK analyzes genetic data in three steps; 1) LoF annotation, 2) prediction of one-copy loss and 
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two-copy loss of genes, and 3) generation of a summary statistics report describing the total 

number of LoF variants (homozygous, heterozygous and CH), LoF genes (single-copy and two-

copy loss), and the average, minimum and maximum numbers of LoF variants and genes per 

sample. 

 

2. Materials and methods 

2.1.  Main workflow 

The LoFTK workflow consists of 4 analytical steps visualized in Figure 1 and described below. 

2.1.1. Preprocessing: conversion of IMPUTE2 to VCF.  

The first step depends on the input data formats. Two common file formats are permitted as inputs; 

IMPUTE2 (Howie et al. 2012; Howie et al. 2009) output format and the Variant Call Format 

(VCF). The input data has to contain phased genotypes for distinguishing compound heterozygotes 

from two variants on the same allele. LoFTK uses two quality metrics for imputed genotypes: the 

imputation quality (info score) and imputed allele probability. The imputation quality contains 

values between 0 and 1, where higher values mean that a variant has been imputed with more 

certainty. Besides, imputation methods generate a probabilistic prediction of the missing 

genotypes, which stands for the likelihood of carrying genotypes combinations of A/A, A/B, and 

B/B in a particular individual. The supreme estimated genotype is the genotype that has the highest 

likelihood of being correct (Marchini and Howie 2010).  LoFTK has cut-off options to filter based 

on the optimal imputation quality metrics (Supplementary Material).  After filtering,  IMPUTE2 

files are converted to VCF files.  The VCF files that are generated from IMPUTE2 files or 

introduced directly by the user are applied as an input to the next step.  
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2.1.3. LoF annotation  

The second step consists of annotation of LoF variants using VEP and LOFTEE. LOFTEE utilizes 

the Ensembl API framework to annotate HC LoF variants. We designed LoFTK to be capable of 

processing data with Homo sapiens (human) genome assemblies GRCh37 and GRCh38, and it can 

easily be upgraded to future genome builds. The VEP will return results as VEP VCF format, 

which is similar to the input VCF, but in addition shows LoF information in the INFO field, such 

as LoF flags and LoF filtering outcome (high-confidence or low-confidence) and LoF flags.  

2.1.4. Calculation of LoF variants and genes 

From the VEP output, the HC LoF variants are filtered, followed by parallel determination of 

homozygous and heterozygous LoF variants (Table 2) and allele frequencies, as well as the  copy 

number loss (single-copy or two-copy) of LoF genes (Table 1). LoFTK recognizes CH LoF 

variants, which result in LoF genes with two copies losses. We used imputed genotypes from the 

Genome of the Netherlands (GoNL) project as family-based trio data to confirm both parents 

donating a single LoF allele to proband at distinct loci in the same gene (Supplementary Material). 

Optionally, LoFTK can be used to determine ‘mismatched genes’ between samples; these are 

genes that are active in one or two copies in one sample and completely inactive in the other 

sample. This feature helps study interactions between human genomes, for instance during 

pregnancy (maternal vs fetal genome) and after stem cell or solid organ transplantation (donor vs 

recipient genome).  

2.1.5. Descriptive analysis 

Finally, descriptive statistics of LoF variants are calculated, such as the total number of LoF 

variants, number of single-copy and two-copy LoF genes, and median of LoF variants per 

participant.   

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.09.455694doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.09.455694
http://creativecommons.org/licenses/by-nc/4.0/


 

 
Figure 1: The workflow of LoFTK pipeline. Four steps involved in LoFTK; (1) preprocessing from 

IMPUTE2 to VCF, (2) LoF annotation and vep.vcf.file creation, (3) filtering HC LoF variants and counting 

LoF variants and genes, and (4) descriptive analysis.  

 

2.2.  Imputation quality threshold 

The imputed genotype data provides two quality metrics: the INFO score and the imputed alleles 

probability. UK Biobank (UKBB) was used as the gold standard for determining the optimal 

quality metrics for obtaining the most genuine LoF variants from imputed genotypes data. We 

retrieved whole exome sequencing (WES) and array genotypes data from 4,476 randomly selected 

UKBB participants. Both data were phased using SHAPEIT2 (Howie et al. 2009; Howie et al. 

2012) and array genotypes were imputed by IMPUTE2 (Delaneau et al. 2011). A combined 
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reference panel from the 1000 Genome project phase 3 (1000 Genomes Project Consortium et al. 

2015) and Genome of the Netherlands (GoNL) study (Boomsma et al. 2014) was used for phasing 

and imputation. We used LoFTK for LoF analysis in phased WES and three datasets of variants in 

imputed genotypes data. These subsets were divided based on variants with INFO scores above: 

0.3, 0.6, 0.9. for each individual, predicted LoF variants in the WES were compared to LoF variants 

in each subset with considering the imputed allele probabilities ranging from 0.01 to 0.1 for that 

variant (Supplementary Figure 1), in order to count the number of false negatives (average of LoF 

variants predicted in WES data but not in imputed data) and false positives (average of LoF 

variants predicted in imputed data but not in WES data).  

 

2.3.  Validity of predicted CH LoF in trios 

LoFTK is capable of annotating CH LoF variants, which introduce two inactive copies of a gene. 

To confirm the transmission of genuine CH LoF variants from parents to probands, we used trio-

family genotype data from the Genome of the Netherlands (GoNL) cohort (Illumina Immunochip 

microarray SNP data) (Boomsma et al. 2014). We performed a quality control step as 

preprocessing filtrations to impute genotypes data (Supplementary Material). We used the 

TOPMed imputation server (Taliun et al. 2021) to impute untyped variants in 760 individuals from 

250 families. LoFTK predicted LoF variants from imputed genotypes and we investigated 

transmission of CH LoF variants from parents to offspring.   
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3. Results 

3.1. LoFTK software 

Perl and bash were used to develop LoFTK for identifying LoF variants. Instructions on how to 

install and run LoFTK as well as example datasets are publicly available at 

https://github.com/CirculatoryHealth/LoFTK. LoFTK is highly customizable with options and 

directories settings, and all the options are explained in the LoF.config file and GitHub README. 

It is designed to run as a command line program with user-friendly flags, which helps non-experts 

users to get quickly familiarized. LoFTK requires pre-installed tools, such as BASH, Perl (>= 

version 5.10.1), Ensembl VEP (https://github.com/Ensembl/ensembl-vep) and LOFTEE 

(https://github.com/konradjk/loftee). We tested LoFTK on CentOS 7 managed by SLURM or 

SGE.  

3.2. Generation of LoF variants and genes 

LoFTK uses the information present in large-scale sequencing and genotyping data to generate 

two matrices of LoF variants and their respective genes, a list of LoF variants allele frequencies, 

and a report with descriptive statistics on the variants and genes. In the LoF variants matrix, the 

variants are represented as rows, and individuals are represented as columns. Each matrix's cell 

contains a number that represents the homozygous or heterozygous status of a given LoF variant 

for a given individual as shown in Table 1 . Similarly, the columns in the LoF genes matrix define 

individuals except the rows represent the LoF genes, and each number in the matrix cell indicates 

that either the gene has no copy loss (0), single-copy loss (1) or two-copy loss (2) (Table 2). 

Finally, LoFTK generates information file with “.info” extension to show descriptive statistical 

report for predicted LoF variants and genes, such as the total LoF variants and genes, total 
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heterozygous and homozygous LoF variants, total single-copy and two-copy LoF genes, and 

median of LoF variants and genes per participant.  

gene_ID gene_symbol single_copy_LoF_frequency two_copy_LoF_frequency Sample 1 Sample 2 Sample 3 

ENSG00000198464 ZNF480 0.387846291 0.535299374 2 1 1 

ENSG00000105877 DNAH11 0.502234138 0.250893655 1 0 1 

ENSG00000152936 IFLTD1 0.013181412 0 0 1 0 

ENSG00000039537 C6 0.000446828 0.000223414 0 0 0 

ENSG00000221938 OR2A14 0 0.000223414 0 0 0 

Table 1: The output of predicted LoF genes from WES in UKBB. This table shows the predicted 

LoF gene ID and symbol in column 1 and 2, respectively. The third column represents the 

frequency of single-copy loss gene, while the fourth represents the frequency of two-copy losses 

gene. The rest of columns indicate the number of copy losses for each individual; 0 for not carrying 

LoF gene, 1 for sigle-copy LoF gene and 2 for two-copy LoF genes.  

 

SNP_ID Consequence single_copy_LoF_frequency two_copy_LoF_frequency Sample 1 Sample 2 Sample 3 

chr19_52300416_CTG_C frameshift_variant 0.385570391 0.538972204 1 1 2 

chr7_21543345_G_T stop_gained 0.498856177 0.250090958 0 1 1 

chr10_72508273_T_C splice_acceptor_variant 0.425123229 0.449918512 2 1 0 

chr1_3602477_AC_A frameshift_variant 4.98E-06 0 1 0 0 

chr7_21543345_G_T stop_gained 0.498856177 0.250090958 0 2 1 

Table 2: The output of predicted LoF variants from WES in UKBB. high-confidence LoF variants 

are listed in the first column, followed by their consequences in the second column. The third and 

fourth columns show frequencies of heterozygous and homozygous LoF variants, respectively. 

The rest of columns indicate the zygosity of LoF variants for each individual; 0 for not carrying 

LoF variant, 1 for hetrozygous LoF variant and 2 for homozygous LoF variant. 

3.3. Imputation quality cut-off points  

We assessed imputation quality metrics for obtaining the most genuine LoF variants in imputed 

genotype data by comparing existence of each predicted LoF variant between WES and three 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.09.455694doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.09.455694
http://creativecommons.org/licenses/by-nc/4.0/


imputed dataset (INFO > 0.3, 0.6, 0.9) with considering the imputed allele probability cutoffs 

between 0.01 to 0.1 (see Section 2.2.).  

LoFTK analysis for imputed dataset with INFO > 0.9 shows an optimal prediction of true LoF 

variants, because it has less false positive 2-copy LoF variants compared to the others (0.3 and 0.6) 

(Supplementary Figure 1). However, choosing an optimal imputed allele probability was difficult 

due to the lack of apparent variations.  

3.4. CH LOF variants in trios  

CH LoF variants occur when both parents donate a single LoF allele to proband at distinct loci 

within the same gene. We used trio-families from the GoNL to evaluate the accuracy of obtaining 

two inactive copies in genes caused by CH LoF variants (see Section 2.3.).  

We predicted LoF variants and genes in 250 families' imputed genotypes (760 individuals). We 

found 642 LoF variants affecting 571 genes (Table 3).  In 164 probands, we identified 250 events 

of CH LoF variants producing 2-copy LoF genes. There were 240 (96%) true transmissions of CH 

LoF in parent-offspring, whereas there were 10 false transmissions. 

 LoF genes LoF variants 
Total 571 642 
1-copy 571 - 
2-copy 196 - 
Median 1-copy per individual 49 - 
Median 2-copy per individual 21 - 
Heterozygous - 641 
Homozygous - 213 
Median heterozygous per individual - 54 
Median homozygous per individual - 21 

Table 3: Predicted LoF variants and genes in the GoNL. LoF genes column shows numbers of total LoF 

genes, one copy inactive genes (1-copy) and two copies inactive genes (2-copy). LoF variants shows total 

number of predicted LoF variants, heterozygous and homozygous variants. 
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4. Conclusions  

Prediction of LoF variants and genes provide important insight into the discovery of possible 

disease-causing mutations and potential therapeutic targets. LoFTK is easy to use and helps users 

to predict LoF variants from genotyped and sequenced genomes, identifying genes that are inactive 

in 1 or 2 copies, and providing summary statistics report describing the total number of LoF 

variants, LoF genes, and their average, minimum and maximum per sample. LoFTK is highly 

customizable and extra features for the identification of knockout genes in copy number variation 

(CNV) and predicting the pathogenicity of predicted LoF variants can be easy added. 
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