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Abstract 

In this letter we address the potential confusion related to our recent demonstration that multiple 

macroecological laws describe short- and long-term dynamics of microbial communities. Specifically, we 

clarify that these laws, similarly to many other relationships observed in nature, are characterized not 

just by the existence of scaling, but also by certain characteristic values of the scaling exponents. By 

performing proper statistical analysis, we demonstrate that the relationships sensitive to temporal 

bacterial dynamics are not reproduced in the shuffled data. We also discuss that there is no clear 

evidence in the data that macroecological relationships in microbiota are primarily driven by external or 

environmental factors. Proper statistical analyses of the data suggest that the dynamics of gut 

microbiota, even on a constant diet, contains rich temporal structure. Therefore, it is likely that complex 

and non-linear internal dynamics may be primarily responsible for the observed macroecological laws in 

microbiota and other ecological communities. 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.455744doi: bioRxiv preprint 

mailto:dv2121@cumc.columbia.edu
https://doi.org/10.1101/2021.08.09.455744
http://creativecommons.org/licenses/by-nc-nd/4.0/


 We are surprised by the letter by Wang and Liu1 related to our recent study demonstrating that 

short- and long-term microbiota dynamics can be characterized by multiple macroecological 

relationships2. The discovery of these laws in microbiota represents an important advance in the 

understanding of microbial ecology. Our results suggest that similar underlying principles may govern 

the dynamics of both micro- and macroecological communities. Moreover, we demonstrate that the 

macroecological relationships are predictive and can be used to identify specific bacterial strains with 

abnormal or perturbed dynamics. Wang and Liu appear to be confused about the nature of our analysis 

and about the origin of the macroecological laws in general. Furthermore, there are several unfortunate 

technical errors in their analysis as well as some expected mathematical observations. To prevent 

misunderstanding in the field, we address in this letter both the conceptual and the technical issues 

raised by Wang and Liu. 

On the conceptual side, the macroecological laws describe statistical relationships between 

various features of microbiota dynamics. By analyzing shuffled time series of bacterial dynamics, Wang 

and Liu suggest that: 1) microbiota dynamics and macroecological relationships must be primarily 

externally driven, and 2) macroecological laws may not reflect the real dynamics of microbiota. We 

disagree with these claims, and we have difficulty understanding the logic of their analysis. First, it 

seems self-evident that some macroecological relationships may be relatively insensitive to the ordering 

of bacterial abundance trajectories (see below), while still accurately describing species’ dynamics, i.e., 

“a pattern or process of change, growth, or activity”. Second, in ecology in general, and in our analysis in 

particular, these relationships characterize population dynamics but make no particular claims about the 

origin of the dynamics, such as whether they are stochastic or deterministic, driven by external 

perturbations, internal perturbations, or some combination of both. Under all of these scenarios, the 

macroecological laws faithfully describe bacterial dynamics. Third, the conclusion that because similar 

functional forms of distributions are often observed in shuffled data, microbiota dynamics must be 

primarily externally driven is not correct. More than 40 years ago, the pioneering work of Robert May3-5 

demonstrated that simple non-linear ecological systems, often driven by their complex internal 

dynamics, can result in chaotic and unpredictable temporal behavior. Therefore, complex dynamics of 

ecological systems usually cannot be predicted by simple autoregressive temporal models. These 

insights have been confirmed by many researchers and now represent classic and well-established 

results in the field of ecology6. 

On the technical side, we would like to emphasize that shuffled trajectories do not represent 

random bacterial dynamics in the context of studying macroecological laws. Many of the relevant 

features present in the real data, and sometimes all the relevant features, will be necessarily preserved 

in the shuffled trajectories. By performing proper statistical analysis, we demonstrate below that the 

relationships crucially dependent on temporal dynamics are in fact not reproduced in the shuffled data. 

The functional form, but not the characteristic parameters of the relationships that only weakly depend 

on temporal dynamics, appear similar, as they predictably should, although shuffled distributions are 

again statistically different from the distributions in the real data. Finally, the laws that do not depend 

on day-to-day dynamics are reproduced exactly, again as they mathematically should be. Notably, in our 

original paper, we use a null model based on random sampling of sequencing data to show (Figure 1D 

below) that the observed temporal fluctuations, both in terms of their magnitude and their form, are 

not due to sampling noise in the data. 

Shuffling the gut microbial time series results in several trivial observations consistent with the 

original data structure. For example, in the original work we showed that the variance of species (OTU) 

abundance is related to the mean through a power law, a relationship often referred to in ecology as 
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Taylor’s law7-10. Taylor’s law allowed us to identify outliers in bacterial dynamics, including OTUs related 

to environmental and health-related perturbations. Wang and Liu show that shuffling the temporal data 

does not affect Taylor’s law. Obviously, the average and the variance of a set of numbers, in this case 

bacterial abundances and their variances over time, are not affected by reordering of the numbers. We 

do not understand what is surprising here. 

We demonstrated that long-term microbiota dynamics can be characterized by Hurst diffusion 

in log OTU abundance space. Specifically, the mean-squared displacement of log abundance ratios is 

proportional to the diffusion time: 〈𝛿2(Δ𝑡)〉  ∝  Δ𝑡2𝐻. We showed that for entire microbiota and for 

many individual OTUs, 𝐻 ≈ 0.1 − 0.2 . We performed shuffling of microbiota trajectories and found that 

the Hurst exponents observed in the real data are significantly higher than for the time-shuffled data 

(Figure 1A; 𝑍 > 19 for human datasets, and 𝑍 > 5 for mouse datasets; 𝑝 < 10−5 for all datasets), 

where the Hurst exponent is 𝐻 ≈ 0. This is expected, as the shuffling destroys temporal correlation in 

the data, thereby effectively transforming a sub-diffusive process into a mean-reverting process. 

However, the claim by Wang and Liu that this is an example of the same law in the shuffled data is 

perplexing, because scientific relationships are not simply characterized by certain functional forms or 

scaling, but also by specific values of key parameters of corresponding relationships. 

We also showed that daily abundance changes follow a Laplace distribution, a relationship 

previously observed in many other ecosystems. Wang and Liu find that the shuffled data also follow a 

Laplace distribution, but with larger exponents and therefore larger distribution variances. The observed 

difference in exponents and variances is not surprising, because for two consecutive measurements in 

the real data, OTU abundances are significantly more similar than for two randomly selected time points 

in the shuffled trajectories. This again demonstrates clear temporal structure in the data. Furthermore, 

we found that the variance of daily abundance changes in the real data is substantially and significantly 

lower (𝑍 < −9; 𝑝 < 10−5 for all datasets) than for the shuffled data in all human and mouse datasets 

(Figure 1B). 

A similar argument applies in the case of the linear relationship between the variability of daily 

abundance changes 𝜎𝜇 and mean daily abundance 𝑥𝑚. This relationship demonstrates that abundant 

bacterial species display predictably lower relative fluctuations compared to species with lower 

abundances. The general similarity of the relationship in shuffled data is again expected, as the average 

abundance for a given OTU tends to remain similar during the entire time series, i.e., high/low abundant 

species tend to remain high/low abundant across temporal trajectories. Therefore, temporal shuffling 

results in a similar functional relationship. By analyzing shuffled trajectories, we again found a 

statistically significant difference in the slope parameter compared to the real data in all considered 

datasets (Figure 1C; 𝑍 > 5; 𝑝 < 10−5). Moreover, as we demonstrated in the original paper, the 

fluctuations described by this relationship are not due to sampling noise (Figure 1D). 

We also demonstrated that the distributions of bacterial residence and return times across 

species follow a power law with specific parameters, and Wang and Liu find that these distributions do 

not substantially change following temporal shuffling. This observation is yet again a mathematical 

necessity. For individual OTUs, residence and return times are consistent with the geometric distribution 

(Figure 1E). Exponentially (geometrically) distributed extinction and lifespan times have been observed 

for many individual species in ecology11-13. Furthermore, the probability of extinction (𝑝) and 

reemergence (𝑞) at each step for individual bacterial species are related such that 𝑝 + 𝑞 ≈ 1 (see Figure 

1F). This corresponds to a process in which the absence and presence of each species is controlled by a 

binary random variable, with probability 𝑝 of absence at each time step, and probability 1 − 𝑝 = 𝑞 of 
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presence at each time step. This again does not imply that an OTU’s presence and absence are 

necessarily determined by external stochastic noise, as chaotic dynamics can often result in similar 

behavior. From such a process, it follows that 𝑝  will be approximately equal to the fraction of time 

points at which the species is absent, and 𝑞 will approximate the fraction of time points for which it is 

present. Shuffling temporal data with an approximately constant probability of presence and absence at 

each time step will then necessarily result in a similar distribution of the residence and return times for 

individual OTUs as in the original data. The distributions of these residence and return times across 

species will then also be identical, exactly as Wang and Liu observed. 

Finally, Wang and Liu computed the noise color profile and concluded that most of the temporal 

variance is white noise. The results of this analysis were in part behind their claim of “very weak 

temporal structure” in the data. However, it appears that Wang and Liu decomposed the noise for all 

OTUs, whereas in the paper, following the convention in the field, we analyzed the dynamics of bacterial 

abundance using only highly abundant bacteria. In fact, our group recently demonstrated, using careful 

experimental and computational analysis14, that the variance of OTUs with a relative abundance below 

~10−3 is often dominated by technical noise, while the variance of OTUs above this threshold is 

dominated by biologically-relevant temporal and spatial variation. Thus, the white noise observed by 

Wang and Liu simply reflects technical noise in the lowly-abundant OTUs, which represent over 97% of 

all OTUs in each dataset. Thus, their conclusions are not accurate, and the results are again expected. 

We reanalyzed the data considering only the highly abundant OTUs (analyzed in the original paper) and 

found that most noise profiles are actually dominated by pink (1/f) noise, which often indicates long-

term memory in temporal trajectories15, whereas shuffled data predictably results in white noise (Figure 

2); mouse time series were significantly shorter than human datasets, which resulted in more white 

noise in their spectra. We note that results similar to ours are also obtained by Faust et al.16, whom 

Wang and Liu in fact cite. This analysis reinforces the conclusion that microbiota dynamics often 

contains a rich and relevant temporal structure. 

In conclusion, understanding the nature of macroecological relationships in microbiota and 

other ecological systems is an important and exciting research direction. Therefore, it is essential to start 

exploring these laws without confusion about the presented results and about existing ecological 

literature. We think an important next step will be to develop models capable of robustly fitting 

experimental macroecological relationships, including scaling exponents observed in real data rather 

than just scaling itself, and models capable of fitting all macroecological laws simultaneously rather than 

only a fraction or some elements of the observed laws. Moreover, models that are based on known and 

observable features of microbiota dynamics will be more useful than models invoking additional sources 

of external or internal noise to fit the data. We note in this respect that, as we have demonstrated 

previously2, macroecological laws are also observed in mice on constant diets. Therefore, although diets 

do affect microbiota dynamics, it is unlikely that food or environmental variability is primarily 

responsible for the observed macroecological patterns, at least in general. We believe that further 

experimental and modeling studies that take into account the aforementioned observations will provide 

valuable mechanistic insights into ecological dynamics of microbiota and beyond. 
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Materials and Methods 

 
Scaling law calculations. Human17,18 and mouse19 data sets were processed identically as in Ji et al., 
(2020)2. In order to control for technical factors, a cut-off of mean relative abundance of 10−3 and a 
requirement to be present in half of the time series was used to filter out low-abundance OTUs for each 
dataset. Each scaling law was calculated identically to Ji et al., (2020)2. 
 
Maximum likelihood fits to the distributions of residence and return times. We calculated the log-
likelihood of the geometric distribution for each OTU using its standard formula. Specifically, the log-
likelihood of the geometric distribution is given by 𝐿𝐿(geom) = ∑  ln 𝑝 + (𝑥𝑖 − 1) ln(1 − 𝑝)𝑛

𝑖=1 , where 
p is a parameter representing the probability of extinction (reemergence), and 𝑥𝑖 represents the vector 
of measured presence (absence) times. Maximum likelihood values were calculated by analytically 
solving for the optimal parameter 𝑝. Discrete power law fits were calculated by maximizing the log-

likelihood function 𝐿𝐿(pwr) = ∑ (−𝛼 ln 𝑥𝑖 − ln 𝜁 (𝛼))𝑛
𝑖=1 , where 𝛼 is the power law scaling parameter, 

𝑥𝑖 is the vector of measured presence (absence) times, and 𝜁(𝛼) is the Riemann zeta function evaluated 
at 𝛼20. We maximized 𝐿𝐿(pwr) by performing a grid search on the parameter 𝛼 ranging from 0 to 10 at 
intervals of 0.01. 
 
Noise color calculations. To calculate the noise color for each OTU in each dataset, we followed the 
exact procedure given in Faust et al. (2018)16. First, missing time points for each trajectory were 
interpolated by Stineman interpolation using the R package stinepack21. Frequency and spectral density 
were then calculated with detrending enabled. Spectral density was then fit with a spline in log-log scale 
as a function of frequency, setting the degree of freedom to the maximum of [2, log10(length of the 
time series)], using the R function smooth.spline. The minimum of the first derivative of the resulting fit 
was used as a measure of the relationship between frequency and spectral density of the time 
trajectory. This value was used to classify each OTU’s color of the noise as either black (below -2.25), 
brown (between -2.25 and -1.75), pink (between -1.75 and -0.5), or white (over -0.5), following the 
scheme given in Faust et al. (2018)16. Only the OTUs that passed the abundance and prevalence cutoffs 
from Ji et al. (2020)2 were used for this calculation. 
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Figure 1. Analysis of the time-shuffling data transformation. A. Distribution of Hurst exponents across time-shuffling runs. B. 
Distribution of variances of daily abudnance changes across time-shuffling runs. C. Distribution of slopes of the linear 
relationship between standard deviation (s.d.) of daily abundance change and mean daily abundance. A-C. The distributions of 
the scaling law statistics were calculated across 200 (A) and 1000 (B-C) random temporal shufflings of the data. Red vertical 
dashed lines denote the corresponding measurments in the real biological data. Z-scores indicate the number of standard 
deviations between the means of the shuffled distributions and  the values in the real data; in all cases, the values in the real 

data are substantially and signfiicnatly different from the time-shuffled distribution (𝒑 < 𝟏𝟎−𝟓). D. Relationship between the 
s.d. of daily abundance changes and mean daily abundance for the original data (black circles) and for the random sampling null 
model (grey crosses). Black dashed line shows best line of fit to the original data. E. The difference between the maximum log-
likelihood (maxLogL) of the geometric distribution fits to the residence (green) or return (blue) data for each OTU and the 
maximum log-likelihoods of the power law distribution fits to the data for the same OTU; exactly one parameter was fit for 
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each model for each OTU (see Materials and Methods). In both cases, the geometric distribution is significantly more likely to 

describe the behavior for the majority of OTUs (paired t-test, p<𝟏𝟎−𝟏𝟎). F. Distribution of the sum of extinction probability 𝒑 
and reemergence probability 𝒒, fitted to each OTU individually, assuming a geometric distribution of residence and return 
times evaluated at its maximum likelihood. Percent of OTUs with 𝟎. 𝟗 < 𝒑 + 𝒒 < 𝟏. 𝟏 is shown in the figure. For illustrative 
purposes, only the data from the Human A dataset is shown in all panels, but similar results are obtained for all human and 
mouse datasets we analyzed in the paper. 

 

 

Figure 2. Noise decomposition profiles for human and mouse datasets. Consistent with the OTUs used for the analysis of 
abundance dynamics in Ji et al., 2020, the spectral noise decomposition was performed only for the OTUs with average 

abundance over 𝟏𝟎−𝟑. The approach for noise decomposition and definitions of noise colors from Faust et al.  
16

 were used (see 
Materials and Methods). 
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