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Abstract  

 

There is a limited understanding of age differences in functional connectivity during memory 

encoding. In the present study, a sample of cognitively healthy adult participants (n=488), a 

subsample of whom had longitudinal cognitive and brain structural data spanning 8 years back, 

underwent fMRI while performing an associative memory encoding task. We investigated 1) age 

changes in whole-brain connectivity during memory encoding; whether 2) encoding connectivity 

patterns overlap with the activity signatures of specific cognitive processes and whether 3) 

connectivity changes associated with memory encoding related to longitudinal brain structural and 

cognitive changes. Age was associated with decreased intranetwork connectivity and increased 

connectivity during encoding. Task-connectivity between mediotemporal and posterior parietal 

regions – which overlapped with areas involved in mental imagery – was related to better memory 

performance only in older age. The connectivity patterns supporting memory performance in older 

age reflected preservation of thickness of the medial temporal cortex. These investigations 

collectively indicate that functional patterns of connectivity should be interpreted in accordance with 

a maintenance rather than a compensation account. 
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1. Introduction  

 

Episodic memory declines with age (Rönnlund et al., 2005), although there is substantial inter-

individual variability in the trajectories (Nyberg et al., 2012). Variability in memory function is affected 

by changes in the structural and functional architecture of the brain. Hence, how brain regions 

communicate during memory tasks may be a key factor in explaining age-related changes in memory 

performance as well as inter-individual variation of performance in older age. Assessing brain 

functional connectivity changes in task contexts provides a window for studying age-related brain 

changes in response to specific cognitive demands (Campbell and Schacter, 2017). In the present 

study, we used task-related functional magnetic resonance imaging (fMRI) in a large adult lifespan 

sample to investigate whether 1) age is associated with changes in task-connectivity during 

encoding, specifically with decreased intranetwork and increased internetwork connectivity; 2) 

encoding connectivity patterns overlap with the activity signatures of specific cognitive processes; 3) 

connectivity changes associated with memory encoding performance relate to longitudinal brain 

structural and cognitive changes. 

 

Most previous studies on functional connectivity changes in aging have employed seed-based task-

functional connectivity (Grady et al., 2003; Oh and Jagust, 2013), or resting-state fMRI (rs-fMRI) 

(Fjell et al., 2015). Seed-based task-connectivity studies have repeatedly found higher age to be 

related to greater connectivity between medial temporal lobe, most notably the hippocampus, and 

prefrontal areas, during encoding (Grady et al., 2003; Oh and Jagust, 2013). Research using rs-fMRI 

has found lower intranetwork connectivity with higher age - especially within the default-mode 

regions - and increased connectivity between networks such as the dorsal attention and the default-

mode network (Sala-Llonch et al., 2015; Vidal-Piñeiro et al., 2014). However, encoding connectivity 

exhibits a substantially different pattern from that observed during rest (Keerativittayayut et al., 

2018). Therefore, it is crucial to understand how whole-brain task-connectivity during memory 

encoding contributes to successful recollection. Encoding-based connectivity has been 

characterized by increased communication between distant areas, such as higher integration of 
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default mode, salience, and subcortical networks with the other subnetworks (Keerativittayayut et 

al., 2018). Furthermore, flexible nodes – nodes that change networks membership during different 

episodic memory task phases – appear to be relevant for memory performance as degree of 

observed reorganization between states partially predicts retrieval success (Schedlbauer and 

Ekstrom, 2019). A small number of studies have tested age-related differences in whole-brain 

connectivity during memory encoding (Grady et al., 2016; Matthäus et al., 2012; Wang et al., 2010). 

Wang and colleagues (2010) found higher age to be associated with lower long-range functional 

connections of frontal regions with the rest of the brain during encoding. Matthaus et al. (2012) 

observed age-related increases in the density and size of the networks together with reduced 

efficiency of information processing during encoding. 

 

Age-related functional changes may accompany brain structure decline (Nyberg et al., 2012). For 

instance, in accordance with the brain maintenance framework, older adults showing longitudinal 

changes in prefrontal activity – and in further areas beyond task-specific regions – exhibited greater 

memory and hippocampal volume decline (Persson et al., 2006; Pudas et al., 2018). Alternatively, 

age-differences in connectivity may reflect an attempt to compensate for neural breakdown (Cabeza 

et al., 2018). For instance, one study found that higher connectivity between the prefrontal cortex 

with the rest of the brain was related to sustained memory performance uniquely in older adults 

(Deng et al., 2021), supporting a compensatory account for the age-related connectivity changes. In 

general, coupling age-related differences in function with cross-sectional performance is however 

not without problems, as compensatory responses can lay anywhere along a continuum from 

(partial) failure to success (Grady, 2012). Hence, for a better and complete understanding, functional 

differences need to be associated with brain and cognitive changes assessed over time.  

 

Here, we investigated age-related differences in functional connectivity during an associative 

encoding task using a correlational psychophysiological interaction (cPPI) approach (Fornito et al., 

2012) and a sample encompassing the entire adult age range. We assessed connectivity changes 

during encoding associated with age, memory performance, and the interaction between age and 
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memory. Specifically, we focused on whether age was associated with decreased intranetwork and 

increased internetwork connectivity during the task, as typically shown in whole-brain resting-state 

(Geerligs et al., 2015) and in ROI-based task-connectivity studies (Grady et al., 2016; Spreng et al., 

2016). Moreover, by comparing connectivity maps with meta-analytic activity maps, we investigated 

whether encoding connectivity patterns overlapped with the activity signatures of specific cognitive 

processes. Finally, among older adults, we tested whether the connectivity changes associated with 

successful memory encoding were related to longitudinal structural and cognitive changes. This 

allowed us to test whether these functional patterns of connectivity should be interpreted in 

accordance with the maintenance or the compensation accounts.  

 

 

2. Material and methods 

 

2.1 Participants 

A total of 488 participants (336 females, mean age = 41.65 years, SD = 17.20, age range = 18-81) 

were included in the final sample. All participants completed the fMRI tasks and were screened 

through health and neuropsychological assessments. Participants were required to have no history 

of neurological or psychiatric disorders, chronic illness, be right-handed, and not to use medicines 

known to affect nervous system functioning. Participants were further excluded based on the 

following neuropsychological criteria: score <26 on the Mini-Mental State Examination (MMSE) 

(Folstein et al., 1975), score <85 on the WASI II (Wechsler, 1999), and a T-score of ≤30 on the 

California Verbal Learning Test II—Alternative Version (CVLT II) (Delis et al., 2000) immediate delay 

and long delay. All participants gave written informed consent, and the study was approved by the 

Regional Ethical Committee of South Norway and conducted in accordance with the Helsinki 

declaration. Retrospective longitudinal data were available for a subsample of older participants (age 

> 50 years), spanning up to 10 years back as follows: neuropsychological testing for 151 participants 

(n = 51, 6, and 94 with 1, 2, and ≥ 3 observations, respectively), and brain structural scans for 88 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.10.455779doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.10.455779
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

participants (n= 2, 5, and 81 with 1, 2, and ≥ 3 observations, respectively). Note that a small 

subsample of participants had retrospective data acquired with a different scanner. See 

Supplementary Table 1 for more information. 

 

2.2 Experimental design and behavioral analysis 

The experiment included an incidental encoding task and a memory test after approximately 90 

minutes, both in the scanner. In this study, we only analyzed encoding fMRI data. The experimental 

design has been thoroughly described elsewhere (Sneve et al., 2015; Vidal-Piñeiro et al., 2019). See 

Fig. 1 for a visual description of the experiment. In brief, the encoding and retrieval tasks consisted 

of 2 and 4 runs, respectively, that included 50 trials each. The stimulus material comprised 300 black 

and white line drawings of everyday items. A central fixation cross was shown during the baseline 

recording at the beginning, the middle, and the end of each run for 11 seconds. In the encoding 

phase, the trial started with a voice asking the participants either “Can you eat it?” or “Can you lift 

it?”. Each question was asked 25 times in each run in a pseudorandomized order. One second after 

the question, an item appeared on the screen for 2 seconds, asking the participant to answer “Yes” 

or “No”, before being replaced by a fixation cross that remained throughout the intertrial interval 

(between 1 and 7 seconds, exponential distribution; duration = 2.98 [2.49] seconds). In the retrieval 

phase, the trial started with Question 1: “Have you seen this item before?”. The item appeared on 

the screen for 2 seconds, and the participant had to press “Yes” (old item), or “No” (new item). In 

each run, 25 old items and 25 new items were presented in a pseudorandomized order. If the 

participant responded “No”, the trial ended. If the participant responded “Yes”, the trial proceeded to 

Question 2: “Can you remember what you were supposed to do with the item?”. Again, if the 

participant responded “No”, the trial ended, if “Yes” the trial continued with Question 3: “Were you 

supposed to eat it or lift it?”. The participant was forced to choose between the two actions associated 

with the item at encoding. For behavioral analysis, the classification of responses to old items was: 

(1) source memory (“Yes” response to Question 1 and Question 2, and correct answer to Question 

3), (2) item memory (“Yes” response to Question 1 and either “No” to Question 2 or incorrect answer 

to Question 3), (3) miss (incorrect answer to Question 1). New items were classified either as (4) 
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correct rejections or (5) false alarms. Memory performance in the task was calculated as the 

proportion of source memory minus incorrect judgments to Question 3, tentatively controlling for 

false memories and guessing behavior (Vidal-Piñeiro et al., 2019). The relationship between age 

and relevant behavioral and neuropsychological metrics was tested with generalized additive models 

(GAMs), controlling for sex.  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.10.455779doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.10.455779
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.10.455779doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.10.455779
http://creativecommons.org/licenses/by-nd/4.0/


9 
 

Fig.1 Experimental paradigm. A One trial of the encoding task. The green V and the red X were present on the screen 
to indicate which button indicate Yes and No. B One trial of the retrieval task. Test Questions 1 and 2 required a Yes/No 
response, whereas Question 3 required a choice between the two actions. The trial ended if the participant responded No 
to either one of the two first questions. Response cues (V, X, eating, lifting) were also present on the screen. ITI intertrial 
interval, ISI interstimulus interval. Adapted from Vidal-Piñeiro and colleagues (2017).  

 

2.3 MRI acquisition 

Imaging data were collected using a 20-channel Siemens head-neck coil on a 3T MRI (Siemens 

Skyra Scanner, Siemens Medical Solutions, Germany) at Rikshospitalet, Oslo University Hospital. 

The functional imaging parameters were equivalent across all fMRI runs: 43 transversally oriented 

slices (no gap) were measured using a BOLD-sensitive T2*-weighted EPI sequence (TR = 2390 ms, 

TE = 30 ms, flip angle = 90°, voxel size = 3 x 3 x 3 mm3, FOV = 224 X 224 mm2, interleaved 

acquisition; generalized autocalibrating partially parallel acquisitions acceleration factor [GRAPPA] 

= 2). Each encoding run produced 134 volumes. At the start of each fMRI run, 3 dummy volumes 

were collected to avoid T1 saturation effects. Anatomical T1-weighted (T1w) magnetization-prepared 

rapid gradient echo (MPRAGE) images consisting of 176 sagittally oriented slices were obtained 

using a turbo field echo pulse sequence (TR = 2300 ms, TE = 2.98 ms, TI = 850 ms, flip angle = 8°, 

voxel size = 1 × 1 × 1 mm3, FOV = 256 × 256 mm2) were also acquired. Furthermore, a standard 

double-echo gradient-echo field map sequence was acquired for distortion correction of the echo 

planar images. Visual stimuli were presented in the scanner environment with an NNL 32-inch LCD 

monitor while participants responded using the ResponseGrip device (both NordicNeuroLab, 

Norway). Auditory stimuli were presented to the participants’ headphones through the scanner 

intercom. The structural T1w data used in the longitudinal analysis were collected using a 12-channel 

head coil on a 1.5 T Siemens Avanto scanner (Siemens Medical Solutions, Germany) at 

Rikshospitalet, Oslo University Hospital. The pulse sequence acquired consisted of two repeated 

160-slice sagittal T1-weighted MPRAGE sequences (TR = 2400 ms, TE = 3.61 ms, TI = 1000 ms, flip 

angle = 8°, voxel size = 1.25 × 1.25 × 1.20 mm, FOV = 240 mm). The raw images were automatically 

corrected for spatial distortion due to gradient nonlinearity (Jovicich et al., 2006) and field 

inhomogeneity (Sled et al., 1998), averaged, and resampled to isotropic 1 mm voxels. 
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2.4 MRI preprocessing 

2.4.1 fMRI preprocessing 

Data were organized and named according to the Brain Imaging Dataset Specification standard 

(BIDS) and preprocessed using a fMRIPep preprocessing pipeline (Esteban et al., 2019) (v. 1.2.5) 

a “Nipype” based tool (Gorgolewski et al., 2018) (v. 1.1.6).  

 

The T1w image was corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection 

(Tustison et al., 2010) (ANTs v. 2.2.0), and used as T1w-reference throughout the workflow. The 

T1w-reference was then skull-stripped using antsBrainExtraction.sh (ANTs v. 2.2.0), using OASIS 

as target template. Brain surfaces were reconstructed using recon-all (FreeSurfer v. 6.0.1) (Dale et 

al., 1999), and the brain mask estimated previously was refined with a custom variation of the method 

to reconcile ANTs-derived and FreeSurfer-derived segmentation of the cortical gray matter (GM) of 

Mindboggle (Klein et al., 2017). Spatial normalization to the ICBM152 Nonlinear Asymmetrical 

template version 2009c (Fonov et al., 2009) was performed through nonlinear registration with 

antsRegistration (Avants et al., 2008), using brain-extracted versions of both T1w volume and 

template. Brain tissue segmentation of cerebrospinal fluid, white-matter and grey matter was 

performed on the brain-extracted T1w using FAST (FSL v. 5.0.9) (Zhang et al., 2001). 

 

For each BOLD run, the following preprocessing was performed: first, a reference volume and its 

skull-stripped version were generated using a custom methodology of fMRIPrep. A deformation field 

to correct for susceptibility distortions was estimated based on a field map that was co-registered to 

the BOLD reference, using a custom workflow of fMRIPrep derived from D. Greve’s epidewarp.fsl 

script and further improvements of HCP Pipelines (Glasser et al., 2013). Based on the estimated 

susceptibility distortion, an unwarped BOLD reference was calculated for a more accurate co-

registration with the anatomical reference. The BOLD reference was then co-registered to the T1w 

reference using bbregister (FreeSurfer). Co-registration was configured with six degrees of freedom. 

Head-motion parameters with respect to the BOLD reference (transformation matrices, and six 
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corresponding rotation and translation parameters) were estimated before any spatiotemporal 

filtering using mcflirt (FSL v. 5.0.9) (Jenkinson et al., 2002). BOLD runs were slice-time corrected 

using 3dTshift from AFNI v. 20160207 (Cox and Hyde, 1997). The BOLD time-series (including slice-

timing correction when applied) were resampled onto their original, native space by applying a single, 

composite transform to correct for head-motion and susceptibility distortions. These resampled 

BOLD time-series will be referred to as preprocessed BOLD in original space, or just preprocessed 

BOLD. Several confounding time-series were calculated based on the preprocessed BOLD: 

framewise displacement (FD) was calculated for each functional run, using Nipype’s implementation 

(following the definitions by Power and colleagues (2014)). Additionally, a set of physiological 

regressors were extracted to allow for component-based noise correction (CompCor) (Behzadi et 

al., 2007). Principal components were estimated after high-pass filtering the preprocessed BOLD 

time-series (using a discrete cosine filter with 128s cut-off). A subcortical mask was obtained by 

heavily eroding the brain mask to ensure it would not include cortical grey matter regions. Six 

anatomical CompCor (aCompCor) components were then calculated within the intersection of the 

aforementioned mask and the union of cerebrospinal fluid and white matter masks calculated in T1w 

space, after their projection to the native space of each functional run (using the inverse BOLD-to-

T1w transformation). The head-motion estimates calculated in the correction step were also placed 

within the corresponding confounds file. All resamplings were performed with a single interpolation 

step by composing all the pertinent transformations (i.e., head-motion transform matrices, 

susceptibility distortion correction when available, and co-registrations to anatomical and template 

spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), 

configured with Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos, 

1964). Non-gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

 

2.4.2 Correlational PPI estimation 

We estimated the first-level whole-brain psychophysiological interaction (cPPI) matrix in each 

subject’s native space. Note that, in contrast with the traditional PPI technique, cPPI results in 
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symmetrical, undirected connectivity matrices. We used a region-of-interest (ROI)-based approach, 

obtaining connectivity terms for |N| = 416 ROIs corresponding to the cortical Schaeffer parcellation 

(|N| = 400) (Schaefer et al., 2018) and eight bilateral ROIs from the aseg atlas (accumbens, 

amygdala, caudate, pallidum, putamen, thalamus, hippocampus anterior and posterior) (Fischl et al., 

2002). The different conditions (“tasks”) of interest were modeled based as events with onsets and 

durations corresponding to the experimental trial period (i.e., 2 seconds epochs that comprised the 

entire period of picture presentation). The task regressors were convolved with a double-gamma 

canonical hemodynamic response function (HRF). Events were assigned to a given condition based 

on the participant’s response during the subsequent memory test namely: Source (subsequent item-

source association [Yes response to Q1 and Q2 and correct response to Q3]), Item (subsequent 

item memory without memory for the association [correct Yes response to Q1 and either a No 

response to Q2, or incorrect response to Q3]), Miss memory trials, and trials with no response. BOLD 

data (average time series) for the 416 ROIs were deconvolved into estimates of neural events 

(Gitelman et al., 2003). Each task time course from the first-level activity GLM design matrix was 

multiplied separately by the deconvolved neural estimates from the seed region and convolved with 

a canonical HRF, creating PPI terms. Pairwise (ROI-to-ROI) partial Pearson’s correlations were 

estimated for each participant separately by correlating the ROI-specific source memory PPI terms 

while controlling for (i) the remaining PPI regressors, (ii) the observed BOLD signal in both regions, 

and (iii) the original HRF-convolved task regressors. All correlation coefficients were Fisher-

transformed to z values. Finally, cPPI values were demeaned within-individual to account for non-

neural effects in the implicit baseline. The individual source-connectivity matrices were used for 

higher-level analysis. For illustrative and communication purposes, the ROIs were grouped based 

on 18 networks (subcortical network plus 17 cortical networks as defined by Yeo and colleagues 

(2011). 
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2.4.3 Longitudinal structural preprocessing 

For the structural longitudinal analysis, we performed cortical reconstruction and volumetric 

segmentation of the T1w scans using the longitudinal FreeSurfer stream v.6.0 (Reuter et al., 2012) 

(http://surfer.nmr.mgh.harvard.edu/fswiki). The images were initially processed using the cross-

sectional stream thoroughly described elsewhere (Dale et al., 1999; Fischl and Dale, 2000; Fischl et 

al., 1999). The automatized processing pipeline includes removal of nonbrain tissues, Talairach 

transformation, intensity correction, tissue and volumetric segmentation, cortical surface 

reconstruction, and cortical parcellation. Next, an unbiased within-subject template volume based on 

all cross-sectional images was created for each participant, using robust, inverse consistent 

registration (Reuter et al., 2010). The processing of each time point was then reinitialized with 

common information from the within-subject template, significantly increasing reliability and 

statistical power. Before group analysis, cortical hemispheres were brought to fsaverage space and 

surface smoothing was applied at 12 mm FWHM. For subcortical structures (i.e., hippocampi) mean 

bilateral volume for specific structures was used in the analyses. 

 

2.5 Higher-level analysis  

2.5.1 Main effects of whole-brain correlational PPI  

We ran four GLM models on the whole-brain connectivity cPPI matrices to assess the mean 

connectivity and the effects of Age, Performance and Age×Performance interaction. Sex was used 

as a covariate of no-interest in all models. The models were built in a step-wise manner, adding 

complexity in each model. First, we assessed the mean patterns of task-dependent connectivity 

during memory encoding. Next, we added an age regressor to test for changes in encoding-

connectivity with age. The third model tested the relation of performance (as defined by the corrected 

source memory scores) on encoding connectivity, age controlled. In the fourth model, we tested the 

Age×Performance interaction by adding the interaction regressor. This later model was restricted to 

edges showing a main effect of Performance. All analyses were corrected for multiple comparisons 

via cluster correction routines from the Network Based Statistics (NBS) toolbox (Zalesky et al., 2010), 
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with p < 0.01 cluster-forming threshold and p < 0.025 (2 comparisons) cluster significance as 

determined by permutation testing (n = 5000).  

 

2.5.2 Spatial relationship between connectivity maps and term-based meta-analyses 

To study the relationship between connectivity patterns and cognitive processes, we compared the 

topology of the main effects of Age, Performance and Age×Performance interaction with the meta-

analytic patterns of activity that were associated with specific cognitive processes.  

 

For connectivity, we estimated the “significance degree” of each ROI in the cPPI graphs; that is the 

number of connections (“edges”) that were significant for a given ROI in a given contrast (Age, 

Performance, and Age×Performance interaction). The connectivity output for each contrast was a 

|N| = 416 ROIs map representing the degree to which each region was related to Age, Performance, 

and Age×Performance interaction effects. 

 

The meta-analytic cognitive maps were computed with the NiMARE package (Salo et al., 2018), 

which uses core functions from Neurosynth (Yarkoni et al., 2011). The software computes meta-

analytical maps based on (mostly) activity contrasts in fMRI studies using automated text mining and 

coordinate extraction tools. We restricted the meta-analytical terms to those that overlapped between 

the Neurosynth database and the cognitive atlas (Poldrack et al., 2011) (|N| = 123 terms) thus 

restricting terms to specific “mental processes” (cognitive and emotional). Coordinate-based 

multilevel kernel density analysis (MKDA) models were used to model the specificity of the cognitive 

processes on neuroimaging data (Wager et al., 2009). Specificity refers to the probability of a 

cognitive term occurring given activation in a specific brain area. We set a term frequency threshold 

= 0.001 and a kernel radius = 10 mm. The remaining parameters were left to default. For comparison 

with “significance degree” from connectivity, the resulting meta-analytical maps were parcellated into 

|N| = 416 ROIs using a volumetric parcellation.  
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The relationship between the “significant degree” and the meta-analytical cognitive maps was 

assessed using Pearson’s correlations. Permutation-based significance testing (p ≤ 0.01) was 

performed with the BrainSMASH package (Brain Surrogate Maps with Autocorrelated Spatial 

Heterogeneity) (Burt et al., 2020). BrainSMASH enables statistical testing of spatially correlated brain 

maps by simulating surrogate brain maps with a spatial autocorrelation that matches the target map; 

here the meta-analytical cognitive maps (Viladomat et al., 2014). Surrogate maps (n = 5000) were 

generated based on a Euclidean distance matrix of the center-of-gravity ROI coordinates. A null 

distribution was then defined by correlating the surrogate and the “significant degree” maps.  

 

2.5.3 Relationship between connectivity patterns in older-age and brain structural decline 

We studied the relationship between encoding connectivity and brain atrophy and cortical thinning 

in a subsample of older individuals with retrospective longitudinal data (n = 81, age > 50 years). The 

longitudinal data spanned back on average 8.1 (SD = 0.93) years; the timing of the last observation 

overlapped with the timing of the encoding task. We focused on the clusters that were associated 

with memory performance with increasing age. We used a summarized metric that consisted of 

mean encoding connectivity from the clusters identified in the Age×Performance interaction models 

(see above for more details). Hereafter, we refer to those metrics as memory-positive and memory-

negative in older age, as the resulting clusters were associated either with higher and lower memory 

performance with higher age, respectively. We tested whether these patterns of connectivity were 

associated with whole-brain cortical thinning using Spatiotemporal Linear Mixed Effect (LME) 

Modelling as implemented in Freesurfer (Bernal-Rusiel et al., 2013). LME models were run as a 

function of Time (years from the experimental task), Connectivity and the Connectivity×Time 

interaction. Sex, Estimated Intracranial Volume (eICV), and Baseline Age (last measurement) were 

introduced as covariates of no-interest and subject identifiers as random intercepts (Bernal-Rusiel 

et al., 2013). Statistical significance was tested at each cortical vertex and the resulting maps were 

corrected for multiple comparisons using False Discovery Rate (pFDR < 0.01). Finally, we 

investigated whether these patterns of connectivity were associated with decreased hippocampus 

volume, using the same model described above. 
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2.5.4 Relationship between connectivity patterns in older age and cognitive decline 

We studied the relationship between encoding connectivity and decline in memory function and 

general cognition in a subsample of older individuals with retrospective longitudinal cognitive data. 

The longitudinal data spanned back on average 7.42 years (SD = 1.94); the last observation 

corresponded in time with the current experimental task. We selected total learning score from the 

California Verbal Learning Test (CVLT), and the Vocabulary and Matrix Reasoning test from the 

WASI-II battery as proxies for memory function, crystalized and fluid intelligence. To explore whether 

connectivity in the memory-positive and memory-negative in older age clusters were associated with 

cognitive decline over time we ran LME analyses as detailed above with the cognitive measures 

fitted as a function of Time (years from the experimental task), Connectivity and the 

Connectivity×Time interaction (pFDR < 0.01). Sex, and Baseline Age were introduced as covariates 

of no-interest and subject identifiers as random intercepts.  

 

 

3. Results  

 

3.1 Behavioral results 

Memory performance in the fMRI task showed a non-linear negative relationship to age, accelerating 

in the sixth decade of life (F = 52.26 [p < 0.001]). The different cognitive measures were related to 

age (all p’s < .001), controlling for sex; higher age was related to lower memory and visuospatial 

reasoning and higher vocabulary performance. See Fig. 2 and Supplementary Table 2 for 

additional information.  
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Fig.2 Trajectories of cognition throughout the adult lifespan. Cognitive performance was fitted by age using 

Generalized Additive Models (GAMs), controlled for sex. Memory performance = corrected source memory score from 

the experimental task; CVLT learning = words learned and recalled across the five CVLT learning trials; Vocabulary and 

Matrix = WAIS-IV vocabulary and matrices reasoning raw scores. Ribbons represent 95% confidence intervals.  

 

3.2 Whole-brain encoding connectivity  

In the main analyses, we assessed the effect of the mean task connectivity patterns during memory 

encoding and their association with Age, Performance (corrected source memory score from the 

experimental task), and the Age×Performance interaction.  

 

3.2.1 Mean encoding connectivity 

Mean across-participants connectivity during encoding (Fig. 3A) was characterized by high 

intranetwork connectivity values and high internetwork connectivity between default-mode 

subnetworks and somatomotor networks. Low internetwork connectivity of salience, control, and 

limbic networks with subcortical, visual, somatomotor, and dorsal attention networks was seen.  

 

3.2.2 Age effects 

Pairwise connectivity between regions involved in higher cognitive functions and unimodal and 

attentional regions increased with higher age. Specifically, with age connectivity was higher between 

control, limbic, and default-mode subnetworks with somatomotor, visual, subcortical regions, and 
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the dorsal attentional stream. Conversely, intranetwork connectivity was lower in older adults. See 

Fig. 3B. As resulted from the Mantel test, we found an inverse relationship (r = -0.19, p < 0.001 from 

Mantel test [n = 10000 permutations]) between the matrices of mean encoding connectivity and 

matrices of age effects, suggesting a likely “dedifferentiation” of the connectivity patterns with higher 

age. The inclusion of Performance in the model did not qualitatively affect the results.  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.10.455779doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.10.455779
http://creativecommons.org/licenses/by-nd/4.0/


19 
 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.10.455779doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.10.455779
http://creativecommons.org/licenses/by-nd/4.0/


20 
 

Fig.3 P-values matrices for mean encoding connectivity and age effects. ROIs were grouped based on the Yeo-17 

atlas (Yeo et al., 2011) and a subcortical network. Default D = TemporoParietal Network. Red represents higher 

connectivity values and positive age effects, while blue represents lower connectivity values and negative age effects. 

For the mean effect, only connections ≥ 1 SD of the mean are displayed. For the age effects, only connections in FWE-

corrected significant clusters are displayed (p < 0.01).  

 

3.2.3 Performance effects 

Better memory performance (positive performance) in the task was associated with higher 

connectivity independently of age within posterior parietal and frontal regions, namely the superior 

parietal lobule, auditory and somatomotor areas, the frontal operculum and medial prefrontal regions 

(age, sex controlled; Fig. 4B). Conversely, poorer memory performance (negative performance) was 

associated with higher connectivity within posterior lateral default-mode network regions, medial 

default-mode network regions, dorsal prefrontal areas, lateral prefrontal areas, and the temporal pole 

(Fig. 4C).  
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Fig.4 Performance effects. A P-values matrix for performance effects. Performance was defined as (corrected) source 

memory performance in the experimental task. ROIs were grouped based on the Yeo-17 atlas (Yeo et al., 2011) and a 

subcortical network. Default D = TemporoParietal Network. Red represents higher connectivity values and positive 

performance effects and vice versa for the blue scale. For the performance effects, only connections within FWE-

corrected significant clusters are displayed (p < 0.01). B-C Top 5% of significant nodes shown overlaid to 3D-brain 

BrainNet Viewer (Xia et al., 2013 http://www.nitrc.org/projects/bnv/). Nodes are filled with red to yellow scales from lower 

to higher connections (and blue to turquoise from lower to higher connections) that indicate the number of connections 

(“significance degree”). Only edges between drawn nodes are displayed.  
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3.2.4 Age×Performance interaction effects 

Next, we tested whether there were Age×Performance interaction effects within the regions showing 

a main effect of performance. We found two significant (FWE controlled) clusters showing positive 

and negative Age×Performance interactions, respectively. See Fig. 5 for a visual illustration. The 

first cluster (memory-positive in older age) included connectivity between medial temporal and 

posterior parietal regions, including the retrosplenial cortex, the inferior and superior parietal lobules, 

and regions in the medial temporal lobe. Higher connectivity between these regions was associated 

with better performance with higher age (Fig. 5B). The second cluster (memory-negative in older 

age) corresponded to connections between frontal, parietal, and visual regions. Increased 

connectivity between these regions was associated with lower performance in older participants (Fig. 

5C).  

 

Fig.5 Age×Performance interaction effects. A Relationship between performance and task-dependent connectivity 

across age. For illustrative purpose, the effects of performance were predicted at two levels (± 1 SD Age; mean Age = 

41.65 [SD = 17.18] years). Note though that Age was introduced as a continuous regressor in the model. Ribbons 

represent 95% confidence intervals. B-C Top 5% of significant nodes shown overlaid to 3D-brain BrainNet Viewer (Xia et 

al., 2013 http://www.nitrc.org/projects/bnv/). Nodes are filled with red to yellow scales from lower to higher connections 

(and blue to turquoise from lower to higher connections) that indicate the number of connections (“significance degree”). 

Only edges between drawn nodes are displayed.  

 

3.3 Spatial relationship between connectivity maps and term-based meta-analyses  

Next, we tested the spatial relationship between the encoding connectivity patterns and the meta-

analytic activity maps associated with specific cognitive processes (p ≤ 0.01 using a permutation-

based approach). We used a “significance degree” (number of significant connections for a given 
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ROI in a given contrast) and specificity metrics for connectivity patterns and cognitive maps, 

respectively. This was done for all connectivity effects of interest (Age, Performance, and 

Age×Performance interaction). See Fig. 6 and Supplementary Table 3 for the full results. The 

connectivity patterns where greater connectivity was related to higher age (older age) overlapped 

significantly with the patterns characterizing retrieval, recall, and encoding processes. Conversely, 

the connectivity patterns where greater connectivity was associated with younger age overlapped 

with maps related to imagery, spatial attention, and movement activity. The connectivity patterns 

where greater connectivity was associated with better memory performance overlapped with 

multisensory, integration and speech production areas. Connectivity patterns where greater 

connectivity was related to worse performance overlapped with maps associated with salience, 

emotion, and belief. The spatial patterns of connectivity associated with positive Age×Performance 

interaction (memory-positive in older-age) overlapped with the activity patterns associated with 

mental imagery. No terms were associated with negative Age×Performance interaction (memory-

negative in older age). These results inform us on cognitive processes that may be related to 

successful memory performance in successful aging, that is, integrative and multisensory strategies 

and mental imagery.  
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Fig.6 Spatial relationship between connectivity maps and meta-analytic patterns associated with specific 

cognitive processes. We displayed the top cognitive terms associated with each contrast. Opaque colors reflects terms 

that survived the significance threshold (p ≤ 0.01) as determined by a permutation approach using BrainSMASH (Burt et 

al., 2020). X-axis represents the empirical Pearson’s correlation (r), note that different ranges are depicted for each 

contrast. 

 

3.4 Relationship between connectivity patterns in older-age and brain structural decline 

We assessed the relationship between brain atrophy and cortical thinning and connectivity patterns 

in older age to investigate whether age-related connectivity changes reflected maintenance or 

compensatory responses. This analysis was performed in a subsample of older participants (n = 81, 

age > 50) with retrospective longitudinal neuroimaging data (see Supplementary Table 1). A Linear 

Mixed Effects analysis (controlled for Sex, eICV, and Baseline Age) revealed that the cluster related 

to higher memory performance in older age (memory-positive in older age) was associated with less 

hippocampal volume decrease over time (F = 44.2, p < 0.001; Fig.7A). In contrast, the cluster 

associated with lower memory performance in older age (memory-negative in older age) was related 

to a steeper volumetric decline of hippocampi (F = -65.71, p < 0.001; Fig.7B) and cortical thickness 

decline over time. Indeed, the cortical analysis showed a positive association between connectivity 
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in this memory-negative in older age cluster and cortical thinning in two small clusters encompassing 

(1) the left precentral and (2) the anterior fusiform and the entorhinal cortices (pFDR < 0.01, Fig.7C). 

Overall, the results supported the hypothesis that the patterns of connectivity associated with higher 

and lower performance in older age were related to structural maintenance versus decline of brain 

regions involved in memory processes.  

 

Fig.7 Relationship between memory pattern of connectivity in older age and decline of brain structures over 

time. A-B Relationship between memory patterns of connectivity in older and longitudinal structural hippocampal volume. 

A The yellow line represents higher memory performance in memory-positive cluster. B The pink line represents lower 

memory performance in memory-negative cluster. Results are significant at pFDR < 0.01. C Whole-brain cortical 

thickness decline and memory-negative in older age. Only regions showing significant thinning over time are shown. Left 

hemisphere. Maps are corrected for pFDR < 0.01. In the colorbar -log10(p) values are displayed, red represents higher 

values, blue lower values. 

 

3.5 Relationship between connectivity patterns in older age and cognitive decline 

We assessed the relationship between memory patterns of connectivity in older age and cognitive 

decline using retrospective cognitive data (age > 50). See Supplementary Table 1 for details. LME 

models (controlled for Sex and Baseline Age) revealed a relationship between connectivity patterns 

associated with higher memory performance in older age (memory-positive in older age) and less 

decline in CVLT learning scores. However, the association did not survive multiple comparison 

corrections (pFDR = 0.07).  
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4. Discussion 

 

We estimated whole-brain functional connectivity during episodic memory encoding, specifically 

focusing on age-related differences in connectivity and how they were associated with memory 

performance across the lifespan. In higher age, we found lower intranetwork and higher internetwork 

connectivity between regions involved in higher cognitive functions and the dorsal attention stream, 

sensorimotor and subcortical regions during encoding. Successful memory performance in higher 

age overlapped with networks involved in mental imagery. Among older adults, greater hippocampal 

and cortical atrophy was related to less favorable connectivity changes, reflecting maintenance 

processes over time.  

 

The age effects on encoding connectivity are partially in agreement with previous rs-fMRI and task-

fMRI studies, suggesting that some of the functional age-differences are task-independent. For 

example, several resting-state studies have found reduced intranetwork and increased internetwork 

connectivity, indicating that brain networks become less specialized during aging (Betzel et al., 2014; 

Geerligs et al., 2015). Moreover, we found higher age-related connectivity between control and 

dorsal attention networks, which has been reported previously in a fMRI study using a different task 

(Grady et al., 2016). This might be interpreted as an over-recruitment of cognitive control processes 

due to the cognitive demands of the task. Likewise, higher connectivity between inversely engaged 

networks, such as the control and the dorsal attention respectively with the default-mode, has been 

described in several tasks in aging (Spreng et al., 2016; Spreng and Turner, 2019). These patterns 

may reflect age-related features during memory tasks such as lower flexibility in shifting from external 

and internal attention and semantization of cognition as older individuals might rely more on acquired 

knowledge. Although speculative, this interpretation receives further support from our results as the 

connectivity patterns associated with older age mapped unto cognitive processes such as retrieval 

and recall, suggesting that older participants might rely more on already acquired knowledge and 

schematic information during the encoding task. However, our results also reveal task-specific 
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changes in connectivity. Compared to fMRI acquired during resting-state and other cognitive 

domains, we also identified the spatial correspondence between the connectivity patterns and 

cognitive maps, informing us on the specific cognitive processes possibly involved in the task. 

Younger people exhibited higher connectivity between areas overlapping with regions known to 

support cognitive processes relevant for our encoding task such as visual attention, action, and 

imagery. Some of these strategies may also have been adopted by older participants that performed 

better, which may be interpreted to be in accordance with the maintenance process framework.  

 

We found that the relationship between connectivity and memory performance differed as a function 

of age. Older people who performed better showed higher connectivity between medial temporal 

and posterior parietal regions, including the retrosplenial cortex. As shown in a previous study of 

older participants (Kaboodvand et al., 2018), episodic memory performance was positively 

associated with functional connectivity between the retrosplenial cortex and the medial temporal 

lobe. The retrosplenial cortex is a key mediator in facilitating the communication between medial 

temporal and other default mode networks regions, leading to memory performance success 

(Kaboodvand et al., 2018). In our study, the connectivity changes that were related to better 

performance in older participants overlapped spatially with the maps associated with mental imagery, 

in which the engagement of the retrosplenial cortex is widely described (Chrastil, 2018). These 

strategies and functional connectivity changes mimicked those associated with younger age. 

 

The patterns of connectivity associated with successful performance in older participants were 

related to volumetric maintenance of the hippocampus, critically involved in memory encoding. This 

is in agreement with the maintenance theory of cognitive aging (Nyberg et al., 2012), as hippocampal 

decline is a main factor behind memory decline in older age (Gorbach et al., 2017). Conversely, we 

found no evidence that the pattern of connectivity associated with higher performance in older age 

reflected a compensatory attempt to overcome structural decline. The widespread over-recruitment 

of different regions in frontal, parietal, and visual areas was not related to memory performance. 
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Indeed, these connectivity changes were associated with lower performance and structural loss in 

the medial temporal lobe over time. Cognitive decline was associated with structural decline and a 

maladaptive organization in the functional architecture, whereas successful memory performance in 

older participants reflected relative structural integrity over time and functional connectivity changes 

that supported the use of “younger” cognitive strategies such as mental imagery. 

 

4.1 Limitations and methodological remarks 

fMRI during task performance is suited for investigating brain dynamics associated with specific 

cognitive processes as they possess experimental control while participants perform a task-of-

interest (Campbell and Schacter, 2017). Despite commonalities across states, the functional brain 

architecture differs across task contexts (Davis et al., 2017) as brain regions reconfigure their 

connectivity patterns in a flexible way based on the current demands of the task (Cole et al., 2013). 

This point is supported in our study, as the connectivity patterns associated with successful memory 

performance mapped on networks involved in cognitive processes relevant for this encoding task. 

The main disadvantage of task-fMRI is that differences in the experimental design may hamper 

generalization (Damoiseaux and Huijbers, 2017). Some of our findings agree with previous rs-fMRI 

and task-fMRI research and thus likely represent task-invariant features of the aging brain. However, 

other findings, as highlighted by the spatial correlation between functional connectivity and mental 

imagery processes, seem more constrained to the specific demands of the task, although they relate 

to real-life function. 

 

The cPPI framework allowed for a whole-brain undirected (symmetric) assessment of task 

connectivity. cPPI does not imply inferences of directionality. The cPPI connectivity values reflect 

correlations between regions during selected task-periods of an fMRI run, controlling for stimulus-

driven co-fluctuations and intrinsic functional connectivity between the ROIs. When cPPI connectivity 

values estimated from different task-periods are subtracted, the resulting metric is largely 

comparable to traditional regression-based PPI approaches. However, when conditions are not 
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subtracted - as in the current paper - cPPI is akin to “residualised” task-connectivity and beta series 

correlation, i.e. the similarity between two regions’ trial-to-trial fluctuations in BOLD amplitude during 

task (Di et al., 2020). The different implications of the metrics are largely omitted in the literature but 

have consequential implications for the interpretation, that is in this case, a task-state of integrated 

connectivity, instead of a shift in connectivity driven by the specific task. 

 

The effects of demeaning data within participants are also consequential for the interpretation of our 

results. This approach minimizes the possibility of non-neural confounds that affect the implicit 

baseline being the main drivers of connectivity differences across individuals. Some of these 

confounds are known to be greatly correlated with age (Campbell and Schacter, 2017). However, 

data demeaning only allowed us to interpret the results in relative terms, and in terms of 

reorganization. Note that many graph-theoretical studies use thresholded, binarized data and thus 

face a similar problem. It is however possible that some findings are a side-effect of this step. For 

example, the patterns of connectivity associated with lower performance in older participants are 

spatially unstructured and thus might represent unspecific changes in the functional connectome 

rather than reduced functional connectivity amongst specific regions.  

 

Despite the structural and cognitive retrospective longitudinal data available, the main limitation of 

this study is the lack of longitudinal task-fMRI, which would have allowed us to assess how the 

functional architecture of the brain during memory tasks changes over time.  

 

 

5. Conclusions 
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This study provides novel insights in whole-brain connectivity during encoding and its relation with 

age, cognitive processes and structural decline in older age using a large sample encompassing the 

entire adulthood. Connectivity patterns underlying successful memory function in older age spatially 

mapped onto mental imagery processes and were related to structural brain maintenance over time. 

These results provide a bridge between the cognitive processes and the biological mechanisms that 

support memory function maintenance and decline in older age. 
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