1	Title: N-dihydrogalactochitosan reduces mortality in a lethal mouse model of SARS-CoV-2
2	
3	Single Sentence Summary: The immunoadjuvant N-dihydrogalactochitosan diminishes SARS-
4	CoV-2 disease in humanized ACE2 mice representing a new countermeasure against COVID-
5	19.
6	
7	Authors: Christopher M. Weiss ^{1,4} , Hongwei Liu ¹ , Erin E. Ball ¹ , Samuel Lam ² , Tomas Hode ² , M.
8	Kevin Keel ¹ , Richard M. Levenson ³ , and Lark L. Coffey ^{1*}
9	
10	¹ Department of Pathology, Microbiology & Immunology, University of California, Davis, CA
11	² Immunophotonics, Inc., Saint Louis, MO
12	³ Department of Pathology and Laboratory Medicine, UC Davis Health, Sacramento, CA
13	⁴ Current address: Meissa Vaccines, Inc., Redwood City, CA
14	
15	*Corresponding Author
16	lcoffey@ucdavis.edu
17	
18	ORCID iD:
19	Christopher Weiss 0000-0003-4704-9533
20	Hongwei Liu 0000-0002-8342-2545
21	Erin Ball 0000-0002-8464-6612
22	Richard Levenson 0000-0002-0112-6823

²³ Lark Coffey 0000-0002-0718-5146

²⁴ ABSTRACT

25	The rapid emergence and global dissemination of SARS-CoV-2 that causes COVID-19
26	continues to cause an unprecedented global health burden resulting in more than 4 million
27	deaths in the 20 months since the virus was discovered. While multiple vaccine
28	countermeasures have been approved for emergency use, additional treatments are still
29	needed due to sluggish vaccine rollout and vaccine hesitancy. Immunoadjuvant compounds
30	delivered intranasally can guide non-specific innate immune responses during the critical early
31	stages of viral replication, reducing morbidity and mortality. N-dihydrogalactochitosan (GC) is a
32	novel mucoadhesive immunostimulatory polymer of β -0-4-linked N-acetylglucosamine that is
33	solubilized by the conjugation of galactose glycans. We tested GC as a potential
34	countermeasure for COVID-19. GC administered intranasally before and after SARS-CoV-2
35	exposure diminished morbidity and mortality in humanized ACE2 receptor expressing mice by
36	up to 75% and reduced infectious virus levels in the upper airway and lungs. Our findings
37	demonstrate a new application for soluble immunoadjuvants like GC for preventing severe
38	disease associated with SARS-CoV-2.

⁴⁰ INTRODUCTION

41 Severe acute respiratory syndrome-like coronavirus 2 (SARS-CoV-2) that was first identified 42 from a cluster of viral pneumonia cases in Wuhan, China in December 2019 (1) has caused 43 more than 202 million cases and nearly 4.3 million deaths globally as of August 9, 2021. Clinical 44 manifestations of 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 typically 45 include fever, non-productive cough, and mild to moderate dyspnea, with severe cases 46 developing pneumonia and acute respiratory distress syndrome (1-3). SARS-CoV-2 morbidity 47 and mortality increase with age and systemic proinflammatory and cardiovascular co-morbidities 48 (1, 2, 4). Recovered patients may also exhibit long-duration symptoms including disruption to 49 sensations of taste and smell, and cognitive impairment (colloquially referred to as "brain fog") 50 resulting from neurological involvement (5, 6). 51 Like SARS-CoV, SARS-CoV-2 uses the angiotensin converting enzyme 2 (ACE2) for

⁵² cell entry (7, 8). Small animals including mice, hamsters, and ferrets, have been fundamental in ⁵³ defining SARS-CoV-2 pathogenesis and developing medical countermeasures (9, 10). ⁵⁴ Transgenic mice expressing the human ACE2 (hACE2) gene from the human cytokeratin 18 ⁵⁵ (K18) promoter have served as an especially useful model of severe disease due to well ⁵⁶ characterized genetics and ease of use (11–13). Intranasal inoculation of K18-hACE2 mice ⁵⁷ (hereafter termed hACE2) with SARS-CoV-2 results in a high viral burden in the lungs, which ⁵⁸ diminishes past day 7, and elevated viral loads detectible in the brain at day 7 (12).

SARS-CoV-2, which can be transmitted in small-droplet aerosols from person to person,
 can take up to 14 days to produce symptoms *(14)*. Public health countermeasures have evolved
 as additional treatments and information regarding transmission risks for COVID-19 have
 become available. In addition to face coverings and physical distancing, multiple vaccine
 candidates have now received emergency use authorization by the United States Food and
 Drug Administration (FDA) *(15)*. While 'herd immunity' through vaccination remains the target, it
 is estimated that 70-90% of the global population must be immune in order to interrupt

66 transmission (16). This target becomes even more challenging with high levels of vaccine 67 skepticism, slow production, inequitable distribution, and the rise of variants of concern capable 68 of more efficient transmission or vaccine escape. Pre- and post-exposure countermeasures can 69 help fill the vaccine gap by reducing COVID-19 morbidity and mortality in unprotected 70 communities and thus reduce the global burden of the pandemic. The nucleoside analog 71 remdesivir (17) is the only current FDA-approved therapeutic and was authorized based on its 72 ability to shorten recovery time in COVID-19 patients (18), but it is not ideal for clinical use due 73 to its only moderate clinical efficacy (19), as well as its requirement for intravenous 74 administration. As of October 2020, there were nearly 400 active trials of therapeutic agents 75 with more than 10 drugs or biological products holding emergency use authorization, mostly 76 indicated for patients with severe COVID-19 (20). Despite these advances, there are presently 77 no drugs available for high-risk exposure use to protect against SARS-CoV-2. To circumvent 78 this gap, we repurposed a therapy used for cancer and as a vaccine adjuvant with a goal of 79 mitigating COVID-19 disease.

80 The parent compound of GC, chitosan, is a linear biological polysaccharide polymer of 81 β-0-4-linked N-acetylglucosamine and is produced from alkaline treatment of the chitin 82 exoskeleton of crustaceans. Chitosan is approved by the FDA for tissue engineering and drug 83 delivery. Chitosan shows broad acting antiviral (21) and immunoadjuvant properties (22, 23) 84 including interferon (IFN) induction (24, 25) that is critical for viral control (26-28), and has been 85 successfully tested as an antiviral therapy for respiratory viruses (29-31). Modification of 86 chitosan by attaching galactose molecules to the free amino acids on the polysaccharide 87 backbone produces N-dihydrogalactochitosan (GC) (32, 33). GC was initially designed to 88 further improve immune stimulating function of the molecular backbone by adding glycan 89 moleties, which can bind to C-type lectin receptors on antigen presenting cells (34) and lead to 90 a downstream immune responses while retaining the mucoadhesive properties of the parent 91 molecule (35). Furthermore, GC has improved solubility at physiological pH ranges compared to

92 its parent molecule, and hence is more suitable as an injectable agent. With these 93 modifications, GC has been developed for use in human interventional immuno-oncology to 94 stimulate systemic anti-tumor immunity (36). GC recruits granulocytes at the injection site (37) 95 and stimulates activation of dendritic cells and macrophages through upregulation of co-96 stimulatory molecules CD40, CD86, and MHCII in vitro and in vivo (38, 39). Macrophages also 97 show increased nitric oxide production and phagocytic abilities (38). Single-cell RNA 98 sequencing indicates enrichment of type I IFN signaling in multiple innate immune cells, 99 including monocytes. M1 macrophages, and neutrophils in tumors following GC administration 100 (40). Broad-acting non-toxic immunoadjuvants like GC that upregulate innate immune 101 responses and recruit cellular responses to the exposure site represent a novel approach 102 against SARS-CoV-2. Furthermore, non-specific immunoadjuvants such as GC could offer a 103 benefit over more narrowly targeted antivirals by providing protection against a range of 104 pathogens, potentially including future agents not yet affecting public health. 105 In the present study, we explored the use of GC for prophylaxis against SARS-CoV-2 106 infection applied pre- and post-exposure to lethal dosages of the virus in transgenic hACE2 107 mice. To simulate the use of solubilized GC as a nasal spray, we applied the compound 108 intranasally twice before exposure and once following exposure of mice to a human isolate of 109 SARS-CoV-2. Our data demonstrate a strong protective effect from GC in preventing mortality 110 in this lethal model of disease. Pre- and post-exposure countermeasures can help fill the 111 vaccine gap by reducing COVID-19 morbidity and mortality in unprotected communities and 112 reduce the global burden of the pandemic.

113

¹¹⁴ **RESULTS**

¹¹⁵ N-dihydrogalactochitosan reduces SARS-CoV-2-associated mortality in hACE2
 ¹¹⁶ transgenic mice.

117 To determine the antiviral efficacy of N-dihydrogalactochitosan (GC) against SARS-118 CoV-2, 6-week-old hACE2 [B6.Cg-Tg(K18-ACE2)2Prlmn/J] mice were treated intranasally (i.n.) 119 with 0.75% of GC in neutral buffered saline 3 and 1 days prior to virus exposure and 1 day post 120 exposure (Fig. 1a). Inhaled GC was well tolerated in mice, and no adverse events were noted 121 during or after treatment. Mice were challenged i.n. 1 day prior to the final GC treatment with 10³ 122 or 10⁴ plaque forming units (PFU) of SARS-CoV-2, a route and dose intended to produce high 123 lethality in this model. Inocula were back-titrated to verify the administered dose. Tracheal 124 swabs were collected for the first 3 days post challenge and animals were monitored daily until 125 day 14 for weight loss and health status.

126 Weight remained stable for the first 3 days in all groups and infected controls rapidly 127 declined starting at day 4 in 10⁴ PFU and day 5 in 10³ PFU groups (**Fig. 1b**). Half of mice 128 experienced no weight loss throughout the duration of the study (**Supplementary Fig. 1**): 129 conversely, their growth outpaced mock-infected counterparts treated with saline alone 130 (p<0.0001). This effect was not limited to one biological sex and did not correlate with mouse 131 starting weight at the time of study initiation. Additional mice lost weight starting at day 4 but 132 failed to reach euthanasia criteria (loss of 20% of initial body weight) and recovered to starting 133 weight by day 14 post-challenge. Relative to the 10⁴ group, mice challenged with 10³ PFU 134 SARS-CoV-2 exhibited delayed or transient weight loss, with 1 mouse experiencing no weight 135 loss over the duration of the study. At the higher challenge dose of 10⁴ PFU, GC significantly 136 reduced weight loss versus delivery vehicle treated controls (p < 0.0001). At the lower 10³ PFU 137 challenge dose. GC trended toward protection from weight loss, which was confounded by non-138 uniform disease in delivery vehicle treated controls (p=0.11). Mice treated with delivery vehicle 139 and challenged with 10^3 or 10^4 PFU had a median survival time of 7±3.3 and 6.5±0.9 days. 140 respectively (Fig. 1c). At the lower challenge dose of 10³ PFU, GC had an efficacy of 37.5% 141 protection from mortality (p=0.05) (**Fig. 1d**). At the higher challenge dose of 10⁴ PFU, GC

142 reduced SARS-CoV-2 mortality by 75% (p<0.0001). Together, these results demonstrate the 143 potent efficacy of GC in preventing fatal SARS-CoV-2 disease in transgenic mice.

144

145

N-dihydrogalactochitosan reduces SARS-CoV-2 viral levels in the upper respiratory tract. 146 We next sought to determine whether GC reduced viral levels in addition to protecting mice from 147 mortality. Infectious SARS-CoV-2 levels were assessed longitudinally in mice by swabbing 148 throats from day 1 to 3 post-challenge (Fig. 2a). SARS-CoV-2 was detectible in the trachea of 149 infected animals at day 1 post challenge and most animals had no detectible virus by day 3. 150 Virus levels were elevated in mice inoculated with 10⁴ PFU versus 10³ PFU at 1 day post 151 challenge (p=0.05), but differences between challenge doses were not detected after day 2 152 (p>0.99). GC significantly reduced virus levels in the trachea at day 1 and day 2 post challenge

153 with 10^4 PFU (p=0.0005 and p=0.02, respectively). A similar effect was not observed in mice 154 receiving the lower inoculum of 10³ PFU. All delivery vehicle-treated mice had detectible virus in 155 swabs following infection, while 29.2% (7/24) of mice had no infectious virus isolated between 156 days 1 and 3. Positive virus detection in tracheal swabs was not correlated with lethal disease in 157 mice (p=0.62, Fisher's exact test). Cumulative virus levels in tracheal swabs were calculated as 158 area under the curve for individual animals (Fig. 2b). GC significantly reduced the total virus 159 levels in mice challenged with 10⁴ PFU from a geometric mean of 225 to 5.6 PFU collected in 160 swabs (p<0.0001) and trended toward a reduction in animals challenged with 10³ PFU from 138 161 to 15 PFU collected in swabs (p=0.08).

162 As individual animals met humane experimental endpoints, mice were euthanized 163 between days 5 and 7. Infectious virus levels were measured in the lungs (Fig. 2c) and brain 164 (Fig. 2d) at the time of death. The geometric mean lung viral titers ranged from 89 to 1209 165 PFU/mg in delivery vehicle-treated control animals. Similarly, GC-treated mice had geometric 166 mean lung titers ranging from 6 to 1004 PFU/mg. GC treatment trended toward a reduction in

167	lung virus levels ($F=2.431$, $p=0.06$, two-way ANOVA) with cumulative effects in animals
168	challenged with 10 ³ PFU driving the main treatment effect ($p=0.06$).

169 Comparatively high viral titers were observed in the brain at the time of death, consistent 170 with previous descriptions in this model (12). Virus was detectible in the brain in all but 2 171 infected animals at the time of death, indicating neuroinvasion as a likely cause of morbidity. 172 Delivery vehicle-treated control animals had geometric mean brain titers ranging from 13,695 to 173 21,4045 PFU/mg. Geometric mean brain titers in GC-treated animals ranged from 1,351 to 174 24.299 PFU/mg. No significant trends in brain virus levels were observed between treatments 175 (F=0.8134, p=0.52, two-way ANOVA). No infectious virus was detectible in the lungs or brains 176 of animals euthanized at day 14 post challenge.

¹⁷⁷ N-dihydrogalactochitosan reduces the severity of histopathologic lesions associated

179

178

with SARS-CoV-2 infection in lungs.

Intranasal inoculation of hACE2 transgenic mice with PBS followed by mock inoculation 180 resulted in normal lung architecture in most mice, although several animals exhibited mild 181 alveolar septal inflammation, likely associated with i.n. administration (Fig. 3a). By contrast, 182 mice inoculated with 10³ or 10⁴ PFU SARS-CoV-2 (**Fig. 3c**, representative 10³ image shown) 183 exhibited extensive lymphohistiocytic interstitial pneumonia with a peribronchiolar and 184 perivascular distribution and scattered multinucleated syncytial cells. Bronchiolitis, bronchiolar 185 epithelial and alveolar septal necrosis, hemorrhage, fibrin, edema, and vascular endothelial 186 inflammation were also occasionally noted. SARS-CoV-2-infected mice treated with GC showed 187 lesser histopathologic lesions in the lung (Fig. 3b) compared to animals that did not receive GC, 188 and inflammation was focally distributed instead of widespread. To quantify histopathologic 189 changes, lung lesion severity (Fig. 3d) was scored using specific criteria (Supplementary 190
 Table 1) and the total area of the lung that was affected was estimated using image analysis
 191 software (Fig. 3e). GC treatment significantly reduced the mean severity score for animals 192 dosed with 10^4 PFU SARS-CoV-2 from 4.6 to 2.5 (ANOVA, p < 0.0001). Mean scores for mice

193	treated with GC and 10 ³ PFU of SARS-CoV-2 trended towards being lower than for mice who
194	did not receive GC but were not significantly different (p >0.05). The percent of lung affected in
195	mice that received the 10^4 SARS-CoV-2 dose was also significantly reduced from a mean of
196	33% to 13% (p<0.0001); differences at the 10^3 dose were not significant.
197	A subset of GC-treated and untreated mice exhibited mild rhinitis, characterized by
198	mucus, sloughed cells, necrotic debris, and scattered neutrophils in the nasal cavity. One GC-
199	treated mouse (Supplementary Fig. 2a) and 3 mock-inoculated mice exhibited pulmonary
200	foreign-material reactions, with necrosuppurative bronchiolitis and multiple foci of neutrophils,
201	macrophages, and multinucleated giant cells surrounding intracellular and extracellular brightly
202	eosinophilic foreign material. Consistent with high viral titers in the brain, some GC-treated and
203	untreated mice exhibited mild to moderate lymphocytic meningitis with perivascular cuffing and
204	occasional extension of lymphocytes into the adjacent neuropil (Supplementary Fig. 2b,c).
205	Together, these data show that GC reduces SARS-CoV-2-induced disease in the lung of
206	hACE2 mice, although only significantly in mice administered the higher 10 ⁴ PFU dose of
207	SARS-CoV-2. The pulmonary foreign material reactions and alveolar inflammation in both GC-
208	and mock-treated mice may stem from the volume or frequency of i.n. treatment; future studies
209	using GC could modify both parameters as a means to reduce these lesions.
210	Mice treated with N-dihydrogalactochitosan produce neutralizing antibodies after SARS-
211	CoV-2 exposure.
212	Finally, we sought to determine whether mice surviving SARS-CoV-2 challenge
213	produced a humoral immune response that might protect them from future challenge. Serum

²¹⁴ from blood collected at day 14 post inoculation was assessed for neutralizing antibody against

the challenge strain of SARS-CoV-2 by plaque reduction neutralization test (PRNT) at the 80%

²¹⁶ neutralization threshold (**Fig. 4**). All infected mice surviving viral challenge generated

- ²¹⁷ neutralizing antibodies. Mice in the GC group challenged with 10³ or 10⁴ PFU generated
- ²¹⁸ geometric mean neutralizing titers of 1:676 and 1:861, respectively. In comparison, PBS-

administered mice that received a challenge dose of 10³ PFU had a mean neutralizing titer of
 1:1448. Neutralizing antibody titers were not different across treatments (p>0.9999) or virus
 dose, although PBS-administered mice challenged with 10⁴ PFU SARS-CoV-2 were unavailable
 for comparison due to uniform lethality. These data confirm that surviving mice were
 productively infected and indicate that animals were able to develop adaptive immune
 responses that could potentially protect against reinfection.

225

²²⁶ **DISCUSSION**

227 Intranasal administration of GC to prevent or treat SARS-CoV-2 represents a novel 228 application of this potent immunostimulatory compound. In the present study, GC was well-229 tolerated and prevented lethal disease in up to 75% of treated humanized mice, while all mice 230 not receiving GC but challenged with the 10⁴ PFU SARS-CoV-2 had to be euthanized. All 231 surviving animals had neutralizing antibodies detectable at 14 days post inoculation. Similar 232 SARS-CoV-2 antibody titers were detected in GC-treated and untreated animals. Mice that 233 received GC treatment also displayed lower levels of infectious SARS-CoV-2 in tracheal swabs 234 collected 1 to 2 days post inoculation and had less severe lesions in lungs. Reducing virus 235 levels in the upper airway has gained particular significance as recent vaccine breakthrough 236 cases with variants of concern demonstrate SARS-CoV-2 shedding at similar levels to 237 unvaccinated individuals, which is a key determinant of transmission potential (41). Our findings 238 demonstrate a reduction in viral burden and virus-induced disease along with a resultant 239 increase in survival due to GC treatment.

GC is a polymeric mixture containing strands of varying lengths of selectively galactose conjugated and partially deacetylated β-0-4-linked N-acetylglucosamine molecules with a
 specific range of molecular weights *(32, 33, 36, 37)*. Synthesized and purified under Good
 Manufacturing Practice (GMP) conditions, N-dihydrogalactochitosan is a well-characterized
 variant of GC. Characterization and quality control testing ruled out contamination from

245 endotoxins, heavy metals, and other impurities, which eliminates a major confounding factor in 246 the research of these naturally derived molecules, and chitosan in particular (42). Water 247 solubility, immunological properties, biocompatibility, and a favorable toxicity profile are key 248 features of GC. The unconjugated base polymer, chitin, is a primary structural component of cell 249 walls for organisms ranging from fungi to arthropods (21). Chitosan, a derivative of chitin, is 250 deacetylated through alkaline treatment and is marketed as a nutritional supplement (43) and 251 used as a biopolymer (44). Unmodified chitosan has been used successfully to treat influenza A 252 virus infection in mice (29), demonstrating a potential application as a non-specific antiviral 253 compound for respiratory virus infection. However, unmodified chitosan has low solubility in 254 neutral buffered aqueous solution and requires acidic formulation; poor characterization, 255 purification and lack of controlled synthetic process leads to poor reproducibility and 256 unpredictable outcomes (42). GC circumvents these limitations through a controlled and 257 reproducible process of synthetically attaching galactose to the free-amino groups of the 258 chitosan base, improving solubility (and thus bioavailability) while maintaining a physiological 259 pH. GC has been previously used as a combination anti-tumor therapy due to its 260 immunoadjuvant properties (38, 40), but its utility as a broad-acting antiviral compound has not 261 previously been investigated.

262 Immunoadjuvants stimulate non-specific innate immune responses through various 263 mechanisms. Some use pattern-recognition receptors, including the Toll-like receptor (TLR) 264 family of antigen detection complexes. While the mechanism of SARS-CoV-2 protection has not 265 been determined for GC, chitosan, and similar polymers of N-acetylglucosamine, interact with 266 TLR2, which serves as a rationale for inclusion of chitosan as a vaccine adjuvant. TLR2 signals 267 through myeloid differentiation factor 88 (MyD88) to stimulate the nuclear factor kappa B (NF-268 κB) pathway and downstream inflammatory and anti-microbial cytokine responses (45, 46). TLR 269 engagement of the canonical NF-kB pathway up-regulates both tumor necrosis factor alpha 270 $(TNF-\alpha)$ and interleukin-6 (IL-6), two potent pro-inflammatory effectors. IL-6, which is necessary

271 for antiviral immunity against other virus families, has been identified as a target of 272 dysregulation associated with hyperinflammatory responses in the lungs during SARS-family 273 coronavirus infections. SARS-CoV-1 nucleocapsid protein can stimulate NF-κB activation and 274 IL-6 production independent of infection (47). Prolonged high levels of IL-6 are correlated with 275 severe COVID-19 outcomes in humans, and a similar association has been found in ferrets 276 infected with SARS-CoV-2 (48). The timing of IL-6 production may play a critical role in 277 determining whether viral clearance is achieved or alternatively, hyperinflammatory responses 278 result. Early, but not late, induction of IL-6 during respiratory syncytial virus (RSV), influenza A. 279 and rhinovirus infection promote viral clearance and limit prolonged inflammation by establishing 280 regulatory T cell populations that limit virus spread (49). Similarly, timed induction of pro-281 inflammatory responses by GC treatment pre- and post-infection may promote viral clearance 282 before virus-mediated dysregulation of this pathway can occur. As such, future studies should 283 explore the timing of GC treatment and regulation of IL-6 and associated pro-inflammatory 284 pathways.

285 The data in this study demonstrate that treatment with GC induces robust neutralizing 286 antibody responses by day 14, after a reduction in infectious SARS-CoV-2 in tracheal swabs by 287 day 3. These data suggest GC functions as an immunoadjuvant that can modulate innate 288 immune responses after SARS-CoV-2 infection, leading to stimulation of robust antiviral 289 adaptive immunity. Experimental evidence from cell culture and animal models support at least 290 three mechanisms by which complex carbohydrates such as GC could stimulate the innate and 291 adaptive immune systems (50-53). First, GC recognition by sensors on macrophages and 292 dendritic cells (DC) can stimulate innate immune defenses (54-56). While immune receptors for 293 GC have not been identified, chitosan binding to C-type lectin receptors such as dectin-1 can 294 initiate innate immune signaling (57, 58). Second, GC-mediated antigen uptake (59) and antigen 295 presentation by DCs could lead to CD4 and CD8 T cell responses (37, 38). Studies in mice 296 show GC induces type 1 IFN (40), leading to enhanced DC activation and robust CD4 T helper

²⁹⁷ cells (*51*). Notably, DNA sensor activation is mediated via cellular DNA release by chitosan.
 ²⁹⁸ Third, physical antigen sequestration and slow antigen release within draining lymph nodes
 ²⁹⁹ facilitated by GC could potentially prolong germinal center reactions, thereby enhancing
 ³⁰⁰ humoral immunity by fostering affinity maturation of B cells (*60, 61*). Thus, GC may have
 ³⁰¹ potential as a dual-purpose preventative and therapeutic with immunostimulatory properties.
 ³⁰² Future studies are needed to investigate the impact of GC on SARS-CoV-2-specific immune
 ³⁰³ responses.

304 In addition to the immunoadjuvant properties of GC, direct interactions between GC and 305 SARS-CoV-2 in the nasal cavity may contribute to the protection we observed in mice. As the 306 nasopharyngeal and oral cavity are often the primary entry sites of SARS-CoV-2 and other 307 respiratory viruses, interventions or medications at these locations could provide an important 308 boost in the first line of defense. The reduction in SARS-CoV-2 levels in GC treated mice in the 309 first 2 days post-challenge suggests that GC has early effects that hamper the initial phase of 310 viral infection, especially given that serum neutralizing antibodies are not detectable before 311 about 7 days. In addition to possible innate immune stimulation, aqueous GC is viscous and 312 may remain in the airway after intranasal administration. GC present at the time of infection may 313 act as a physical barrier or directly inactivate SARS-CoV-2 before it can initiate infection. 314 Additional studies of GC bioavailability and detailed studies of GC-virus interactions including to 315 establish whether GC blocks virus entry and/or replication are needed to establish mechanisms 316 of protection; these experiments could also clarify why greater protection from lethal disease 317 was observed after challenge with the higher SARS-CoV-2 dose in these studies.

In summary, we show here that GC treatment of humanized mice pre- and post-infection
 with SARS-CoV-2 reduces lethal disease, virus levels in the upper respiratory tract, and
 significant lesions in the lungs. These data suggest a possible role of GC as a SARS-CoV-2
 countermeasure. Additional pre-clinical studies could focus on the mechanism of protection,
 including further assessment of the antiviral and immunomodulatory effects of GC. Future

studies should also identify the GC dose and schedule that confer the greatest benefit in
 reducing disease while minimizing foreign-material reactions as detected in the lungs of several
 of the mice in this study, as well as to determine whether GC shows both prophylactic and
 therapeutic benefits.

327

³²⁸ **METHODS**

Ethics Statement: All mouse work was conducted on protocol #21868 approved by the
 institutional animal care and use committee (IACUC) at the University of California, Davis.
 Infectious virus was handled in certified animal biosafety level 3 laboratory (ABSL-3) spaces in
 compliance with approved institutional biological use authorization #R2813. The University of
 California, Davis, is accredited by the Association for Assessment and Accreditation of
 Laboratory Animal Care (AAALAC). All mouse work adhered to the NIH Guide for the Care and
 Use of laboratory Animals.

³³⁶ *Mice:* Equal numbers of male and female transgenic mice expressing the human ACE2

³³⁷ receptor on a K18 transgene in a C57BI/6J background (B6.Cg-Tg(K18-ACE2)2Prlmn/J,

³³⁸ referenced as 'hACE2') were purchased at 5 weeks of age from Jackson Laboratories

³³⁹ (Sacramento, CA). Mice were co-housed by sex in ABSL-3 conditions with 4 animals per cage

³⁴⁰ and acclimated for up to 6 days at 22-25°C and a 12:12 hour light: dark cycle. Rodent chow with

³⁴¹ 18% protein content and sterile bottled water was provided *ad libitum* for the duration of the

³⁴² experiment.

³⁴³ *Virus:* SARS-CoV-2/human/USA/CA-CZB-59X002/2020 (GenBank #MT394528), which was
 ³⁴⁴ isolated from a patient in 2020 in Northern California and passaged once in Vero-E6 cells, was
 ³⁴⁵ generously provided by Dr. Christopher Miller (University of California, Davis). To generate
 ³⁴⁶ stocks for these studies, SARS-CoV-2 was passaged one additional time in Vero-E6 cells to
 ³⁴⁷ achieve a titer of 2.2 x 10⁷ plaque forming units (PFU)/mL. Single-use virus aliquots were stored
 ³⁴⁸ at -80°C.

³⁴⁹ *N-dihydrogalactochitosan Treatment and SARS-CoV-2 Challenge*: Sterile 1%

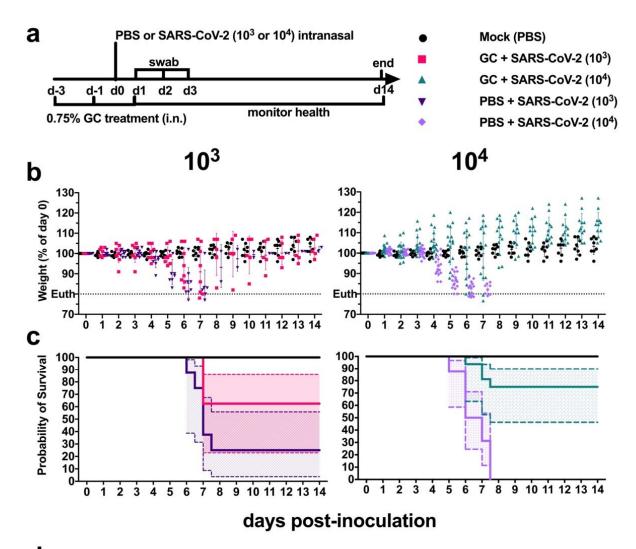
350 weight/volume N-dihydrogalactochitosan (GC) was provided by Immunophotonics. GC was 351 denerated using Good Manufacturing Practices (GMP). Testing of GC included appearance. 352 identity (1H NMR and UV/Vis), assay (HPLC), degree of galactation (1H NMR), viscosity, 353 specific gravity, pH, microbiological (endotoxins and sterility), subvisible particulate matter, 354 impurities (boron, galactose, galactitol, transition metals), molecular weight, and polydispersity 355 indices. GC was presented as a 1.0% sterile solution (10 mg/ml) in 5 ml sealed vials and was 356 diluted with sterile deionized water and sterile filtered 20X phosphate buffered saline (PBS) to a 357 final concentration of 0.75% GC and 1X PBS. Mice were anesthetized with isoflurane and 40 µL 358 of either diluted GC or PBS delivery vehicle was administered intranasally (i.n.) by a hanging 359 drop over both nares. Mice were treated identically at 3 days and 1 day prior to challenge and 1 360 day post challenge. At challenge, mice were anesthetized and administered 30 µL of PBS or 361 SARS-CoV-2 diluted in PBS at a dose of 10³ or 10⁴ PFU i.n. via hanging drop. Inocula were 362 back-titrated to confirm the target dose. Mice were monitored twice daily for changes in weight, 363 ruffled fur, ataxia, and labored breathing for up to 14 days. On days 1, 2 and 3, mice were 364 anesthetized with isoflurane and throats were swabbed with rayon-tipped swabs (Puritan, Fisher 365 Scientific, Fisher Scientific, Waltham, MA). Swabs were vortexed briefly in 400 µL of Dulbecco's 366 Modified Eagles Medium (DMEM, Fisher Scientific, Waltham, MA) and frozen at -80°C. Mice 367 were euthanized prior to experimental endpoint if weight loss exceeded 20% of the starting 368 weight or if animals were deemed moribund as evidenced by limb weakness, ataxia or dragging 369 of limbs, loss of limb function or rapid or depressed respiration rate. An adverse event was 370 defined as any moribund disease signs at any time over the duration of the experiment. Prior to 371 euthanasia, whole blood was collected by submandibular vein puncture under isoflurane 372 anesthesia. Whole blood was clotted for >10 min at room temperature then centrifuged for 5 373 minutes at 8,000 x g and cleared serum was stored at -80°C. Mice were euthanized by 374 isoflurane overdose and cervical dislocation then perfused with cold sterile PBS. Lung (right

³⁷⁵ inferior lobe) and brain (left hemisphere) were weighed and homogenized in 1-10 μ L/mg DMEM ³⁷⁶ with a sterile glass bead at 30 Hz for 4 minutes using a TissueLyser (Qiagen, Germantown, MD) ³⁷⁷ automated homogenizer. Homogenates were cleared by centrifugation at 10,000 x g for 4 ³⁷⁸ minutes and the cleared fraction was stored at -80°C.

379 *Histopathology*: At necropsy, lungs were inflated with 10% buffered formalin (Fisher Scientific, 380 Waltham, MA) and mice were fixed for 48 hours at room temperature in a 10-fold volume of 381 10% buffered formalin. Skulls were demineralized in a 10-fold volume of 0.5 M ethylenediamine 382 tetraacetic acid (EDTA) (pH=7) at 4°C for 14 days, with EDTA solution exchanges every 3 days. 383 Tissues were embedded in paraffin, thin-sectioned, and stained with hematoxylin and eosin 384 (H&E). H&E-stained slides were scanned by a whole-slide image technique using an Aperio 385 slide scanner (Leica, Buffalo Grove, IL) with a resolution of 0.24 um/pixel. Image files were 386 uploaded on a Leica hosted web-based site and a board certified veterinary anatomic 387 pathologist without knowledge of treatment conditions evaluated sections for SARS-CoV-2 388 induced histologic lesions. For quantitative assessment of lung inflammation, digital images 389 were captured and analyzed using ImageJ software (Fiji, NIH) to estimate the area of inflamed 390 tissue that was visible to the naked eye at subgross magnification as a percentage of the total 391 surface area of the lung section. Each lung section was scored as described (Supplementary 392 Table 1).

393 Plaque Assay: Washes from tracheal swabs, serum, residual inocula, and lung and brain 394 homogenates were thawed and assayed. Samples were serially diluted 10-fold in DMEM with 395 1% bovine serum albumen (BSA) starting at an initial dilution of 1:8. 125 µL of each dilution was 396 added to confluent Vero CCL-81 cells (ATCC, Manassas, VA) in 12-well plates with cell culture 397 media decanted. Virus was incubated on cells for 1 hour at 5% CO2 in a humidified 37°C 398 incubator. Cell monolayers were overlaid with 0.5% agarose dissolved in DMEM with 5% fetal 399 bovine serum (FBS) and 1x antibiotic-antimycotic (Fisher Scientific, Waltham, MA) and 400 incubated for 3 days at 5% CO2 and 37°C in a humidified incubator. Cells were fixed for >30

⁴⁰¹ minutes with 4% formaldehyde then agarose plugs were removed. Cells were stained with
 ⁴⁰² 0.05% crystal violet in 20% ethanol for 10 minutes then rinsed three times with water. Plates
 ⁴⁰³ were inverted to dry completely and the number of plaques in each well was counted. Viral titers
 ⁴⁰⁴ were recorded as the reciprocal of the highest dilution where plaques were noted and are
 ⁴⁰⁵ represented as PFU per swab or PFU per mg of solid tissue.

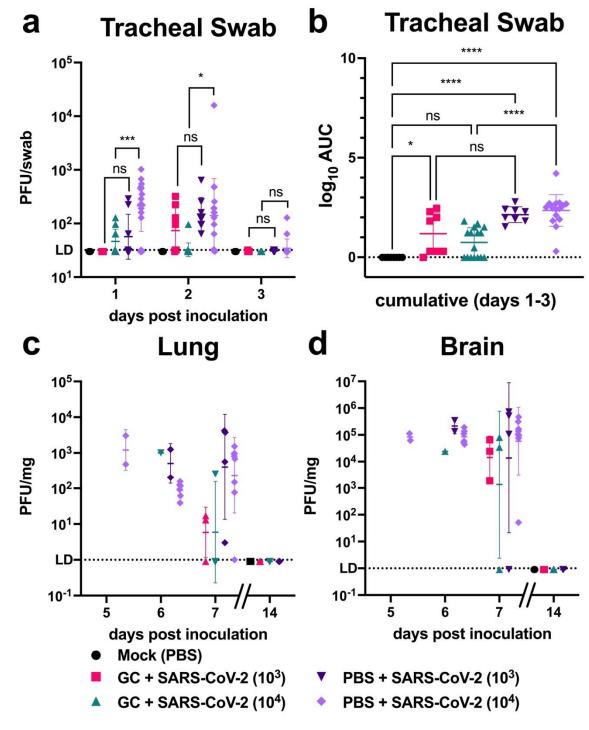

406 Plague Reduction Neutralization Test: Serum collected from mice at day 14 post inoculation 407 was thawed at 37°C and 30 µL was heated in a water bath for 30 minutes at 56°C to inactivate 408 complement proteins. Serum was diluted 4-fold with virus diluent consisting of PBS and 1% 409 FBS, then samples were serially 2-fold diluted 11 times for a dynamic range of 1:4 to 1:4096. An 410 equal volume of virus diluent containing 80 PFU of SARS-CoV-2 was added to each antibody 411 dilution and a no-antibody control consisting of virus diluent only, resulting in a final dynamic 412 range of 1:4 to 1:8192 with one no-antibody control. Antibody-virus dilution series were 413 incubated for 1 hour at 37°C after which they were applied to confluent Vero CCL-81 cells in 414 single-replicate and incubated for 1 hour at 5% CO2 and 37°C in a humidified incubator. Cells 415 were overlaid, incubated, fixed, and stained as described above for plague assays. Neutralizing 416 titer is defined as the reciprocal of the dilution for which fewer than 20% of plagues were 417 detected versus the no-antibody control (>80% neutralization).

418 Statistics: All statistical tests were performed with GraphPad PRISM 9.0.2 (GraphPad 419 Software). Logrank (Mantel-Cox) test for survival proportions were performed pairwise and p-420 values were adjusted with Bonferroni correction using R version 4.0.0 (R Project) p.adjust 421 function. The correlation between mortality and positive virus detection was calculated by 422 Fisher's exact test. Repeated measures two-way ANOVA tests were performed on log10-423 transformed viral titers and multiple comparisons were computed according to Tukey method. 424 Main effect two-way ANOVA tests were performed on mouse weights normalized to starting 425 values at the time of virus challenge or log10-transformed viral titers and multiple comparisons 426 were computed with Tukey's method. Area under the curve (AUC) was calculated for

427	longitudinally collected tracheal swabs from days 1,2 and 3 and log10-transformed. ANOVA of
428	grouped log10-AUC was performed with multiple comparisons computed with Tukey's method.
429	ANOVA was performed on untransformed histologic scores or percentage of lung affected by
430	inflammation and multiple comparisons were computed with Bonferroni's method. A Kruskal-
431	Wallis H test was performed on untransformed PRNT80 neutralization values and multiple
432	comparisons were computed according to Dunn's method.
433	
434	DATA AVAILABILITY
435	All data contributing to the generation of figures and analyses described herein are available
436	upon request from the corresponding author.
437	
438	COMPETING INTERESTS
439	TH and SSKL declare a conflict of interest as employees with minority ownership stakes of
440	Immunophotonics, Inc., the manufacturer of the proprietary immune stimulant GC. RML
441	declares a conflict of interest as an advisor with minority ownership stake in Immunophotonics.
442	
443	AUTHOR CONTRIBUTIONS
444	Conceptualization: RML, LLC, TH, SSKL, CMW, HL, and EEB. Investigation: CMW, HL, and
445	EEB. Writing draft: CMW. Review and editing: CMW, HL, EEB, LLC, TH, SSKL,MKK, and RML.
446	Visualization: CMW, EEB, MKK, LLC. Supervision and project administration: LLC. Funding
447	acquisition: RML and LLC.
448	
449	ACKNOWLEDGEMENTS
450	Funding support was provided by the UC Berkeley Henry Wheeler Center for Emerging and

⁴⁵¹ Neglected Diseases (CEND) COVID Catalyst Fund, and internal funding from the UC Davis

- ⁴⁵² Office of the Vice Chancellor of Research. Funding sources did not influence experimental
- ⁴⁵³ design and analysis/interpretation of results or impact the decision to publish.


d Survival comparisons

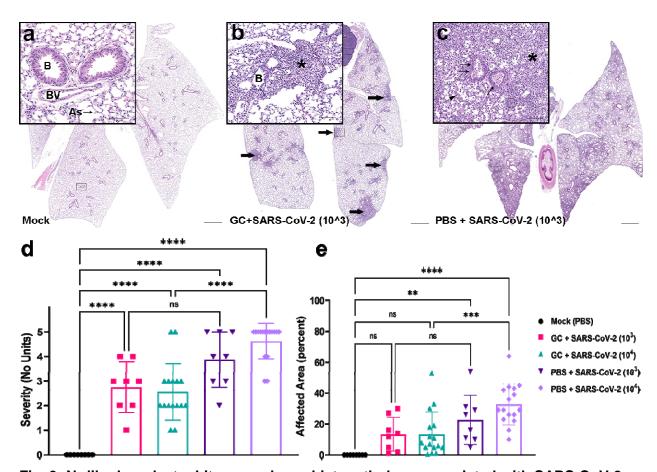
GROUP 1	GROUP 2	P VALUE	SIGNIFICANCE
mock	GC + SARS-CoV-2 (10^3)	0.5024	ns
mock	GC + SARS-CoV-2 (10^4)	1.0000	ns
mock	SARS-CoV2 (10^3)	0.0200	*
mock	SARS-CoV-2 (10^4)	0.0001	****
GC + SARS-CoV-2 (10^3)	GC + SARS-CoV-2 (10^4)	1.0000	ns
GC + SARS-CoV-2 (10^3)	SARS-CoV2 (10^3)	0.0504	ns
GC + SARS-CoV-2 (10^4)	SARS-CoV-2 (10^4)	0.0001	****
SARS-CoV2 (10^3)	SARS-CoV-2 (10^4)	1.0000	ns

⁴⁵⁵ Fig. 1: N-dihydrogalactochitosan protects mice from SARS-CoV-2 mortality. (a)

- ⁴⁵⁶ **Experimental design** where 6-week-old male and female hACE2 transgenic mice were treated
- ⁴⁵⁷ with 0.75% GC or PBS delivery vehicle at days -3, -1 and +1 post-inoculation. Mice were
- ⁴⁵⁸ challenged at day 0 with 10³ or 10⁴ PFU of SARS-CoV-2 or PBS (mock). Animals were weighed

459	daily, and throats were swabbed on days 1 through 3. (b) Weight represented as a percentage
460	of individual mouse weight at the time of challenge. Euth = euthanasia cutoff. A main effect only
461	model two-way ANOVA with Tukey corrected multiple comparisons yielded an $F=52.80$,
462	p<0.0001, 4 degrees of freedom. Each symbol represents an individual mouse, and the
463	horizontal lines show geometric mean and error bars are geometric standard deviation. (c)
464	Survival proportions. The solid lines are survival proportions, and the shaded boxes show
465	95% confidence intervals. (d) Logrank Mantel-Cox comparisons of survival proportions
466	with Bonferroni corrected p-values, multiple pairwise tests, 1 degree of freedom. n=8-16 per
467	group, 2 combined experiments.

470


469 Fig. 2: N-dihydrogalactochitosan reduces SARS-CoV-2 detection in the upper respiratory

tract. Infectious SARS-CoV-2 was measured in (a) tracheal swabs collected from hACE2 471 transgenic mice on days 1, 2 and 3 post inoculation. Repeated measures two-way ANOVA with

472 Tukey corrected multiple comparisons on log10-transformed values, F=16.96, p<0.0001, 4

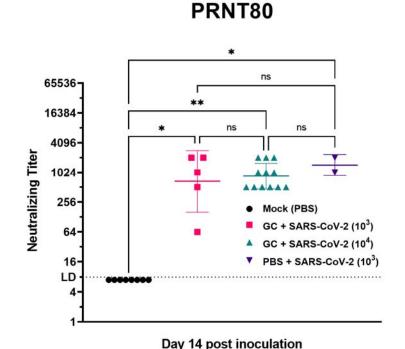
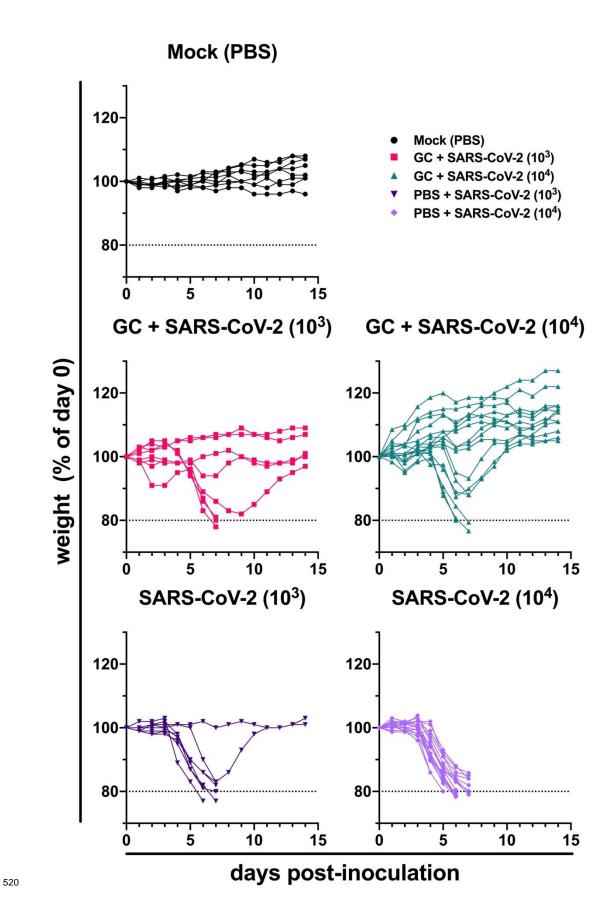
473	degrees of freedom. (b) Total area under the curve shows cumulative virus levels in swabs.
474	ANOVA of log10-transformed total peak area with Tukey corrected multiple comparisons,
475	F=7.538, p<0.0001, 4 degrees of freedom. Mice were necropsied on days 5, 6, 7 and 14 post-
476	inoculation as euthanasia criteria were met. Infectious virus levels were measured in ($m{c}$) lung
477	and (d) brain at experimental endpoints. Main effects only model two-way ANOVA on log10-
478	transformed values, $F=2.431$, $p=0.0606$, 4 degrees of freedom for lung, $F=0.8134$, $p=0.5229$, 4
479	degrees of freedom for brain. Symbols are individual animals, horizontal lines show geometric
480	mean, and error bars represent geometric standard deviation. n=8-16 per group, 2 combined
481	experiments. LD = limit of detection, AUC = area under the curve. * $p < 0.05$, *** $p < 0.001$, ****
482	<i>p</i> < 0.0001.

484

485 486

Fig. 3: N-dihydrogalactochitosan reduces histopathology associated with SARS-CoV-2 487 infection in lungs. Lungs from hACE2 transgenic mice were collected at the time of death, thin 488 sectioned, and hematoxylin and eosin stained for histopathological scoring. Images show 489 representative lungs. (a) PBS-treated, mock inoculated mouse at day 14, with normal 490 bronchioles lined by epithelial cells, alveolar septa containing pulmonary capillaries lined by 491 pneumocytes, and a small arteriole are visible in normal lung (inset). (b) GC + 10³ PFU SARS-492 CoV-2 mouse at day 7 with patchy inflammation (black arrows) distributed around airways and 493 affecting approximately 15% of the section and peribronchiolar alveolar septal inflammation 494 composed primarily of lymphocytes and macrophages with scattered multinucleated cells 495 (inset). (c) PBS + 10³ PFU SARS-CoV-2 inoculated mouse at day 7 showing widespread, 496 multifocal to coalescing inflammation affecting all lung lobes and approximately 60% of the 497 section. Endotheliitis (circled) and bronchiolar epithelial hyperplasia characterized by

498	disorganization and piling-up of bronchiolar epithelium with increased mitotic figures (black
499	arrows) is shown in inset. (d) Lung lesion severity was scored according to criteria defined in
500	Supplementary Table 1 and the (e) Total affected lung area was estimated using image
501	analysis software. Scale bars are 2 mm (subgross) and 50 μ m (insets). As=alveolar septa,
502	B=bronchioles, Br=bronchus, BV=blood vessel. ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$,
503	ns=not significant. ANOVA, F=35.86, p<0.0001, 4 degrees of freedom (d). ANOVA, F=10.32,
504	p<0.0001, 4 degrees of freedom (e). Symbols are individual animals, bars show the mean, and
505	error bars show the standard deviation, n=8-16 per group, 2 combined experiments.
506	
507	
508	

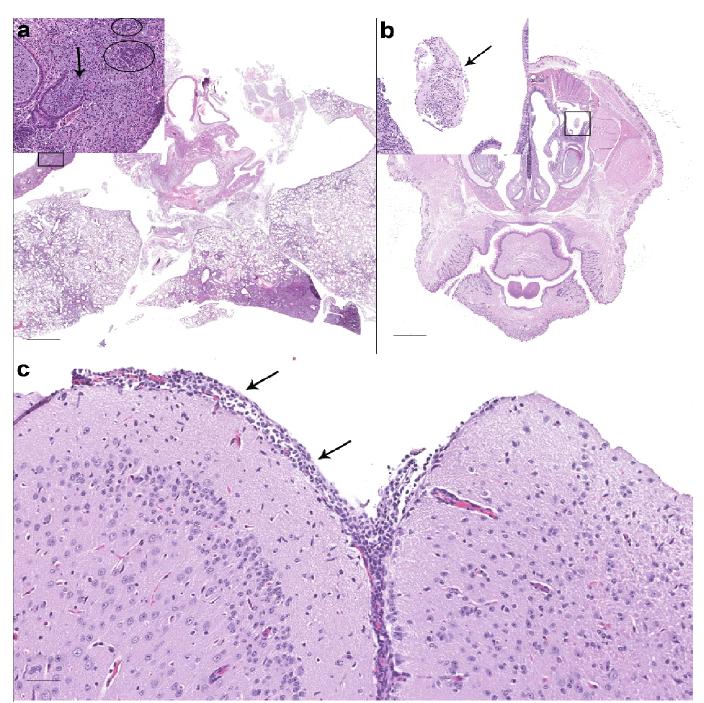


Fig. 4: N-dihydrogalactochitosan treated mice surviving SARS-CoV-2 challenge produce 511 neutralizing antibodies. Neutralizing antibody was assessed by 80% plaque reduction 512 neutralization test (PRNT80) in serum from hACE2 transgenic mice surviving to day 14 post 513 inoculation. No PBS treated mice inoculated with 10⁴ PFU SARS-CoV-2 were available for 514 comparison due to uniform mortality. * p < 0.05, ** p < 0.01, LD = limit of detection. Kruskal-515 Wallis test with Dunn corrected multiple comparisons, H=17.87, p=0.0005, 3 degrees of 516 freedom. Symbols are individual animals, horizontal lines are geometric mean and error bars 517 show geometric standard deviation, n=2-12 per group, two combined experiments. 518

⁵²¹ Supplementary Fig. 1: N-dihydrogalactochitosan protects mice from SARS-CoV-2 weight

- ⁵²² **Ioss.** Each line shows individual mouse weight as a percentage of their starting weight at the
- ⁵²³ time of challenge.

⁵²⁵ Supplementary Fig. 2: Additional photomicrographs of H&E-stained sections of lung, nasal
 ⁵²⁶ cavity, and brain of hACE2 mice. (a) Foreign material in lungs of some intranasally-treated
 ⁵²⁷ animals. Lung from a GC-treated 10⁴ PFU SARS-CoV-2 inoculated male mouse at 7 days
 ⁵²⁸ exhibits evidence of a foreign material reaction. Bronchioles are expanded by mucoid material,
 ⁵²⁹ degenerate neutrophils and necrotic debris, with focal rupture of the bronchiolar wall (arrow),

530	extension of the inflammatory cells into adjacent alveoli, and foci of brightly eosinophilic foreign
531	material surrounded by neutrophils and macrophages (circled) (inset). (b-c) A subset of GC- or
532	PBS-treated SARS-CoV-2 inoculated mice exhibit rhinitis and/or meningeal inflammation.
533	(b) Nasal cavity from a GC-treated 10 ⁴ PFU SARS-CoV-2 inoculated female mouse at 6 days
534	showing a focal exudate (box) composed of degenerate neutrophils and necrotic debris
535	embedded in mucus (inset). (c) Brain from a GC-treated 10 ³ PFU SARS-CoV-2 inoculated
536	female mouse at 7 days with mild to moderate meningeal inflammation (arrows) composed
537	primarily of lymphocytes with fewer macrophages. Scale bars are 1 mm (subgross) and 50 μm
538	(insets). H&E stain.
539	
540	
541	
542	
543	
544	
545	
546	
547	
548	
549	
550	
551	
552	
553	
554	
555	

⁵⁵⁶ Supplementary Table 1: Histopathology scoring criteria.

Score		Description
0	none	Within normal limits or rare, scattered lymphocytic infiltrates not observed in control animals but significance questionable (could be background lesion or variation of normal).
1	minimal	Minimal mononuclear inflammation affecting less than 2% of the section. Inflammatory leukocyte infiltration is limited to a perivascular and/or peribronchiolar distribution with no evidence of alveolar or vascular injury.
2	mild	Mild peribronchiolar/perivascular inflammation which may also expand alveoli/alveolar septa, composed primarily of macrophages and lymphocytes (+/- scattered neutrophils); increased alveolar macrophages; alveolar septal architecture largely intact; affects 2-10% of the section; and/or scattered alveolar hemorrhage/fibrin/edema; and/or scattered atypical/multinucleated syncytial cells.
3	moderate	Moderate bronchointerstitial and perivascular inflammation, increased alveolar macrophages, and/or alveolar hemorrhage/fibrin/edema (characterized as above); and/or alveolar damage (characterized by type I pneumocyte necrosis or loss with replacement by hyaline membranes, fibrin, edema, and/or necrotic debris); and/or reparative/regenerative changes (type II pneumocyte hyperplasia, atypical/multinucleated syncytial cells, or fibrosis); lesions affect 10-25% of the section.
4	severe	As above but more widespread inflammation, hemorrhage/fibrin/ edema, and/or alveolar damage/loss of normal septal architecture; and or regenerative changes affecting greater than 25% of the section.
+1		Add 1 point if: Greater than 25% of inflammatory cells are neutrophils; there is significant necrotizing vasculitis, endotheliitis or microthrombi; or if there is significant bronchiolitis, airway epithelial necrosis or hyperplasia.

⁵⁶⁵ **REFERENCES**

- 566
- ⁵⁶⁷ 1. C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng,
- ⁵⁶⁸ T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G.
- ⁵⁶⁹ Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao, Clinical features of patients infected with 2019
- ⁵⁷⁰ novel coronavirus in Wuhan, China, *Lancet* (2020), doi:10.1016/S0140-6736(20)30183-5.
- ⁵⁷¹ 2. D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng, Y. Xiong, Y.
- ⁵⁷² Zhao, Y. Li, X. Wang, Z. Peng, Clinical Characteristics of 138 Hospitalized Patients with 2019
- ⁵⁷³ Novel Coronavirus-Infected Pneumonia in Wuhan, China, JAMA J. Am. Med. Assoc. **323**,
- ⁵⁷⁴ 1061–1069 (2020).
- ⁵⁷⁵ 3. N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei, J. Xia,
- ⁵⁷⁶ T. Yu, X. Zhang, L. Zhang, Epidemiological and clinical characteristics of 99 cases of 2019
- ⁵⁷⁷ novel coronavirus pneumonia in Wuhan, China: a descriptive study, *Lancet* **395**, 507–513
 ⁵⁷⁸ (2020).
- ⁵⁷⁹ 4. F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang, B. Song, X. Gu, L. Guan, Y.
- ⁵⁸⁰ Wei, H. Li, X. Wu, J. Xu, S. Tu, Y. Zhang, H. Chen, B. Cao, Clinical course and risk factors for
- ⁵⁸¹ mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study,
- ⁵⁸² Lancet **395**, 1054–1062 (2020).
- ⁵⁸³ 5. J. Hellmuth, T. A. Barnett, B. M. Asken, J. D. Kelly, L. Torres, M. L. Stephens, B.
- ⁵⁸⁴ Greenhouse, J. N. Martin, F. C. Chow, S. G. Deeks, M. Greene, B. L. Miller, W. Annan, T. J.
- ⁵⁸⁵ Henrich, M. J. Peluso, Persistent COVID-19-associated neurocognitive symptoms in non-
- ⁵⁸⁶ hospitalized patients, *J. Neurovirol.* **27**, 191–195 (2021).
- ⁵⁸⁷ 6. E. L. Graham, J. R. Clark, Z. S. Orban, P. H. Lim, A. L. Szymanski, C. Taylor, R. M. DiBiase,
- D. T. Jia, R. Balabanov, S. U. Ho, A. Batra, E. M. Liotta, I. J. Koralnik, Persistent neurologic
- ⁵⁸⁹ symptoms and cognitive dysfunction in non-hospitalized Covid-19 "long haulers," Ann. Clin.
- ⁵⁹⁰ *Transl. Neurol.* (2021), doi:10.1002/acn3.51350.
- ⁵⁹¹ 7. R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu, Y. Bi, X.

- ⁵⁹² Ma, F. Zhan, L. Wang, T. Hu, H. Zhou, Z. Hu, W. Zhou, L. Zhao, J. Chen, Y. Meng, J. Wang, Y.
- ⁵⁹³ Lin, J. Yuan, Z. Xie, J. Ma, W. J. Liu, D. Wang, W. Xu, E. C. Holmes, G. F. Gao, G. Wu, W.
- ⁵⁹⁴ Chen, W. Shi, W. Tan, Genomic characterisation and epidemiology of 2019 novel coronavirus:
- ⁵⁹⁵ implications for virus origins and receptor binding, *Lancet* **395**, 565–574 (2020).
- ⁵⁹⁶ 8. P. Zhou, X. Lou Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li, C. L.
- ⁵⁹⁷ Huang, H. D. Chen, J. Chen, Y. Luo, H. Guo, R. Di Jiang, M. Q. Liu, Y. Chen, X. R. Shen, X.
- ⁵⁹⁸ Wang, X. S. Zheng, K. Zhao, Q. J. Chen, F. Deng, L. L. Liu, B. Yan, F. X. Zhan, Y. Y. Wang, G.
- ⁵⁹⁹ F. Xiao, Z. L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat ⁶⁰⁰ origin, *Nature* **579**, 270–273 (2020).
- ⁶⁰¹ 9. S. S. Lakdawala, V. D. Menachery, The search for a COVID-19 animal model, *Science (80-.* ⁶⁰²). 368, 942–943 (2020).
- ⁶⁰³ 10. C. Muñoz-Fontela, W. E. Dowling, S. G. P. Funnell, P. S. Gsell, A. X. Riveros-Balta, R. A.
- ⁶⁰⁴ Albrecht, H. Andersen, R. S. Baric, M. W. Carroll, M. Cavaleri, C. Qin, I. Crozier, K. Dallmeier, L.
- ⁶⁰⁵ de Waal, E. de Wit, L. Delang, E. Dohm, W. P. Duprex, D. Falzarano, C. L. Finch, M. B.
- ⁶⁰⁶ Frieman, B. S. Graham, L. E. Gralinski, K. Guilfoyle, B. L. Haagmans, G. A. Hamilton, A. L.
- ⁶⁰⁷ Hartman, S. Herfst, S. J. F. Kaptein, W. B. Klimstra, I. Knezevic, P. R. Krause, J. H. Kuhn, R. Le
- ⁶⁰⁸ Grand, M. G. Lewis, W. C. Liu, P. Maisonnasse, A. K. McElroy, V. Munster, N. Oreshkova, A. L.
- ⁶⁰⁹ Rasmussen, J. Rocha-Pereira, B. Rockx, E. Rodríguez, T. F. Rogers, F. J. Salguero, M.
- ⁶¹⁰ Schotsaert, K. J. Stittelaar, H. J. Thibaut, C. Te Tseng, J. Vergara-Alert, M. Beer, T. Brasel, J. F.
- ⁶¹¹ W. Chan, A. García-Sastre, J. Neyts, S. Perlman, D. S. Reed, J. A. Richt, C. J. Roy, J. Segalés,
- ⁶¹² S. S. Vasan, A. M. Henao-Restrepo, D. H. Barouch, Animal models for COVID-19, *Nature* 586,
 ⁶¹³ 509–515 (2020).
- ⁶¹⁴ 11. P. B. McCray, L. Pewe, C. Wohlford-Lenane, M. Hickey, L. Manzel, L. Shi, J. Netland, H. P.
- ⁶¹⁵ Jia, C. Halabi, C. D. Sigmund, D. K. Meyerholz, P. Kirby, D. C. Look, S. Perlman, Lethal
- ⁶¹⁶ Infection of K18-hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus, J.
- ⁶¹⁷ *Virol.* (2007), doi:10.1128/jvi.02012-06.

618	12. E. S. Winkler, A. L. Bailey, N. M. Kafai, S. Nair, B. T. McCune, J. Yu, J. M. Fox, R. E. Chen,
619	J. T. Earnest, S. P. Keeler, J. H. Ritter, L. I. Kang, S. Dort, A. Robichaud, R. Head, M. J.
620	Holtzman, M. S. Diamond, SARS-CoV-2 infection of human ACE2-transgenic mice causes
621	severe lung inflammation and impaired function, Nat. Immunol. 21, 1327–1335 (2020).
622	13. J. Zheng, L. Y. R. Wong, K. Li, A. K. Verma, M. E. Ortiz, C. Wohlford-Lenane, M. R.
623	Leidinger, C. M. Knudson, D. K. Meyerholz, P. B. McCray, S. Perlman, COVID-19 treatments
624	and pathogenesis including anosmia in K18-hACE2 mice, Nature 589, 603–607 (2021).
625	14. Symptoms of COVID-19 CDC (available at https://www.cdc.gov/coronavirus/2019-
626	ncov/symptoms-testing/symptoms.html).
627	15. FDA Issues Emergency Use Authorization for Third COVID-19 Vaccine FDA (available at
628	https://www.fda.gov/news-events/press-announcements/fda-issues-emergency-use-
629	authorization-third-covid-19-vaccine).
630	16. Coronavirus disease (COVID-19): Herd immunity, lockdowns and COVID-19 (available at
631	https://www.who.int/news-room/q-a-detail/herd-immunity-lockdowns-and-covid-19).
632	17. A. Rhoades, Veklury (remdesivir) EUA Letter of Approval, reissued 10/22/2020 (2020).
633	18. J. H. Beigel, K. M. Tomashek, L. E. Dodd, A. K. Mehta, B. S. Zingman, A. C. Kalil, E.
634	Hohmann, H. Y. Chu, A. Luetkemeyer, S. Kline, D. Lopez de Castilla, R. W. Finberg, K.
635	Dierberg, V. Tapson, L. Hsieh, T. F. Patterson, R. Paredes, D. A. Sweeney, W. R. Short, G.
636	Touloumi, D. C. Lye, N. Ohmagari, M. Oh, G. M. Ruiz-Palacios, T. Benfield, G. Fätkenheuer, M.
637	G. Kortepeter, R. L. Atmar, C. B. Creech, J. Lundgren, A. G. Babiker, S. Pett, J. D. Neaton, T.
638	H. Burgess, T. Bonnett, M. Green, M. Makowski, A. Osinusi, S. Nayak, H. C. Lane, Remdesivir
639	for the Treatment of Covid-19 — Final Report, N. Engl. J. Med. 383, 1813–1826 (2020).
640	19. WHO recommends against the use of remdesivir in COVID-19 patients (available at
641	https://www.who.int/news-room/feature-stories/detail/who-recommends-against-the-use-of-
642	remdesivir-in-covid-19-patients).
643	20. Food and Drug Administration, FDA Combating COVID-19 With Therapeutics (2020)

- ⁶⁴⁴ (available at https://www.fda.gov/media/136832/download).
- ⁶⁴⁵ 21. S. N. Chirkov, The antiviral activity of chitosan (review)*Appl. Biochem. Microbiol.* **38**, 1–8
 ⁶⁴⁶ (2002).
- ⁶⁴⁷ 22. M. Mehrabi, H. Montazeri, M. N. Dounighi, A. Rashti, R. Vakili-Ghartavol, Chitosan-based
- ⁶⁴⁸ nanoparticles in mucosal vaccine deliveryArch. Razi Inst. **73**, 165–176 (2018).
- ⁶⁴⁹ 23. X. Li, M. Min, N. Du, Y. Gu, T. Hode, M. Naylor, D. Chen, R. E. Nordquist, W. R. Chen,
- ⁶⁵⁰ Chitin, chitosan, and glycated chitosan regulate immune responses: The novel adjuvants for
- ⁶⁵¹ cancer vaccine *Clin. Dev. Immunol.* **2013** (2013), doi:10.1155/2013/387023.
- ⁶⁵² 24. J. Mudgal, P. P. Mudgal, M. Kinra, R. Raval, Immunomodulatory role of chitosan-based
- ⁶⁵³ nanoparticles and oligosaccharides in cyclophosphamide-treated mice, *Scand. J. Immunol.* 89,
 ⁶⁵⁴ e12749 (2019).
- ⁶⁵⁵ 25. T. D. Carroll, S. Jegaskanda, S. R. Matzinger, L. Fritts, M. B. McChesney, S. J. Kent, J.
- ⁶⁵⁶ Fairman, C. J. Miller, A lipid/DNA adjuvant-inactivated influenza virus vaccine protects rhesus
- ⁶⁵⁷ macaques from uncontrolled virus replication afer heterosubtypic influenza a virus challenge, *J*.
- ⁶⁵⁸ Infect. Dis. (2018), doi:10.1093/infdis/jiy238.
- ⁶⁵⁹ 26. X. Lei, X. Dong, R. Ma, W. Wang, X. Xiao, Z. Tian, C. Wang, Y. Wang, L. Li, L. Ren, F. Guo,
- ⁶⁶⁰ Z. Zhao, Z. Zhou, Z. Xiang, J. Wang, Activation and evasion of type I interferon responses by
- ⁶⁶¹ SARS-CoV-2, *Nat. Commun.* **11** (2020), doi:10.1038/s41467-020-17665-9.
- ⁶⁶² 27. H. Xia, Z. Cao, X. Xie, X. Zhang, J. Y. C. Chen, H. Wang, V. D. Menachery, R. Rajsbaum,
- ⁶⁶³ P. Y. Shi, Evasion of Type I Interferon by SARS-CoV-2, *Cell Rep.* **33** (2020),
- ⁶⁶⁴ doi:10.1016/j.celrep.2020.108234.
- ⁶⁶⁵ 28. M. S. Ribero, N. Jouvenet, M. Dreux, S. Nisole, Interplay between SARS-CoV-2 and the
- ⁶⁶⁶ type I interferon response *PLoS Pathog.* **16** (2020), doi:10.1371/journal.ppat.1008737.
- ⁶⁶⁷ 29. M. Zheng, D. Qu, H. Wang, Z. Sun, X. Liu, J. Chen, C. Li, X. Li, Z. Chen, Intranasal
- ⁶⁶⁸ Administration of Chitosan Against Influenza A (H7N9) Virus Infection in a Mouse Model, *Sci.*
- ⁶⁶⁹ *Rep.* **6** (2016), doi:10.1038/srep28729.

- ⁶⁷⁰ 30. X. Wang, W. Zhang, F. Liu, M. Zheng, D. Zheng, T. Zhang, Y. Yi, Y. Ding, J. Luo, C. Dai, H.
- ⁶⁷¹ Wang, B. Sun, Z. Chen, Intranasal immunization with live attenuated influenza vaccine plus
- ⁶⁷² chitosan as an adjuvant protects mice against homologous and heterologous virus challenge,
- ⁶⁷³ Arch. Virol. **157**, 1451–1461 (2012).
- ⁶⁷⁴ 31. B. Choi, D. H. Jo, A. K. M. M. Anower, S. M. S. Islam, S. Sohn, Chitosan as an
- ⁶⁷⁵ Immunomodulating Adjuvant on T-Cells and Antigen-Presenting Cells in Herpes Simplex Virus
- ⁶⁷⁶ Type 1 Infection, *Mediators Inflamm.* **2016** (2016), doi:10.1155/2016/4374375.
- ⁶⁷⁷ 32. W. R. Chen, R. Carubelli, H. Liu, R. E. Nordquist, Laser immunotherapy: A novel treatment
- ⁶⁷⁸ modality for metastatic tumors, *Appl. Biochem. Biotechnol. Part B Mol. Biotechnol.* 25, 37–43
 ⁶⁷⁹ (2003).
- ⁶⁸⁰ 33. S. Song, F. Zhou, R. E. Nordquist, R. Carubelli, H. Liu, W. R. Chen, Glycated chitosan as a
- ⁶⁸¹ new non-toxic immunological stimulant Glycated chitosan immunological stimulant,
- ⁶⁸² Immunopharmacol. Immunotoxicol. **31**, 202–208 (2009).
- ⁶⁸³ 34. I. Zizzari, C. Napoletano, F. Battisti, H. Rahimi, S. Caponnetto, L. Pierelli, M. Nuti, A.
- ⁶⁸⁴ Rughetti, MGL Receptor and Immunity: When the Ligand Can Make the Difference, *J. Immunol.*
- ⁶⁸⁵ *Res.* **2015** (2015), doi:10.1155/2015/450695.
- ⁶⁸⁶ 35. M. Korbelik, J. Banáth, W. Zhang, T. Hode, S. Lam, P. Gallagher, J. Zhao, H. Zeng, W.
- ⁶⁸⁷ Chen, N-dihydrogalactochitosan-supported tumor control by photothermal therapy and
- ⁶⁸⁸ photothermal therapy-generated vaccine, J. Photochem. Photobiol. B. **204** (2020),
- ⁶⁸⁹ doi:10.1016/J.JPHOTOBIOL.2020.111780.
- ⁶⁹⁰ 36. M. Korbelik, T. Hode, S. S. K. Lam, W. R. Chen, Novel Immune Stimulant Amplifies Direct
- ⁶⁹¹ Tumoricidal Effect of Cancer Ablation Therapies and Their Systemic Antitumor Immune
- ⁶⁹² Efficacy*Cells* **10** (2021), doi:10.3390/cells10030492.
- ⁶⁹³ 37. S. Qi, L. Lu, F. Zhou, Y. Chen, M. Xu, L. Chen, X. Yu, W. R. Chen, Z. Zhang, Neutrophil
- ⁶⁹⁴ infiltration and whole-cell vaccine elicited by N-dihydrogalactochitosan combined with NIR
- ⁶⁹⁵ phototherapy to enhance antitumor immune response and T cell immune memory, *Theranostics*

- ⁶⁹⁶ **10**, 1814–1832 (2020).
- ⁶⁹⁷ 38. F. Zhou, J. Yang, Y. Zhang, M. Liu, M. L. Lang, M. Li, W. R. Chen, Local phototherapy
- ⁶⁹⁸ synergizes with immunoadjuvant for treatment of pancreatic cancer through induced
- ⁶⁹⁹ immunogenic tumor vaccine, *Clin. Cancer Res.* **24**, 5335–5346 (2018).
- ⁷⁰⁰ 39. A. El-Hussein, S. S. K. Lam, J. Raker, W. R. Chen, M. R. Hamblin, N-
- ⁷⁰¹ dihydrogalactochitosan as a potent immune activator for dendritic cells, J. Biomed. Mater. Res. -
- ⁷⁰² Part A **105**, 963–972 (2017).
- 40. A. R. Hoover, K. Liu, C. I. Devette, J. R. Krawic, C. L. West, D. Medcalf, A. L. Welm, X.-H.
- ⁷⁰⁴ Sun, W. H. Hildebrand, W. R. Chen, ScRNA-seq reveals tumor microenvironment remodeling
- ⁷⁰⁵ induced by local intervention-based immunotherapy, *bioRxiv*, 2020.10.02.323006 (2020).
- ⁷⁰⁶ 41. C. Brown, J. Vostok, H. Johnson, M. Burns, R. Gharpure, S. Sami, R. Sabo, N. Hall, A.
- ⁷⁰⁷ Foreman, P. Schubert, G. Gallagher, T. Fink, L. Madoff, S. Gabriel, B. MacInnis, D. Park, K.
- ⁷⁰⁸ Siddle, V. Harik, D. Arvidson, T. Brock-Fisher, M. Dunn, A. Kearns, A. Laney, Outbreak of
- ⁷⁰⁹ SARS-CoV-2 Infections, Including COVID-19 Vaccine Breakthrough Infections, Associated with
- ⁷¹⁰ Large Public Gatherings Barnstable County, Massachusetts, July 2021, *MMWR. Morb. Mortal.*
- ⁷¹¹ Wkly. Rep. **70**, 1059–1062 (2021).
- 42. B. Bellich, I. D'Agostino, S. Semeraro, A. Gamini, A. Cesàro, "The Good, the Bad and the
- ⁷¹³ Ugly" of Chitosans, *Mar. Drugs* **14** (2016), doi:10.3390/MD14050099.
- ⁷¹⁴ 43. K. Jayathilakan, K. Sultana, K. Radhakrishna, A. S. Bawa, Utilization of byproducts and
- waste materials from meat, poultry and fish processing industries: A review *J. Food Sci. Technol.* **49**, 278–293 (2012).
- 44. N. A. Negm, H. H. H. Hefni, A. A. A. Abd-Elaal, E. A. Badr, M. T. H. Abou Kana,
- ⁷¹⁸ Advancement on modification of chitosan biopolymer and its potential applications*Int. J. Biol.*
- ⁷¹⁹ *Macromol.* **152**, 681–702 (2020).
- 45. H. Mokhtar, L. Biffar, S. Somavarapu, J. P. Frossard, S. McGowan, M. Pedrera, R. Strong,
- J. C. Edwards, M. Garcia-Durán, M. J. Rodriguez, G. R. Stewart, F. Steinbach, S. P. Graham,

722	Evaluation of hydrophobic chitosan-based particulate formulations of porcine reproductive and
723	respiratory syndrome virus vaccine candidate T cell antigens, Vet. Microbiol. 209, 66–74 (2017).
724	46. S. Shim, H. E. Park, S. H. Soh, Y. Bin Im, H. S. Yoo, Induction of Th2 response through
725	TLR2-mediated MyD88-dependent pathway in human microfold cells stimulated with chitosan
726	nanoparticles loaded with Brucella abortus Mdh, Microb. Pathog. 142 (2020),
727	doi:10.1016/j.micpath.2020.104040.
728	47. X. Zhang, K. Wu, D. Wang, X. Yue, D. Song, Y. Zhu, J. Wu, Nucleocapsid protein of SARS-
729	CoV activates interleukin-6 expression through cellular transcription factor NF-κB, Virology 365,
730	324–335 (2007).
731	48. D. Blanco-Melo, B. E. Nilsson-Payant, W. C. Liu, S. Uhl, D. Hoagland, R. Møller, T. X.
732	Jordan, K. Oishi, M. Panis, D. Sachs, T. T. Wang, R. E. Schwartz, J. K. Lim, R. A. Albrecht, B.
733	R. tenOever, Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19,
734	<i>Cell</i> 181 , 1036-1045.e9 (2020).
735	49. C. Pyle, F. Uwadiae, D. Swieboda, J. Harker, Early IL-6 signalling promotes IL-27
736	dependent maturation of regulatory T cells in the lungs and resolution of viral immunopathology,
737	PLoS Pathog. 13 (2017), doi:10.1371/JOURNAL.PPAT.1006640.
738	50. C. L. Bueter, C. K. Lee, V. A. K. Rathinam, G. J. Healy, C. H. Taron, C. A. Specht, S. M.
739	Levitz, Chitosan but not chitin activates the inflammasome by a mechanism dependent upon
740	phagocytosis, <i>J. Biol. Chem.</i> 286 , 35447–35455 (2011).
741	51. E. C. Carroll, L. Jin, A. Mori, N. Muñoz-Wolf, E. Oleszycka, H. B. T. Moran, S. Mansouri, C.
742	P. McEntee, E. Lambe, E. M. Agger, P. Andersen, C. Cunningham, P. Hertzog, K. A. Fitzgerald,
743	A. G. Bowie, E. C. Lavelle, The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA
744	Sensor cGAS-STING-Dependent Induction of Type I Interferons, Immunity 44, 597–608 (2016).
745	52. B. Sun, S. Yu, D. Zhao, S. Guo, X. Wang, K. Zhao, Polysaccharides as vaccine
746	adjuvants <i>Vaccine</i> 36 , 5226–5234 (2018).
747	53. R. C. Read, S. C. Naylor, C. W. Potter, J. Bond, I. Jabbal-Gill, A. Fisher, L. Illum, R.

- ⁷⁴⁸ Jennings, Effective nasal influenza vaccine delivery using chitosan, *Vaccine* 23, 4367–4374
 ⁷⁴⁹ (2005).
- ⁷⁵⁰ 54. D. Elieh Ali Komi, L. Sharma, C. S. Dela Cruz, Chitin and Its Effects on Inflammatory and
- ⁷⁵¹ Immune Responses*Clin. Rev. Allergy Immunol.* **54**, 213–223 (2018).
- ⁷⁵² 55. S. Bashiri, P. Koirala, I. Toth, M. Skwarczynski, Carbohydrate immune adjuvants in subunit
- ⁷⁵³ vaccines*Pharmaceutics* **12**, 1–33 (2020).
- ⁷⁵⁴ 56. C. L. Bueter, C. A. Specht, S. M. Levitz, Innate Sensing of Chitin and Chitosan, *PLoS*
- ⁷⁵⁵ *Pathog.* **9** (2013), doi:10.1371/journal.ppat.1003080.
- ⁷⁵⁶ 57. J. Seetharaman, A. Kfanigsberg, R. Slaaby, H. Leffler, S. H. Barondes, J. M. Rini, X-ray
- ⁷⁵⁷ crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-Å resolution, *J.*
- ⁷⁵⁸ Biol. Chem. **273**, 13047–13052 (1998).
- ⁷⁵⁹ 58. T. Semeňuk, P. Krist, J. Pavlíček, K. Bezouška, M. Kuzma, P. Novák, V. Křen, Synthesis of
- ⁷⁶⁰ chitooligomer-based glycoconjugates and their binding to the rat natural killer cell activation
- ⁷⁶¹ receptor NKR-P1, *Glycoconj. J.* **18**, 817–826 (2001).
- ⁷⁶² 59. F. Zhou, S. Wu, S. Song, W. R. Chen, D. E. Resasco, D. Xing, Antitumor immunologically
- ⁷⁶³ modified carbon nanotubes for photothermal therapy, *Biomaterials* **33**, 3235–3242 (2012).
- ⁷⁶⁴ 60. R. J. Nevagi, Z. G. Khalil, W. M. Hussein, J. Powell, M. R. Batzloff, R. J. Capon, M. F. Good,
- ⁷⁶⁵ M. Skwarczynski, I. Toth, Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-
- vaccine induces potent immune responses against group A streptococcus, Acta Biomater. 80,
- ⁷⁶⁷ 278–287 (2018).
- ⁷⁶⁸ 61. F. Micoli, P. Costantino, R. Adamo, Potential targets for next generation antimicrobial
- ⁷⁶⁹ glycoconjugate vaccines *FEMS Microbiol. Rev.* **42**, 388–423 (2018).