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ABSTRACT 87 

 88 

Background: Despite the widespread use of oxytocin for induction of labor, mechanistic 89 

insights into maternal and neonatal wellbeing are lacking because of the absence of an animal 90 

model that recapitulates modern obstetric practice. 91 

 92 

Objective: The objectives of this research were to create and validate a hi-fidelity animal model 93 

that mirrors labor induction with oxytocin in parturients and to assess its translational utility. 94 

 95 

Study Design: The study was performed in timed-pregnant Sprague Dawley dams. The model 96 

consisted of a subcutaneously implanted microprocessor-controlled infusion pump on gestational 97 

day 18 that was pre-programmed to deliver an escalating dose of intravenous oxytocin on 98 

gestational day 21 to induce birth. Once predictable delivery of healthy pups was achieved, we 99 

validated the model with molecular biological experiments on the uterine myometrium and 100 

telemetry-supported assessment of changes in intrauterine pressure. Finally, we applied this 101 

model to test the hypothesis that labor induction with oxytocin was associated with oxidative 102 

stress in the newborn brain with a comprehensive array of biomarker assays and oxidative stress 103 

gene expression studies. 104 

 105 

Results: During the iterative model development phase, we confirmed the optimal gestational 106 

age for pump implantation, the concentration of oxytocin, and the rate of oxytocin 107 

administration. Exposure to anesthesia and surgery during pump implantation was not associated 108 

with significant changes in the cortical transcriptome. Activation of pump with oxytocin on 109 
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gestational day 21 resulted in predictable delivery of pups within 8-12 hours. Increased 110 

frequency of change of oxytocin infusion rate was associated with dystocic labor. Labor 111 

induction and augmentation with oxytocin was associated with increased expression of the 112 

oxytocin receptor gene in the uterine myometrium, decreased expression of the oxytocin receptor 113 

protein on the myometrial cell membrane, and cyclical increases in intrauterine pressure. 114 

Examination of the frontal cortex of vaginally delivered newborn pups born after oxytocin-115 

induced labor did not reveal an increase in oxidative stress compared to saline-treated control 116 

pups. Specifically, there were no significant changes in oxidative stress biomarkers involving 117 

both the oxidative stress (reactive oxygen/nitrogen species, 4-hydroxynonenal, protein carbonyl) 118 

and the antioxidant response (total glutathione, total antioxidant capacity). In addition, there 119 

were no significant differences in the expression of 16 genes emblematic of the oxidative stress 120 

response pathway. 121 

 122 

Conclusions: Collectively, we provide a viable and realistic animal model for labor induction 123 

and augmentation with oxytocin. We demonstrate its utility in addressing clinically relevant 124 

questions in obstetric practice that could not be mechanistically ascertained otherwise. Based on 125 

our findings, labor induction with oxytocin is not likely to cause oxidative stress in the fetal 126 

brain. Adoption of our model by other researchers would enable new lines of investigation 127 

related to the impact of perinatal oxytocin exposure on the mother-infant dyad. 128 

 129 

Keywords: pregnant rat; animal model; oxytocin; labor induction; uterine myometrium; fetal 130 

brain; oxidative stress; intrauterine telemetry; oxytocin receptor; RNA-sequencing. 131 

 132 
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INTRODUCTION 133 

 134 

Labor induction and augmentation with oxytocin (Oxt) is one of the most prevalent clinical 135 

interventions in modern obstetric practice(1-5). Despite widespread use for over 50 years, most 136 

research has focused on the contractile effects of Oxt and associated obstetric outcomes(4-7). 137 

Whether Oxt affects the fetus remains sparsely studied, despite controversial epidemiological 138 

evidence suggesting a link between the use of Oxt and neurodevelopmental disorders (8-14). 139 

Importantly, most preclinical studies that examine this question do so without inducing birth(15-140 

18), making them contextually less germane. An important scientific roadblock is the absence of 141 

an animal model that mirrors induction of labor in pregnant women with Oxt, presumably due to 142 

the technical difficulty in delivering an incrementally higher dose of intravenous Oxt over time 143 

in a free-moving animal. In this report, we surmounted these challenges to create and validate a 144 

hi-fidelity pregnant rat model for elective labor induction and augmentation with Oxt using an 145 

implantable, programmable, microprocessor-controlled precision drug delivery pump.  146 

 147 

MATERIALS AND METHODS 148 

 149 

Study design 150 

All experiments reported here were approved by the Institutional Animal Care and Use 151 

Committee at Washington University in St. Louis (#20170010) and comply with the ARRIVE 152 

guidelines. A schematic of the study design is presented in Fig. 1. 153 

 154 

 155 
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Development of the pregnant rat model for labor induction and augmentation with Oxt 156 

The system consists of a subcutaneously placed iPRECIO® infrared-controlled microinfusion 157 

pump (SMP-200, Primetech Corporation) connected to the right internal jugular vein in an 158 

embryonic day (E)18 Sprague Dawley dam (Charles River Laboratories) (presented as a photo 159 

montage in Fig. 2). Briefly, the dam was anesthetized with 2% isoflurane followed by 160 

subcutaneous implantation of the iPRECIO® pump approximately 2-3 cm below the nape of the 161 

neck and creation of a tunnel to deliver the pump tubing next to the internal jugular vein, into 162 

which it was secured in place with ligatures. The reservoir of the iPRECIO® pump was primed 163 

with sterile normal saline prior to implantation and was pre-programmed to deliver an infusion 164 

rate of 10 μl/h for 72 h to keep the tubing patent until E21. Two hours before completion of the 165 

saline infusion at 72 h, the reservoir was accessed subcutaneously under brief isoflurane 166 

anesthesia to aspirate the saline and was refilled with 900 μl of Oxt (Selleck Chemicals, 50 167 

μg/mL in normal saline). This was followed by the pre-programmed infusion rate of 5 μl/h for 4 168 

h, 10 μl/h for 4 h, 20 μl/h for 4 h, and 30 μl/h for 12 h (iPRECIO® Management System) (Fig. 3).  169 

 170 

Validation experiments 171 

Though the witnessed birth of pups offered functional validation, we examined the effect of Oxt 172 

on the uterine myometrium with molecular biological assays, immunohistochemistry, and 173 

telemetric assessment of changes in uterine pressure.  174 

 175 

(i) OxtR gene expression: Briefly, approximately 0.5 cm x 1 cm rectangular piece of myometrial 176 

tissue was harvested from the anti-mesometrial aspect of the uterus after 8-12 h of exposure to 177 
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either Oxt (100 mcg/mL concentration) or saline. Sample processing and OxtR qPCR was 178 

performed with a custom TaqMan® OxtR probe as described by us previously(19).  179 

 180 

(ii) Western blot for OxtR expression: Membrane-associated proteins were isolated from 181 

approximately 100 mg of uterine myometrial tissue using Mem-PER Plus Membrane Protein 182 

Extraction Kit (catalog# 89842, ThermoFisher Scientific, Inc.) following manufacturer's 183 

instructions and subjected to immunoblotting with appropriate positive and negative controls 184 

(Cat#: LY400333, Origene Technologies, Inc). Details are provided in the Supplementary 185 

Materials and Methods. 186 

 187 

(iii) Immunohistochemistry: Briefly, 5-μm frozen sections of uterine myometrium embedded in 188 

OCT compound were obtained using Leica CM1510 S cryostat and immunostained for 189 

phosphorylated myosin light chain kinase (1:200 rabbit anti-mouse phosphomyosin light chain 190 

kinase, Invitrogen) and imaged with the Zeiss Axioskop 40 microscope. OxtR protein expression 191 

was assessed by immunostaining with goat anti-rat OXTR antibody (1:100; Origene) and 192 

revealed with Alexa Fluor® 594 labeled rabbit anti-goat antibody (1:300, Invitrogen). All 193 

primary antibodies were incubated overnight at 4ºC followed by a 1 h incubation with secondary 194 

antibodies at room temperature. Imaging was performed with Olympus BX60 fluorescence 195 

microscope with designated filter sets. 196 

 197 

(iv) Uterine telemetry: To assess whether initiation of Oxt was temporally associated with 198 

increase in intrauterine pressure, we performed pressure recordings with telemetry as described 199 
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previously by us for mice (20, 21). Briefly, under isoflurane anesthesia and sterile precautions, 200 

we inserted a pressure catheter in the right horn between the uterine wall and the fetus under 201 

sterile precautions during pump implantation in E18 dams. To minimize the possibility that 202 

telemetry recordings could represent spontaneous labor, we advanced the time of replacement of 203 

saline with Oxt to 48 h instead of 72 h (i.e., E20 - two days before term gestation). The pressure 204 

catheter was connected to a PhysioTel PA-C10 transmitter (Data Sciences International) placed 205 

in the lower portion of the abdominal cavity. Telemetry recordings were performed at 500 Hz 206 

with Dataquest ART data acquisition system version 4.10 (DSI) sampling every 5 min for 15 sec 207 

intervals for 6 h at baseline, followed by recordings 48 h later when Oxt was initiated and 208 

continued until the birth of the pups.  209 

 210 

Effect of in utero exposure to anesthesia and surgery on the neonatal cortical transcriptome 211 

To rule out the possibility of adverse effects on the fetal brain from intrauterine exposure to 212 

anesthesia and surgery during pump implantation(22, 23), we examined the cortical 213 

transcriptome of newborn pups delivered spontaneously by unhandled vs. surgically implanted 214 

dams. Briefly, 2 brains from spontaneously delivered newborn pups of either sex were collected 215 

within 2 h of birth from 6 dams (n=3 each for spontaneous labor and saline-filled iPRECIO® 216 

pump at E18). Total RNA was extracted from the right cerebral cortex using RNAeasy kit 217 

(Qiagen) and subjected to RNA-seq (Genome Technology Access Center core facility). Only 218 

RNA with RIN > 9.5 were used for RNA-seq. Processing of samples, sequencing, and analysis 219 

were done as described by us previously (19) and in the Supplementary Materials and Methods. 220 

 221 
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Assessment of biomarkers of oxidative stress in the newborn brain 222 

Oxt-induced cyclical uterine contractions cause lipid peroxidative injury(24), decrease the anti-223 

oxidant glutathione in cord blood(25), and increase amniotic fluid lactate(26, 27) suggesting the 224 

possibility of oxidative stress. Because the developing fetal/neonatal brain is vulnerable to 225 

oxidative stress (28), we used our model to investigate this question. Briefly, brains were isolated 226 

from vaginally delivered newborn pups immediately after birth, snap frozen, and stored at -80°C 227 

for oxidative stress assays. Cortical lysates were prepared according to the assay type and protein 228 

concentration was determined using BCA Protein Assay Kit (ThermoFisher Scientific) prior to 229 

the assays. All assays were performed in duplicate, and fluorescence/absorbance was read with 230 

Tecan Infinite® M200 PRO multimode plate reader using appropriate filter sets as recommended 231 

by the manufacturer. We assayed for total free radicals (OxiSelect™ In Vitro ROS/RNS Assay 232 

Kit, #STA-347), 4-hydroxynonenal (lipid peroxidation marker, OxiSelect™ HNE Adduct 233 

Competitive ELISA Kit, # STA-838), protein carbonyl (marker of oxidative damage to proteins; 234 

OxiSelect™ Protein Carbonyl ELISA kit, # STA-310), total glutathione (OxiSelect™ Total 235 

Glutathione Assay kit, # STA-312), and total antioxidant capacity (OxiSelect™ TAC Assay Kit, 236 

# STA-360). All assays were purchased from Cell BioLabs, Inc (San Diego, CA).  237 

 238 

Expression of genes mediating oxidative stress in the newborn brain 239 

From the same set of experiments as above, brains were isolated from additional pups born after 240 

exposure to either Oxt or saline (n= 6-8 per group), snap frozen, and immediately stored at -241 

80°C. Processing of total RNA for gene expression experiments was performed as described by 242 

us previously(19). Expression levels of 16 genes relevant to oxidative stress (Mtnd2, Mtnd5, 243 

Mtcyb, Mt-co1, Mt-atp8) and antioxidant (Sod1, Sod2, Gpx1, Gpx4, Prdx1, Cat, Gsr, Nox3, 244 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.11.455293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455293


 12

Nox4, Txnip, Txrnd2) pathways were assayed in duplicate along with four endogenous 245 

housekeeping control genes (18S rRNA, Gapdh, Pgk1, and Actb) and reported as described 246 

previously(19).  247 

 248 

Statistical analysis 249 

Data outliers were detected and eliminated using ROUT (robust regression and outlier analysis) 250 

with Q set to 10%. Because our pilot experiments with a higher dose of Oxt (100 mcg/mL 251 

concentration) showed no sex differences in the expression of oxidative stress markers in the 252 

newborn brain, all subsequent analyses were performed regardless of sex of the offspring. RNA-253 

seq data were analyzed as described by us previously(19). Quantitative data were analyzed with 254 

Welch’s t-test with p ≤ 0.05 considered significant, while oxidative stress gene expression data 255 

were analyzed with unpaired student’s t-test followed by Bonferroni correction with an adjusted 256 

p-value ≤ 0.003 considered significant. All analyses, with the exception of RNA-seq data, were 257 

performed on Prism 8 for Mac OS X (Graphpad Software, Inc, La Jolla, CA) and expressed as 258 

mean ± S.E.M.  259 

 260 

RESULTS 261 

 262 

Development of the model for labor induction with Oxt 263 

Overall, 44 timed-pregnant Sprague Dawley dams were used for the study (Supplementary Table 264 

S1). A video walkthrough of the experimental setup is presented as Supplementary Movie S1. 265 

With the final regimen for Oxt as described in Methods, dams gave birth to pups predictably 266 

within 8-12 h. Litter size and weight gain trajectory of the offspring from one experimental 267 
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cohort are presented in Supplementary Table S2. Handling of critical steps and troubleshooting 268 

are described in greater detail in the Supplementary Materials and Methods. 269 

 270 

Validation of the model 271 

The best validation of our model was the successful vaginal delivery of thriving pups within 12 h 272 

after initiation of the Oxt regimen (Supplementary Movie S2). In addition, we confirmed the 273 

presence of immunoreactive phosphorylated myosin light chain kinase (MLCK)(29), a 274 

serine/threonine kinase and a downstream regulator of the effects of Oxt on the actin-myosin 275 

ATPase, in Oxt-exposed myometrium (Fig. 4A). Next, we confirmed that Oxt initiation was 276 

accompanied by a rise in intrauterine pressure, a sine qua non feature of labor(30-32), and lasting 277 

until birth of all pups (Fig. 4B). This was associated with an increase in OxtR gene expression in 278 

the uterine myometrium (Fig. 4C). In contrast, exposure to Oxt for at least 8 h resulted in a 279 

decrease in OxtR immunoreactivity (Fig. 4D) and membrane bound OxtR protein expression 280 

(Fig. 4E) similar to human data. Collectively, we established the translational relevance of our 281 

model by mirroring both Oxt management of labor and its effect on the uterine myometrium. 282 

 283 

Effect of surgery and anesthesia during pump implantation on the developing brain 284 

Because exposure to anesthesia and surgery can affect the developing brain(22, 23, 33-35), we 285 

compared the cortical transcriptomes of newborn pups born to spontaneously laboring dams that 286 

were not exposed to pump implantation surgery vs. those that were implanted with a saline-filled 287 
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pump on E18 (and therefore requiring anesthesia). Unbiased RNA-seq analyses of the cerebral 288 

cortex of vaginally delivered newborn pups revealed no significant changes in the cortical 289 

transcriptome after exposure to surgery and anesthesia as shown by the lack of significantly 290 

differentially expressed genes in the volcano plot (Fig. 5A; heat map in Supplementary Fig. S1.). 291 

Principal component analysis (Fig. 5B) revealed that the major source of variance was not the 292 

treatment condition but the sex of the offspring, albeit not significant. Top up- and 293 

downregulated genes from GO and KEGG analyses are presented in Fig. 5C-E. A 294 

comprehensive list of differentially expressed genes and unadjusted p-value significant 295 

differentially expressed genes is provided in Supplementary Data S1 and S2, respectively. 296 

 297 

Examination of the redox state of the fetal cortex after labor induction with Oxt 298 

Labor induction with Oxt was not associated with changes in the concentration of total free 299 

radicals, 4-hydroxynonenal or protein carbonyl, in the newborn cortex. Nor were there any 300 

significant differences in antioxidant capacity; both glutathione and total antioxidant capacity 301 

were unchanged after Oxt (Fig. 6A). Furthermore, we did not observe any significant changes in 302 

the expression of emblematic genes pertinent to the oxidative stress/antioxidant pathway (Fig. 303 

6B; TaqMan qPCR probe list in Supplementary Table S3). Collectively, these data provide 304 

reassurance that the use of Oxt for labor induction is unlikely to be associated with oxidative 305 

stress in the fetal brain.  306 

 307 

 308 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.11.455293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455293


 15

COMMENT 309 

Principal Findings 310 

Here, we present a realistic and tractable animal model for labor induction with Oxt. In addition 311 

to functional validation of the model, we were able to demonstrate features consistent with the 312 

use of Oxt in human labor: (i) a decrease in OxtR protein expression in the uterine myometrium, 313 

and (ii) confirmation of increased intrauterine pressure with Oxt. Furthermore, we provide 314 

evidence for the translational utility of the model by showing that labor induction with Oxt was 315 

not associated with oxidative stress in the fetal brain.  316 

 317 

Results in the Context of What is Known 318 

Regarding use of Oxt to induce birth, the only other relevant preclinical study is that of 319 

Hirayama et al. which used an osmotic pump to deliver a continuous subcutaneous infusion of 320 

Oxt in pregnant mice(36). However, the experimental paradigm did not allow for escalation of 321 

Oxt dose nor assessment of the impact of Oxt administration on the uterine myometrium. 322 

Another study examined the impact of intravenous Oxt infusion on the fetal brain response to 323 

hypoxia/anoxia and showed that pre-conditioning with Oxt increased the concentration of lactate 324 

in the fetal brain but reduced the level of malondialdehyde, a lipid peroxidation marker(17). 325 

Nevertheless, this study was designed to study the effect of Oxt on the brain adaptation to 326 

hypoxia and not to assess the impact of Oxt on the process of birthing. Furthermore, Oxt was 327 

administered as a constant infusion, unlike the gradually escalating rate used in our study. These 328 

differences perhaps explain why we did not observe a decrease in oxidative stress in the fetal 329 

brain. As a G protein-coupled receptor that is sensitive to downregulation, our findings of 330 

reduced membrane bound OxtR protein expression after Oxt exposure is broadly consistent with 331 
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published data in human studies(6). However, to our surprise, expression of the OxtR gene was 332 

significantly increased after labor induction with Oxt. We believe that these apparently 333 

contradictory findings could be due to the choice of myometrial samples by Phaneuf et al.(6); 334 

samples were collected from patients who underwent cesarean delivery after dystocic labor with 335 

Oxt suggesting the possibility of abnormal transcription during intrapartum arrest of labor. In 336 

contrast, we performed cesarean delivery during uncomplicated labor to facilitate sample 337 

collection. This line of thought is supported by the 4-5-fold increased myometrial expression of 338 

OxtR gene during uncomplicated labor in rodents(37, 38).  339 

 340 

Clinical Implications 341 

Our findings were reassuring in that even after 8-12 h of exposure to Oxt-induced uterine 342 

contractions, there was no evidence for oxidative stress in the newborn brain. Lack of oxidative 343 

stress after prolonged exposure to repetitive Oxt-induced uterine contractions in a species in 344 

which labor typically lasts between 90-120 min(39), gives us more confidence that this is 345 

unlikely to be a concern for the human fetus. Because of the wide variability in Oxt use across 346 

the world(40), future research should focus on altering the dose regimens to determine if some of 347 

the clinical observations related to oxidative stress are due to differences in Oxt dosing. 348 

 349 

Research Implications 350 

Ethical and logistic challenges significantly limit the scope of mechanistic research on pregnant 351 

women and their newborn. Our contextually relevant animal model, by providing unrivaled 352 

access to maternal and fetal tissue, has wide-ranging implications for translational research 353 

related to perinatal Oxt exposure. This makes our model well suited to investigate lingering 354 
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concerns about the impact of Oxt on neurobehavioral development of the offspring(8, 14, 41, 355 

42), epigenetic regulation of OxtR in the fetal brain(18), relationship between intrapartum Oxt 356 

use and breastfeeding success(43-45), and the complex association between Oxt and postpartum 357 

depression(46-48). Furthermore, by scaling down with appropriate equipment (iPRECIO® SMP 358 

310-R with a dedicated wireless communication device), transgenic mouse models could be used 359 

to investigate complex gene-environment interaction studies in the perinatal period. Ongoing 360 

studies in our laboratory are focused on the transfer of maternally administered Oxt across the 361 

placental and fetal blood-brain barriers, and its impact on Oxt-ergic signaling in the fetal brain. 362 

Because of the critical importance of Oxt-ergic signaling for satiety and appetite regulation(49), 363 

we are also particularly interested in the impact of perinatal Oxt exposure on childhood obesity.  364 

 365 

Strengths and Limitations 366 

The biggest strength of our model is how it mirrors labor induction with Oxt in clinical practice. 367 

We prefer not to anthropomorphize our study because biological validation of the effect of 368 

oxytocin with the birth of living pups was our motivation. However, the cumulative Oxt dose 369 

until birth of the pups, approximately 3-7 μg, is comparable to the dose ranges typically used 370 

during human labor. For example, parturients receive on average, a cumulative Oxt dose of 371 

2000-4000 mIU or 2-4 IU (IU = International Unit) during the course of labor (50). Because 1 IU 372 

= 1.68 μg of Oxt peptide, this would translate to approximately 3.4-6.8 μg of Oxt, similar to what 373 

we used in our model. Considering that our model simulates clinical practice to a large extent, 374 

research knowledge generated using this model is more likely to provide reliable and actionable 375 

mechanistic data than other currently available models.  376 

 377 
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Our research has a few limitations. First, our model can be perceived as contrived. Considering 378 

the technical challenges of delivering an escalating dose of intravenous Oxt in a free-moving 379 

animal to simulate obstetric practice, we considered all possibilities before pursuing this model. 380 

Importantly, our model is in no way more traumatic or less realistic than the unilateral carotid 381 

artery ligation/ anoxia model to investigate perinatal asphyxia in rodents (51, 52). Second, even 382 

though our low-dose Oxt infusion for the first 4 h would have resulted in cervical ripening as 383 

demonstrated in laboring women (53), we are unable to provide objective evidence to support 384 

that assumption. Nevertheless, because birth of the pups occurred predictably, it is likely a moot 385 

concern. Third, we did not compare the extent to which Oxt increases intrauterine pressure 386 

compared to saline. Because we had biological validation of pup birth, our objective was to 387 

capture the temporal relationship between the initiation of Oxt and the rise in intrauterine 388 

pressure rather than assess differences in intrauterine pressure between Oxt-induced and 389 

spontaneous labor that have been characterized previously(54).  390 

 391 

Conclusions 392 

In conclusion, we provide a viable and realistic animal model for labor induction and 393 

augmentation with Oxt and demonstrate its utility in addressing clinically relevant questions in 394 

obstetric practice. Adoption of our model by other researchers would enable new lines of 395 

investigation related to the impact of perinatal Oxt exposure on the mother-infant dyad. 396 

 397 

 398 

 399 

 400 
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Figures and Figure Legends 401 

 402 

Figure 1 403 

 404 

 405 

 406 

Fig. 1. Experimental schematic for labor induction with oxytocin in term pregnant rat. (A) 407 

A cartoon depicting the programming and implantation of iPRECIO® pump in a pregnant rat 408 

followed by birth of healthy pups. (B) Experimental schematic showing the overall experimental 409 
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outline with two separate cohorts for cesarean and vaginal delivery. In the vaginal delivery 410 

cohort, there were three sets of independent experiments for (i) intrauterine telemetry, (ii) RNA-411 

seq experiments to assess the impact of in utero exposure to anesthesia and surgery on the 412 

cortical transcriptome of the newborn brain, and (iii) examination of oxidative stress in newborn 413 

pups after either Oxt or saline, respectively. 414 

 415 

 416 

 417 

 418 

 419 
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Figure 2 433 

 434 

 435 

 436 
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Fig. 2. Workflow of experimental and surgical procedures associated with creation of the 437 

model. (A) Workflow for iPRECIO® pump programming prior to implantation on E18 and 438 

subsequent replacement of saline with Oxt by subcutaneous access of the refill port on E21. (B) 439 

Left to right: sequential surgical workflow for implantation of the pre-programmed iPRECIO® 440 

pump followed by internal jugular vein cannulation with the pump catheter on E18. All surgical 441 

procedures were performed in strict accordance with institutional guidelines for rodent surgery, 442 

anesthesia, and analgesia. 443 

 444 

 445 

 446 
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 448 

 449 

 450 
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 452 

 453 

 454 
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Figure 3 458 

 459 

 460 

Fig. 3. A walkthrough of the sequential steps (A-D) for pump programming with 461 

iPRECIO® Management System software. All procedures were performed in accordance with 462 

the manufacturer’s instructions. (A) Infusion protocol set up page that allows input of all the 463 

variables necessary for programming of the pump. (B-C) Variable flow rate mode is chosen to 464 

ensure gradual escalation of Oxt dose over time. (D) A graphic representation of Oxt dosing 465 

showing the volume that is to be administered over time. The pump ID and calibration factor is 466 

automatically detected and inputted by the data communication device. 467 
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Figure 4 468 

 469 

 470 

 471 

Fig. 4. Validation of the model for labor induction with oxytocin. (A) Visualization of uterine 472 

contraction. Upper panel: uterine myometrium harvested from pregnant E21 rats at least 8 h after 473 

either saline (control) or intravenous Oxt infusion and stained with hematoxylin. 20x 474 

photomicrographs showing lack of clustering of uterine myocytes in saline-treated myometrium 475 

(left) compared to extensive clustering in the Oxt-exposed myometrium (right). Lower panel: 5-476 

μm frozen sections from Oxt-exposed myometrium stained without (left) or with rabbit anti-477 

mouse phosphomyosin light chain kinase showing prominent staining among clustered uterine 478 

myocytes revealed with anti-rabbit HRP conjugate (marked by arrows) (right). Nuclei 479 
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counterstained with hematoxylin. Scale bar = 100μM. (B) Labor induction with Oxt causes 480 

cyclical increases in intrauterine pressure. Labor was induced with Oxt at 48 h after pump 481 

implantation (around 12 noon, light cycle, E20) and intrauterine pressure changes were 482 

monitored with telemetry. Oxt initiation was associated with acute and cyclical increases in 483 

intrauterine pressure until birth (first pup delivered around 21:00 h, dark cycle, E20). Light and 484 

dark cycle from 07:00-19:00 and 19:00-07:00, respectively. (C) Labor induction with Oxt was 485 

associated with a significant increase in OxtR gene expression at 8-12 h. (D) Labor induction 486 

with Oxt decreases OxtR immunoreactivity in the rat uterus. Sample 20x photomicrographs from 487 

5-µm sections of the uterine myometrium stained with goat anti-rat OxtR antibody (1:100) and 488 

revealed with Alexa Fluor® 594 labeled rabbit anti-goat antibody (1:300). Note naïve uterine 489 

myometrium with bright staining for OxtR in the upper panel, in sharp contrast to Oxt-exposed 490 

myometrial tissue in the lower panel where staining was scant, suggesting downregulation of 491 

OxtR. Scale bar = 50μM. (E) Representative western blot showing a decrease in membrane 492 

associated OxtR protein expression after labor induction with Oxt and quantified with 493 

densitometry. Data analyzed with Welch’s t-test and presented as mean ± SEM; *p ≤ 0.05, **p ≤ 494 

0.01. 495 
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Figure 5 502 

 503 

 504 

Fig. 5. Impact of anesthesia and surgery on the newborn cortical transcriptome. (A) 505 

Volcano plot showing the absence of significantly differentially expressed genes between the 506 

spontaneous labor vs. saline pump groups (n = 2 pups of each sex/dam from 3 dams/treatment 507 

condition). (B) Principal component analysis (PCA) showing that the major source of variance is 508 

not the treatment condition (fuchsia: spontaneous labor, blue: saline pump) but the sex of the 509 

offspring, albeit not significant. (C-D) Top 25 false discovery rate-adjusted significantly up- and 510 

downregulated genes for Gene Ontology (GO) biological processes (C) and molecular functions 511 

(D) after labor induction with Oxt. (E) Significantly upregulated genes with Kyoto Encyclopedia 512 
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of Genes and Genomes (KEGG) analysis. GO and KEGG analyses revealed a differential impact 513 

of anesthesia and surgery on multiple pathways, mostly related to oxygen binding and the 514 

immune response, respectively. Therefore, for the rest of our experiments, we used saline pump-515 

implanted dams that eventually labored spontaneously as controls, instead of dams that labored 516 

spontaneously without exposure to anesthesia and surgery. 517 

 518 

519 
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Figure 6 520 

 521 

 522 

 523 

Fig. 6. Labor induction with oxytocin is not associated with oxidative stress in the 524 

developing brain. (A) From left to right: Labor induction with oxytocin was not associated with 525 

an increase in either glutathione, 4-hydroxynonenal, protein carbonyl, reactive oxygen/nitrogen 526 

species (ROS/RNS), or total antioxidant capacity in the developing fetal cortex. All data are 527 

presented per mg of brain protein. (B) Expression of genes mediating oxidative stress or 528 

antioxidant defense were not significantly differentially expressed in the fetal cortex after labor 529 

induction with oxytocin. Collectively, these data indicate that labor induction with Oxt is 530 

unlikely to be associated with oxidative stress in the developing brain. Data were analyzed with 531 

Welch’s t-test and expressed as mean ± SEM (n=5-8 per treatment condition with pups 532 

represented from all unique dams). 533 
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