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 11 
Abstract 12 
For animals, the ability to hide and retrieve valuable information, such as the location of 13 
food, can mean the difference between life and death. Here, we propose that to achieve 14 
this, their brain uses spatial cells similarly to how we utilize encryption for data security. 15 
Some animals are able to cache hundreds of thousands of food items annually by each 16 
individual and later retrieve most of what they themselves stashed. Rather than memorizing 17 
their cache locations as previously suggested, we propose that they use a single 18 
cryptographic-like mechanism during both caching and retrieval. The model we developed 19 
is based on hippocampal spatial cells, which respond to an animal’s positional attention, 20 
such as when the animal enters a specific region (place-cells) or gazes at a particular 21 
location (spatial-view-cells). We know that the region that activates each spatial cell remains 22 
consistent across subsequent visits to the same area but not between areas. This 23 
remapping, combined with the uniqueness of cognitive maps, produces a persistent crypto-24 
hash function for both food caching and retrieval. We also show that the model stores 25 
temporal information that helps animals in food caching order preference as previously 26 
observed. This behavior, which we refer to as crypto-taxis, might also explain consistent 27 
differences in decision-making when animals are faced with a large number of alternatives 28 
such as in foraging. 29 
 30 
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Main Text 32 
 33 
Animals have much to hide. Some species evade potential predators or prey by finding cover 34 
or by using camouflage (1), mimicry, and other means of disguise (2). Others conceal their 35 
eggs or offspring, mask an illness or an injury to avoid being targeted by predators (3), or 36 
stash valuable resources, such as food.  37 
 38 
Scatter hoarding is probably the largest-scale manifestation of secretive behavior in the 39 
animal kingdom. Many species of animals engage in this behavior, which involves storing 40 
food at multiple cache sites to preserve it for times when food is scarce (4). Several bird 41 
species, such as the Siberian tit (Poecile cinctus), were observed to cache over 500,000 items 42 
per individual in one year (4). While much of the research on scatter hoarding was 43 
conducted on birds, this behavior is not specific to them (4): squirrels (5), chipmunks (6), 44 
and even foxes (7, 8) stash food for times of need. As caching sites cannot be defended, the 45 
success of this strategy is often contingent on an animal’s ability to keep the stashes away 46 
from prying eyes and hard to find (5).  47 
 48 
Once the valuables are stashed, scatter hoarders are faced with the considerable challenge 49 
of retrieving the hidden items. It was shown that hoarding birds do not randomly seek out 50 
cached food (9); rather, they mainly retrieve that which they had themselves hidden – a 51 
remarkable feat, especially given the large number of cache sites (10). In the 1950s, Olof 52 
Swanberg observed that almost 90% of Eurasian nutcracker (Nucifraga caryocatactes) 53 
excavation holes contained cracked nutshells, indicating successful retrievals (4). In one 54 
elegant experiment, Stevens and Krab attached tiny magnets to the legs of marsh tits 55 
(Poecile palustris) (12). The birds were then offered serially numbered peanuts labeled with 56 
a radioactive isotope, enabling the researchers to locate each bird’s caching sites using a 57 
scintillation counter (13). Magnet detectors were placed at each location to detect the 58 
presence of marked birds. During the experiment, the birds retrieved about 25% of their 59 
own stored food, while none of the control caches (set up by the researchers) were 60 
activated. The actual retrieval rate was probably higher, but the experiment faced some 61 
technical hurdles (4). 62 
 63 
The ability to retrieve items from cache sites depends on spatial information such as visual 64 
cues. In (14), black-capped chickadees (Poecile atricapillus) were placed in an enclosure and 65 
their food-caching behavior was tracked. Object rearrangement around the enclosure 66 
greatly impaired the chickadees’ ability to find their cache sites; manipulation of prominent 67 
global landmarks (large cardboard cutouts and a poster) had a much stronger effect on the 68 
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birds’ retrieval performance than small proximal objects (5-cm squares). Shifting objects by 69 
as little as 20 cm to the right significantly decreased the chickadees’ ability to recover the 70 
food. Moreover, in almost 70% of the cases, the birds searched within 5 cm of the location 71 
implied by the more prominent landmarks, with a mean displacement of around 20  cm. 72 
Assuming this is approximately the caching resolution, the finding indicates that a small 73 
area of 10x10 meters can hold as much as 2,500 potential caching sites. 74 
 75 
The hippocampus plays a central part in the remarkable cognitive feat of caching (9). This 76 
is not surprising, as the hippocampus is known to be involved in processing spatial 77 
information in the brain (11). A large subpopulation of neurons within the hippocampus in 78 
animals such as mice, rats, and bats exhibit place-cell behavior; that is, they increase in their 79 
spike rate in response to the animal’s entering a specific region within a given site (usually, 80 
but not always, one region per cell). The region activating each place cell often changes 81 
when the animal moves to a new area, often in an unpredictable manner. However, if the 82 
animal returns to a site previously visited, the place cell’s receptive fields also return to their 83 
previous arrangement, and this change happens practically instantaneously. This 84 
remapping of the receptive field within a given environment is mostly insensitive to 85 
landmark manipulations. In primates, we usually find a related type of cells referred to as 86 
spatial view cells. These cells respond remotely when an animal is gazing at a specific region, 87 
independently of the animal’s location or head direction (12).  88 
 89 
A well-known homolog to the mammalian hippocampus also exists in birds, with similar 90 
involvement in spatial and episodic memory (13). Hippocampus size in birds was found to 91 
correlate with birds’ ability to stash food. Although the interpretation of this correlation is 92 
under debate (14, 15), animals that used more cache sites generally had a larger 93 
hippocampus than non-caching bird species (16, 17). In addition, even within the same 94 
species, the size of the hippocampus was found to be larger in individuals dwelling in 95 
harsher environments that makes them more dependent of the cached food (18). Moreover, 96 
hippocampal neurogenesis has a seasonal element and seems to correlate with caching 97 
activity throughout the year (19). For many years, the spatially responsive cells found in 98 
avian brains were less related to a fixed position in space and more related to the challenge 99 
the animal faced such as the position of a goal within a maze (20). Only very recently the 100 
existence of place cells was demonstrated in the tufted titmouse (Baeolophus bicolor) (21).  101 
 102 
Taken together with the fact that the hippocampus is involved in memory, these 103 
observations have led researchers to hypothesize that caching requires some form of 104 
spatial and episodic memory (22).  105 
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 106 
Yet as birds and other animals need an internal mechanism to guide them to stash food in 107 
specific locations, the same mechanism can also be used to direct them to the exact same 108 
locations while retrieving the food in that area. Such a mechanism may serve as a mnemonic 109 
device (as suggested in (23)) or possibly replace the need for memory altogether. Such a 110 
pseudo-random approach is much simpler than remembering hundreds of thousands of 111 
stashing sites while still supporting all the existing empirical evidence. The guidance is 112 
based on prominent landmarks in the terrain, such as trees and rocks, which are not likely 113 
to substantially change over time, and can be used in the subsequent cache retrieval. And 114 
we already know of a specific set of neurons to be able to do precisely this – the previously 115 
mentioned hippocampal spatial cells. Spatial cells are unique to each individual, they assign 116 
scores and rankings (using spike rates) to different locations within each area, they persist 117 
over time, and remap when in the same area. We show how these properties allow animals 118 
to find their cache sites efficiently and secretly. 119 
 120 
Cryptography in the brain 121 
A mechanism, or mapping, that can facilitate efficient hiding and retrieval of multiple cache 122 
sites without relying on memory would need to have several basic properties. From a 123 
theoretical perspective, the class of methods that achieve this is known as cryptographic-124 
hashing functions (or crypto-hashes, for short), which, as the name suggests, are comprised 125 
of two components: hashing functions and cryptographic keys (24).  126 
 127 
In this context, hashing refers to a class of functions that map arbitrarily complex data 128 
(images, texts, audio files, and others) to a fixed size lower-dimensional representation. 129 
Computer applications often use crypto-hashes to store objects into memory efficiently by 130 
mapping them directly to a memory location (a type of a mnemonic device). In the case of 131 
food caching, hashing can be used to map a set of landmarks within and around an area 132 
onto a selected caching site within that area (Figure 1A). Efficient hash functions are such 133 
that the probability of assigning different cues the same output is kept to a minimum; This 134 
property reduces the possibility of collisions and redundancies that can occur when two 135 
different inputs result in the same output. It also makes better use of all the available 136 
resources – in the case of animals allowing the use of the entire area for caching. 137 
 138 
Unlike standard hash functions, crypto-hashes incorporate an additional entity – a private 139 
key that renders the mapping unique to the key owner (24). Assuming no two individuals 140 
have the same key, it also means that the mapping will result in unique caching sites within 141 
the same area (Figure 1B). Another valuable property of crypto-hashes is that it is often 142 
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difficult to infer the key from a small number of examples, so even if another animal finds 143 
several caches, it will not be able to deduce the location of all others. 144 
 145 
A straightforward and biologically plausible realization of crypto-hashing is through a 146 
simple two-layer neural network model with sparse connectivity (Figure 1C; see 147 
supplementary information). The first layer, the input layer, represents the visual cues 148 
(landmarks) within a given patch of land (Figure 2A, 2B). The second layer is a 2D lattice of 149 
spatial neurons, in which each neuron points to a specific location in a given area (Figure 150 
2C). The firing rate of each spatial neuron corresponds to the likelihood of choosing its 151 
particular location as a caching site. The spatial neurons are sparsely innervated by the 152 
input neurons.  153 
 154 
In our model, we set the number of connections to a constant, typically equivalent to the 155 
number of landmarks the model uses (usually four). This sparse connectivity helps maintain 156 
a low number of potential cache sites by the output layer. A simple equation can summarize 157 
the activity of each spatial neuron 158 

𝐶!!,#! = #$𝑤!,#$ 𝐼!,#
!,#

# 159 

 160 
where 𝐶!!,#! is the score, or spike-rate, of the spatial neuron pointing to coordinate 𝑥$ , 𝑦$ of 161 
the output grid; 𝐼!,# is the input from coordinates 𝑥, 𝑦; and 𝑤!,#$  represents the strength of 162 
the connectivity between 𝐼!,# and 𝐶!!,#!. The strength, or weight 𝑤!,#$ , of the connections was 163 
assigned randomly at between one and minus-one. The inputs were also set in the range 164 
one and minus-one, where the absolute magnitude represents the landmark’s prominence 165 
(one is very prominent and zero is designated as not noticeable). The sign represents the 166 
landmark type, for example positive values represent “trees”, and negatives represent 167 
“rocks”. The scores of the output neurons 𝐶!!,#! effectively determine the probability of their 168 
target area to be used as a cache site. We use the absolute value to keep the outputs 169 
positive, although it has no computational benefit to the model. Nor is the choice to 170 
distinguish between two types of objects by allowing negative inputs. 171 
 172 
This neural network is a crypto-hash function, as it fulfills the three essential properties: (1) 173 
It maps a complex terrain into a point with minimal overlapping probability across the 174 
terrain or (2) across subjects (Figure 3A, 3B), and (3) reconstructing or decrypting the 175 
mapping from examples is difficult. The third point stems from the fact that the connection 176 
to each output-layer neuron is chosen randomly and independently of the others. Thus it is 177 
effectively equivalent to holding a unique key for each neuron. 178 
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Figure 1. Cryptographic mechanisms in the brain. (A) Hash functions take high-dimensional objects (a map of a complex terrain, 

for example) and map them into a low-dimensional representation such as a point within that terrain. (B) Crypto-hash functions 

also include a private key that makes mapping the same object unique across individuals with different keys. (C) Crypto-hashing 

in a two-layer neural network. Each neuron I!,# in the input layer represents landmarks within a small square area. We assume 

two types of landmarks, which we refer to as ‘trees’ and ‘rocks’. Neurons that point to trees are assigned a positive value, rocks 

get negative values, and if no object is within the neuron's receptive field, it is set to zero. The absolute value of I!,# corresponds 

to an object’s prominence; thus, prominent trees will get +1, smaller trees – 0.5, and small rocks may be assigned a value of -

0.3. The spatial output layer is a 2D mesh that assigns a caching score to each location within the site. The higher the score, the 

more likely this location would be used for caching. Each neuron in the output layer is innervated by a small number of input 

neurons. In all of our simulations, we matched this number to the number of landmarks the model uses.  
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Figure 2. Using spatial features to map cache sites without requiring brain plasticity. (A-C) Four examples of the outcome of a 

crypto-hash neuronal network (in rows). (A) We simulated a terrain with four prominent landmarks by randomly choosing four 

cells within a 10x10 grid. The cells were assigned random values between -1 and +1, so that the absolute value represents the 

prominence of the spatial feature (cells with values close to +1 and -1 being the most prominent), and the sign represents the 

type of object. We refer to positive-valued cells as “trees” and negative cells as “rocks” for brevity.  (B) The representation of the 

landscapes from (A) in the neural network’s input layer. The size of the colored inlaid boxes represents the object’s prominence 

and their color its sign (green for positive values or “trees”, and gray for negatives or “rocks”). (C) The output of the target layer 

of two randomly chosen neural networks (Animal 1 and 2) in response to the inputs in (B). The output layer creates a unique 

probabilistic map of possible cache sites. 

 179 
The result can serve as a traditional crypto-hash function by choosing the target neuron 180 
with the highest score as the mapping outcome (see Materials an Methods). However, a 181 
probabilistic map with multiple outcomes of varying probabilities – apart from being more 182 
biologically feasible – also provides several benefits. The most straightforward benefit is 183 
that it allows for an arbitrary number of caching sites within each area by choosing the 184 
spatial neurons with the top scores.  185 
 186 
Another valuable property of probabilistic maps is that they allow the addition of temporal 187 
considerations into caching behavior (22). Assuming the order of food recovery starts with 188 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.11.455910doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455910


locations that have higher scores, items with higher nutritional values or perishable items 189 
(such as dead insects, as opposed to seeds) could be stashed in places with higher scores – 190 
making them more likely to be recovered prior to items assigned to lower-scored locations 191 
(Figure 3C). In addition, avoiding previously excavated sites requires only memorizing the 192 
score of the last excavated and choosing only sites with a lower score (we refer to this 193 
behavior as bookmarking). 194 
 195 
Finally, we did not address how mappings in the model are kept allocentric and invariant to 196 
the animal's position. A straightforward approach to achieve such invariance was 197 
suggested in an elegant paper about geometric hashing (25). The method there is based on 198 
choosing two prominent objects in the area and using them to scale and align all landmarks. 199 
The vector connecting the two most prominent landmarks defines the direction axis and 200 
the distance between them sets the scale unit. Using this approach, we can obtain a model 201 
that is insensitive to affine transformations. 202 
 203 

 
Figure 3. Properties of a crypto-hash neural network. The probability of overlapping sites between two random networks as a 

function of (A) potential cache sites and (B) the number of landmarks the network uses. The different colors correspond to the 

number of caches used in each area. The dotted lines are the overlap as expected from a random choice of sites. (C) The  

probabilistic nature of the target layer scores allows the network to maintain temporal dynamics. We assume that caching and 

retrieval order are determined by the target-layer score, from highest to lowest. If the choice is not absolute but probabilistic, 

we still get the same temporal dynamic in both phases. The shaded area around each line represents the standard deviation. 

  204 
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METHODS 205 
Landmarks and terrain 206 
While the algorithm is not sensitive to the number of landmarks, for the sake of simplicity, 207 
we assumed a fixed number of landmarks within each area - four, in this paper. These 208 
landmarks were divided into two categories, which we refer to as “trees” and “rocks”. The 209 
locations of the landmarks were chosen randomly and uniformly from an n-by-n square grid 210 
(in most cases we use n=10). Each landmark was then assigned a random value between 211 
minus one and one that signifies the objects category and prominence: Cells that have 212 
positive values are referred to as trees (values between zero and one), while rocks had 213 
negative numbers (between zero and minus one). The absolute value of each landmark 214 
signifies its prominence - so prominent trees have values closer to one and prominent rocks 215 
have values closer to minus one. Zero marks a no-object. The outcome is a sparse n-by-n 216 
matrix 𝑆%×% with values that vary between minus one and one. 217 
 218 
Crypto-Hash Functions 219 
Hash functions map data with arbitrary dimensions to a fixed-length value (24). In 220 
mathematical terms, a hash function 𝑔'(𝑠̅) is such that 221 
 222 

𝑔'(𝑠̅) = 𝑦0' 223 
 224 
where 𝑠̅ ∈ 𝑆 is a vector of arbitrary length, and 𝑦0' = 2𝑦(, 𝑦), … , 𝑦'4 ∈ 𝒴' is a vector of a fixed-225 
length p. Since the length of 𝑠̅ is often larger than that of 𝑦0' hash-functions can be viewed 226 
as a special case of dimensionality-reduction.  227 
 228 
An optimal hash function is such that the probability of mapping two inputs onto the same 229 
output is minimal, or, equivalently, that all outputs values should have (roughly) the same 230 
probability. This principal of uniformity can be formulated as 231 

𝑝(𝑔'(𝑠̅) = 𝑦) ≈
1
|𝒴'|

 232 

where |𝒴'| is the cardinality (number of elements or size) of the set 𝒴' of all possible output 233 
values. Because of their uniformity, hash functions are often used in data storage and 234 
retrieval tasks as they allow data access at nearly a constant time while requiring a storage 235 
size that is only slightly larger than the space needed to store the data itself. 236 
 237 
Crypto-hash functions introduce an additional term, a private-key 𝑘, to the basic hash 238 
function  239 
 240 
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𝑔'(𝑠̅; 𝑘) = 𝑦0'. 241 
 242 
The key ensures that the mapping is unique, i.e. the probability that the same inputs 243 
produce the same outputs for different keys is close to chance. Crypto-hash functions, like 244 
hash functions in general, are deterministic, meaning that the same combination of input 245 
and key will always produce the same output value. However, crypto-hash mappings are 246 
also one-way-functions, meaning that they are difficult to invert; knowing an output value 247 
gives very little information about the input or key. 248 
 249 
Crypto-Hash Neural Network 250 
Choice and retrieval of cache sites is based on prominent landmarks within a terrain. 251 
Assuming 𝑆%×% is the representation of the current area’s terrain (see the ‘simulated terrain’ 252 
section), our crypto-hash function can be defined as 253 
 254 
(1) 𝑔'(𝑆%×%; 𝑘) = (𝑥, 𝑦)  

 255 
where (𝑥, 𝑦) is the cache coordinate within the area so that 𝑥, 𝑦 ∈ {1,… , 𝑛}, and 𝑘 is the crypto-256 
key. 257 
 258 
A straightforward and biologically plausible to achieve this is using a neural network. We 259 
define a two-layer network where, for simplicity, the neurons on both layers are organized 260 
as a grid with 𝑥, 𝑦 indices. The value of each neuron in the first layer 𝐼!,#, which is the input 261 
layer, is set according to the corresponding area tile or the (𝑥, 𝑦)’th cell in 𝑆%×%. Each output 262 
layer neuron 𝐶!!,#! was sparsely connected to the input layer, and the weights 𝑤!,#$  were 263 
randomly distributed between minus-one and one. The value of output neurons is the 264 
absolute value of the weighted sum of their inputs 265 

(2) 𝐶!!,#! = #$𝑤!,#$ 𝐼!,#
!,#

#. 
 

 266 
In order to get a crypto-hash function in the form (1) we can take the index of the maximal 267 
value or 268 

𝑔'(𝑆%×%; 𝑘) = argmax
!",#"

𝐶!",#" . 269 

In our case, a unique key 𝑘 is obtained from the random choice of weights between the 270 
neural network’s layers. 271 
 272 
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However, as we mentioned in the text, keeping the function as a probabilistic mapping like 273 
in (2) has several benefits and this is the form we use in the paper. 274 
 275 
DISCUSSION 276 
 277 
Although spatial cells, such as place cells have been extensively studied, the mechanism we 278 
presented is one of the few explanations to how the brain might utilize these cells. We 279 
proposed here that spatial cells can serve as the brain’s crypto-hash functions, enabling 280 
animals to hide food in unique cache sites and later to retrieve it. So far, there has been no 281 
theory that explains what principles guide animals when choosing cache sites; If it was 282 
merely a question of optimality, all animals might end up choosing the same sites, which 283 
would lead to theft (or kleptoparasitism). 284 
 285 
For brevity, we did not address how mappings in the model are kept allocentric and 286 
invariant to the animal's position. A straightforward approach to achieve such invariance 287 
was suggested in an elegant paper about geometric hashing (30). The method there is 288 
based on choosing the two most prominent objects in the area and using them to scale and 289 
align all landmarks. The vector connecting the two most prominent landmarks defines the 290 
direction axis and the distance between them sets the scale unit. Using this approach, we 291 
obtain a model that is insensitive to affine transformations (see supplementary 292 
information). 293 
 294 
While our focus here is on scattered hoarding, a similar mechanism may also be involved in 295 
processes of decision making when the number of possibilities is large. A bee foraging for 296 
nectar and pollen, for example, would benefit from choosing flowers less likely to have been 297 
visited by other bees. The same function-driven mechanism (rather than memory-driven) 298 
may also help steer migratory animals back to previously used nesting areas. And since the 299 
hippocampus is involved in abstract knowledge in addition to spatial information (11), the 300 
scope of decision-making might be much broader; Since diversity is a key characteristic of 301 
all living system, it is tempting to think that humans' individualistic tendencies might also 302 
be somehow related to our proposed brain circuitry. 303 
 304 
While the work we presented is theoretical, it raises some obvious predictions. First, that 305 
knowing the spiking patterns of spatial cells will enable us to determine cache site locations. 306 
Moreover, if we know the remapping between sites well, we can use it to decrypt the internal 307 
circuitry and predict cache sites in a new site that the animal is yet to visit. Finally, we predict 308 
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that the location of cache sites within a given area would be consistent across multiple hide 309 
and retrieval iterations. 310 
 311 
The instinct to choose cache sites that are both unique and obscure has a clear evolutionary 312 
advantage. We therefore fondly suggest addressing this movement pattern as cryptotaxis 313 
and the neurons involved as crypto-cells. 314 
 315 
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