## 1 The Proteomic Architecture of Schizophrenia Cerebral Organoids 2 Reveals Alterations in GWAS and Neuronal Development Factors

3

Michael Notaras<sup>1</sup>, Aiman Lodhi<sup>1</sup>, Haoyun Fang<sup>5</sup>, David Greening<sup>3,4,5,6,\*</sup>, and Dilek
 Colak<sup>1,7,\*</sup>

6

<sup>1</sup> Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill
 Cornell Medical College, Cornell University, New York, New York, USA.

<sup>2</sup> Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell
 University, New York, New York, USA.

<sup>3</sup> La Trobe Institute for Molecular Science, La Trobe University, Melbourne,
 Australia.

<sup>4</sup> Central Clinical School, Monash University, Melbourne, Australia.

<sup>5</sup> Baker Institute for Heart and Diabetes, Melbourne, Australia.

<sup>6</sup> Baker Department of Cardiometabolic Health, University of Melbourne,
 Melbourne, Australia.

<sup>17</sup> <sup>7</sup> Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medical College,

- 18 Cornell University, New York, New York, USA.
- 19

20 \*Correspondence Greening bioinformatics to David (for queries) at 21 david.greening@baker.edu Dilek (organoid or Colak queries) at 22 dic2009@med.cornell.edu

23

24

25 Keywords: Cerebral organoid, induced pluripotent stem cells, iPSCs,

26 Schizophrenia, psychosis, proteomics, isotopic quantitative proteomics, PTN,

27 pleiotrophin, PTN, podocalyxin, PODXL, SV2A, MAP2, neuron development,

28 neurodevelopment, neurodevelopmental disorder.

### 44 **ABSTRACT**

#### 45

46 Schizophrenia (Scz) is a brain disorder that has a typical onset in early adulthood 47 but otherwise maintains unknown disease origins. Unfortunately, little progress has 48 been made in understanding the molecular mechanisms underlying 49 neurodevelopment of Scz due to ethical and technical limitations in accessing 50 developing human brain tissue. To overcome this challenge, we have previously 51 utilized patient-derived Induced Pluripotent Stem Cells (iPSCs) to generate self-52 developing, self-maturating, and self-organizing 3D brain-like tissue known as 53 cerebral organoids. As a continuation of this prior work [1], here we provide a 54 molecular architectural map of the developing Scz organoid proteome. Utilizing 55 iPSCs from n = 25 human donors (n = 8 healthy Ctrl donors, and n = 17 Scz patients), we generated 3D human cerebral organoids, employed 16-plex isobaric 56 57 sample-barcoding chemistry, and simultaneously subjected samples to 58 comprehensive high-throughput liquid-chromatography/mass-spectrometry 59 (LC/MS) guantitative proteomics. Of 3,705 proteins identified by high-throughput 60 proteomic profiling, we identified that just ~2.62% of the organoid global proteomic 61 landscape was differentially regulated in Scz organoids. In sum, just 43 proteins were up-regulated and 54 were down-regulated in Scz patient-derived organoids. 62 63 Notably, a range of neuronal factors were depleted in Scz organoids (e.g., MAP2, TUBB3, SV2A, GAP43, CRABP1, NCAM1 etc.). Based on global enrichment 64 65 analysis, alterations in key pathways that regulate nervous system development 66 (e.g., axonogenesis, axon development, axon guidance, morphogenesis pathways 67 regulating neuronal differentiation, as well as substantia nigra development) were 68 perturbed in Scz patient-derived organoids. We also identified prominent 69 alterations in two novel GWAS factors, Pleiotrophin (PTN) and Podocalyxin 70 (PODXL), in Scz organoids. In sum, this work serves as both a report and a 71 resource whereby researchers can leverage human-derived neurodevelopmental 72 data from Scz patients, which can be used to mine, compare, contrast, or 73 orthogonally validate novel factors and pathways related to Scz risk identified in 74 datasets from observational clinical studies and other model systems. 75 76 77 78 79 80 81 82

#### 85 INTRODUCTION

Schizophrenia (Scz) is a debilitating brain disorder that occurs in 86 87 approximately ~1% of the population. While Scz onset typically occurs in early 88 adulthood, subtle brain changes and symptoms often begin emerging years prior to 89 onset during the so-called "prodromal period" [2, 3]. In spite of this, it has remained 90 unclear when Scz neuropathology actually begins to unfold in the brain [1]. For 91 instance, does Scz neuropathology begin a couple of years prior to onset in 92 adolescence when prodromal features progressively emerge? Or does Scz 93 neuropathology begin much earlier in neurodevelopment at a scale that is not yet 94 resolvable? Following decades of investigation, there is now strong 95 epidemiological evidence that indicates risk of Scz may begin to accumulate during 96 in utero brain development [4-7]. This includes data from numerous, independent, 97 large-scale populations [4-7]. Critically, it remains unclear if *in utero* risk factors for 98 later Scz onset, such as maternal immune activation, famine, or hormonal/steroid 99 factors, elicit risk by inducing neurodevelopmental alterations or promoting rates of 100 de novo mutation [8]. While the latter can't be ruled out as a potential etiological 101 contributor, the former hypothesis holds strong merit given the highly-regulated 102 nature of cortical development *in utero* and the fact that innumerous Scz risk 103 factors exhibit known roles in central nervous system development. Indeed, some 104 novel biological intermediaries are starting to be discovered which link in utero 105 environmental risk factors to potential genetic factors, alterations, and/or 106 vulnerabilities [9]. However, resolving these neurodevelopmental hypotheses of 107 Scz has been difficult. Critically, ethical and technical constraints in accessing 108 human primary brain tissue have arrested progress in delineating the 109 neurodevelopmental trajectory of Scz. These ethical and technical limitations are 110 further compounded by our inability to identify prospective cases of Scz, which has 111 further sequestered our understanding of neurodevelopmental mechanisms of 112 psychosis and has caused a rift between the known epidemiology and the presumed neurobiology of Scz. For instance, in the largest GWAS conducted to 113 114 date a total of 108 loci of risk were identified – yet, many of these loci (e.g. PTN or 115 PODXL) had unknown disease relevance as well as ambiguously defined 116 neurobiology. Without a means to dissect these factors in human-derived tissue, it 117 is possible that identifying the molecular mediators underlying the ontogeny of disease onset in Scz may continue to be protracted. 118 119 Recently, we attempted to overcome these technical and ethical limitations 120 to model early neuropathological features of Scz within human-derived tissue. 121 Namely, we modeled the neurodevelopmental pathology of Scz by harnessing 122 human induced pluripotent stem cells (iPSCs) from healthy adults (Ctrls) and 123 idiopathic Scz patients to generate 3D brain-like tissue known as "cerebral 124 organoids" [1]. Cerebral organoids allow human-specific mechanisms of neural 125 development to be studied while capturing the entirety of the molecular-genetic

126 background of patients. This is a particularly useful model system with respect to 127 "black box" diseases such as Scz, whose neurodevelopmental origins have 128 remained unclear, as it allows spontaneously-emerging neural tissue that is self-129 organizing and self-maturing tissue to be generated from human donors. Thus, 3D 130 stem cell derived methodologies provide access to a limitless supply of human-131 derived tissue which can be used to dissect complex diseases defined by "daunting polygenicity" [10] under controlled laboratory conditions [11]. Cerebral 132 133 organoids mimic trimester 1 of early brain development and putatively recapitulate the epigenetic [12], transcriptomic [13, 14], and proteomic [1, 11] architecture that 134 135 is expected of the developing mammalian brain. This also includes the 136 recapitulation of cortical cell-type diversity and cellular events such as migration 137 [15] and evolutionary mechanisms that support neocortical neurogenesis [16]. Because of this, cerebral organoids have already been used to model prenatal 138 139 drug/narcotic effects [11], microcephaly [17], macrocephaly [18], Zika virus [19, 20], features of autism [21-23], microdeletion syndromes [24] including 22g11 140 deletion syndrome [25], hypoxic injury [26], and novel neuropathology of Scz [1, 141 142 27-31]. In the case of the latter, Scz-related organoid models have revealed a 143 range of novel phenotypes that may be associated with early neurodevelopmental 144 alterations. This includes diminished responses to electrophysiological stimulation and depolarization [27], alterations in growth factor pathways (e.g. FGFR1 [28] and 145 neurotrophic growth factors and their receptors in Scz progenitors and neurons 146 [1]), immune-related alterations (e.g. TNFα [29] and IFITM3 as well as IL6ST in 147 148 Scz neurons [1]), potential developmental effects in excitation and inhibition [30], and DISC1 effects upon neurodevelopment [31, 32]. Recently, we added to this 149 150 developing literature by being the first to discover that Scz neuropathology is encoded on a cell-by-cell basis and is defined by multiple novel mechanisms in 151 152 Scz patient-derived organoids [1]. However, we have also predicted that further mechanisms related to neurodevelopment of Scz remain to be discovered [1], thus 153 154 requiring deeper analysis in larger samples and populations. 155 Here we sought to expand our existing knowledge of Scz by providing a

156 deep, unbiased, analysis of molecular factors regulating central nervous system 157 development in human-derived 3D tissue. To do this, we generated cerebral 158 organoids from a relatively large pool of human donors (n = 25; n = 8 Ctrl donors 159 and n = 17 Scz donors) and adapted cutting-edge isobaric barcoding chemistry so 160 that samples could be condensed and analytically deconstructed simultaneously 161 via liquid-chromatography/mass-spectrometry (LC/MS). This yielded a large 162 dataset that we have made freely available for other human, mouse, and cellular researchers to analyze. Notably, here we emphasize large-scale changes 163 164 identified in this dataset, which included a broad reduction in neuronal molecules 165 important for neural cell-type identity and development as well as metabolic and

novel GWAS factors. This work and dataset may thus provide insight for other
researchers and labs that have an interest in biological data from human-derived
3D stem cell systems but otherwise employ or use other model systems.

169

# 170 **RESULTS**

To study the molecular architecture of developing human brain-like tissue, 171 172 we generated 3D cerebral organoids from human iPSC donors banked by the 173 NIMH. In sum, biologics from n = 25 human donors were sampled comprising n = 8174 healthy Ctrls and n = 17 Scz patients. Briefly, iPSCs from human donors were 175 grown in 2D culture atop vitronectin-coated plates before being dissociated with 176 Accutase to yield single-cell iPSCs suspensions. Stem cell suspensions were correspondingly cultured into 3D aggregates, known as embryoid bodies, before 177 being subjected to a chemically minimalist neural induction media for up to 7 days 178 179 in vitro (DIV). After exhibiting evidence of neuroepithelial expansions and/or other morphological evidence of neural induction, tissue was impregnated into a matrigel 180 181 droplet as a scaffold for further tissue expansion. Developing organoids were then maturated under constant agitation atop an orbital shaker. Following this, at 182 approximately 35-40 DIV, organoids from all 25 human donors were sampled for 183 TMT quantitative proteomics. Briefly, this involved dissociating organoids, 184 185 preparing peptide suspensions (digestion, reduction, and alkylation), barcoding 186 samples with isobaric TMTpro 16-plex chemistry, and then multiplexing samples 187 for simultaneous detection and analysis via nano high-sensitivity proteome profiling (for a simplified schematic of our experimental pipeline, see Fig. 1). 188 189 Analysis of organoid proteomes revealed sufficient peptide coverage for 190 high-confidence quantitative analysis of 3705 proteins (peptide >1; intensity > 0) 191 across all 25 human donor samples. Based on Log2 transformed protein 192 intensities, the Coefficient of Variation (CV) of Scz and Ctrl proteome groups was 193 highly stringent; Median CV for Ctrls was 1.07% and for Scz 1.23%. This provided 194 confidence in both the degree of neural induction achieved between samples, and 195 that organoids were overall of a very similar and thus comparable composition 196 between iPSC donors and within groups.

197 To gain insight into differences between Scz and Ctrl organoids, we next 198 sough to determine which proteins (based on their expression) differed between 199 these groups. Further analysis revealed the significant differential expression of 200 peptide fragments belonging to 97 proteins in Scz organoids, of which 43 were upregulated (p value < 0.05, Log2FC > 0.05) and 54 were down-regulated (p value < 201 202 0.05, Log2FC < -0.05). Thus, in sum,  $\sim 2.62\%$  of the total organoid proteome was 203 differentially expressed in Scz organoids, with equivalent (~1.16% vs. ~1.46%) 204 proportions of differentially expressed proteins being up- and down-regulated, 205 respectively.

206 Deeper examination of significantly down-regulated proteins in Scz 207 organoids, sorted by Log2FC values (see Table 1), revealed several important 208 changes. Notably, we detected a depletion of factors that support neuronal 209 development, differentiation, identity and/or function. Down-regulated neuronal 210 development factors in Scz organoids comprised Neuromodulin (GAP43; Log2FC 211 = -1.183, p = 0.010), Cellular Retinoic Acid-Binding Protein 1 (CRABP1; Log2FC = 212 -1.018, p = 0.016), Neural Cell Adhesion Molecule (NCAM1; Log2FC = -0.854, p < 100213 0.014), and expression of the myelin-modulating factor Myelin Expression Factor 2 214 (MYEF2; Log2FC = -0.537, p < 0.001). Likewise, down-regulated expression of 215 several other neuronal factors – involved in both neuronal identity and prototypic function - included Microtubule-Associated Protein 2 (MAP2), Tubulin Beta-3 216 217 Chain (TUBB3, or β3), Synaptic Vesicle Glycoprotein 2A (SV2A), among other 218 neuron-specific markers (see Fig. 2). In addition to these changes, we also 219 screened our dataset against novel, yet statistically prominent, Scz GWAS factors 220 identified in the largest population genetic dataset reported to date [33]. One 221 important Scz GWAS factor to emerge from our analysis of down-regulated 222 proteins in Scz organoids was Pleiotrophin (PTN). In our prior work [1], we also 223 detected the differential expression of PTN at both the protein and RNA level in 224 Scz organoids, including in both Scz progenitors and neurons. This better powered 225 analysis therefore replicates this previous finding, and further establishes PTN as a 226 potentially important Scz risk factor during early brain assembly.

227 Similar to our review of down-regulated proteins, we also identified a 228 number of biologically interesting observations in our up-regulated Scz protein set 229 list (see Table 2). This included up-regulation of numerous fibrinogens (FGG, FGB, FGA; Log2FC = 0.749-0.768, p = 0.008-0.010) and apolipoproteins (APOM, 230 231 APOA1, APOE, APOC3, APOB; Log2FC = 0.562-0.771, p = 0.001-0.015). 232 However, one of the most notable up-regulated protein was another Scz GWAS 233 factor [33] that (like PTN) we had also previously identified in our prior Scz patient-234 derived organoid work [1]; namely, Podocalyxin (PODXL; Log2FC = 0.939, p <235 0.001). Therefore, similar to our replication of down-regulated PTN expression in 236 Scz organoids, this analysis in a larger pool of patients confirms that PODXL is 237 another high-confidence candidate that may play a role in modulating Scz risk 238 during early brain development.

We next sought to understand the potential functionality of our differentially expressed protein targets by parsing these factors into pathways, which may also unveil broader changes in regulatory networks underscoring disease-related phenotypes. We principally examined Gene Ontology (GO) pathways, parsed by annotations belonging to biological (Tables 3-4) and molecular (Tables 5-6) function of differentially expressed proteins. We first considered down-regulated GO biological pathways. Down-regulated GO biological pathways essential for 246 normative brain assembly, development, and maturation overwhelmingly defined 247 Scz patient-derived organoids. This included down-regulated expression of factors 248 that map to axonogenesis, axon development, axon guidance, morphogenesis 249 pathways regulating neuronal differentiation, and, broadly speaking, central 250 nervous system development (due the sheer number of pathways involved here, 251 please refer to Table 3 for statistical values). Another interesting down-regulated 252 GO biological process pathway in Scz organoids was specific enrichment for 253 factors regulating substantia nigra development (GO:0021762, adjusted p =254 0.0182, Neg Log10 = 1.74), which is of interest given that this midbrain region 255 belongs to the basal ganglia which holds broad relevance to Scz neuropathology 256 and its treatment (e.g. dopamine and monoamine hypotheses of Scz development 257 and symptoms). Contrary to down-regulated GO biological pathways, up-regulated 258 pathways in Scz organoids broadly reflected pathways involved in cellular 259 metabolism, chylomicron assembly and remodeling, sterol and steroid pathways, 260 as well as lipoprotein remodeling and metabolism-related pathways (refer to Table

261 4 for statistical values).

262 Broadly speaking, these changes were also reflected in our analysis of GO 263 pathways annotated for molecular functionality. Specifically, down-regulated GO 264 molecular functions in Scz organoids comprised cytoskeletal structural, binding, 265 and activity, as well as metabolic pathways relevant to neurodevelopment such 266 GTP binding and GTPase activity (see Table 5; also identified in our prior prenatal 267 drug modeling organoid work [11]). Similarly, up-regulated GO molecular function 268 pathways in Scz organoids were typically related to sterol activity, cell adhesion, 269 and lipoprotein binding/transfer/activity (see Table 6). In sum, these data provide 270 additional veracity to the idea that there are metabolic functions underscoring the 271 depletion of neuronal development factors in Scz organoids.

272 Lastly, we also considered whether Reactome pathways might unveil other 273 novel biology in Scz organoids. Overall, an analysis of down-regulated (Table 7) 274 and up-regulated (Table 8) Reactome pathways in Scz organoids revealed broadly 275 similar pathway enrichment to those identified via GO analysis, with some notable 276 exceptions. First, in our down-regulated Reactome pathway analysis, we noted 277 that there were numerous significant pathways involved in NMDA receptor 278 activation and assembly, ER to Golgi transport, as well as synaptic transmission 279 (see Table 7 for a comprehensive list and statistical values). Contrary to this, and 280 in addition to a convergent detection of lipoprotein-related metabolism pathways. 281 unique Reactome pathways that were up-regulated in Scz organoids comprised 282 post-translational protein phosphorylation, pathways related to MAPK signaling, 283 IGF-related pathways. Overall, these data suggest that ying-and-yang alterations 284 in Scz organoids exist, whereby the disruption of neuronal-development factors 285 and pathways yields enrichment for pathways presumably involved in either

compensation or other disease-related neuropathology including phenotypes that have possibly not yet articulated in human-derived tissue (e.g. metabolic changes).

288

## 289 **DISCUSSION**

290 The aim of the current study was to further our knowledge of Scz by 291 providing a deep, unbiased, analysis of molecular factors regulating central 292 nervous system development in human-derived 3D tissue. To circumvent ethical 293 and technical limitations in being able to access developing neural tissue from Scz 294 patients [11], we generated 3D iPSC-derived cerebral organoids from n = 25295 human donors (n = 8 Ctrl donors and n = 17 Scz donors). This approach allowed us to generate a theoretically limitless supply of self-regulating 3D neural tissue 296 297 that recapitulated hallmark features of early brain assembly and corticogenesis [34, 298 35]. Samples were correspondingly subjected to cutting-edge isobaric barcoding 299 chemistry that allowed up to 15 human donor samples (+ 1 pool for normalization) 300 to be condensed into a single tube that could then be deconstructed via high-301 sensitivity, online, nano liquid-chromatography/mass-spectrometry proteomics. 302 This allowed us to generate a posttranslational molecular map of factors in Scz 303 patient-derived tissue/organoid samples. Consequently, we were able to identify that Scz organoids principally differed from healthy Ctrls due to differences in the 304 305 total quantity of molecular factors (rather than their diversity), the expression of an 306 ensemble of neuronal factors, and the differential regulation of specific GWAS-307 implicated [33] disease candidates (namely, PTN and PODXL).

308

### 309 Convergence upon Depletion of Neuronal Factors in Scz Organoids

The first phenotype to arise in our molecular mapping of Scz organoids was 310 311 the extent to which canonical neuron identity and development factors were 312 depleted in Scz patient-derived organoids. For several decades, numerous 313 theories have emerged which link neuronal and synaptic function with Scz [36-38], 314 particularly as it relates to cortical dysfunction [39-41] and the cognitive symptoms 315 [42, 43] observed in clinical cases [44]. Recently, progress has been made in 316 understandingly early-arising changes within the developing brain that may 317 influence novel neurodevelopmental factors with putative links to Scz [45]. This has 318 led to numerous investigations of early-arising biological phenomenon in various 319 model systems. Human-derived models, usually leveraging the power of gene 320 edited or patient-derived iPSCs, have consequently revealed alterations in 321 neuronal differentiation [46], mitochondrial metabolic function [47, 48], 322 catecholamine levels [49], neuron-glia interactions [50], synaptogenesis [51], and 323 synaptic function [52]. Thus, patient-derived iPSCs have proven to be a powerful 324 tool in tracing early neurodevelopmental features of Scz [53], which can be further 325 exploited if used to generate human-derived organoids which recapitulate 326 endogenous self-regulatory mechanisms associated with cortical patterning and

327 development within a 3D macroenvironment [11]. Building upon prior Scz organoid 328 work [1, 27, 29, 54], here we report lower levels of an ensemble of neuron-related 329 development factors comprising GAP43, CRABP1, NCAM1, and MYEF2 as well as identity factors comprising MAP2, TUBB3, and SV2A. Broadly speaking, these 330 331 molecular findings are consistent with our prior work which reported disrupted 332 neurogenesis and lower total neuron numbers within Scz cerebral organoids [1, 55, 333 56] – a phenotype which has also been independently reported by other groups 334 [28]. Thus, fewer neurons will result in less MAP, TUBB3, and SV2A expression, 335 which is consistent with the molecular outcomes of this independent investigation. 336 Our detection of lower NCAM1 protein levels in Scz organoids is also consistent 337 with a prior report that reported decreased NCAM1 expression in Scz neural 338 progenitor cells [57]. Alterations in the growth-associated factor GAP43 have also 339 been observed across multiple brain regions and independent studies that have 340 evaluated postmortem Scz patient tissue [58-62]. When combined, these data 341 support the idea, and data previously reported in the organoid literature [1, 28], that 342 a depletion in factors supporting neuronal development yields an upstream 343 depletion of neurons within Scz patient-derived organoids [1, 28].

344

### 345 Regulation of Novel GWAS Factors (PTN & PODXL) in Scz Organoids

346 The other major phenotype identified in our molecular mapping of Scz 347 cerebral organoids was the differential expression of two novel GWAS factors. 348 namely PTN and PODXL. This analysis comprised us cross-referencing the 349 highest-confident GWAS factors identified in unbiased clinical samples (see [33]) 350 with our complete list of differentially expressed proteins. In our prior report utilizing 351 a smaller 2x2 TMT-LC/MS cohort design [1], we identified the differential 352 expression of four GWAS candidates in Scz cerebral organoids at the protein level 353 (PTN, COMT, PLCL1, and PODXL). Of these candidates, we were able to detect 354 and replicate the differential expression of two of these factors in our much larger 355 sample of n = 25 reported here. This specifically comprised alterations in PTN 356 (down-regulated) and PODXL (up-regulated). These factors represent highconfidence GWAS factors associated with Scz, but otherwise have relatively 357 unknown disease relevance. PTN has also been reported to be depleted in neural 358 359 progenitors and shown to regulate both neurogenesis and survival phenotypes in 360 Scz cerebral organoids [1], providing the first functional molecular data related to 361 this candidate within the Scz literature. Other groups have also recently identified that PTN secreted from neural stem cells supports the maturation of new-born 362 363 neurons [63], and can function as a neurotrophic growth factor in vivo to modulate 364 neuronal loss [64] and long-term potentiation induction [65]. PTN has also since 365 been implicated in a novel amphetamine-model of relevance to Scz [66], a recent computational protein-network analysis underlying Scz [67], as well as at least one 366 367 nascent Scz gene-association study (n = 1.823 humans) [68]. On the other hand,

368 little work has been completed on the role of PODXL in Scz, probably because

- 369 PODXL is a renal-enriched factor most often associated with kidney podocytes and
- 370 mesothelial cells [69]. Of note, PODXL has recently been shown to play a role in
- neurite outgrowth, branching, axonal fasciculation, and synapse number [70],
- 372 supporting a potential role for this factor in synaptic plasticity. Additionally, PODXL
- 373 was recently shown to be an apical determinant that may alter lumen size of neural
- 374 progenitor cell rosettes during morphogenesis [71]. Thus, PODXL may be a fruitful
- 375 target for future investigations seeking to deconvolute the role of novel Scz GWAS
- 376 factors within the developing brain.
- 377

## **Other Novel Differentially Expressed Candidates in Scz Organoids**

379 Lastly, it is worth emphasizing several other differentially expressed 380 molecular candidates observed in Scz cerebral organoids hold biological interest. 381 First and foremost, we identified that Carboxypeptidase E (CPE) was 382 downregulated in Scz cerebral organoids. CPE is a prohormone-processing 383 enzyme [72] and regulated secretory pathway receptor [73], possibly best known for regulating the sorting and activity-dependent secretion of BDNF [74, 75] as well 384 385 as TrkB surface insertion [76] in neurons. However, CPE was recently suggested 386 to also function as a growth factor independently of its enzymatic and sorting 387 activities [77]. Indeed, amongst other reports suggesting a role in neuroprotection 388 [78], it has recently been shown that CPE regulates cortical neuron migration and 389 dendritic morphology [79]. However, the degree to which these effects is 390 dependent upon its cargo, which includes other growth factors (e.g. BDNF), 391 remains unclear. Lastly, the other notable differentially expressed candidates 392 worthy of discussion comprised alterations within the apolipoprotein family, 393 specifically APOM, APOA1, APOE, APOC3, and APOB. Apolipoproteins have 394 been previously investigated as potential metabolic-related biomarkers [80] in 395 peripherally accessible biological fluids (e.g. CSF [81] or plasma [82]). This specifically includes alterations in APOE and APOA1 in Scz patients [83]. These 396 397 findings are broadly related to cholesterol [84], fatty acid [85], phospholipid metabolism [86], as well as other membrane-related [87] hypotheses of Scz (which 398 399 are all somewhat related and/or derived from similar evidence pools). Nonetheless, it is interesting that evidence related to these hypotheses was detectable and 400 401 reproducible across our sample of patients, and may indicate that further work on 402 potential metabolic factors may also be a further avenue of fruitful research. 403

### 404 Concluding Remarks

In closing, we identified a broad reduction in molecules important for
neuronal identity and development as well as specific alterations in novel GWAS
and other disease-relevant molecules previously implicated in Scz. This work
collectively supports the idea that Scz is a complex disease underscored by

- 409 multifaceted changes that likely yield cell-specific as well as multiple mechanisms
- 410 [55]. In closing, the authors hope that the current dataset may provide insight for
- 411 other researchers and labs that have an interest in biological data from human-
- 412 derived 3D stem cell systems but otherwise employ other model systems.
- 413

## 414 CONTRIBUTIONS

- 415 M.N. and D.C. conceived the project and designed experiments. M.N. generated
- all 3D tissue from human stem cells, and wrote the manuscript with input and
- 417 supervision from D.C (senior author). Our technician, A.L., provided important
- logistical support by assisting with the generation and processing of 3D human-
- 419 derived tissue. Lastly, H.F. and D.G. completed all LC/MS computational analysis
- 420 presented in the manuscript, with D.G. serving as the senior author overseeing
- 421 bioinformatics analyses.
- 422

## 423 ACKNOWLEDGEMENTS

- 424 M.N. was the recipient of a NHMRC CJ Martin Fellowship that supported mRNA
- 425 degradation and stem cell training completed at Weill Cornell Medical College of
- 426 Cornell University.
- 427

# 428 CONFLICT OF INTEREST STATEMENT

- The authors report no conflict of interest or commercial interests related to the manuscript.
- 431

# 432 **METHODS**

433

# 434 Induced Pluripotent Stem Cells

- 435 Briefly, human stem cells were principally acquired from NIH deposits at the
- Rutgers University Cell and DNA Repository. The benefit of utilizing NIH deposited
   lines is that all biologics have been characterized for identity, pluripotency.
- 438 exogenous reprogramming factor expression, genetic stability, and viability. In
- 439 sum, we sampled a total of 25 different iPSC lines comprising both healthy Ctrls
- 440 and idiopathic Scz patients. Cerebral organoids were generated from all donors in
- this study, and each iPSC line was biologically independent (representing a unique
- 442 human donor). Ctrl iPSC lines utilized for cellular experiments included
- 443 MH0159019, MH0159020, MH0159021, MH0159022, MH0167170, MH0174677,
- 444 and MH0174686. One Ctrl line (GM23279) was sourced from the Coriell Institute
- 445 for Medical Research. Scz iPSC lines included MH0159025, MH0159026,
- 446 MH0185223, MH0185225, MH0200865, MH0217268, MH0185900, MH0185954,
- 447 MH0185958, MH0185963, MH0185970, MH0185912, MH0185945, MH0185964,
- 448 MH0185966, MH0185925, and MH0185928. Clinical information for Scz patients is

- 449 available in Table S1 of our prior publication [1]. All Scz samples were derived from
- 450 idiopathic cases, which we define here as schizophrenia cases that maintained
- 451 unknown disease origins and do not meet a genetic/syndrome-based diagnosis (as
- 452 listed in NIH/NIMH notes). Ctrl iPSC lines were screened for both personal, and
- 453 family history, of major mental illnesses. All iPSC lines were maintained on
- 454 Vitronectin-coated plates and fed with Essential 8 (E8) + E8 supplement media
- 455 (ThermoFisher, CAT#: A1517001).
- 456

## 457 **3D Cerebral Organoid Tissue Generation**

- We adapted the same undirected-differentiation organoid system that we used in our previous, more extensive, analysis of Scz neurodevelopmental mechanisms
- 460 [1], which had been previously published by Lancaster et al. in *Nature*
- 461 [17] and *Nature Protocols* [88]. Briefly, 2D iPSC colonies were dissociated and
- 462 cultured into 3D embryoid bodies in ultra-low attachment plates (Corning; CAT#:
- 463 3474). Rock inhibitor (1:1000; Stem Cell Tech, CAT#: 72304) and basic fibroblast
- 464 growth factor (Pepro Tech, CAT#: 100-18B) are included in media for the first 2-4
- 465 days of embryoid body culturing to promote stem cell aggregation and survival.
- Following this, healthy embryoid bodies are isolated and transferred to Nunclon
- 467 Sphera 24 well plates (Thermo Scientific, CAT#: 174930) for neural fate
- specification, using neural induction media. Successful early 'organoids' were
- embedded in a 30µl Matrigel (Corning, CAT#: 354234) spheroid-droplet and
- 470 polymerized at 37°C for 20-30min which provided a matrix for subsequent neural
- 471 expansion. Organoids suspended in matrigel droplets were next cultured in
- terminal organoid media for 4-6 days without agitation, and then cultured with
- agitation at 60-70RPM until harvested for experiments. For further organoid
- 474 protocol detail, including QC steps, please refer to our previous publication [1].
- Likewise, for further insight into organoid handling for proteomic analysis, please
- 476 refer to our other organoid manuscript [11].
- 477

# 478 Proteomics Sample Preparation, TMT Labeling, & Liquid-

## 479 Chromatography/Mass-Spectrometry

- Isobaric stable isotope labeling was achieved viaTandem Mass Tag pro (TMTpro) 480 481 chemistry and Liquid-Chromatography/Mass-Spectrometry (LC/MS) proteomics as 482 previously described [1, 11, 66]. Briefly, intact organoids were reduced with 483 dithiotreitol and underwent alkylation with iodoacetamide before tryptic digestion at 37°C overnight. For barcoding chemistry, we employed TMTpro 16-plex labeling 484 485 according to the manufacturer's instructions (Thermo Fisher Scientific, CAT# 486 A44521). Each multi-plex experiment contained relevant organoid samples with an 487 additional pooled isobaric reference label made up of the same peptide digest from 488 the pooled mix of organoids (for data normalization between runs; TMT Tag 134N
- 489 for both TMT-LC/MS runs). A list of sample labeling strategies and replicates is

490 available in the PRIDE proteomics exchange repository. TMT-labelled peptides 491 were desalted using C18' stage-tips prior to LC-MS analysis. An EASY-nLC 1200, which was coupled to a Fusion Lumos mass spectrometer. (Thermo Fisher 492 Scientific) was utilized in positive, data-dependent acquisition mode, with samples 493 494 analysed in technical duplicate. Buffer A (0.1% FA in water) and buffer B (0.1% FA 495 in 80% ACN) were used as mobile phases for gradient separation. TMT-labeled peptides were analyzed on a 75 µm I.D. column (ReproSil-Pur C18-AQ, 3µm, Dr. 496 497 Maisch GmbH, German) was packed in-house. A separation gradient of 5–10% 498 buffer B over 1min, 10%-35% buffer B over 229min, and 35%-100% B over 5min at 499 a flow rate of 300 nL/min was adapted. An Orbitrap mass analyzer acquired Full 500 MS scans over a range of 350-1500 m/z with resolution 120.000 at m/z 200. The 501 top 20 most-abundant precursors were selected with an isolation window of 0.7 502 Thomsons and fragmented by high-energy collisional dissociation with normalized 503 collision energy of 40. The Orbitrap mass analyzer was also used to acquire 504 MS/MS scans. The automatic gain control target value was 1e6 for full scans and 505 5e4 for MS/MS scans respectively, and the maximum ion injection time was 54ms 506 for both.

507

### 508 Data Processing and Bioinformatics Pipeline for Quantitative Analysis

509 Mass spectra were pre-processed as described [1, 11, 66] and processed using

510 MaxQuant [89] (1.5.5.1). Spectra were searched against the full set of human

511 protein sequences annotated in UniProt (sequence database Sep-2017) using

512 Andromeda. Data was searched as described [1, 11] as a separate and single

513 (combined) batches, with fixed modification, cysteine carbamidomethylation and

514 variable modifications, N-acetylation and methionine oxidation. Searches were

515 performed using a 20 ppm precursor ion tolerance for total protein level analysis.

516 Further modifications included TMT tags on peptide N termini/lysine residues

517 (+229.16293 Da) set as static modifications. Data was processed using trypsin/P

as the proteolytic enzyme with up to 2 missed cleavage sites allowed. Peptides
 less than seven amino acids were not considered for further analysis because of

520 lack of uniqueness, and a 1% False-Discovery Rate (FDR) was used to filter at

521 peptide and protein levels. Protein identification required at least two unique or

522 razor peptides per protein group. Contaminants, and reverse identification were

523 excluded from further data analysis. Quantification was performed with the reporter

524 ion quantification normalization in MaxQuant. Protein intensities were log2

525 transformed using Perseus [90] (1.x.10). The violin plots of log2 transformed

526 protein intensity distribution and the boxplot of coefficient of variations per sample

527 group were visualized using R package ggplot2. Proteins quantified in at least 70%

528 of samples in at least one sample group were subjected to downstream

529 visualization (principal component analysis, volcano plot) and statistical analysis

- 530 using Perseus. For principal component analysis, missing values were imputed
- from normal distribution (downshift 1.8, width 0.3) using Perseus. For differential
- 532 expression analysis proteins were subjected to Welch's t-test; p-value < 0.05 and
- 533 |log2FC| >0.5 visualized in volcano plot and subjected to downstream functional
- enrichment analysis using g:Profiler, including Gene Ontology, KEGG and
- 535 Reactome databases (as described, [91, 92]).
- 536

### 537 Data Availability Statement

- 538 The MS proteomics raw data and MaxQuant search parameters have been
- 539 deposited to the ProteomeXchange Consortium
- 540 (http://www.proteomexchange.org/) via the PRIDE partner repository [93]
- 541 with the data set identifier PXD027812.
- 542

543 **REFERENCES** 

- 544
- Notaras, M., et al., Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Mol Psychiatry, 2021.
- 548 2. Klosterkötter, J., et al., *Diagnosing schizophrenia in the initial prodromal phase*.
  549 Arch Gen Psychiatry, 2001. 58(2): p. 158-164.
- 550 3. Cornblatt, B.A., et al., *The schizophrenia prodrome revisited: a*
- 551 *neurodevelopmental perspective*. Schizophr Bull, 2003. **29**(4): p. 633-651.
- 5524.Brown, A.S. and E.S. Susser, *In utero infection and adult schizophrenia*. Mental553retardation and developmental disabilities research reviews, 2002. 8(1): p. 51-57.
- 5545.Kunugi, H., et al., Schizophrenia following in utero exposure to the 1957 influenza555epidemics in Japan. Am J Psychiatry, 1995.
- 5566.Takei, N., et al., Relationship between in utero exposure to influenza epidemics and557risk of schizophrenia in Denmark. Biol Psychiatry, 1996. 40(9): p. 817-824.
- Procopio, M., R.J. Davies, and P. Marriott, *The hormonal environment in utero as a potential aetiological agent for schizophrenia*. Eur Arch Psychiatr Clin Neurosci, 2006. 256(2): p. 77-81.
- 5618.McClellan, J.M., E. Susser, and M.-C. King, Maternal famine, de novo mutations,562and schizophrenia. JAMA, 2006. 296(5): p. 582-584.
- Boks, M., et al., *Genetic vulnerability to DUSP22 promoter hypermethylation is involved in the relation between in utero famine exposure and schizophrenia*. NPJ
  Schizophr, 2018. 4(1): p. 1-8.
- Hyman, S.E., *The daunting polygenicity of mental illness: making a new map.*Philosophical Transactions of the Royal Society B: Biological Sciences, 2018. **373**(1742): p. 20170031.
- 569 11. Notaras, M., et al., Neurodevelopmental signatures of narcotic and
  570 *neuropsychiatric risk factors in 3D human-derived forebrain organoids*. Molecular
  571 Psychiatry, 2021: p. 1-24.
- 572 12. Luo, C., et al., *Cerebral organoids recapitulate epigenomic signatures of the human*573 *fetal brain.* Cell Rep, 2016. **17**(12): p. 3369-3384.

| 574 | 13. | Jourdon, A., et al., PsychENCODE and beyond: transcriptomics and epigenomics                |
|-----|-----|---------------------------------------------------------------------------------------------|
| 575 |     | of brain development and organoids. Neuropsychopharmacol, 2021. 46(1): p. 70-               |
| 576 |     | 85.                                                                                         |
| 577 | 14. | Camp, J.G., et al., Human cerebral organoids recapitulate gene expression                   |
| 578 |     | programs of fetal neocortex development. Proc Natl Acad Sci U S A, 2015.                    |
| 579 |     | <b>112</b> (51): p. 15672-15677.                                                            |
| 580 | 15. | Klaus, J., et al., Altered neuronal migratory trajectories in human cerebral                |
| 581 |     | organoids derived from individuals with neuronal heterotopia. Nat Med, 2019.                |
| 582 |     | <b>25</b> (4): p. 561-568.                                                                  |
| 583 | 16. | Pollen, A.A., et al., Establishing cerebral organoids as models of human-specific           |
| 584 |     | brain evolution. Cell, 2019. 176(4): p. 743-756. e17.                                       |
| 585 | 17. | Lancaster, M.A., et al., Cerebral organoids model human brain development and               |
| 586 |     | <i>microcephaly</i> . Nature, 2013. <b>501</b> (7467): p. 373-379.                          |
| 587 | 18. | Zhang, W., et al., Cerebral organoid and mouse models reveal a RAB39b–PI3K–                 |
| 588 |     | mTOR pathway-dependent dysregulation of cortical development leading to                     |
| 589 |     | macrocephaly/autism phenotypes. Genes & Dev, 2020. 34(7-8): p. 580-597.                     |
| 590 | 19. | Dang, J., et al., Zika virus depletes neural progenitors in human cerebral organoids        |
| 591 |     | through activation of the innate immune receptor TLR3. Cell stem cell, 2016. <b>19</b> (2): |
| 592 |     | p. 258-265.                                                                                 |
| 593 | 20. | Garcez, P.P., et al., Zika virus impairs growth in human neurospheres and brain             |
| 594 |     | organoids. Science, 2016. <b>352</b> (6287): p. 816-818.                                    |
| 595 | 21. | Ilieva, M., et al., Psychiatry in a dish: stem cells and brain organoids modeling           |
| 596 |     | autism spectrum disorders. Biol Psychiatry, 2018. 83(7): p. 558-568.                        |
| 597 | 22. | Mariani, J., et al., FOXG1-dependent dysregulation of GABA/glutamate neuron                 |
| 598 |     | differentiation in autism spectrum disorders. Cell, 2015. 162(2): p. 375-390.               |
| 599 | 23. | Paulsen, B., et al., Human brain organoids reveal accelerated development of                |
| 600 |     | cortical neuron classes as a shared feature of autism risk genes. bioRxiv, 2020.            |
| 601 | 24. | Wegscheid, M.L., et al., Patient-derived iPSC-cerebral organoid modeling of the             |
| 602 |     | 17q11. 2 microdeletion syndrome establishes CRLF3 as a critical regulator of                |
| 603 |     | neurogenesis. Cell Rep, 2021. 36(1): p. 109315.                                             |
| 604 | 25. | Khan, T.A., et al., Neuronal defects in a human cellular model of 22q11. 2 deletion         |
| 605 |     | syndrome. Nat Med, 2020. 26(12): p. 1888-1898.                                              |
| 606 | 26. | Daviaud, N., et al., Distinct vulnerability and resilience of human neuroprogenitor         |
| 607 |     | subtypes in cerebral organoid model of prenatal hypoxic injury. Front Cell                  |
| 608 |     | Neurosci, 2019. <b>13</b> : p. 336.                                                         |
| 609 | 27. | Kathuria, A., et al., <i>Transcriptomic Landscape and Functional Characterization of</i>    |
| 610 |     | Induced Pluripotent Stem Cell–Derived Cerebral Organoids in Schizophrenia.                  |
| 611 |     | JAMA Psychiatry, 2020. 77(7): p. 745-754.                                                   |
| 612 | 28. | Stachowiak, E., et al., Cerebral organoids reveal early cortical maldevelopment in          |
| 613 |     | schizophrenia—computational anatomy and genomics, role of FGFR1. Transl                     |
| 614 |     | Psychiatry, 2017. 7(11): p. 1-24.                                                           |
| 615 | 29. | Benson, C.A., et al., Immune factor, TNFa, disrupts human brain organoid                    |
| 616 |     | development similar to schizophrenia—schizophrenia increases developmental                  |
| 617 |     | vulnerability to TNFa. Front Cell Neurosci, 2020. 14: p. 233.                               |

| 618 | 30. | Sawada, T., et al., Developmental excitation-inhibition imbalance underlying               |
|-----|-----|--------------------------------------------------------------------------------------------|
| 619 |     | psychoses revealed by single-cell analyses of discordant twins-derived cerebral            |
| 620 |     | organoids. Mol Psychiatry, 2020. 25(11): p. 2695-2711.                                     |
| 621 | 31. | Srikanth, P., et al., Shared effects of DISC1 disruption and elevated WNT signaling        |
| 622 |     | in human cerebral organoids. Transl Psychiatry, 2018. 8(1): p. 1-14.                       |
| 623 | 32. | Ye, F., et al., <i>DISC1 regulates neurogenesis via modulating kinetochore attachment</i>  |
| 624 |     | of Ndel1/Nde1 during mitosis. Neuron, 2017. 96(5): p. 1041-1054. e5.                       |
| 625 | 33. | Ripke, S., et al., Biological insights from 108 schizophrenia-associated genetic loci.     |
| 626 |     | Nature, 2014. <b>511</b> (7510): p. 421.                                                   |
| 627 | 34. | Mason, J.O. and D.J. Price, Building brains in a dish: prospects for growing               |
| 628 |     | cerebral organoids from stem cells. Neurosci, 2016. 334: p. 105-118.                       |
| 629 | 35. | Shi, Y., Q. Wu, and X. Wang, Modeling brain development and diseases with                  |
| 630 |     | human cerebral organoids. Curr Op Neurobiol, 2021. 66: p. 103-115.                         |
| 631 | 36. | Mehta, U.M., et al., <i>Mirror neuron dysfunction in schizophrenia and its functional</i>  |
| 632 | 200 | <i>implications: a systematic review.</i> Schizophr Res, 2014. <b>160</b> (1-3): p. 9-19.  |
| 633 | 37. | Freedman, R., et al., <i>Elementary neuronal dysfunctions in schizophrenia</i> . Schizophr |
| 634 | 57. | Res, 1991. 4(2): p. 233-243.                                                               |
| 635 | 38. | Olney, J.W. and N.B. Farber, <i>Glutamate receptor dysfunction and schizophrenia</i> .     |
| 636 | 20. | Arch Gen Psychiatry, 1995. <b>52</b> (12): p. 998-1007.                                    |
| 637 | 39. | Gonzalez-Burgos, G. and D.A. Lewis, <i>GABA neurons and the mechanisms of</i>              |
| 638 | 57. | network oscillations: implications for understanding cortical dysfunction in               |
| 639 |     | schizophrenia. Schizophr Bull, 2008. <b>34</b> (5): p. 944-961.                            |
| 640 | 40. | Lewis, D.A., <i>GABAergic local circuit neurons and prefrontal cortical dysfunction</i>    |
| 641 | 10. | <i>in schizophrenia</i> . Brain Res Revs, 2000. <b>31</b> (2-3): p. 270-276.               |
| 642 | 41. | Curley, A.A. and D.A. Lewis, <i>Cortical basket cell dysfunction in schizophrenia</i> . J  |
| 643 | 11. | Physiol, 2012. <b>590</b> (4): p. 715-724.                                                 |
| 644 | 42. | Lewis, D.A., Inhibitory neurons in human cortical circuits: substrate for cognitive        |
| 645 | 12. | dysfunction in schizophrenia. Curr Op Neurobiol, 2014. 26: p. 22-26.                       |
| 646 | 43. | Mukherjee, A., et al., Long-lasting rescue of network and cognitive dysfunction in a       |
| 647 | 15. | genetic schizophrenia model. Cell, 2019. <b>178</b> (6): p. 1387-1402. e14.                |
| 648 | 44. | Gonzalez-Burgos, G., K.N. Fish, and D.A. Lewis, <i>GABA neuron alterations</i> ,           |
| 649 |     | cortical circuit dysfunction and cognitive deficits in schizophrenia. Neural               |
| 650 |     | plasticity, 2011. <b>2011</b> .                                                            |
| 651 | 45. | Nakamura, J.P., et al., <i>The maternal immune activation model uncovers a role for</i>    |
| 652 | 10. | the Arx gene in GABAergic dysfunction in schizophrenia. Brain Behav Immun,                 |
| 653 |     | 2019. <b>81</b> : p. 161-171.                                                              |
| 654 | 46. | Robicsek, O., et al., Abnormal neuronal differentiation and mitochondrial                  |
| 655 | 10. | dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia       |
| 656 |     | patients. Mol Psychiatry, 2013. 18(10): p. 1067-1076.                                      |
| 657 | 47. | Ni, P., et al., <i>iPSC-derived homogeneous populations of developing schizophrenia</i>    |
| 658 | 17. | cortical interneurons have compromised mitochondrial function. Mol Psychiatry,             |
| 659 |     | 2020. <b>25</b> (11): p. 2873-2888.                                                        |
| 660 | 48. | Li, J., et al., <i>Mitochondrial deficits in human iPSC-derived neurons from patients</i>  |
| 661 | 10. | with 22q11. 2 deletion syndrome and schizophrenia. Transl Psychiatry, 2019. 9(1):          |
| 662 |     | p. 1-10.                                                                                   |
| 504 |     | P. 1 10.                                                                                   |

| 663 | 49. | Hook, V., et al., Human iPSC neurons display activity-dependent neurotransmitter       |
|-----|-----|----------------------------------------------------------------------------------------|
| 664 |     | secretion: aberrant catecholamine levels in schizophrenia neurons. Stem Cell Rep,      |
| 665 |     | 2014. <b>3</b> (4): p. 531-538.                                                        |
| 666 | 50. | Windrem, M.S., et al., Human iPSC glial mouse chimeras reveal glial contributions      |
| 667 |     | to schizophrenia. Cell Stem Cell, 2017. 21(2): p. 195-208. e6.                         |
| 668 | 51. | Habela, C.W., H. Song, and Gl. Ming, Modeling synaptogenesis in schizophrenia          |
| 669 |     | and autism using human iPSC derived neurons. Mol Cell Neurosci, 2016. 73: p. 52-       |
| 670 |     | 62.                                                                                    |
| 671 | 52. | Kathuria, A., et al., Synaptic deficits in iPSC-derived cortical interneurons in       |
| 672 |     | schizophrenia are mediated by NLGN2 and rescued by N-acetylcysteine. Transl            |
| 673 |     | Psychiatry, 2019. 9(1): p. 1-13.                                                       |
| 674 | 53. | Ahmad, R., et al., Tracing early neurodevelopment in schizophrenia with induced        |
| 675 |     | pluripotent stem cells. Cells, 2018. 7(9): p. 140.                                     |
| 676 | 54. | Stachowiak, E., et al., Cerebral organoids reveal early cortical maldevelopment in     |
| 677 |     | schizophrenia—computational anatomy and genomics, role of FGFR1.                       |
| 678 |     | Translational psychiatry, 2017. 7(11): p. 1-24.                                        |
| 679 | 55. | Notaras, M., et al., Multiple neurodevelopmental mechanisms of schizophrenia in        |
| 680 |     | patient-derived cerebral organoids. Biol Psychiatry, 2021. 89(9): p. S100.             |
| 681 | 56. | Notaras, M., et al., BRN2 and PTN unveil multiple neurodevelopmental mechanisms        |
| 682 |     | in Schizophrenia patient-derived cerebral organoids. bioRxiv, 2021.                    |
| 683 | 57. | Brennand, K., et al., Phenotypic differences in hiPSC NPCs derived from patients       |
| 684 |     | with schizophrenia. Mol Psychiatry, 2015. 20(3): p. 361-368.                           |
| 685 | 58. | Eastwood, S.L. and P.J. Harrison, Synaptic pathology in the anterior cingulate         |
| 686 |     | cortex in schizophrenia and mood disorders. A review and a Western blot study of       |
| 687 |     | synaptophysin, GAP-43 and the complexins. Brain Res Bull, 2001. 55(5): p. 569-         |
| 688 |     | 578.                                                                                   |
| 689 | 59. | Perrone-Bizzozero, N.I., et al., Levels of the growth-associated protein GAP-43 are    |
| 690 |     | selectively increased in association cortices in schizophrenia. Proc Natl Acad Sci U   |
| 691 |     | S A, 1996. <b>93</b> (24): p. 14182-14187.                                             |
| 692 | 60. | Sower, A.C., E.D. Bird, and N.I. Perrone-Bizzozero, Increased levels of GAP-43         |
| 693 |     | protein in schizophrenic brain tissues demonstrated by a novel immunodetection         |
| 694 |     | <i>method</i> . Mol Cell Neuropathol, 1995. <b>24</b> (1): p. 1-11.                    |
| 695 | 61. | Chambers, J.S., et al., Growth-associated protein 43 (GAP-43) and synaptophysin        |
| 696 |     | alterations in the dentate gyrus of patients with schizophrenia. Prog Neuropsycho      |
| 697 |     | Pharmacol, 2005. <b>29</b> (2): p. 283-290.                                            |
| 698 | 62. | Weickert, C.S., et al., Reduced GAP-43 mRNA in dorsolateral prefrontal cortex of       |
| 699 |     | patients with schizophrenia. Cereb Cortex, 2001. 11(2): p. 136-147.                    |
| 700 | 63. | Tang, C., et al., Neural stem cells behave as a functional niche for the maturation of |
| 701 |     | newborn neurons through the secretion of PTN. Neuron, 2019. 101(1): p. 32-44. e6.      |
| 702 | 64. | Nikolakopoulou, A.M., et al., Pericyte loss leads to circulatory failure and           |
| 703 |     | pleiotrophin depletion causing neuron loss. Nat Neurosci, 2019. 22(7): p. 1089-        |
| 704 |     | 1098.                                                                                  |
| 705 | 65. | Pavlov, I., et al., Role of heparin-binding growth-associated molecule (HB-GAM) in     |
| 706 |     | hippocampal LTP and spatial learning revealed by studies on overexpressing and         |
| 707 |     | knockout mice. Mol Cell Neurosci, 2002. 20(2): p. 330-342.                             |

| 708<br>709 | 66. | Greening, D.W., et al., Chronic methamphetamine interacts with BDNF Val66Met to remodel psychosis pathways in the mesocorticolimbic proteome. Mol Psychiatry,           |
|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 710        |     | 2019: p. 1-17.                                                                                                                                                          |
| 711        | 67. | Chang, X., et al., Common and rare genetic risk factors converge in protein                                                                                             |
| 712        |     | interaction networks underlying schizophrenia. Front Genet, 2018. 9: p. 434.                                                                                            |
| 713        | 68. | Lv, Y., et al., Positive association between PTN polymorphisms and schizophrenia                                                                                        |
| 714        |     | in Northeast Chinese Han population. Psychiatric Genetics, 2020. 30(5): p. 141-                                                                                         |
| 715        |     | 149.                                                                                                                                                                    |
| 716        | 69. | Kang, H.G., et al., Loss of podocalyxin causes a novel syndromic type of congenital                                                                                     |
| 717        |     | nephrotic syndrome. Exp Mol Med, 2017. 49(12): p. e414-e414.                                                                                                            |
| 718        | 70. | Vitureira, N., et al., Podocalyxin is a novel polysialylated neural adhesion protein                                                                                    |
| 719        |     | with multiple roles in neural development and synapse formation. PloS One, 2010.                                                                                        |
| 720        |     | <b>5</b> (8): p. e12003.                                                                                                                                                |
| 721        | 71. | Townshend, R.F., et al., Effect of cell spreading on rosette formation by human                                                                                         |
| 722        |     | pluripotent stem cell-derived neural progenitor cells. Front Cell Dev Biol, 2020. 8:                                                                                    |
| 723        |     | p. 1072.                                                                                                                                                                |
| 724        | 72. | Hook, V.Y., L.E. Eiden, and M.J. Brownstein, A carboxypeptidase processing                                                                                              |
| 725        |     | <i>enzyme for enkephalin precursors</i> . Nature, 1982. <b>295</b> (5847): p. 341-342.                                                                                  |
| 726        | 73. | Cool, D.R., et al., Carboxypeptidase E is a regulated secretory pathway sorting                                                                                         |
| 727        |     | receptor: genetic obliteration leads to endocrine disorders in Cpefat mice. Cell,                                                                                       |
| 728        |     | 1997. <b>88</b> (1): p. 73-83.                                                                                                                                          |
| 729        | 74. | Lou, H., et al., Sorting and activity-dependent secretion of BDNF require                                                                                               |
| 730        |     | interaction of a specific motif with the sorting receptor carboxypeptidase e. Neuron,                                                                                   |
| 731        |     | 2005. <b>45</b> (2): p. 245-255.                                                                                                                                        |
| 732        | 75. | Notaras, M. and M. van den Buuse, <i>Brain-derived neurotrophic factor (BDNF)</i> :                                                                                     |
| 733        |     | novel insights into regulation and genetic variation. The Neuroscientist, 2019.                                                                                         |
| 734        | 7   | <b>25</b> (5): p. 434-454.                                                                                                                                              |
| 735        | 76. | Li, N., et al., Carboxypeptidase E regulates Activity-dependent TrkB Neuronal                                                                                           |
| 736        |     | surface Insertion and Hippocampal memory. J Neurosci, 2021.                                                                                                             |
| 737        | 77. | Cheng, Y., N.X. Cawley, and Y.P. Loh, <i>Carboxypeptidase E (NF-al): a new</i>                                                                                          |
| 738        | 70  | <i>trophic factor in neuroprotection.</i> Neurosci Bull, 2014. <b>30</b> (4): p. 692-696.                                                                               |
| 739        | 78. | Cong, L., et al., A novel single nucleotide T980C polymorphism in the human                                                                                             |
| 740        |     | <i>carboxypeptidase E gene results in loss of neuroprotective function.</i> PLoS One,                                                                                   |
| 741        | 70  | 2017. <b>12</b> (1): p. e0170169.                                                                                                                                       |
| 742        | 79. | Liang, C., et al., <i>Cortical neuron migration and dendrite morphology are regulated</i>                                                                               |
| 743        | 00  | <i>by carboxypeptidase E.</i> Cereb Cortex, 2019. <b>29</b> (7): p. 2890-2903.                                                                                          |
| 744<br>745 | 80. | Xuan, J., et al., Metabolomic profiling to identify potential serum biomarkers for                                                                                      |
| 745        | 01  | schizophrenia and risperidone action. J Proteome Res, 2011. <b>10</b> (12): p. 5433-5443.                                                                               |
| 746<br>747 | 81. | Huang, J.T., et al., Independent protein-profiling studies show a decrease in                                                                                           |
| 747<br>749 |     | apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral tissues. Mol                                                                                        |
| 748<br>740 | 01  | Psychiatry, 2008. <b>13</b> (12): p. 1118-1128.                                                                                                                         |
| 749<br>750 | 82. | Dean, B., et al., <i>Plasma apolipoprotein E is decreased in schizophrenia spectrum</i><br>and hinolar disorder. Psychiatr Pos. 2008, <b>158</b> (1): p. 75–78          |
| 750<br>751 | 83. | and bipolar disorder. Psychiatr Res, 2008. <b>158</b> (1): p. 75-78.                                                                                                    |
| 752        | 03. | Martins-De-Souza, D., et al., <i>Different apolipoprotein E, apolipoprotein A1 and prostaglandin-H2 D-isomerase levels in cerebrospinal fluid of schizophrenia</i>      |
| 752        |     | prostagianaln-H2 D-isomerase levels in cerebrospinal fulla of schizophrenia<br>patients and healthy controls. World J Biol Psychiatry, 2010. <b>11</b> (5): p. 719-728. |
| 133        |     | patients and nearing controls. World's Biol Esychiatry, 2010. 11(5). p. /19-/28.                                                                                        |

| 754 | 84. | Woods, A.G., et al., Potential biomarkers in psychiatry: focus on the cholesterol |
|-----|-----|-----------------------------------------------------------------------------------|
| 755 |     | system. J Cell Mol Med, 2012. 16(6): p. 1184-1195.                                |

- Fenton, W.S., J. Hibbeln, and M. Knable, *Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia*. Biol Psychiatry,
  2000. 47(1): p. 8-21.
- 86. Opler, M.G. and L.A. Opler, *Abnormal phospholipid metabolism in schizophrenia: evidence from epidemiological findings, clinical observations, and preliminary clinical trials.* Front Biosci, 2001. 6: p. e61-65.
- 762 87. Horrobin, D.F., A.I.M. Glen, and K. Vaddadi, *The membrane hypothesis of schizophrenia*. Schizophr Res, 1994. 13(3): p. 195-207.
- Restartion of the stem cells. Nature Protocols, 2014. 9(10): p. 2329-2340.
- 766 89. Cox, J. and M. Mann, *MaxQuant enables high peptide identification rates,*767 *individualized ppb-range mass accuracies and proteome-wide protein*768 *quantification.* Nat Biotechnol, 2008. 26(12): p. 1367-1372.
- 769 90. Tyanova, S., et al., *The Perseus computational platform for comprehensive analysis*770 of (prote) omics data. Nat Methods, 2016. 13(9): p. 731-740.
- 771 91. Carli, A.L., et al., *Cancer stem cell marker DCLK1 reprograms small extracellular*772 *vesicles toward migratory phenotype in gastric cancer cells.* Proteomics, 2021: p.
  773 2000098.
- Kompa, A.R., et al., Sustained subcutaneous delivery of secretome of human cardiac stem cells promotes cardiac repair following myocardial infarction. Cardiovasc Res, 2021. 117(3): p. 918-929.
- Perez-Riverol, Y., et al., *The PRIDE database and related tools and resources in 2019: improving support for quantification data*. Nuc Acids Res, 2019. 47(D1): p.
  D442-D450.
- P4. Lin, Y.-L., et al., *Cellular retinoic acid–binding protein 1 modulates stem cell proliferation to affect learning and memory in male mice.* Endocrinol, 2017. 158(9):
  p. 3004-3014.
- Frese, C.K., et al., *Quantitative map of proteome dynamics during neuronal differentiation*. Cell Rep, 2017. 18(6): p. 1527-1542.
- 96. Upadhyay, A., et al., *Neurocalcin delta knockout impairs adult neurogenesis*whereas half reduction is not pathological. Front Mol Neurosci, 2019. 12: p. 19.
- 791 792 793

- 794 795
- 796
- 797
- 798
- 799

### 800 TABLES

| Gene Name | Protein Name            | Uniprot ID | Log2FC | P Value |
|-----------|-------------------------|------------|--------|---------|
| GAP43     | Neuromodulin            | P17677     | -1.183 | 0.010   |
|           | Cellular retinoic acid- | -          |        |         |
| CRABP1    | binding protein 1       | P29762     | -1.018 | 0.016   |
| TUBB3     | Tubulin beta-3 chain    | Q13509     | -1.015 | 0.001   |
| ICEEC     | Microtubule-            | QTOOOO     | 1.010  | 0.001   |
| MAP2      | associated protein 2    | P11137-3   | -0.996 | 0.009   |
|           | Brain acid soluble      | 1 11107 0  | 0.000  | 0.000   |
| BASP1     | protein 1               | P80723     | -0.939 | 0.006   |
| INA       | Alpha-internexin        | Q16352     | -0.921 | 0.000   |
|           | Fatty acid-binding      | Q10002     | -0.321 | 0.000   |
| FABP7     |                         | O15540     | -0.903 | 0.025   |
| FADFI     | protein, brain          | 015540     | -0.903 | 0.025   |
|           | Synaptic vesicle        |            | 0.000  | 0.027   |
| SV2A      | glycoprotein 2A         | Q7L0J3-2   | -0.899 | 0.037   |
|           | Pyruvate kinase         |            | 0.000  | 0.004   |
| PKM       | PKM                     | P14618-2   | -0.866 | 0.004   |
|           | Neural Cell Adhesion    |            | 0.054  | 0.044   |
| NCAM1     | Molecule                | A0A087WTF6 | -0.854 | 0.014   |
| CALM3     | Calmodulin-3            | P0DP25     | -0.847 | 0.002   |
|           | Tubulin beta-2B         |            |        |         |
| TUBB2B    | chain                   | Q9BVA1     | -0.840 | 0.019   |
| TNNI1     | Troponin I 1            | G3V489     | -0.827 | 0.037   |
|           | Sodium/potassium-       |            |        |         |
|           | transporting ATPase     |            |        |         |
| ATP1A3    | subunit alpha-3         | P13637     | -0.817 | 0.042   |
|           | Dihydropyrimidinase-    |            |        |         |
| CRMP1     | related protein 1       | Q14194     | -0.789 | 0.019   |
| RUFY3     | Protein RUFY3           | Q7L099     | -0.774 | 0.014   |
|           | Alpha-tubulin N-        |            |        |         |
| ATAT1     | acetyltransferase 1     | Q5SQI0-7   | -0.773 | 0.023   |
|           | Astrocytic              |            |        |         |
|           | phosphoprotein          |            |        |         |
| PEA15     | PEA-15                  | Q15121     | -0.764 | 0.030   |
| H1-0      | Histone H1.0            | P07305-2   | -0.760 | 0.009   |
| NCALD     | Neurocalcin-delta       | P61601     | -0.738 | 0.000   |
|           | Protein phosphatase     |            |        |         |
| PPM1B     | 1B                      | O75688     | -0.714 | 0.030   |
| TAGLN3    | Transgelin-3            | Q9UI15     | -0.705 | 0.001   |
| PTN       | Pleiotrophin            | P21246     | -0.700 | 0.030   |
|           | Cysteine-rich protein   | -          |        |         |
| CRIP2     | 2                       | P52943     | -0.690 | 0.005   |
|           | Ras-related protein     |            | 0.000  | 0.000   |
| RAB6B     | Rab-6B                  | Q9NRW1     | -0.684 | 0.010   |
| ENO2      | Gamma-enolase           | P09104-2   | -0.682 | 0.010   |
|           | Tubulin beta-4A         |            | 0.002  | 0.021   |
| TUBB4A    | chain                   | P04350     | -0.676 | 0.008   |
| DPYSL5    | Dihydropyrimidinase-    | Q9BPU6     | -0.673 | 0.008   |
|           |                         |            | -0.075 | 0.001   |

| SEPTIN3 | related protein 5<br>Neuronal-specific<br>septin-3<br>Rab GDP                   | Q9UH03-2   | -0.667 | 0.015 |
|---------|---------------------------------------------------------------------------------|------------|--------|-------|
| GDI1    | dissociation inhibitor<br>alpha<br>Four and a half LIM                          | P31150     | -0.659 | 0.011 |
| FHL1    | domains protein 1<br>Tubulin alpha-1A                                           | Q13642-1   | -0.658 | 0.010 |
| TUBA1A  | chain<br>Myristoylated                                                          | Q71U36-2   | -0.653 | 0.019 |
| MARCKS  | alanine-rich C-kinase<br>substrate<br>Ubiquitin carboxyl-<br>terminal hydrolase | P29966     | -0.650 | 0.002 |
| UCHL1   | isozyme L1<br>Laminin subunit                                                   | P09936     | -0.629 | 0.033 |
| LAMA4   | alpha-4<br>Transcription                                                        | Q16363-2   | -0.619 | 0.016 |
| TCEAL3  | elongation factor A<br>protein-like 3<br>Tubulin beta-4B                        | Q969E4     | -0.614 | 0.044 |
| TUBB4B  | chain<br>Histone                                                                | P68371     | -0.595 | 0.014 |
| H3-2    | HIST2H3PS2                                                                      | Q5TEC6     | -0.574 | 0.001 |
|         |                                                                                 |            |        |       |
| PTMS    | Parathymosin                                                                    | P20962     | -0.565 | 0.008 |
| PALM    | Paralemmin-1                                                                    | O75781-2   | -0.552 | 0.000 |
| RTN1    | Reticulon-1                                                                     | Q16799-3   | -0.551 | 0.038 |
| FBN3    | Fibrillin-3                                                                     | Q75N90     | -0.538 | 0.010 |
|         | Myelin Expression                                                               |            |        | 0.0.0 |
| MYEF2   | Factor 2<br>Histone H2A type 2-                                                 | A0A087WUT0 | -0.537 | 0.001 |
| H2AC20  | C<br>Dihydropyrimidinase-                                                       | Q16777     | -0.531 | 0.008 |
| DPYSL2  | related protein 2<br>Microtubule-                                               | Q16555     | -0.529 | 0.014 |
| MAP1B   | associated protein<br>1B<br>Hepatoma-derived                                    | P46821     | -0.527 | 0.020 |
| HDGFL3  | growth factor-related<br>protein 3<br>Creatine kinase B-                        | Q9Y3E1     | -0.517 | 0.002 |
| СКВ     | type<br>Kinesin heavy chain                                                     | P12277     | -0.513 | 0.037 |
| KIF5C   | isoform 5C                                                                      | O60282     | -0.512 | 0.014 |
|         |                                                                                 |            |        |       |
| SCRN1   | Secernin-1<br>Heterochromatin<br>protein 1-binding                              | Q12765     | -0.510 | 0.004 |
| HP1BP3  | protein 3                                                                       | Q5SSJ5     | -0.509 | 0.000 |
|         |                                                                                 |            |        |       |
| H3C1    | Histone H3.1                                                                    | P68431     | -0.502 | 0.010 |
| CPE     | Carboxypeptidase E                                                              | D6RF88     | -0.501 | 0.040 |
|         |                                                                                 |            |        |       |

|            | HSDL1 | Inactive<br>hydroxysteroid<br>dehydrogenase-like<br>protein 1 | Q3SXM5-2 | -0.501 | 0.021 |
|------------|-------|---------------------------------------------------------------|----------|--------|-------|
| 803        |       |                                                               |          |        |       |
| 804<br>805 |       |                                                               |          |        |       |
| 806        |       |                                                               |          |        |       |
| 807<br>808 |       |                                                               |          |        |       |
| 808<br>809 |       |                                                               |          |        |       |
| 810        |       |                                                               |          |        |       |
| 811<br>812 |       |                                                               |          |        |       |
| 813        |       |                                                               |          |        |       |
| 814        |       |                                                               |          |        |       |
| 815<br>816 |       |                                                               |          |        |       |
| 817        |       |                                                               |          |        |       |
| 818<br>819 |       |                                                               |          |        |       |
| 819        |       |                                                               |          |        |       |
| 821        |       |                                                               |          |        |       |
| 822<br>823 |       |                                                               |          |        |       |
| 824        |       |                                                               |          |        |       |
| 825        |       |                                                               |          |        |       |
| 826<br>827 |       |                                                               |          |        |       |
| 828        |       |                                                               |          |        |       |
| 829        |       |                                                               |          |        |       |
| 830<br>831 |       |                                                               |          |        |       |
| 832        |       |                                                               |          |        |       |
| 833<br>834 |       |                                                               |          |        |       |
| 835        |       |                                                               |          |        |       |
| 836        |       |                                                               |          |        |       |
| 837<br>838 |       |                                                               |          |        |       |
| 839        |       |                                                               |          |        |       |
| 840        |       |                                                               |          |        |       |
| 841<br>842 |       |                                                               |          |        |       |
| 843        |       |                                                               |          |        |       |
| 844<br>845 |       |                                                               |          |        |       |
| 845<br>846 |       |                                                               |          |        |       |
| 847        |       |                                                               |          |        |       |
| 848<br>849 |       |                                                               |          |        |       |
| 077        |       |                                                               |          |        |       |

#### 850 **Table 2. 43 Up-Regulated Proteins in Scz Organoids (> 0.5 Log2FC,** *p* < 0.05).

|           | Regulated Proteins in Sc |            |        |         |
|-----------|--------------------------|------------|--------|---------|
| Gene Name | Protein Name             | Uniprot ID | Log2FC | P Value |
|           | Solute carrier family 2, |            |        |         |
|           | facilitated glucose      |            |        |         |
| SLC2A3    | transporter member 3     | P11169     | 1.019  | 0.003   |
|           | Glutathione S-           |            |        |         |
| GSTA2     | transferase A2           | P09210     | 0.954  | 0.030   |
| PODXL     | Podocalyxin              | O00592-2   | 0.939  | 0.000   |
|           | Keratin, type I          |            |        |         |
| KRT18     | cytoskeletal 18          | P05783     | 0.884  | 0.000   |
| AFP       | Alpha-fetoprotein        | P02771     | 0.868  | 0.027   |
| S100A10   | Protein S100-A10         | P60903     | 0.861  | 0.032   |
|           | Alpha-2-HS-              |            |        |         |
| AHSG      | glycoprotein             | P02765     | 0.843  | 0.001   |
| APOM      | Apolipoprotein M         | O95445-2   | 0.771  | 0.002   |
|           | Fibrinogen gamma         |            |        |         |
| FGG       | chain                    | P02679-2   | 0.768  | 0.010   |
| FGB       | Fibrinogen beta chain    | P02675     | 0.753  | 0.001   |
| FGA       | Fibrinogen alpha chain   | P02671-2   | 0.749  | 0.008   |
|           | Protein lin-28 homolog   |            |        |         |
| LIN28A    | A                        | Q9H9Z2     | 0.731  | 0.001   |
|           | Na(+)/H(+) exchange      |            |        |         |
|           | regulatory cofactor      |            |        |         |
| SLC9A3R1  | NHE-RF1                  | O14745     | 0.726  | 0.001   |
| APOA1     | Apolipoprotein A-I       | P02647     | 0.715  | 0.015   |
| SERPINB9  | Serpin B9                | P50453     | 0.712  | 0.001   |
| SERPINA1  | Alpha-1-antitrypsin      | P01009     | 0.705  | 0.009   |
| APOE      | Apolipoprotein E         | P02649     | 0.698  | 0.006   |
| TF        | Serotransferrin          | P02787     | 0.687  | 0.005   |
| S100A11   | Protein S100-A11         | P31949     | 0.685  | 0.012   |
| APOC3     | Apolipoprotein C-III     | P02656     | 0.678  | 0.027   |
|           | Epithelial cell          |            |        |         |
| EPCAM     | adhesion molecule        | P16422     | 0.677  | 0.041   |
| FN1       | Fibronectin              | P02751-5   | 0.650  | 0.010   |
| APOA4     | Apolipoprotein A-IV      | P06727     | 0.634  | 0.009   |
|           | PDZ and LIM domain       |            |        |         |
| PDLIM1    | protein 1                | O00151     | 0.624  | 0.000   |
| LCP1      | Plastin-2                | P13796     | 0.611  | 0.005   |
|           | Tubulointerstitial       |            |        |         |
| TINAGL1   | nephritis antigen-like   | Q9GZM7-3   | 0.591  | 0.043   |
|           | Tight junction protein   | -          |        |         |
| TJP2      | ZO-2                     | Q9UDY2-5   | 0.591  | 0.000   |
| SULT2A1   | Sulfotransferase 2A1     | Q06520     | 0.588  | 0.001   |
|           | Hydroxymethylglutaryl-   | -          | -      |         |
|           | CoA synthase,            |            |        |         |
| HMGCS2    | mitochondrial            | P54868-2   | 0.580  | 0.009   |
|           | Synaptosomal-            |            |        |         |
| SNAP23    | associated protein 23    | O00161     | 0.563  | 0.000   |
| DSP       | Desmoplakin              | P15924     | 0.562  | 0.000   |
|           | •                        |            |        |         |
| APOB      | Apolipoprotein B-100     | P04114     | 0.562  | 0.015   |

| UTP14A  | U3 small nucleolar<br>RNA-associated<br>protein 14 homolog A<br>Peptidyl-prolyl cis- | Q9BVJ6-3 | 0.536 | 0.029 |
|---------|--------------------------------------------------------------------------------------|----------|-------|-------|
| FKBP11  | trans isomerase<br>FKBP11                                                            | Q9NYL4-2 | 0.534 | 0.021 |
|         | Junctional adhesion                                                                  |          | 0.004 | 0.021 |
| F11R    | molecule A                                                                           | Q9Y624   | 0.534 | 0.001 |
|         | AT-rich interactive                                                                  |          |       |       |
|         | domain-containing                                                                    |          |       |       |
| ARID3A  | protein 3A                                                                           | Q99856   | 0.532 | 0.001 |
|         | Oxysterol-binding                                                                    |          |       |       |
|         | protein-related protein                                                              |          |       |       |
| OSBPL9  | 9                                                                                    | Q96SU4-7 | 0.531 | 0.001 |
|         | Receptor expression-                                                                 |          |       |       |
| REEP6   | enhancing protein 6                                                                  | Q96HR9-2 | 0.530 | 0.006 |
|         | Ethylmalonyl-CoA                                                                     |          |       |       |
| ECHDC1  | decarboxylase                                                                        | Q9NTX5-2 | 0.524 | 0.007 |
| SCD     | Acyl-CoA desaturase                                                                  | O00767   | 0.509 | 0.001 |
|         | Methyltransferase-like                                                               |          |       |       |
| METTL7B | protein 7B                                                                           | Q6UX53   | 0.505 | 0.031 |
| DPP4    | Dipeptidyl peptidase 4                                                               | P27487   | 0.500 | 0.031 |
|         |                                                                                      |          |       |       |

#### 877 Table 3. Down-Regulated GO Biological Processes in Scz Organoids (*p* < 0.05).

| Table 3. Down-Regulated GO Biological Processes in Scz Organoids ( <i>p</i> < 0.05). |               |                         |       |
|--------------------------------------------------------------------------------------|---------------|-------------------------|-------|
| <b>Biological Process</b>                                                            | GO:BP Term_ID | Adjusted <i>p</i> Value |       |
| Axon Development                                                                     | GO:0061564    | 1.88E-07                | 6.725 |
| Nervous System                                                                       |               |                         |       |
| Development                                                                          | GO:0007399    | 2.98E-07                | 6.525 |
| Plasma Membrane                                                                      |               |                         |       |
| Bounded Cell                                                                         |               |                         |       |
| Projection                                                                           |               |                         |       |
| Organization                                                                         | GO:0120036    | 7.32E-07                | 6.136 |
| Axonogenesis                                                                         | GO:0007409    | 8.26E-07                | 6.083 |
| Cell Projection                                                                      |               |                         |       |
| Organization                                                                         | GO:0030030    | 1.16E-06                | 5.937 |
| Cell Morphogenesis                                                                   |               |                         |       |
| Involved in Neuron                                                                   |               |                         |       |
| Differentiation                                                                      | GO:0048667    | 1.29E-06                | 5.889 |
| Neuron Projection                                                                    |               |                         |       |
| Morphogenesis                                                                        | GO:0048812    | 4.63E-06                | 5.335 |
| Plasma Membrane                                                                      |               |                         |       |
| Bounded Cell                                                                         |               |                         |       |
| Projection                                                                           |               |                         |       |
| Morphogenesis                                                                        | GO:0120039    | 6.03E-06                | 5.219 |
| Cell Projection                                                                      |               |                         |       |
| Morphogenesis                                                                        | GO:0048858    | 6.50E-06                | 5.187 |
| Cell Part                                                                            |               |                         |       |
| Morphogenesis                                                                        | GO:0032990    | 8.89E-06                | 5.051 |
| Cell Morphogenesis                                                                   |               |                         |       |
| Involved in                                                                          |               |                         |       |
| Differentiation                                                                      | GO:000904     | 2.09E-05                | 4.680 |
| Neuron                                                                               |               |                         |       |
| Differentiation                                                                      | GO:0030182    | 4.18E-05                | 4.379 |
| Cellular Component                                                                   |               |                         |       |
| Morphogenesis                                                                        | GO:0032989    | 4.21E-05                | 4.375 |
| Neuron                                                                               |               |                         |       |
| Development                                                                          | GO:0048666    | 9.53E-05                | 4.021 |
| Neuron Projection                                                                    |               |                         |       |
| Development                                                                          | GO:0031175    | 0.000125503             | 3.901 |
| Cell Morphogenesis                                                                   | GO:000902     | 0.000170319             | 3.769 |
| Generation of                                                                        |               |                         |       |
| Neurons                                                                              | GO:0048699    | 0.000192896             | 3.715 |
| System                                                                               |               |                         |       |
| Development                                                                          | GO:0048731    | 0.000289587             | 3.538 |
| Neurogenesis                                                                         | GO:0022008    | 0.00059592              | 3.225 |
| Multicellular                                                                        |               |                         |       |
| Organism                                                                             |               |                         |       |
| Development                                                                          | GO:0007275    | 0.00099934              | 3.000 |
| Anatomical                                                                           |               |                         |       |
| Structure                                                                            |               |                         |       |
| Development                                                                          | GO:0048856    | 0.002063881             | 2.685 |
| Axon Guidance                                                                        | GO:0007411    | 0.002117016             | 2.674 |
| Neuron Projection                                                                    |               |                         |       |
| Guidance                                                                             | GO:0097485    | 0.002173862             | 2.663 |
|                                                                                      |               |                         |       |

| Microtubule-Based                       | GO:0031111<br>GO:0007017                | 0.011544881<br>0.01300057 | 1.938   |
|-----------------------------------------|-----------------------------------------|---------------------------|---------|
| Depolymerization G<br>Microtubule-Based |                                         |                           | 1.938   |
|                                         | GO:0007017                              | 0.01200057                |         |
| Process C                               | GO:0007017                              | 0 01200057                |         |
|                                         |                                         | 0.01300037                | 1.886   |
| Cytoskeleton                            |                                         |                           |         |
| - 5                                     | GO:0007010                              | 0.01330451                | 1.876   |
| Anatomical                              |                                         |                           |         |
| Structure                               | 0 0000050                               | 0.044450500               | 4 0 4 0 |
|                                         | GO:0009653                              | 0.014459529               | 1.840   |
| Regulation of Axon                      | 0.000540                                | 0.015000000               | 4 000   |
|                                         | GO:0030516                              | 0.015068023               | 1.822   |
| Developmental                           | 0 0000500                               | 0.04000004                | 4 700   |
|                                         | GO:0032502                              | 0.01628204                | 1.788   |
| Substantia Nigra                        | 0 000 1 700                             |                           |         |
|                                         | GO:0021762                              | 0.018211464               | 1.740   |
| Microtubule                             |                                         |                           |         |
| Cytoskeleton                            | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                           | 4 000   |
| 5                                       | GO:0000226                              | 0.023833988               | 1.623   |
| Regulation of Extent                    |                                         |                           |         |
|                                         |                                         | 0.027856692               | 1.555   |
| Axon Extension G                        | GO:0048675                              | 0.047873583               | 1.320   |

| 004 | Table 4. Up-Regulated GO Biological Processes in Scz Organoids ( $p < 0.05$ ).  |  |
|-----|---------------------------------------------------------------------------------|--|
| 204 | Table 4. Up Required GO Dividuital Fibresses III Stz Ordaniolus ( $D > 0.05$ ). |  |

| Table 4. Up-Regulated GO Biological Processes in Scz Organoids ( $p < 0.05$ ). |               |                         |                      |
|--------------------------------------------------------------------------------|---------------|-------------------------|----------------------|
| <b>Biological Process</b>                                                      | GO:BP Term_ID | Adjusted <i>p</i> Value | Neg Log10 Adjusted p |
| Chylomicron                                                                    |               |                         |                      |
| Remodeling                                                                     | GO:0034371    | 1.03E-08                | 7.988                |
| Chylomicron                                                                    |               |                         |                      |
| Assembly                                                                       | GO:0034378    | 3.76E-08                | 7.425                |
| Plasma Lipoprotein                                                             |               |                         |                      |
| Particle Assembly                                                              | GO:0034377    | 1.15E-07                | 6.938                |
| Triglyceride-Rich                                                              |               |                         |                      |
| Lipoprotein Particle                                                           |               |                         |                      |
| Remodeling                                                                     | GO:0034370    | 1.62E-07                | 6.790                |
| Plasma Lipoprotein                                                             |               |                         |                      |
| Particle Remodeling                                                            | GO:0034369    | 1.73E-07                | 6.762                |
| Protein-Lipid                                                                  |               |                         |                      |
| Complex                                                                        |               |                         |                      |
| Remodeling                                                                     | GO:0034368    | 1.73E-07                | 6.762                |
| Protein-Containing                                                             |               |                         |                      |
| Complex                                                                        |               |                         |                      |
| Remodeling                                                                     | GO:0034367    | 2.53E-07                | 6.598                |
| Protein-Lipid                                                                  |               |                         |                      |
| Complex Assembly                                                               | GO:0065005    | 2.53E-07                | 6.598                |
| High-Density                                                                   |               |                         |                      |
| Lipoprotein Particle                                                           |               |                         |                      |
| Remodeling                                                                     | GO:0034375    | 6.89E-07                | 6.162                |
| Reverse Cholesterol                                                            |               |                         |                      |
| Transport                                                                      | GO:0043691    | 2.10E-06                | 5.677                |
| Plasma Lipoprotein                                                             |               |                         |                      |
| Particle                                                                       |               |                         |                      |
| Organization                                                                   | GO:0071827    | 3.08E-06                | 5.511                |
| Protein-Lipid                                                                  |               |                         |                      |
| Complex Subunit                                                                |               |                         |                      |
| Organization                                                                   | GO:0071825    | 4.88E-06                | 5.312                |
| Cholesterol Efflux                                                             | GO:0033344    | 1.47E-05                | 4.832                |
| Terpenoid Metabolic                                                            |               |                         |                      |
| Process                                                                        | GO:0006721    | 1.85E-05                | 4.733                |
| Very-Low-Density                                                               |               |                         |                      |
| Lipoprotein Particle                                                           |               |                         |                      |
| Remodeling                                                                     | GO:0034372    | 1.97E-05                | 4.706                |
| Platelet                                                                       |               |                         |                      |
| Degranulation                                                                  | GO:0002576    | 2.31E-05                | 4.636                |
| Sterol Transport                                                               | GO:0015918    | 2.44E-05                | 4.612                |
| Phospholipid Efflux                                                            | GO:0033700    | 2.84E-05                | 4.547                |
| Isoprenoid                                                                     |               |                         |                      |
| Metabolic Process                                                              | GO:0006720    | 5.53E-05                | 4.257                |
| Positive Regulation                                                            |               |                         |                      |
| of Substrate                                                                   |               |                         |                      |
| Adhesion-                                                                      |               |                         |                      |
| Dependent Cell                                                                 |               |                         |                      |
| Spreading                                                                      | GO:1900026    | 6.58E-05                | 4.182                |
| High-Density                                                                   |               |                         |                      |
| Lipoprotein Particle                                                           | GO:0034380    | 7.18E-05                | 4.144                |
| r - r                                                                          |               |                         | ···· •               |

| Assembly<br>Cell-Cell Adhesion<br>High-Density         | GO:0098609               | 8.60E-05                   | 4.066          |
|--------------------------------------------------------|--------------------------|----------------------------|----------------|
| Lipoprotein Particle<br>Clearance<br>Cholesterol       | GO:0034384               | 0.000120368                | 3.919          |
| Homeostasis<br>Post-Translational                      | GO:0042632               | 0.000156831                | 3.805          |
| Protein Modification<br>Sterol Homeostasis             | GO:0043687<br>GO:0055092 | 0.000163138<br>0.000166565 | 3.787<br>3.778 |
| Retinoid Metabolic<br>Process<br>Regulation of         | GO:0001523               | 0.00024961                 | 3.603          |
| Plasma Lipoprotein<br>Particle Levels                  | GO:0097006               | 0.000263855                | 3.579          |
| Regulation of<br>Substrate Adhesion-<br>Dependent Cell |                          |                            |                |
| Spreading<br>Diterpenoid                               | GO:1900024               | 0.000344919                | 3.462          |
| Metabolic Process<br>Cholesterol                       | GO:0016101               | 0.000345502                | 3.462          |
| Transport<br>Heterotypic Cell-                         | GO:0030301               | 0.000383496                | 3.416          |
| Cell Adhesion<br>Cholesterol<br>Biosynthetic           | GO:0034113               | 0.000409755                | 3.387          |
| Process<br>Secondary Alcohol                           | GO:0006695               | 0.000568257                | 3.245          |
| Biosynthetic<br>Process                                | GO:1902653               | 0.000568257                | 3.245          |
| Regulation of<br>Heterotypic Cell-<br>Cell Adhesion    | GO:0034114               | 0.000580431                | 3.236          |
| Regulation of Cdc42<br>Protein Signal                  | 00.0004114               | 0.000000401                | 0.200          |
| Transduction<br>Sterol Biosynthetic                    | GO:0032489               | 0.000667476                | 3.176          |
| Process<br>Plasma Lipoprotein                          | GO:0016126               | 0.000893117                | 3.049          |
| Particle Clearance<br>Lipoprotein                      | GO:0034381               | 0.000959187                | 3.018          |
| Metabolic Process<br>Chylomicron<br>Remnant Clearance  | GO:0042157<br>GO:0034382 | 0.001034387<br>0.001066283 | 2.985<br>2.972 |
| Triglyceride-Rich<br>Lipoprotein Particle              | 00.000+002               | 0.001000200                | 2.312          |
| Clearance<br>Steroid Metabolic                         | GO:0071830               | 0.001066283                | 2.972          |
| Process<br>Cholesterol                                 | GO:0008202<br>GO:0008203 | 0.00122924<br>0.001569372  | 2.910<br>2.804 |
|                                                        |                          |                            |                |

| Metabolic Process                     |            |             |       |
|---------------------------------------|------------|-------------|-------|
| Positive Regulation<br>of Cholesterol |            |             |       |
| Esterification                        | GO:0010873 | 0.001596909 | 2.797 |
| Regulated                             | 00.0010070 | 0.001000000 | 2.101 |
| Exocytosis                            | GO:0045055 | 0.00171245  | 2.766 |
| Positive Regulation                   |            |             |       |
| of Cell                               |            |             |       |
| Morphogenesis                         |            |             |       |
| Involved in                           |            |             |       |
| Differentiation                       | GO:0010770 | 0.00174483  | 2.758 |
| Very-Low-Density                      |            |             |       |
| Lipoprotein Particle                  |            |             |       |
| Clearance                             | GO:0034447 | 0.002277712 | 2.643 |
| Secondary Alcohol                     | 00.4000050 | 0 000040470 | 0.000 |
| Metabolic Process                     | GO:1902652 | 0.002312476 | 2.636 |
| Homotypic Cell-Cell<br>Adhesion       | GO:0034109 | 0.002650901 | 2.577 |
| Triglyceride                          | GO.0034109 | 0.002030901 | 2.577 |
| Catabolic Process                     | GO:0019433 | 0.002810211 | 2.551 |
| Sterol Metabolic                      | 00.0010100 | 0.002010211 | 2.001 |
| Process                               | GO:0016125 | 0.002987054 | 2.525 |
| Acylglycerol                          |            |             |       |
| Homeostasis                           | GO:0055090 | 0.003467959 | 2.460 |
| Triglyceride                          |            |             |       |
| Homeostasis                           | GO:0070328 | 0.003467959 | 2.460 |
| Lipid Homeostasis                     | GO:0055088 | 0.003686054 | 2.433 |
| Vesicle-Mediated                      |            |             |       |
| Transport                             | GO:0016192 | 0.003686287 | 2.433 |
| Regulation of                         |            |             |       |
| Triglyceride<br>Metabolic Process     | GO:0090207 | 0.004233532 | 2.373 |
| Regulation of Cell                    | GO.0090207 | 0.004233332 | 2.373 |
| Morphogenesis                         |            |             |       |
| Involved in                           |            |             |       |
| Differentiation                       | GO:0010769 | 0.004547582 | 2.342 |
| Secretion                             | GO:0046903 | 0.004648136 | 2.333 |
| Cell Adhesion                         | GO:0007155 | 0.00503037  | 2.298 |
| Biological Adhesion                   | GO:0022610 | 0.005314483 | 2.275 |
| Organic Hydroxy                       |            |             |       |
| Compound                              |            |             |       |
| Transport                             | GO:0015850 | 0.005357541 | 2.271 |
| Intermembrane                         |            |             |       |
| Lipid Transfer                        | GO:0120009 | 0.006131955 | 2.212 |
| Exocytosis                            | GO:0006887 | 0.006499986 | 2.187 |
| Steroid Biosynthetic<br>Process       | GO:0006694 | 0.006623642 | 2.179 |
| Cdc42 Protein                         | 00.000034  | 0.000023042 | 2.119 |
| Signal Transduction                   | GO:0032488 | 0.006865718 | 2.163 |
| Regulation of                         |            | 0.00000710  | 2.100 |
| Cholesterol                           | GO:0010872 | 0.006865718 | 2.163 |
|                                       |            |             |       |

| Ssterification<br>Regulation of<br>Triglyceride                                     |                          |                            |                |
|-------------------------------------------------------------------------------------|--------------------------|----------------------------|----------------|
| Catabolic Process<br>Acylglycerol                                                   | GO:0010896               | 0.006865718                | 2.163          |
| Catabolic Process<br>Neutral Lipid                                                  | GO:0046464               | 0.007287829                | 2.137          |
| Catabolic Process<br>Substrate Adhesion-<br>Dependent Cell                          | GO:0046461               | 0.007287829                | 2.137          |
| Spreading<br>Negative Regulation<br>of Plasma<br>Lipoprotein                        | GO:0034446               | 0.008081591                | 2.093          |
| Oxidation<br>Regulation of<br>Plasma Lipoprotein                                    | GO:0034445               | 0.008917017                | 2.050          |
| Oxidation                                                                           | GO:0034444               | 0.008917017                | 2.050          |
| Secretion by Cell<br>Triglyceride                                                   | GO:0032940               | 0.009039373                | 2.044          |
| Metabolic Process                                                                   | GO:0006641               | 0.00964557                 | 2.016          |
| Positive Regulation<br>of Cell Adhesion                                             | GO:0045785               | 0.009890818                | 2.005          |
| Regulation of Cell                                                                  | 00.0000004               | 0.04040044                 | 1 000          |
| Morphogenesis<br>Positive Regulation<br>of Heterotypic Cell-                        | GO:0022604               | 0.01018014                 | 1.992          |
| Cell Adhesion<br>Regulation of Cell-                                                | GO:0034116               | 0.010529465                | 1.978          |
| Cell Adhesion<br>Negative Regulation<br>of Blood                                    | GO:0022407               | 0.011281044                | 1.948          |
| Coagulation<br>Negative Regulation                                                  | GO:0030195               | 0.01262872                 | 1.899          |
| of Hemostasis                                                                       | GO:1900047               | 0.013577968                | 1.867          |
| Export from Cell<br>Cholesterol                                                     | GO:0140352               | 0.014773845                | 1.831          |
| Esterification<br>Steroid                                                           | GO:0034435               | 0.015294749                | 1.815          |
| Esterification<br>Sterol Esterification<br>Positive Regulation<br>of Cell-Substrate | GO:0034433<br>GO:0034434 | 0.015294749<br>0.015294749 | 1.815<br>1.815 |
| Adhesion<br>Negative Regulation                                                     | GO:0010811               | 0.01579924                 | 1.801          |
| of Coagulation<br>Lipid Catabolic                                                   | GO:0050819               | 0.019135052                | 1.718          |
| Process                                                                             | GO:0016042               | 0.020745205                | 1.683          |
| Platelet Aggregation<br>Plasma Lipoprotein                                          | GO:0070527               | 0.023183729                | 1.635          |
| Particle Oxidation                                                                  | GO:0034441               | 0.026712669                | 1.573          |

| Acylglycerol                  |             |             |       |
|-------------------------------|-------------|-------------|-------|
| Metabolic Process             | GO:0006639  | 0.028359777 | 1.547 |
| Neutral Lipid                 |             |             |       |
| Metabolic Process             | GO:0006638  | 0.029346144 | 1.532 |
| Supramolecular                |             |             |       |
| Fiber Organization            | GO:0097435  | 0.029625    | 1.528 |
| Cell Activation               | GO:0001775  | 0.029657104 | 1.528 |
| Macromolecule                 |             |             |       |
| Localization                  | GO:0033036  | 0.029741556 | 1.527 |
| Transport                     | GO:0006810  | 0.030983148 | 1.509 |
| Organic Hydroxy               |             |             |       |
| Compound                      |             |             |       |
| Biosynthetic                  |             |             |       |
| Process                       | GO:1901617  | 0.031015934 | 1.508 |
| Regulation of Blood           |             |             |       |
| Coagulation                   | GO:0030193  | 0.033129732 | 1.480 |
| Alcohol Biosynthetic          |             |             |       |
| Process                       | GO:0046165  | 0.035839906 | 1.446 |
| Regulation of                 | 00 10000 10 | 0 007054045 | 4 404 |
| Hemostasis                    | GO:1900046  | 0.037051615 | 1.431 |
| Plasminogen                   | 00.0004000  | 0.007500747 | 4 405 |
| Activation                    | GO:0031639  | 0.037580747 | 1.425 |
| Regulation of                 |             |             |       |
| Lipoprotein Lipase            | 00.0051004  | 0.027590747 | 1 405 |
| Activity                      | GO:0051004  | 0.037580747 | 1.425 |
| Regulation of<br>Localization | GO:0032879  | 0.04005842  | 1.397 |
| Glycerolipid                  | GO.0032079  | 0.04003842  | 1.397 |
| Catabolic Process             | GO:0046503  | 0.041304441 | 1.384 |
| Vascular Process in           | 90.0040303  | 0.041304441 | 1.504 |
| Circulatory System            | GO:0003018  | 0.041522396 | 1.382 |
| Regulation of                 | 00.0000010  | 0.041022000 | 1.502 |
| Vesicle-Mediated              |             |             |       |
| Transport                     | GO:0060627  | 0.044575903 | 1.351 |
| Regulation of                 | 00.000027   | 0.011070000 | 1.001 |
| Cholesterol                   |             |             |       |
| Transport                     | GO:0032374  | 0.045905316 | 1.338 |
| Regulation of Sterol          |             |             |       |
| Transport                     | GO:0032371  | 0.045905316 | 1.338 |
| Fibrinolysis                  | GO:0042730  | 0.048124122 | 1.318 |
| Regulation of                 |             |             |       |
| Coagulation                   | GO:0050818  | 0.048341707 | 1.316 |
|                               |             |             |       |

#### 914 Table 5. Down-Regulated GO Molecular Functions in Scz Organoids (*p* < 0.05). Molecular Function GO:MF Term\_ID Adjusted *p* Value Neg Log10 Adjusted *p*

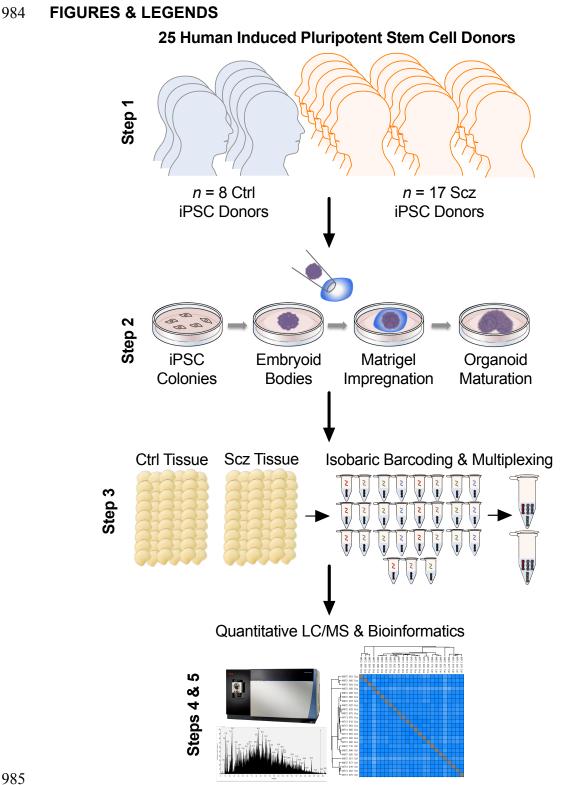
| Molecular Function   | GO:MF Term_ID | Adjusted <i>p</i> Value | Neg Log10 Adjusted |
|----------------------|---------------|-------------------------|--------------------|
| Structural           |               |                         |                    |
| Constituent of       |               |                         |                    |
| Cytoskeleton         | GO:0005200    | 0.000173652             | 3.760              |
| Cytoskeletal Protein |               |                         |                    |
| Binding              | GO:0008092    | 0.005488124             | 2.261              |
| GTPase Activity      | GO:0003924    | 0.007451524             | 2.128              |
| Nucleoside-          |               |                         |                    |
| Triphosphatase       |               |                         |                    |
| Activity             | GO:0017111    | 0.008195516             | 2.086              |
| Pyrophosphatase      |               |                         |                    |
| Activity             | GO:0016462    | 0.020438022             | 1.690              |
| Hydrolase Activity,  |               |                         |                    |
| Acting on Acid       |               |                         |                    |
| Anhydrides, in       |               |                         |                    |
| Phosphorus-          |               |                         |                    |
| Containing           |               |                         |                    |
| Anhydrides           | GO:0016818    | 0.023962071             | 1.620              |
| Hydrolase Activity,  |               |                         |                    |
| Acting on Acid       |               |                         |                    |
| Anhydrides           | GO:0016817    | 0.024306171             | 1.614              |
| Tubulin Binding      | GO:0015631    | 0.034081605             | 1.467              |
| GTP Binding          | GO:0005525    | 0.034081605             | 1.467              |
| Microtubule Binding  | GO:0008017    | 0.043893561             | 1.358              |
| Structural Molecule  |               |                         |                    |
| Activity             | GO:0005198    | 0.047624863             | 1.322              |
| Guanyl               |               |                         |                    |
| Ribonucleotide       |               |                         |                    |
| Binding              | GO:0032561    | 0.047641356             | 1.322              |
| Guanyl Nucleotide    |               |                         |                    |
| Binding              | GO:0019001    | 0.047641356             | 1.322              |

,,,,

| Molecular Function    | GO:MF Term_ID | nctions in Scz Orga | Neg Log10 Adjusted p |
|-----------------------|---------------|---------------------|----------------------|
| Sterol Transporter    |               | Aujuotou p Tuluo    |                      |
| Activity              | GO:0015248    | 4.01E-06            | 5.397                |
| Cadherin Binding      | 00.0010210    |                     | 0.001                |
| Involved in Cell-Cell |               |                     |                      |
| Adhesion              | GO:0098641    | 2.28E-05            | 4.642                |
| Cell-Cell Adhesion    | 00.0000011    | 2.202 00            | 1.012                |
| Mediator Activity     | GO:0098632    | 2.68E-05            | 4.571                |
| Cholesterol Transfer  | 00.000002     | 2.002.00            |                      |
| Activity              | GO:0120020    | 5.42E-05            | 4.266                |
| Cell Adhesion         |               |                     |                      |
| Mediator Activity     | GO:0098631    | 6.36E-05            | 4.197                |
| Sterol Transfer       |               |                     | -                    |
| Activity              | GO:0120015    | 6.55E-05            | 4.184                |
| Phosphatidylcholine-  |               |                     | -                    |
| Sterol O-             |               |                     |                      |
| Acyltransferase       |               |                     |                      |
| Activator Activity    | GO:0060228    | 7.46E-05            | 4.127                |
| Cell Adhesion         |               |                     |                      |
| Molecule Binding      | GO:0050839    | 7.67E-05            | 4.115                |
| Lipoprotein Particle  |               |                     |                      |
| Receptor Binding      | GO:0070325    | 0.000150248         | 3.823                |
| Lipid Transporter     |               |                     |                      |
| Activity              | GO:0005319    | 0.000343266         | 3.464                |
| Lipid Transfer        |               |                     |                      |
| Activity              | GO:0120013    | 0.001163791         | 2.934                |
| Sterol Binding        | GO:0032934    | 0.003401382         | 2.468                |
| High-Density          |               |                     |                      |
| Lipoprotein Particle  |               |                     |                      |
| Receptor Binding      | GO:0070653    | 0.005374955         | 2.270                |
| Steroid Binding       | GO:0005496    | 0.025672825         | 1.591                |
| Signaling Receptor    |               |                     |                      |
| Binding               | GO:0005102    | 0.031882878         | 1.496                |

#### 952 Table 7. Down-Regulated Reactome Pathways in Scz Organoids (*p* < 0.05).

| Table 7. Down-Regulated Reactome Pathways in Scz Organoids (p < 0.05). |                  |                         |                      |
|------------------------------------------------------------------------|------------------|-------------------------|----------------------|
| Reactome Pathway                                                       | Reactome Term_ID | Adjusted <i>p</i> Value | Neg Log10 Adjusted p |
|                                                                        | REAC:R-HSA-      |                         |                      |
| L1CAM Interactions                                                     | 373760           | 4.04E-07                | 6.393                |
| Microtubule-                                                           |                  |                         |                      |
| Dependent                                                              |                  |                         |                      |
| Trafficking of                                                         |                  |                         |                      |
| Connexons from                                                         |                  |                         |                      |
| Golgi to the Plasma                                                    | REAC:R-HSA-      |                         | 0.400                |
| Membrane                                                               | 190840           | 7.37E-07                | 6.133                |
| Transport of                                                           |                  |                         |                      |
| Connexons to the                                                       | REAC:R-HSA-      | 0.055.05                | 0.045                |
| Plasma Membrane                                                        | 190872           | 9.65E-07                | 6.015                |
| Recycling Pathway                                                      | REAC:R-HSA-      |                         |                      |
| of L1                                                                  | 437239           | 1.35E-06                | 5.869                |
| Post-Chaperonin                                                        |                  |                         |                      |
| Tubulin Folding                                                        | REAC:R-HSA-      |                         |                      |
| Pathway                                                                | 389977           | 2.00E-06                | 5.698                |
| COPI-Independent                                                       |                  |                         |                      |
| Golgi-to-ER                                                            | REAC:R-HSA-      |                         |                      |
| Retrograde Traffic                                                     | 6811436          | 2.51E-06                | 5.601                |
| Formation of Tubulin                                                   |                  |                         |                      |
| Folding                                                                |                  |                         |                      |
| Intermediates by                                                       | REAC:R-HSA-      |                         | / -                  |
| CCT/TriC                                                               | 389960           | 3.09E-06                | 5.510                |
| Activation of AMPK                                                     |                  |                         |                      |
| Downstream of                                                          | REAC:R-HSA-      |                         | <b>5</b> 000         |
| NMDARs                                                                 | 9619483          | 4.59E-06                | 5.338                |
| Prefoldin Mediated                                                     |                  |                         |                      |
| Transfer of                                                            |                  |                         |                      |
| Substrate to                                                           | REAC:R-HSA-      |                         | 5 000                |
| CCT/TriC                                                               | 389957           | 4.59E-06                | 5.338                |
| Sealing of the                                                         |                  |                         |                      |
| Nuclear Rnvelope                                                       | REAC:R-HSA-      |                         | 5 000                |
| (NE) by ESCRT-III                                                      | 9668328          | 9.34E-06                | 5.030                |
| RHO GTPases                                                            | REAC:R-HSA-      |                         | 5 000                |
| Activate IQGAPs                                                        | 5626467          | 9.34E-06                | 5.030                |
| Cooperation of                                                         |                  |                         |                      |
| Prefoldin and                                                          |                  |                         |                      |
| TriC/CCT in Actin                                                      | REAC:R-HSA-      |                         | 4.050                |
| and Tubulin Folding                                                    |                  | 1.10E-05                | 4.959                |
| Gap Junction                                                           | REAC:R-HSA-      |                         | 4 629                |
| Assembly                                                               |                  | 2.30E-05                | 4.638                |
| UCMV Early Events                                                      | REAC:R-HSA-      | 2 025 05                | 1 510                |
| HCMV Early Events                                                      | 9609690          | 3.03E-05                | 4.518                |
| Assembly and Cell                                                      |                  |                         |                      |
| Surface<br>Procentation of                                             |                  |                         |                      |
| Presentation of                                                        | REAC:R-HSA-      | 1 265 05                | 1 260                |
| NMDA Receptors                                                         | 9609736          | 4.36E-05                | 4.360                |
| Aggrophogy                                                             | REAC:R-HSA-      |                         | 4 200                |
| Aggrephagy                                                             | 9646399          | 4.91E-05                | 4.309                |
|                                                                        |                  |                         |                      |


| Carboxyterminal                 |                        |               |       |
|---------------------------------|------------------------|---------------|-------|
| Post-Translational              |                        |               |       |
| Modifications of                | REAC:R-HSA-            |               |       |
| Tubulin                         | 8955332                | 6.18E-05      | 4.209 |
| Gap Junction                    | REAC:R-HSA-<br>190828  |               | 4.060 |
| Trafficking                     | REAC:R-HSA-            | 8.54E-05      | 4.069 |
| HCMV Infection                  | 9609646                | 9.31E-05      | 4.031 |
| Gap Junction                    | 0000010                | 0.012 00      | 1.001 |
| Trafficking and                 | REAC:R-HSA-            |               |       |
| Regulation                      | 157858                 | 9.47E-05      | 4.024 |
| Intraflagellar                  | REAC:R-HSA-            |               |       |
| Transport                       | 5620924                | 0.000140206   | 3.853 |
| HSP90 Chaperone                 |                        |               |       |
| Cycle for Steroid               |                        |               |       |
| Hormone Receptors<br>(SHR)      | REAC:R-HSA-<br>3371497 | 0.000184495   | 3.734 |
|                                 | REAC:R-HSA-            | 0.000104495   | 5.754 |
| Kinesins                        | 983189                 | 0.000259999   | 3.585 |
| Nuclear Envelope                | REAC:R-HSA-            | 0.000200000   | 0.000 |
| (NE) Reassembly                 | 2995410                | 0.000519297   | 3.285 |
| Translocation of                |                        |               |       |
| SLC2A4 (GLUT4) to               |                        |               |       |
| the Plasma                      | REAC:R-HSA-            |               |       |
| Membrane                        | 1445148                | 0.000597876   | 3.223 |
| Golgi-to-ER                     | REAC:R-HSA-            |               |       |
| Retrograde<br>Transport         | 8856688                | 0.000664661   | 3.177 |
| папэрон                         | REAC:R-HSA-            | 0.000004001   | 5.177 |
| Axon Guidance                   | 422475                 | 0.00067359    | 3.172 |
| Post NMDA                       |                        |               |       |
| Receptor Activation             | REAC:R-HSA-            |               |       |
| Events                          | 438064                 | 0.000783019   | 3.106 |
| The Role of GTSE1               |                        |               |       |
| in G2/M Progression             | REAC:R-HSA-            | 0.000040000   | 0.000 |
| after G2 Checkpoint             | 8852276                | 0.000949362   | 3.023 |
| Nervous System<br>Development   | REAC:R-HSA-<br>9675108 | 0.001007002   | 2.997 |
| Development                     | REAC:R-HSA-            | 0.001007002   | 2.991 |
| Selective Autophagy             | 9663891                | 0.001010583   | 2.995 |
| Activation of NMDA              |                        |               |       |
| Receptors and                   | REAC:R-HSA-            |               |       |
| Postsynaptic Events             | 442755                 | 0.00171304    | 2.766 |
| Recruitment of                  |                        |               |       |
| NuMA to Mitotic                 | REAC:R-HSA-            | 0.0000.000.00 | 0.040 |
| Centrosomes                     | 380320                 | 0.002242316   | 2.649 |
| Chaperonin-<br>Mediated Protein | REAC:R-HSA-            |               |       |
| Folding                         | 390466                 | 0.002362049   | 2.627 |
| Factors Involved in             | REAC:R-HSA-            | 0.002002010   | 2.021 |
| Megakaryocyte                   | 983231                 | 0.002639065   | 2.579 |
|                                 |                        |               |       |

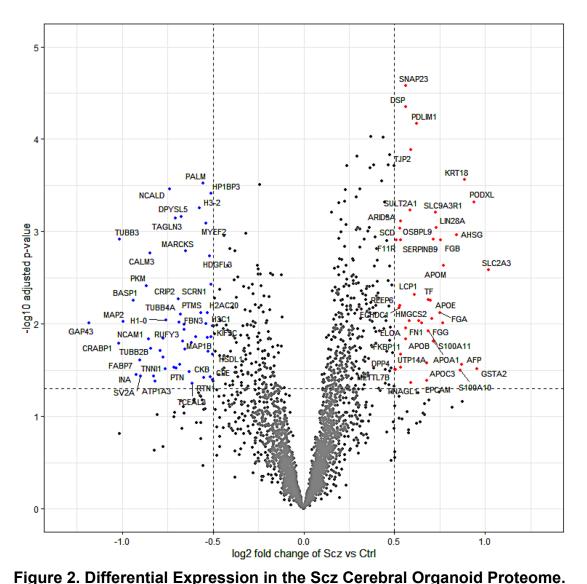
| Development and<br>Platelet Production<br>COPI-Dependent  |                        |             |         |
|-----------------------------------------------------------|------------------------|-------------|---------|
| Golgi-to-ER                                               | REAC:R-HSA-            |             |         |
| Retrograde Traffic                                        | 6811434                | 0.003037982 | 2.517   |
| COPI-Mediated                                             |                        | 01000001002 | 2.017   |
| Anterograde                                               | REAC:R-HSA-            |             |         |
| Transport                                                 | 6807878                | 0.003347233 | 2.475   |
|                                                           | REAC:R-HSA-            |             |         |
| Protein Folding                                           | 391251                 | 0.003347233 | 2.475   |
| CRMPs in Sema3A                                           | REAC:R-HSA-            |             |         |
| Signaling                                                 | 399956                 | 0.003988868 | 2.399   |
| Listerate and fill Otata                                  | REAC:R-HSA-            | 0.005545040 | 0.050   |
| Hedgehog 'off' State<br>Neurotransmitter<br>Receptors and | 5610787                | 0.005515212 | 2.258   |
| Postsynaptic Signal                                       | REAC:R-HSA-            |             |         |
| Transmission                                              | 112314                 | 0.005949918 | 2.225   |
| EML4 and NUDC in                                          |                        |             |         |
| Mitotic Spindle                                           | REAC:R-HSA-            |             |         |
| Formation                                                 | 9648025                | 0.006005753 | 2.221   |
|                                                           | REAC:R-HSA-            |             |         |
| Cilium Assembly                                           | 5617833                | 0.006863941 | 2.163   |
| Intra-Golgi and                                           |                        |             |         |
| Retrograde Golgi-to-                                      | REAC:R-HSA-            |             | 0.400   |
| ER traffic                                                | 6811442                | 0.007259898 | 2.139   |
| Resolution of Sister<br>Chromatid Cohesion                | REAC:R-HSA-            | 0.008217820 | 2 0 9 0 |
| MHC Class II                                              | 2500257<br>REAC:R-HSA- | 0.008317829 | 2.080   |
| Antigen Presentation                                      | 2132295                | 0.008317829 | 2.080   |
| RHO GTPase                                                | REAC:R-HSA-            | 0.000317023 | 2.000   |
| Effectors                                                 | 195258                 | 0.0094632   | 2.024   |
| Developmental                                             | REAC:R-HSA-            |             |         |
| Biology                                                   | 1266738                | 0.011666055 | 1.933   |
| 0,                                                        | REAC:R-HSA-            |             |         |
| Macroautophagy                                            | 1632852                | 0.012565891 | 1.901   |
| RHO GTPases                                               | REAC:R-HSA-            |             |         |
| Activate Formins                                          | 5663220                | 0.013491876 | 1.870   |
| Signaling by                                              | REAC:R-HSA-            |             |         |
| Hedgehog                                                  | 5358351                | 0.02087328  | 1.680   |
|                                                           | REAC:R-HSA-            | 0.0007000   | 4 000   |
| Autophagy                                                 | 9612973                | 0.02087328  | 1.680   |
| ER to Golgi<br>Anterograde                                | REAC:R-HSA-            |             |         |
| Transport                                                 | 199977                 | 0.025184333 | 1.599   |
| Transmission across                                       | REAC:R-HSA-            | 0.020107000 | 1.000   |
| Chemical Synapses                                         | 112315                 | 0.028395357 | 1.547   |
| 2                                                         | REAC:R-HSA-            |             |         |
| M Phase                                                   | 68886                  | 0.044247896 | 1.354   |
|                                                           |                        |             |         |

#### 955 Table 8. Up-Regulated Reactome Pathways in Scz Organoids (p < 0.05).

|                      |                  | Table 8. Up-Regulated Reactome Pathways in Scz Organoids ( <i>p</i> < 0.05). |                             |  |  |
|----------------------|------------------|------------------------------------------------------------------------------|-----------------------------|--|--|
| Reactome Pathway     | Reactome Term_ID | Adjusted <i>p</i> Value                                                      | Neg Log10 Adjusted <i>p</i> |  |  |
| Post-Translational   |                  |                                                                              |                             |  |  |
| Protein              | REAC:R-HSA-      |                                                                              |                             |  |  |
| Phosphorylation      | 8957275          | 8.31E-09                                                                     | 8.080                       |  |  |
| Chylomicron          | REAC:R-HSA-      |                                                                              |                             |  |  |
| Assembly             | 8963888          | 1.82E-08                                                                     | 7.739                       |  |  |
| Chylomicron          | REAC:R-HSA-      |                                                                              |                             |  |  |
| Remodeling           | 8963901          | 1.82E-08                                                                     | 7.739                       |  |  |
| Regulation of        |                  |                                                                              |                             |  |  |
| Insulin-like Growth  |                  |                                                                              |                             |  |  |
| Factor (IGF)         |                  |                                                                              |                             |  |  |
| Transport and        |                  |                                                                              |                             |  |  |
| Uptake by Insulin-   |                  |                                                                              |                             |  |  |
| like Growth Factor   |                  |                                                                              |                             |  |  |
| Binding Proteins     | REAC:R-HSA-      |                                                                              |                             |  |  |
| (IGFBPs)             | 381426           | 3.18E-08                                                                     | 7.498                       |  |  |
| Plasma Lipoprotein   | REAC:R-HSA-      |                                                                              |                             |  |  |
| Assembly             | 8963898          | 6.10E-07                                                                     | 6.215                       |  |  |
| Retinoid Metabolism  | REAC:R-HSA-      |                                                                              |                             |  |  |
| and Transport        | 975634           | 1.25E-06                                                                     | 5.902                       |  |  |
| Metabolism of Fat-   | REAC:R-HSA-      |                                                                              |                             |  |  |
| Soluble Vitamins     | 6806667          | 2.16E-06                                                                     | 5.665                       |  |  |
| Plasma Lipoprotein   | REAC:R-HSA-      |                                                                              |                             |  |  |
| Remodeling           | 8963899          | 9.87E-06                                                                     | 5.006                       |  |  |
| Platelet             | REAC:R-HSA-      |                                                                              |                             |  |  |
| Degranulation        | 114608           | 3.04E-05                                                                     | 4.517                       |  |  |
| Response to          |                  |                                                                              |                             |  |  |
| Elevated Platelet    | REAC:R-HSA-      |                                                                              |                             |  |  |
| Cytosolic Ca2+       | 76005            | 3.98E-05                                                                     | 4.400                       |  |  |
| Regulation of TLR    |                  |                                                                              |                             |  |  |
| by Endogenous        | REAC:R-HSA-      |                                                                              |                             |  |  |
| Ligand               | 5686938          | 0.000100533                                                                  | 3.998                       |  |  |
| Visual               | REAC:R-HSA-      |                                                                              |                             |  |  |
| Phototransduction    | 2187338          | 0.000156361                                                                  | 3.806                       |  |  |
| Metabolism of        |                  |                                                                              |                             |  |  |
| Vitamins and         | REAC:R-HSA-      |                                                                              |                             |  |  |
| Cofactors            | 196854           | 0.000455116                                                                  | 3.342                       |  |  |
| Plasma Lipoprotein   |                  |                                                                              |                             |  |  |
| Assembly,            |                  |                                                                              |                             |  |  |
| Remodeling, and      | REAC:R-HSA-      |                                                                              |                             |  |  |
| Clearance            | 174824           | 0.000616778                                                                  | 3.210                       |  |  |
|                      | REAC:R-HSA-      |                                                                              |                             |  |  |
| HDL remodeling       | 8964058          | 0.000786847                                                                  | 3.104                       |  |  |
| Ū                    | REAC:R-HSA-      |                                                                              |                             |  |  |
| Hemostasis           | 109582           | 0.001130796                                                                  | 2.947                       |  |  |
| GRB2:SOS Provides    |                  |                                                                              |                             |  |  |
| Linkage to MAPK      |                  |                                                                              |                             |  |  |
| Signaling for        | REAC:R-HSA-      |                                                                              |                             |  |  |
| Integrins            | 354194           | 0.003373717                                                                  | 2.472                       |  |  |
| Platelet Activation, | REAC:R-HSA-      | 0.003972412                                                                  | 2.401                       |  |  |
|                      | _                | -                                                                            | -                           |  |  |

| Signaling and<br>Aggregation<br>p130Cas Linkage to | 76002       |             |       |
|----------------------------------------------------|-------------|-------------|-------|
| MAPK Signaling for                                 | REAC:R-HSA- |             |       |
| Integrins                                          | 372708      | 0.004208218 | 2.376 |
| Scavenging by                                      | REAC:R-HSA- |             |       |
| Class A Receptors                                  | 3000480     | 0.008886469 | 2.051 |
| Common Pathway of                                  |             |             |       |
| Fibrin Clot                                        | REAC:R-HSA- |             |       |
| Formation                                          | 140875      | 0.014033493 | 1.853 |
|                                                    | REAC:R-HSA- |             |       |
| Integrin Signaling                                 | 354192      | 0.023493017 | 1.629 |
| Chylomicron                                        | REAC:R-HSA- |             |       |
| Clearance                                          | 8964026     | 0.032311883 | 1.491 |
| Scavenging by                                      | REAC:R-HSA- |             |       |
| Class B Receptors                                  | 3000471     | 0.032311883 | 1.491 |
| Integrin Cell Surface                              | REAC:R-HSA- |             |       |
| Interactions                                       | 216083      | 0.043417684 | 1.362 |
| Plasma Lipoprotein                                 | REAC:R-HSA- |             |       |
| Clearance                                          | 8964043     | 0.044251662 | 1.354 |

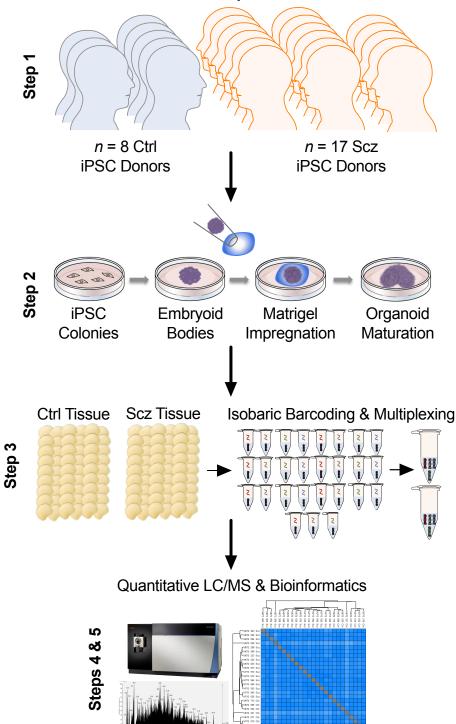


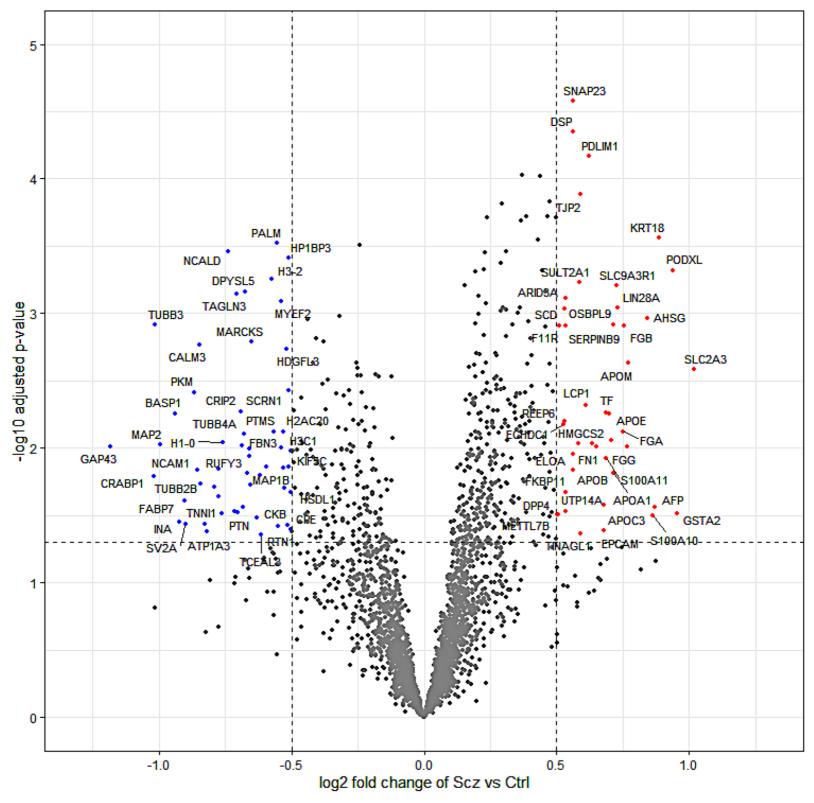

986

987 Figure 1. Schematic of cerebral organoid and TMT-LC/MS analytical pipeline.

Briefly, 25 distinct human iPSCs were obtained from both healthy Control (Ctrl)

989 donors and Schizophrenia (Scz) patients. Each line represented a biologically


unique sample from a specific individual, and lines were predominantly obtained from NIH repositories. Following this, iPSCs were expanded and utilized to generate patient-derived cerebral organoids that mimic the 1<sup>st</sup> trimester of brain assembly (see Methods, [17, 88] for protocol information, and [1] for our previous application of 3D Scz patient-derived organoids). This process involved dissociating iPSC colonies to generate 3D embryoid body aggregates that could be pushed towards a neural fate via chemically minimalist media cocktails [17, 88]. Following neural induction, organoids were implanted into a matrigel droplet as a scaffold to support tissue expansion and, consistent with our prior study [55]. maturated to a primary endpoint of 30DIV. Following this, samples were individually subjected to protein lysis and tryptic-based enzymatic digestion. For proteomic analysis of cerebral organoids, peptides were isobarically barcoded using TMTpro 16-Plex chemistry that allowed samples to be multiplexed for simultaneous analysis of different samples via liquid-chomatography/mass-spectrometry. This allowed up to 15 samples (+1 pool) to be condensed into a single tube for simultaneous detection via liquid-chromatography mass-spectrometry (LC/MS) analysis, resulting in a total of 27 samples (n = 25 human donor organoids, + n = 2 internal reference pools). Proteomic nano-LC tandem mass spectrometry analysis was performed on a Fusion Lumos to molecularly map the protein composition of n = 25 of our iPSC human donor samples. Bioinformatics were subsequently conducted in accordance with the parameters described in our Methods as well as two prior manuscripts that have incorporated LC/MS proteomic analysis of human-derived organoid samples [1, 11]. 




1028 1029 Principal component analysis of the cerebral organoid proteome indicated data 1030 grouping based on phenotype, and protein expression distributions indicated data 1031 correlation across all samples. This statistical baseline allowed us to consider the 1032 differentially expressed proteins present in Scz patient-derived cerebral organoids, 1033 which are shown here as a volcano plot split by log2 fold change and -log10 adjusted p values. In sum,  $\sim 2.62\%$  of 3705 proteins (peptide >1; intensity > 0) 1034 1035 identified exhibited differential expression. Significantly up-regulated proteins that 1036 surpassed log2 fold change thresholding are depicted to the right in red (p value < 0.05, Log2FC > 0.05), whereas down-regulated proteins (p value < 0.05, Log2FC < 1037 1038 -0.05) are presented to the left of the plot in blue. Notable Scz GWAS factors (see 1039 108 loci identified in [33]) included the up-regulation of PODXL and downregulation of PTN, which replicated our previous findings in a smaller cohort [1]. 1040 Note also the down-regulation of the neural stem cell proliferation factor CRABP1 1041 1042 [94] as well as canonical neuronal development markers (e.g. NCAM1 [95], NCALD [96], and CPE [79]), neuronal markers (e.g. MAP2, TUBB3, MAP1B), 1043

- 1044 synaptic markers (e.g., SV2A). Conversely, a range of apolipoproteins (APOE,
- 1045 APOA1, APOB, APOC3) were found to be up-regulated in Scz patient-derived
- 1046 cerebral organoids.

### 25 Human Induced Pluripotent Stem Cell Donors



