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Despite substantial standardization, polymerase chain reaction (PCR) experiments frequently fail.
Troubleshooting failed PCRs can be costly in both time and money. Using a crowdsourced data set
spanning 290 real PCRs from six active research laboratories, we investigate the degree to which
PCR success rates can be improved by machine learning. While human designed PCRs succeed at
a rate of 55–63%, we find that a machine learning model can accurately predict reaction outcome
81% of the time. We validate this level of improvement by then using the model to guide the design
and predict the outcome of 39 new PCR experiments. In addition to improving outcomes, the
model identifies 15 features of PCRs that researchers did not optimize well compared to the learned
model. These results suggest that PCR success rates can easily be improved by 17–26%, potentially
saving millions of dollars and thousands of hours of researcher time each year across the scientific
community. Other common laboratory methods may benefit from similar data-driven optimization
effort.

Many standardized experimental protocols in biological
research laboratories are time consuming and expensive
to optimize. For example, polymerase chain reaction
(PCR) is a particularly common technique, with com-
mercially available DNA polymerase enzymes, optimized
buffers, and vendor-provided standard protocols [1]. In a
clinical setting, where a particular PCR experiment has
been highly optimized and is performed over and over,
e.g., the detection of SARS-CoV-2, PCR can be highly
reliable. However, in a research laboratory setting PCR
has many parameters that must be tuned for each new
reaction [2]. These parameters include primer design,
template concentration, and the temperature and time of
PCR cycles, which are typically selected using a combi-
nation of scientific knowledge, past experience, and trial
and error.

Reflecting the importance of PCR as a basic proto-
col in molecular biology research, past work has investi-
gated various aspects of PCR design including primer cre-
ation [3], reaction setup for difficult amplification regions
(amplicons) with high GC content [4], and troubleshoot-
ing for general reaction design [2, 5, 6]. Despite these
efforts, novel PCR experiments often fail at nontrivial
rates even in the hands of experienced researchers, and
their many parameters can make troubleshooting both
complex and expensive for such a basic and pervasive
laboratory technique. Insight into the parameters that
ultimately determine the success or failure of PCR would
be indispensable in guiding researchers to better parame-
terize their PCR reactions, saving substantial researcher
time and money.

Our data, described below, indicate that PCR exper-
iments performed in research settings exhibit a signifi-

cant failure rate of 37–45%. Considering the ubiquity of
PCR across the international scientific community, such
a failure rate translates into substantial waste in both
time and money. To estimate the scale of this waste,
we can make a rough, back of the envelope calculation
as follows. According to the Carnegie Classification of
institutions of higher education there are 266 research
institutions in the United States with at least High re-
search activity [7]. Assume that each institution hosts
roughly 50 life science laboratories that use PCR with
approximately six lab members each conducting about
30 PCR reactions per year at about $3 per reaction and
1 hour of researcher time. Hence, a 55–63% PCR success
rate implies roughly $2.6-3.2 million dollars in materials
cost wasted on failed PCRs and 1 million hours of time
that could be reallocated to advance science.

There are now several examples of computational tools
for assisting researchers in optimizing laboratory proto-
cols. For instance, machine learning tools have recently
been developed for the CRISPR-Cas genome editing sys-
tem to improve activity at target sites [8] and to reduce
off target affects for CRISPR-Cas assays [9–12]. Machine
learning has been used to validate the selection of Thresh-
old Cycle values for qPCR [13]. For standard PCR, work
has focused on computational tools to optimize primer
designs [14, 15] or to predict the PCR outcome based on
primer design alone [16, 17]. These PCR tools, however,
account for only a portion of the full parameter space of
a PCR experiment, which limits their utility in practice.

In this study, we design a machine learning model to
predict a success or failure outcome of a PCR reaction
from all-encompassing input PCR parameter data, and
assess its ability to improve PCR outcomes in research
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settings through two experiments. In the first, exper-
imentally diverse PCR data was crowdsourced from six
active research laboratories represented by 16 researchers
experienced in designing PCRs for success. After trans-
forming the recorded data into biochemically relevant
features, a standard machine learning approach improved
the success rate by 18–26% on held-out data. Inspect-
ing the learned model reveals that researchers have dif-
ficulty optimizing 15 features of PCR, which our model
learned to further optimize by integrating information
across many different experiments. In the second exper-
iment, we validate the models performance by using it
to guide the design and predict the outcome of a new
set of PCRs, by four of the same researchers across four
laboratories, which simulates the way the model could
be used in practice. Across these new PCRs, the mod-
els prediction accuracy was 95%, indicating a substantial
real-world gain in PCR success. In our rough calcula-
tion above, improving the success rate of PCR by the
17–26% indicated by our results could potentially save
$1.9 million and close to 600,000 hours of work per year.

RESULTS

Using machine learning to optimize a laboratory pro-
tocol requires substantial and diverse data in order for
the learned model to generalize. As such, data from
a single biological laboratory would be insufficient, as
most research laboratories utilize narrow ranges of PCR
parameter values (for instance, each lab may have only
one model of PCR machine). Here, we use crowdsourc-
ing to assemble a diverse set of PCR experiments from
16 researchers across six active research laboratories, all
of whom use PCR routinely. It is important to note
that all of the participating researchers sought to de-
sign their PCR experiments to be successful, and hence
the measured success rate represents a reasonable esti-
mate of the baseline (general) human-expert accuracy in
a research setting. Furthermore, because these experi-
ments are highly non-random, we expect many biochem-
ically important parameters to have little or no predictive
power for success or failure, as these represent parame-
ters that researchers are already good at optimizing. We
then first apply standard machine learning techniques to
integrate information across these multiple laboratories
to learn a model that can accurately predict the likely
success or failure of a PCR experiment, given only the
experiments parameters as input. Exploring this models
structure identifies which specific parameters are typi-
cally chosen in a suboptimal way. We then conduct a
second validation experiment assess the models ability
to improve PCR outcomes in a “live” research setting, in
which four of the original researchers use the model to
guide the design and predict the outcome of a set of new
PCR experiments.

Data Overview

To standardize the data collected from each researcher,
we created a bespoke electronic form through which re-
searchers recorded 37 different experiment parameters,
which relate to choices about the primers, polymerase,
template, and thermocycles, as well as the PCR out-
come (see Materials and Methods). We restricted the
data collected to standard amplification PCR, and did
not collect any mutagenesis, qPCR, or colony PCR re-
actions. These other types of PCR can fail for reasons
distinct from the reasons that a standard PCR might fail,
meaning such data are unlikely to improve the machine
learning models performance in our setting. Participants
contributed data with a diverse set of templates ranging
from human, plant, monkey, bacteria, and plasmid DNA.
We note that these data represent experiments for which
researchers have already tuned many reaction parame-
ters for successful amplification and an outcome of one
correctly-sized product band. As a result, they collec-
tively represent a kind of human-expert baseline for suc-
cessful PCR in a research laboratory setting. Researchers
verified the outcome of each PCR by gel electrophoresis
and recorded a single outcome or a combination of out-
comes: (i) no bands, (ii) band(s) at the wrong size lo-
cation, and (iii) correct band. In total, after dropping
duplicate and incomplete records, we collected n1 = 290
PCR reactions consisting of 109 unique primer pairs with
variable PCR cycle parameters and primer/template con-
centrations for the first experiment, and n2 = 39 addi-
tional PCR reactions for the second experiment.

Feature Engineering

We first transformed the 37 input parameters of each of
the n1 = 290 recorded reactions into a smaller set of bio-
chemically relevant features, which maps a reaction into
a 23-dimensional feature space that can be used to train
the machine learning model. Using bioinformatics soft-
ware packages primer3 and melting, we created primer
features such as homo/heterodimer and primer melting
temperature (Tm). Oligonucleotide Tms are highly de-
pendent on the free salt concentrations in solution, which
is dictated by the primer, template, and dNTP concen-
trations [18]. To account for the free salt concentration
for primer Tm prediction, we generated a library of poly-
merase specific buffer salt and dNTP concentrations from
company specifications. All predicted Tms were then
corrected using our reaction specific library of salt con-
ditions.

A successful PCR can be defined in two ways: “clean”
and “dirty.” A clean reaction can be defined as hav-
ing only the PCR product at the correct band size; on
the other hand, a dirty PCR contains both the correct
size PCR product band and other nonspecific products
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Min Primer Tm:
Accuracy: 81.1
F1: 81.7

Melting Cycle Temp:
Accuracy: 80.8
F1: 82.2

Average human expert accuracy

FIG. 1: Prediction performance for the sequence of models constructed under the forward greedy selection algorithm, applied
to the 23 PCR features, measured by both accuracy (fraction of predictions that were correct) and F1 score (the harmonic mean
of precision and recall). Optimality is obtained at 14 or 15 features, and far exceeds the baseline accuracy of expert researchers.
Envelops indicate 95% bootstrap confidence intervals, and the baseline accuracy indicates the proportion of experiments with
a clean PCR outcome, i.e., the average expert researcher accuracy.

at different sizes. We considered both definitions when
building our model, but we focus on only clean PCR re-
actions for the model presented in the main text (55% of
reactions). A model based on counting both clean and
dirty PCRs as successes (63% of reactions) is given in
the Supplemental Information (see Figs. S1 and S2). All
reactions with “band at the wrong size” or “no bands”
were counted as failures.

Learning to Predict PCR Outcomes

In the first experiment, our simple goal was to learn
a statistical model from our experimental data that can
predict whether a PCR would be successful from its ex-
perimental parameters. To make the learned model is
more interpretable, we trained a random forest classifier
to predict PCR outcomes, using 1000 trees with a bal-
anced class weight to compensate for the unequal out-
comes in our dataset. The model was then validated us-
ing 10-fold cross validation averaged across six replicates
with data reshuffling between replicates, resulting in 60
tests.

We then used a greedy forward feature selection algo-
rithm to identify the most predictive subset of features
without relying on Gini importance scores [19, 20]. For
each possible additional feature, the model was retrained

and tested using 10-fold cross validation on six repli-
cates and the feature yielding the most positive change in
predictive score was added. This process was repeated,
adding features one at a time, until every feature was in-
cluded in the final model. We also implemented a back-
ward selection algorithm to evaluate whether both al-
gorithms converged on the same most-predictive subset
of features; however, the resulting model exhibited poor
accuracy, likely due to overfitting, and hence no conver-
gence was observed. One benefit of this forward selection
approach is that it produces a trace of the F1 score and
accuracy as a function of the sequence in which features
are added, and is usually convex, with a maximum in-
dicating the minimal and most predictive model. In our
analysis, the peak in F1 score corresponds to a model
with 14 features and the peak in accuracy is a model
with 15 features (Fig. 1). However, we note that both
are essentially equally predictive on both scores when we
consider their bootstrap confidence intervals. The 15-
feature model yields an accuracy of 81± 2%, (95% boot-
strap CI) and an F1 score of 82 ± 2%, which is a 26%
improvement over the baseline researcher accuracy.

The features added after the peak, which do not im-
prove the model, are not necessarily unimportant for
PCR. Instead, the values of these features simply do
not correlate with outcome in a way that can be ex-
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features units %∆ accuracy mean SD 25% 75% range
Max Primer Tm C 14.89 62.98 7.17 57.4 70.5 [50.93, 81.12]
Amplification Cycles cycles 4.14 32.49 5.71 30.0 35.0 [18.0, 44.0]
Total Primer µM 1.55 6.81 8.87 0.5 20.0 [0.25, 20.0]
Extension Temp. C 0.92 71.70 1.23 72.0 72.0 [65.0, 74.0]
Product Band Size bp -0.23 1089.95 1745.16 189.5 1060.0 [2.0, 9000.0]
Min GC Clamp Strength score 0.46 32.68 4.31 30.0 35.0 [21.0, 41.0]
Annealing Cycle Temp. C 0.86 59.70 5.75 55.0 63.0 [50.0, 72.0]
Template Amount ng 1.15 335.38 542.73 1.0 837.7 [0.0, 2255.6]
Final Extension Time s 0.63 458.07 130.22 420.0 600.0 [60.0, 600.0]
Melting Cycle Time s 0.52 26.69 11.05 30.0 30.0 [7.0, 60.0]
Final Extension Cycle Temp. C 0.23 71.83 3.43 72.0 72.0 [65.0, 95.0]
Max Homodimer Tm C 0.06 11.09 12.59 0.0 18.8 [0.0, 51.55]
Max GC Clamp Strength score 0.23 37.60 4.79 36.0 41.8 [22.0, 47.0]
Melting Cycle Temp. C 0.29 95.49 1.46 95.0 95.0 [94.0, 98.0]
Min Primer Tm C 0.29 58.25 5.66 54.74 62.5 [46.69, 78.41]

TABLE I: Summary statistics of 15 most-predictive features of PCR success listed in decreasing order by their contribution to
model accuracy.

ploited to further improve the models predictions, be-
cause researchers may have already chosen these param-
eters well. Similarly, the features selected prior to the
maximum are not necessarily more important for success-
ful PCR. Rather, these features represent PCR parame-
ters that as a group researchers tend to choose subopti-
mally, allowing our model to improve over the researcher
baseline by integrating information across many differ-
ent experiments. The optimal model contains the follow-
ing features: Max primer Tm, Amplification Cycles, To-
tal Primer, Extension Temperature, Product Band Size,
Minimum GC Clamp Strength, Annealing Cycle Temp,
Template Amount, Final Extension Time, Melting Cy-
cle Time, Final Extension Cycle Temp, Max Homodimer
Tm, Max GC Clamp Strength, Melting Cycle Temp, and
Minimum Primer Tm (Table I).

Table I lists summary statistics and Figure 2 depicts
normalized distributions of the 15 most predictive fea-
tures identified by our model. We note that the minimum
observed template amount does not reflect experiments
with no template. Rather it indicates researchers who
were unsure about their actual template amount. Ad-
ditionally, we note that a minimum product band size
entry of 2bp is an entry error by a researcher. Hence,
these features may be capturing differences between re-
searchers rather than differences between reactions.

Even individual features exhibit some separation in low
dimensional space, but the distinction between PCR suc-
cess and failure is much larger in the higher dimensional
space of the full data. Of the univariate distributions
in Figure 2, those of maximum primer tm, minimum
GC clamp strength, annealing cycle temperature, and
final extension time are particularly notable in shedding
light on how the model is optimizing success over the
researcher baseline.

Maximum primer Tm (Fig. 2a), or the highest melting
temperature of a primer pair for a given reaction con-

sists of a bimodal distribution in which there is a higher
proportion of successes at the lower mode and a higher
proportion of failures at the higher mode. This pattern
is counterintuitive because a higher primer melting tem-
perature should help stabilize the primer template com-
plex during amplification. The slight separation of suc-
cesses and failures here may indicate an overestimation
of primer Tm by researchers who, consequently, set cycle
temperatures too high, destabilizing the complex.

Minimum GC clamp strength (Fig. 2b), the strength of
the interaction of the 5, 3’ base pairs, has a bimodal dis-
tribution for failures, and the lower mode, located around
a score of 25, has a higher proportion of failures compared
to successes. This pattern suggests a threshold for GC
clamp strength must be met for reaction success and GC
clamp strength scores below 25 tend to fall below this
threshold.

Annealing cycle temperature (Fig. 2c), the setting on
the thermocycler that encourages primer template an-
nealing following the melting cycle, contains a higher pro-
portion of successes at higher temperatures and a lower
proportion at lower temperatures. This correlation is ex-
pected because if a researcher knows their primers have
a high melting temperature, they can increase their cycle
parameters, making the reaction more efficient. A lower
annealing temperature setting is typically set when a re-
searcher knows their primer Tms are also low. Hence,
failing to set the annealing temperature high enough may
represent a common researcher error in parameterizing
PCR for success.

Final extension time (Fig. 2d), the last parameter to be
set on a thermocycler and which is used to clean up the
reaction, contains a relatively higher density of failures at
lower extension times. This correlation is also expected,
because if too little time is allocated to the final clean up
phase, a dirty PCR reaction will yield product containing
incomplete amplicons. Our data indicates that reactions
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(a) (b)

(c) (d)

FIG. 2: Contrasting PCR parameter distributions for success versus failure outcomes across n1 = 290 experiments, for the
four most important features in the optimal prediction model (Fig. 1), (a) Max Primer Tm, (b) Min GC Clamp Strength,
(c) Annealing Cycle Temp., and (d) Final Extension Time. The lack of clear separation between the contrasting distributions
illustrates the marginal utility of most individual features for predicting overall PCR success, while combinations of features
produce far greater prediction performance (see Fig. 1). Distributions for the remaining 11 features in the optimal model are
provided in Fig. S1.

with a final extension time less than 200 seconds tend to
result in failure, while reactions with a higher extension
time contain fewer failures from a dirty PCR.

Experimental Validation

In our second experiment, our goal was to assess the
utility of the learned model for improving PCR outcomes
in a realistic laboratory setting, in which the model is
used to guide the design and predict the outcome of a
new “validation set” of PCR experiments prior to the
experiments being run.

Four of the same researchers from the first experiment
designed and ran n2 = 39 new PCR reactions and queried
the model for outcome predictions using the same pa-
rameterization as before. Reaction parameters for such
queries were transformed in the same manner as in the
first experiment, and the processed data was normalized
using the same function as the training data in the first
experiment. The resulting experiment parameterizations
were used to query the trained model for success or fail-
ure predictions, and researchers were provided with these
along with the biophysical properties calculated for the
features in the model. Each researcher then either (i) ran
the reaction with their original parameters or (ii) inter-
acted with the model in an iterative fashion, redesigning
their reaction and querying the model for its prediction
until they were satisfied, prior to running the reaction.

This process produced 39 new completed PCR reactions,
of which 3 were redesigned once after the model initially
predicted a failure outcome.

Of the n2 = 39 validation PCR reactions, 8 were pre-
dicted to fail and 31 were predicted to succeed. Of the
predicted failures, 6 of 8 failed (75.0%, TN), but 2 suc-
ceeded (25.0%, FN). Of these failures, 3 had been re-
designed once. Of the predicted successes, all 31 suc-
ceeded (100.0%, TP) and 0 failed (0.0%, FP). It is im-
portant to reiterate that each of these experiments was
designed by a human expert with a goal of success, and
the 8 experiments predicted to fail were carried out by the
researchers knowing that the model had predicted they
would fail. These results correspond to a prediction ac-
curacy of 94.9%, and a combined human-and-model PCR
success rate of 84.6%. This success rate accords closely
with the rate we estimated via our first experiment and
corresponds to an improvement of 29.4% over researcher
baseline.

DISCUSSION

Using machine learning to optimize experimental pro-
tocols in biological laboratories is a promising approach
to making research more efficient by saving researcher
time and funding. To investigate the feasibility of such
an optimization, we focused on PCR, one of the most
common lab protocols across all of molecular biology, yet
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it still fails in the hands of experts 37–45% of the time.
Using crowdsourced data for PCR reactions, designed by
researchers to succeed, we trained a simple random forest
classifier to predict a PCRs outcome given only 23 input
parameters. The lean model generated using our forward
greedy feature selection algorithm contains 15 features.
Such a model predicts the success of clean PCR reactions
with an accuracy of 81± 2% and an F1 score of 82± 2%,
which would lower the failure rate to only 16–20%. In
a second experiment, we validated the model in a simu-
lated “live” setting in which researchers used the model
to guide the design and predict the outcome of new PCR
reactions. Using the model in this way lifted the overall
PCR success rate to 84.6%, in close agreement with our
first experiment, indicating that PCR success rates can
in practice be substantially improved by using this model
to help guide the design of PCR experiments.

These results also show that, even given a relatively
modest-sized data set, machine learning tools can inte-
grate information across a diverse set of experimental
settings to substantially improve protocol success in re-
search laboratory settings. In the case of PCR, our model
highlights 15 PCR experiment parameters that even ex-
pert researchers struggle to optimize: Max primer Tm,
Amplification Cycles, Total Primer, Extension Tempera-
ture, Product Band Size, Minimum GC Clamp Strength,
Annealing Cycle Temp, Template Amount, Final Exten-
sion Cycle Temp, Max Homodimer Tm, Max GC Clamp
Strength, Melting Cycle Temp, and Minimum Primer
Tm. We hasten to add that because the training data are
not random, but rather experiments intended to succeed
by a researcher, these 15 features do not necessarily rep-
resent the most important parameters for PCR success.
Rather, they are the parameters that researchers are not
already choosing well, and hence are places where even
experts could improve.

The most predictive feature in the model is the max-
imum primer Tm and the least is minimum primer Tm.
Primer Tm is important in PCR because it dictates how
well a primer anneals to its template during PCRs ampli-
fication phase. We find it counter-intuitive that the max
primer Tm has so much predictive power when there is
no information of the second primer in the reaction at
this stage in the model building. We expected the lower
primer Tm to be more significant by acting as a threshold
for PCR success because if one primer does not anneal
well, then reaching exponential amplification is more dif-
ficult. Additionally, we expected minimum primer Tm to
have more synergy with the annealing cycle temperature
and extension temperature features in defining a thresh-
old for a PCR reaction compared to maximum primer
Tm. Maximum primer Tm may yield high predictive
power because of the higher proportion of successes at
high temperatures, or if a researcher designs one primer
well they may also design the other well.

The number of amplification cycles for any given reac-

tion was the second most predictive feature. Amplifica-
tion cycles in PCR consist of a loop of primer/template
melting, primer annealing, and extension, resulting in ex-
ponential amplification of the region desired in the tem-
plate. If a PCR has too few amplification cycles, it may
produce a product, but that product may not be abun-
dant enough to be visualized on a gel. Additionally, if
the primer annealing conditions are not ideal, more cy-
cles may be necessary to obtain the desired amplification
due to primer annealing. We also note that annealing
conditions for primers are significantly influenced by to-
tal primer.

Total primer added to a PCR reaction can alter primer
Tm by changing the free salt concentration in solution.
Too much primer will chelate salt reducing free salt and,
consequently, reduce the melting temperature because
salt is required to stabilize the primer-template complex
in solution. Adding too much primer can reduce the
primer melting temperature [21]. Hence, if a researcher
with a well-designed primer does not also account for
changes in free salt concentrations, they may overesti-
mate the true primer melting temperature in the altered
environment. Consequently, they may then miscalculate
their PCR parameters for the overestimated theoretical
primer Tm, instead of the true primer Tm in reduced free
salt. This miscalculation may explain the second mode
in the maximum primer Tm distribution (Fig. 2a), where
a relatively high proportion of failures occur around 72C.
That is, researchers may not account for a melting tem-
perature reduction caused by high primer concentrations
and low free salt, which leads to a miscalculation of the
thermocycler parameters of the melting cycle tempera-
ture, annealing cycle temperature, and extension temper-
ature. For example, primer annealing for primers with
a low Tm can be facilitated by reducing the extension
temperature. However, a lower extension temperature
reduces the efficiency of the DNA polymerase potentially
leading to incomplete amplification of long amplicons. As
a result, this feature may complement the most predic-
tive feature, experiments primer Tm, which captures the
amplicon length, band size.

The band size of the product, or the length of the am-
plicon, appears to contain a failed population at higher
band sizes (large sections that need to be amplified). For
long amplification regions, there is a greater probability
of nonspecific binding, which can lead to a messy PCR re-
action. Additionally, a longer amplicon will have a higher
chance of containing short complementary sections that
cause secondary structures potentially dislodging poly-
merases prior to finishing their amplification of a region.
Nonspecific primer binding and secondary structures can
be prevented using additives, such as DMSO. DMSO con-
centration was included as an input parameter for re-
searchers during our data collection. However, almost
no participants reported using it, and so this feature was
dropped from the main analysis. As a result, we cannot
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speculate on how DMSO might alter the outcomes for
large product reactions. Nevertheless, the experiment of
outcome failures large products suggests that reactions
with long amplicons are often parameterized sub opti-
mally.

Minimum GC Clamp Strength and Maximum GC
Clamp Strength of a primer set are both calculated us-
ing a nearest neighbor model in dinucleotide steps for the
last 5 bp [22]. This 3’ clamp strength helps to “latch” the
3’ end of the primer to the template which can aid in the
initiation of the polymerase. We find that a relatively
high proportion of failures occurs when primers have a
minimum GC clamp score less than about 25 (Fig. 2b).
This pattern suggests that when the primer GC clamp is
below this threshold it does not latch onto the template
strongly enough for the polymerase to initiate. A low
maximum GC clamp will also result in failure; however,
this feature is more insignificant to the model. PCR is
virtually all or nothing in regard to primers and a single
faulty primer can result in reaction failure.

Reactions can also fail when primer homodimer for-
mation Tm is high and reaction features like a lower
cycle temperature permit homodimer formation, which
reduces the functional primer concentration, and the
concentration of primer template in the bound state.
This problem is captured by a small proportion of reac-
tion failures that occur at high homodimer temperatures
(Fig. S1), which help distinguish failures when coupled
with PCR cycle parameters.

Final extension cycle time influences the single cycle
final reaction cleanup that allows polymerases to com-
plete their extension and can dictate whether the PCR
appears dirty or clean. Hence, this feature can help dis-
tinguish between reactions with multiple products at dif-
ferent bands and the correct band. However, the ob-
served distribution of this feature (Fig. 2d) instead indi-
cates a spurious number of failed experiments with un-
usually high values of this parameter. This pattern may
indicate that our model has learned to exploit differences
across a subset of researchers, who consistently set their
final cycle time the same for each reaction.

Additional evidence that our machine learning ap-
proach is identifying same between-researcher differences
can be seen in the feature template amount. Normally,
this parameter can change the free salt concentration and
thus potentially alter melting temperatures. However, we
do not find strong evidence for this particular direct ef-
fect in our data. Instead, we find that a high proportion
of successful PCRs are localized around the “0” template
entry (Fig. S1), which is a special value indicating that
a researcher did not know or record their template con-
centration.

There are several limitations to our model and data
collection. Some of these limitations may serve to limit
the fundamental predictability of PCR outcome by creat-
ing uncontrolled variation for the same experimental pa-

rameters, while others indicate a need for improvements
in data collection for future studies of this kind. Al-
though we adjusted all Tm estimations for the particular
salt concentrations found in polymerase-dependent com-
pany buffers, the majority of these buffers have additional
additives or monovalent and divalent salts differing from
canonical Na+ and Mg++ used to develop Tm models.
Such unlisted additives may reduce the free salt concen-
tration resulting in an overestimation of primer Tms or
may help stabilize primer hybridization leading us to un-
derestimate the primer Tm. Additionally, we assumed
the concentration of added dNTPs based on the proto-
cols sent with specific polymerases and dNTP concentra-
tion data from researchers. Hence, unrecorded deviations
from the protocols and general pipetting errors may lead
to over or underestimations of Tms. As a result, we can-
not correct Tm estimation errors caused by noncanonical
salts or unknown additives that act in ways not captured
by Tm prediction algorithms. Furthermore, the feature
Template Amount, which our model found to be strongly
predictive was recorded by researchers as an amount, not
a concentration. Hence, varying PCR reaction volumes
can significantly alter the relative concentration of tem-
plate preventing standardization between reactions based
on this feature. Finally, we did not collect template se-
quence, which precluded us from considering any features
based on target effects.

We reiterate, however that the features that the models
omitted are not irrelevant to successful PCRs. Instead,
these parameters are likely those that researchers already
optimize well, without assistance from machine learning.
The fact that our model identified more than a dozen
features that could be optimized further, even if a few
reflect inter-researcher variability, suggests that PCR ex-
periments are typically under-optimized, and our results
provide scientifically useful hints about how to improve
them.

The magnitude of the improvement in PCR success
rates produced by our model is substantial, rising from
the baseline of 55–63% (depending on how “clean” the
success) to 81% in our cross-validation experiment and
83% in our laboratory validation experiment. With bet-
ter parameterization or data collection, it may be possi-
ble to further improve this rate. For example, by collect-
ing a larger, more representative sample of PCR experi-
ments than those conducted by the six participating re-
search laboratories in this study, or by using active learn-
ing techniques to efficiently collect more useful training
data [23]. Even the current level of improvement, if uti-
lized broadly, could save thousands of hours of researcher
time and potentially millions of dollars in failed PCR ex-
periments each year. Progress in this direction would
only require that a researcher run their chosen PCR pa-
rameters through our model to see whether it predicts
the experiment would succeed, or fail, and if the latter,
then adjust the experiments parameters before moving
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forward, as in our validation experiment. The possibility
of using machine learning to optimize other laboratory
protocols, some of which are particularly complex and
expensive, is an exciting direction for future work in this
area.

MATERIALS AND METHODS

We obtained data by crowdsourcing PCR reactions
from 16 researchers across six active research laboratories
at the University of Colorado Boulder, during the sum-
mer of 2017, and July 2019 to July 2020. Data contrib-
utors recorded PCR reaction parameters and outcomes
using a bespoke spreadsheet form (Fig. 3). All data was
screened for mistakes and duplicate reactions with sep-
arate outcomes were removed as user errors, e.g., for-
getting to pipette a reagent. We also removed multiple
replicates of the same reaction with equivalent outcomes
to reduce bias in the data for any one reaction type be-
cause of our modest sample of PCR reactions. Finally,
we removed reactions with primers of greater than 60
nucleotides due to the limitations of the bioinformatics
algorithms that estimate melting temperature and other
primer properties. This process produced n1 = 290 PCR
reactions.

Primer properties were predicted using the python li-
braries melting and primer3. The library melting was
used to predict primer melting temperatures and gave the
most comparable Tm prediction to IDT, whose webtools
many researchers use to predict primer Tms. The library
primer3 was used to calculate hairpin, homodimer, and
heterodimer formation. Primer GC clamp strength, the
5 nucleotides on the 3’ end of the primer, was added
as a feature calculated using a nearest neighbor model
in dinucleotide steps for the last 5 bp [22]. The result-
ing GC clamp strength score considers both hydrogen
bonding and base stacking interactions of the last 5 nu-
cleotides. Features such as Tms, GC content, and clamp
strength were then sorted into a maximum (Max) and
minimum (Min) category per reaction to generate more
interpretable boundaries for the model.

Our model was built using a random forest classifier
that produced 1000 trees, was set to balanced classes,
and split quality was assessed using the Gini impurity.
Feature selection was carried out using a greedy forward
feature selection algorithm measuring each feature ad-
dition with 10-fold cross validation across six replicates.
The feature combination for each iteration with the high-
est accuracy was kept in the model for the next iteration.

The final model created from the first experiment, via
a greedy forward feature selection algorithm and evalu-
ated using cross validation, was then validated in a sec-
ond laboratory experiment using 39 new PCR reactions,
conducted between February and July 2021, and designed
by 4 of the same researchers who participated in the first

experiment. Each of these new PCR reactions was first
designed by a researcher, and then the model-predicted
outcome was returned to the researcher prior to conduct-
ing the experiment. Researchers then chose whether to
(i) proceed with the experiment as designed or (ii) inter-
act with the model iteratively before proceeding to run
the experiment. Experiment parameterization and data
collection was conducted in the same fashion as in the
first experiment. In addition to the n2 = 39 designed and
completed PCR reactions analyzed for accuracy, and ad-
ditional 13 reactions were designed, but not run, by the
researchers choice. Of these, 11 of 13 were predicted to
fail (84.6%), and 3 of those had been redesigned once but
still predicted to fail. For the 39 completed PCR reac-
tions, a 2 × 2 confusion matrix tabulated the resulting
combinations of predicted to fail or succeed vs. actual
fail or succeed, with prediction accuracy calculated as
the fraction of correction predictions out of total predic-
tions (TN + TP)/n, and with success rate calculated as
fraction of successful reactions out of total predictions
(FP + TP)/n.

Data and Code Availability: All code and data
for reproducing or extending the results described in
this manuscript are available at https://github.com/

Oradroc/PCR_ML_model
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SUPPLEMENTAL INFORMATION

PCR outcome success can be defined as only having the
correct amplicon, a clean outcome, or having the correct
amplicon despite also having nonspecific products in the
gel. Figure S2 shows the results for a second model,
trained with the success parameter defined as the latter,
i.e., merely containing the correct band.

The model peak accuracy contains 6 features at 79±6%
and an F1 score peak containing 7 features of 83 ± 4%.
The features contained in this optimal model overlap
with the 15 features in model with success defined as
clean PCRs. We expected more features would be re-
quired to predict clean PCRs because more resolution is
needed distinguish between a PCR containing the cor-
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FIG. 3: Standardized data collection form for PCR experiment parameters and outcome.

rect band alone and a correct band reaction containing
nonspecific products.
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FIG. S1: Contrasting PCR parameter distributions for success versus failure outcomes across n1 = 290 experiments, for the
11 remaining most important features in the optimal prediction model (Fig. 1), (e) Extension Temp., (f) Template Amount,
(g) Melting Cycle Temp., (h) Final Extension Cycle Temp., (i) Max Homodimer Tm, (j) Max GC Clamp Strength, (k) Melting
Cycle Time, (`) Min Primer Tm, (m) Product Band Size, (n) Total Primer, and (o) Amplification Cycles. As with the four
most important features (Fig. 2), the lack of clear separation between the contrasting distributions illustrates the marginal
utility of most individual features for predicting overall PCR success.
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Average human expert accuracy

FIG. S2: Accuracy and F1 scores for the sequence of models constructed under the forward greedy selection algorithm, applied
to the 23 PCR features, with successful outcome definition allowing nonspecific products. Optimality is obtained at 6 or 7
features, and far exceeds the baseline accuracy of expert researchers. Envelops indicate 95% bootstrap confidence intervals, and
the baseline accuracy indicates the proportion of experiments with a clean PCR outcome, i.e., the average expert researcher
accuracy.
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