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 2 

Abstract 28 

In post-mining rehabilitation, successful mine closure planning requires specific, measurable, 29 

achievable, relevant and time-bound (SMART) completion criteria, such as returning 30 

ecological communities to match a target level of similarity to reference sites. Soil microbiota 31 

are fundamentally linked to the restoration of degraded ecosystems, helping to underpin 32 

ecological functions and plant communities. High-throughput sequencing of soil eDNA to 33 

characterise these communities offers promise to help monitor and predict ecological 34 

progress towards reference states. Here we demonstrate a novel methodology for monitoring 35 

and evaluating ecological restoration using three long-term (> 25 year) case study post-36 

mining rehabilitation soil eDNA-based bacterial community datasets. Specifically, we 37 

developed rehabilitation trajectory assessments based on similarity to reference data from 38 

restoration chronosequence datasets. Recognising that many alternative options for 39 

microbiota data processing have potential to influence these assessments, we 40 

comprehensively examined the influence of standard versus compositional data analyses, 41 

different ecological distance measures, sequence grouping approaches, eliminating rare taxa, 42 

and the potential for excessive spatial autocorrelation to impact on results. Our approach 43 

reduces the complexity of information that often overwhelms ecologically-relevant patterns 44 

in microbiota studies, and enables prediction of recovery time, with explicit inclusion of 45 

uncertainty in assessments. We offer a step change in the development of quantitative 46 

microbiota-based SMART metrics for measuring rehabilitation success. Our approach may 47 

also have wider applications where restorative processes facilitate the shift of microbiota 48 

towards reference states. 49 

 50 

 51 
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 4 

1. INTRODUCTION 57 

Land degradation and transformation, with negative impacts to biodiversity and ecosystem 58 

function, are estimated to impact 75% of the Earth's land surface, and this figure is projected 59 

to rise to over 90% by 2050 (IPBES, 2018). Ecological restoration—activity that supports 60 

rehabilitation of locally representative, sustainable, biodiverse ecosystems (Gann et al., 61 

2019)—is seen as integral to reversing these impacts, as highlighted by the UN declaration of 62 

2021–2030 as the Decade on Ecosystem Restoration (https://www.decadeonrestoration.org/). 63 

Restoration is technically challenging and requires considerable investment, without 64 

guaranteed success (Tibbett, 2015). With large investments in restoration (e.g. BenDor et al., 65 

2015 estimate US$9.5 billion/yr is spent in the USA alone; Menz et al., 2013 estimate US$18 66 

billion/yr is required to restore degraded lands globally), there is a need to improve the 67 

evidence base to guide continuous improvement in restoration outcomes and to underpin 68 

future investment. 69 

Reference ecosystems provide an important basis for establishing targets and 70 

monitoring progress of restoration activities (Gann et al., 2019) (online Supporting 71 

Information (SI) Appendix, Figure S1). In post-mining contexts, best practice guidelines 72 

require formal mine completion criteria to be prescribed in a matter that is specific, 73 

measurable, achievable, relevant and time-bound (SMART) (Australian_Government, 2016; 74 

Manero et al., 2021). To-date, completion criteria have largely focussed on vegetation 75 

community variables, with typical ecological measures including alpha and beta diversity 76 

reflecting the number of different taxa and community composition, respectively. For 77 

example, targets may be set at a minimum threshold similarity to a reference community. 78 

Despite available guidance, many completion criteria are ambiguous or ill-defined, and can 79 

result in unclear standards for regulators, unrealistic expectations for stakeholders, and 80 

represent a key barrier to the relinquishment of minesites (Manero et al., 2021). To help 81 
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move the industry towards improved definitions of completion criteria, Manero et al. (2021) 82 

suggest criteria for industry best practice, which include using multiple reference sites, 83 

monitoring and corrective actions (i.e., adaptive management), allowing innovation-guided 84 

completion criteria, and specific objectives and indicators. 85 

Soil microbial communities (microbiota) have essential roles in organic matter 86 

decomposition, soil formation, and nutrient cycling, and therefore help regulate plant 87 

productivity and community dynamics (Harris, 2009). Patterns of land use, vegetation 88 

communities, and soil quality each help to shape soil microbiota (Bulgarelli et al., 2013; 89 

Delgado�Baquerizo et al., 2018; Turner et al., 2013). Microbiota depend on the resource and 90 

energy flows associated with aboveground biota, and therefore their monitoring may help 91 

indicate the impact of restoration interventions (Harris, 2009; Jiao et al., 2018; van der Heyde 92 

et al., 2020). 93 

The development of low-cost, high-throughput sequencing of environmental DNA 94 

(eDNA) has enabled affordable, rapid and comprehensive assessment of soil microbiota. 95 

Applying recognised ecological assessment approaches to abundant eDNA-based microbiota 96 

data has potential to provide a novel tool for measuring trajectories and predicting time to 97 

recover towards restoration targets (Rydgren et al., 2019). Chronosequence study designs, 98 

while containing limitations (Walker et al., 2010), are commonly used to examine ecosystem 99 

recovery following restoration activities (Tibbett, 2010). However, there are few studies of 100 

soil microbiota from restoration chronosequences that explicitly visualise and evaluate 101 

patterns in ecological similarity to reference data with time since rehabilitation. It is 102 

customary for such studies (e.g., Fernandez Nuñez et al., 2021; Jiao et al., 2018; Schmid et 103 

al., 2020) to examine patterns in microbiota composition via analysis of taxonomic groups 104 

and ordination techniques which project multivariate community data into lower dimensional 105 

space (e.g., 2-d plots). These popular techniques often characterise the complexity and site-106 
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specificity of soil ecosystems. However, a focus on measuring ‘similarity to reference’ may 107 

help cut through the complexity inherent to microbiota data. Along these lines, van der 108 

Heyde et al. (2020) visualised temporal trends in ecological similarity to reference data in 109 

post-mining rehabilitation—however, in their example each rehabilitation sample was only 110 

compared to a single closest reference sample, which potentially limited insight into 111 

variability and uncertainty in microbiota recovery. 112 

Here we provide a proof-of-concept demonstration and detailed exploration of a new 113 

complexity-reducing application of eDNA-based soil bacterial community data to assess the 114 

progress of post-mining rehabilitation using three long-term (> 25 year) chronosequence case 115 

studies from south-west Western Australia. Specifically, we aim to demonstrate the use of 116 

chronosequence-based rehabilitation trajectories, using measures of percent similarity of 117 

bacterial community structure to ecological reference sites (hereafter termed references), to 118 

assess progress of soil bacterial communities towards reference states with increasing 119 

rehabilitation age. We note that further work that links microbiota to other ecosystem 120 

components (e.g., vegetation, fauna) is important but beyond the scope of our study. 121 

Our intended audience includes microbiome researchers working in ecosystem 122 

restoration, as well as restoration managers who are considering new methods to add to their 123 

ecological monitoring toolkit. Our approach may also have applications for monitoring and 124 

predicting microbiota recovery toward reference states in diverse fields, such as microbiota-125 

mediated human health (Lloyd-Price et al., 2016) and microbiota-conscious urban design 126 

(Watkins et al., 2020). 127 

Due to the potential for alternative data processing options to cause varying impacts 128 

on our rehabilitation trajectory assessments, we compare outcomes from a range of potential 129 

options relevant to microbiota data analyses. For example, compositional data analysis 130 

approaches are promoted to have greater statistical rigour compared to standard approaches 131 
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(Gloor et al., 2017); grouping bacterial taxa based on sequence similarity (i.e., varying the 132 

resolution of operational taxonomic units, OTUs) might help manage noise associated with 133 

microbiome data; taxonomic grouping might assist interpretation if recognised groups can be 134 

discussed; and eliminating rare taxa (to simulate reduced sequencing depths) might allow 135 

more cost-effective and rapid analyses. We also recognise the potential for spatial 136 

autocorrelation—where measured outcomes are closer in value due to closer spatial 137 

proximity—to confound the assessment of rehabilitation age in chronosequence studies that 138 

lack appropriate spatial design and replication. Accordingly, our a priori research questions 139 

were: (1) can soil bacterial community data be used to establish reference-based targets? (2) 140 

can soil bacterial community rehabilitation trajectory data be used to predict the time to 141 

recover to reference targets? and (3) how are these predictions of recovery influenced by 142 

different ecological distance/similarity measures and sequence data resolution? (4) 143 

Additionally, we conduct a preliminary, illustrative examination of spatial autocorrelation, 144 

and trial an approach to highlight and ‘correct’ datasets where its influence appears 145 

excessive. We then discuss limitations and synthesise our findings to inform future work. 146 

 147 

2. MATERIALS AND METHODS 148 

2.1 Data collection 149 

We used surface soil bacterial 16S rRNA marker gene data from three case study minesites 150 

(Figure 1; SI Appendix, Tables S1–S3) from south-west Western Australia. Soil sampling 151 

was undertaken in accordance with Australian Microbiome (AM) protocols (Bissett et al., 152 

2016; https://www.australianmicrobiome.com/protocols; SI Appendix, Supplementary 153 

Methods). Each minesite experiences a Mediterranean-type climate with hot, dry summers 154 

and cool, wet winters. Post-mining rehabilitation activities typically involved deep-ripping, 155 

prior to the ‘direct return’ (where possible) of subsoil and topsoil stripped from a separate pit 156 
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about to be mined, followed by revegetation with locally appropriate seed of diverse plant 157 

communities (Tibbett, 2010). Precise soil handling and storage techniques differed between 158 

the minesites and different pits within minesites. Summary information for each minesite is 159 

provided below (see SI Appendix, Supplementary Methods for more background 160 

information; other studies in-progress will provide expanded analyses of surface and subsoil 161 

data from these minesites, including additional marker gene datasets). 162 

Alcoa’s Huntly bauxite-producing minesite is approximately 100 km south-east of 163 

Perth, occurring in mixed open forest with dominant overstorey species of Jarrah (Eucalyptus 164 

marginata) and Marri (Corymbia calophylla) on lateritic, nutrient poor soils. We consider 165 

Huntly data sampled in 2016, with rehabilitation ages between 2–29 years old. Huntly’s 36 166 

samples correspond to rehabilitation years: 1987 (n = 3), 1991 (n = 3), 1999 (n = 3), 2002 (n 167 

= 3), 2008 (n = 3), 2014 (n = 3), reference (n = 18), where each reference site was paired with 168 

an adjacent rehabilitation site.  169 

Iluka Resource’s Eneabba mineral-sand minesite is approximately 280 km north of 170 

Perth, occurring in sandplain heath vegetation comprising low shrubland on undulating 171 

infertile siliceous sandplains, predominantly featuring perennial woody species from the 172 

Proteaceae, Myrtaceae, and Fabaceae families. We consider Eneabba data sampled in 2019, 173 

with rehabilitation ages between 7–38 years. Eneabba’s 26 samples correspond to 174 

rehabilitation years: 1981 (n = 3), 1989 (n = 2), 1995 (n = 3), 2000 (n = 2), 2004 (n = 3), 175 

2009 (n = 2), 2012 (n = 2), reference (n = 9).  176 

South32’s Worsley bauxite-producing minesite is located approximately 150 km south 177 

of Perth, occurring in Jarrah (Eucalyptus marginata) forest on lateritic, nutrient poor soils. 178 

We consider Worsley data sampled in 2019, with rehabilitation ages between 2–28 years old. 179 

Worsley’s 25 samples correspond to rehabilitation years: 1991 (n = 2), 1996 (n = 4), 1999 (n 180 

= 2), 2002 (n = 2), 2005 (n = 2), 2007 (n = 1), 2011 (n = 3), 2017 (n = 3), reference (n = 6).  181 
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Each soil sample had physico-chemical analyses performed at CSBP Laboratories 182 

(Perth, Western Australia) to quantify key soil abiotic variables as prescribed by AM 183 

protocols, including soil texture, organic carbon, ammonium, potassium, sulphur, calcium, 184 

pH, nitrate, phosphorous, and electrical conductivity. 185 

 186 

FIGURE 1. Locations of minesites and soil sampling sites: (a) Huntly, (b) Eneabba, 187 

(c) Worsley. (Imagery: Sentinel-2; https://eos.com/landviewer; EOS Data Analytics, Inc.) 188 

 189 

2.2 eDNA sequencing, bioinformatics, and data preparation 190 
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DNA extraction, PCR and preliminary bioinformatic analyses were undertaken in accordance 191 

with AM workflows (Bissett et al., 2016; see SI Appendix, Supplementary Methods). From 192 

this workflow, denoised 16S rRNA gene amplicon sequence variant (ASV) level abundance 193 

data were produced for all minesites. Note, in this study ASVs are equivalent to zero radius 194 

OTUs (zOTUs). Further data preparation and analyses were largely undertaken in R version 195 

4.0.3 (R-Core-Team, 2020) utilising the framework of the R phyloseq package (McMurdie & 196 

Holmes, 2013) to manage the datasets (see SI Appendix Supplementary Methods for number 197 

of sequences and ASVs studied in each minesite, initial data cleaning steps, and preparation 198 

of phylogenetic trees). 199 

 200 

2.3 Data visualisation and statistical analyses 201 

We visualised the sequence depth of samples using rarefaction curves (SI Appendix, 202 

Figure S2). We performed exploratory data analyses to visualise ASV alpha diversity, 203 

evenness, and relative abundance via heatmaps of phyla, classes, and orders in each minesite 204 

(SI Appendix, Supplementary Methods, Figures S3–S13). Alpha diversity and evenness were 205 

based on rarefied ASV abundances (as below), while relative abundances were computed 206 

using non-rarefied data. Further exploratory data analyses included preliminary visualisations 207 

of soil and landscape variables that associated with the soil bacterial community samples 208 

within each minesite (see SI Appendix Supplementary Methods, Supplementary Data, 209 

Figures S14–20). 210 

To prepare for the computation of ‘standard’ ecological distance measures (as 211 

described by Gloor et al., 2017; e.g. Bray-Curtis, Jaccard, UniFrac), we normalised the 212 

sequence data for sampling effort by rarefying abundances of ASVs, and other taxonomic 213 

levels investigated (see below), to the minimum sample sequence depth within respective 214 
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minesites (Huntly, n = 17,485 sequences; Eneabba, n = 10,142 sequences; Worsley, n = 215 

54,122 sequences) using the rarefy_even_depth() function from R phyloseq. 216 

 To prepare ‘compositional’ data analysis distance measures we followed the 217 

recommendations of Gloor et al. (2017) and Quinn et al. (2019), using non-rarefied data. 218 

However, we took the pragmatic initial step of excluding taxa that contained zero counts in 219 

more than 90% of samples within each minesite, to help limit the potential for artefactual 220 

influences (as discussed later) to be introduced by the subsequent steps of zero replacement 221 

and centred log ratio transformation. Then, following Quinn et al. (2019) we used the default 222 

geometric Bayesian multiplicative model in the cmultRepl() function of the R zCompositions 223 

package (Palarea-Albaladejo & Martín-Fernández, 2015) to replace zeros with small 224 

numbers; before computing centred log ratio transformations using the propr() function from 225 

the R propr package (Quinn et al., 2017). Further steps are outlined in section 2.3.1 below. 226 

We examined a range of alternative qualitative and quantitative beta diversity (i.e., 227 

distance or community dissimilarity) measures which were converted to similarity, to model 228 

rehabilitation trajectories and time to reach reference targets (as described further below). For 229 

the minesite with the largest number of samples (Huntly), we also investigated data pre-230 

processing options of grouping by sequence similarity, taxonomic grouping, and excluding 231 

rare taxa. Details of the number of samples, taxa and sequences considered for all minesites, 232 

distance measures and data processing options (see below) are provided in the SI Appendix, 233 

Table S4. 234 

 235 

2.3.1 Comparison of alternative ecological and compositional similarity measures 236 

For each minesite, we used the cleaned and rarefied ASV-level bacterial community data to 237 

derive standard ecological distance matrices using distance measures commonly employed in 238 

microbiota studies—i.e., Jaccard, Bray-Curtis, Unweighted UniFrac and Weighted UniFrac 239 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018


 12

(Lozupone et al., 2007)—via the vegdist() function from the R vegan package (Oksanen et 240 

al., 2020). We also compared results from the Bray-Curtis measures with the compositional 241 

data analysis approach from computing Aitchison distances via vegdist() (i.e., these were 242 

derived from Euclidean distances between samples after centred log ratio transformation; 243 

Gloor et al., 2017). For each minesite, Bray-Curtis distances were visualised using non-244 

metric multidimensional scaling (NMDS) ordination, while Aitchison distances were 245 

visualised using principal components analysis (PCA) (Gloor et al., 2017) (Figure 2). For the 246 

comparison between Bray-Curtis and Aitchison measures at Worsley we used the spatially 247 

filtered dataset which excluded the southernmost samples as described in section 2.3.6. 248 

The rehabilitation trajectory analyses presented here were then derived from a subset 249 

of data contained in the above distance matrices. Specifically, only pairwise distances 250 

between samples and reference samples were considered (including distances among 251 

reference samples within minesites).  252 

For standard measures (i.e. Bray-Curtis, Jaccard, Weighted UniFrac and Unweighted 253 

UniFrac) data were then expressed as percent similarity to reference values using: 254 

% ��������	
 	� ��
�������������� �	/� ��
��� � ��� ��� �� � 100 � �1 � ���	������� 

For the compositional Aitchison measures, similarity to reference was calculated 255 

using: 256 

% ��������	
 	� ��
��������������� �	/� ��
��� � ��� ��� �� � 100 � �1 � 
���	������

���	����
��

� 

 257 

  258 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018


 13

 259 

 260 

 261 
 262 
FIGURE 2. NMDS and PCA visualisations of differences in soil bacterial communities for: 263 

Huntly (n = 36 samples) using (a) Bray-Curtis distances (30,751 ASVs; 629,460 sequences) 264 

and (b) Aitchison distances (25,720 ASVs, 1,723,759 sequences); Eneabba (n = 26 samples) 265 

using (c) Bray-Curtis distances (27,115 ASVs; 263,692 sequences) and (d) Aitchison 266 

distances (24117 ASVs; 2,042,214 sequences); Worsley (excluding southernmost samples, n 267 
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= 22 samples) using (e) Bray-Curtis distances (53404 ASVs; 1,190,684 sequences) and (f) 268 

Aitchison distances (43,598 ASVs; 1,782,724 sequences). 269 

 270 

2.3.2 Grouping by sequence similarity 271 

For Huntly data only, separate R phyloseq objects were generated to represent soil bacterial 272 

community data with sequences clustered into 99%, 97%, 95%, and 90% identity OTUs (see 273 

SI Appendix, Supplementary Methods). For these analyses, OTUs were formed, abundance 274 

data were rarefied, and then Jaccard and Bray-Curtis distances and similarity to references 275 

were calculated. 276 

 277 

2.3.3 Taxonomic grouping 278 

For Huntly data only, we examined the influence of taxonomic grouping (i.e., ASV, genus, 279 

family, order, class, and phylum) on the assessments of recovery. We also tested the 280 

influence of discarding versus retaining (at the next available classified grouping) taxa that 281 

were unclassified at each taxonomic rank, which we termed ‘pruned’ and ‘non-pruned’ data 282 

respectively. Grouping was undertaken using tax_glom(); and in ‘pruned’ datasets, 283 

unclassified taxa were removed using prune_taxa() from R phyloseq. For these analyses, taxa 284 

were grouped, abundance data were rarefied, then Jaccard and Bray-Curtis distances and 285 

similarity to references were calculated. Richness and evenness of sequences at the order, 286 

class and phylum level were also visualised based on rarefied data and plotted together with 287 

composite estimates within rehabilitation age groups from merged-sample bootstrap 288 

resampling (Liddicoat et al., 2019) (B=100). 289 

 290 

2.3.4 Excluding rare taxa 291 
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For Huntly data only, we examined the influence of excluding rare taxa, by considering all 292 

ASVs, then ASVs with >0.001 %, > 0.01%, and > 0.1% relative abundance within each 293 

minesite. For these analyses, ASVs with below the respective relative abundance threshold 294 

were removed, abundance data were rarefied, then Jaccard and Bray-Curtis distances and 295 

similarity to references were calculated. 296 

 297 

2.3.5 Rehabilitation trajectory modelling 298 

The progress of rehabilitation was then visualised using boxplots and logarithmic models 299 

based on the similarity to reference data. Boxplots were generated from the series of 300 

similarity to reference data on the y-axis and increasing rehabilitation age on the x-axis, 301 

concluding with reference samples (e.g., Figure 3). Testing for differences in similarities to 302 

reference at each rehabilitation age (as visualised with boxplots) was performed using the 303 

Kruskal-Wallis rank sum test, followed by post-hoc Dunn tests for multiple comparisons, 304 

with Bonferroni adjusted threshold P-values. The multiple comparison testing used default 305 

two-sided P-values and alpha = 0.05 nominal level of significance. 306 

After observing the variation in similarity to reference values among references 307 

within each minesite (e.g., Figure 3), we defined rehabilitation targets for the purpose of this 308 

study as the median (= the central value) of among-reference similarities. This target median 309 

value varied by minesite, distance/similarity measure, and pre-processing option.  310 

We predicted the time to reach a restoration target (= recovery time) by modelling the 311 

trend in similarity to reference with increasing rehabilitation age using bootstrapped (B = 312 

100) logarithmic models. The median, 2.5th and 97.5th percentiles of predicted recovery time 313 

were evaluated. Our use of logarithmic models was consistent with the approach of Rydgren 314 

et al. (2019), except we used similarity not distance measures. Each iteration of the bootstrap 315 

involved random sampling with replacement from the available chronosequence similarity to 316 
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reference data, excluding outliers identified via the boxplot() function in base R, and 317 

developing a predictive logarithmic model for similarity to reference out to a maximum 318 

rehabilitation age of 500 years, or until the target was reached. Models that failed to reach the 319 

target were reported with a prediction time of ‘>500 years’. Rectangular hyperbola and 320 

negative exponential models were also trialled but were abandoned after many cases failed to 321 

produce model fits. During our early analyses, we also uncovered example data that 322 

highlighted a distorting influence on our trajectory (and recovery time) modelling that 323 

appeared to be consistent with the application of ‘direct return’ soils in young rehabilitation 324 

sites. Specifically, this soil material was more similar to references than older rehabilitation 325 

sites. Including these samples with elevated similarity to references in the logarithmic 326 

modelling appeared to bias models towards flatter, longer trajectories of recovery. Therefore, 327 

to reflect the likely onset of recovery towards reference states we decided to only commence 328 

logarithmic models (via our automated modelling algorithm) from the youngest rehabilitation 329 

age group that had a next older group with increased median similarity to references. As 330 

discussed later, this check on model commencement was designed to avoid likely distortions 331 

in the modelling of recovery, in particular, due to potential biological inertia in direct return 332 

soils (Janzen, 2016). 333 

 334 

2.3.6 Exploring spatial autocorrelation 335 

To explore the influence of spatial autocorrelation on our trajectory analyses, we produced 336 

variogram-like plots using Bray-Curtis ecological distances (between samples and references) 337 

on the y-axis, and geographic distances (between samples and references) on the x-axis. Each 338 

rehabilitation age group was modelled as a second-order polynomial, allowing the possible 339 

expression of curvilinear trendlines that mimicked variogram-like relationships (i.e., 340 

increasing then flattening). Assuming reference curves offered a natural baseline trend for 341 
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spatial autocorrelation within each minesite environment, we applied a 'correction' to the 342 

curvilinear trendline for each rehabilitation age group by calculating the difference in mean-343 

centred model curves (= rehabilitation age group minus reference), such that 'corrected' data 344 

for rehabilitation age groups expressed the same ecological distance-geographic distance 345 

curvilinear trend as seen for references (see SI Appendix Supplementary Methods for further 346 

details of the rationale and approach for this preliminary analysis). Rehabilitation trajectories 347 

and predicted recovery times were compared between ‘original’ and ‘corrected’ data, for the 348 

Bray-Curtis similarities. For the Worsley minesite, a filtered dataset, and corresponding 349 

correction, were also prepared which excluded the three southernmost samples (i.e., two 2-350 

year old samples and an adjacent reference), which were geographically separate from the 351 

other Worsley samples (see Figure 1, and SI Appendix Table S3). 352 

 353 

3. RESULTS 354 

3.1 General findings 355 

We found remarkable variability among reference samples within each minesite (Figure 3; SI 356 

Appendix, Table S5, Figures S21, S23–S25). Median among-reference similarities ranged 357 

from <20% to >95% across all measures, and between approximately 30–40% for Bray-358 

Curtis measures, with variation depending on the specific distance measure, pre-processing 359 

option, and minesite. All rehabilitation trajectory plots indicated recovery, displaying the 360 

general pattern of increasing similarity to references with increasing rehabilitation age 361 

(Figure 3; SI Appendix, Figures S21, S23–S25), although the logarithmic models and 362 

predicted recovery times varied with distance measures, pre-processing and minesite.  363 

 364 
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 365 

 366 

FIGURE 3. Modelled rehabilitation trajectories (a) and predicted recovery times (b) for 367 

Huntly, Eneabba, and Worsley (excluding southernmost samples) based on surface soil 368 

bacterial community similarity to reference data using Bray-Curtis and Aitchison measures. 369 

Plots are derived from the same data that underpin Figure 2. In (a), blue dotted lines denote 370 

the target median similarity among reference soils, and red lines represent logarithmic models 371 

for changing similarity to reference with rehabilitation age based on bootstrap resampling and 372 
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modelling (B=100). Boxplots display the distribution of similarity to reference values across 373 

rehabilitation ages (groups not sharing a letter are significantly different). In (b), violin plots 374 

with boxplot inlays depict the distribution of recovery times from the 100 bootstrap model 375 

runs. Δ 95% prediction intervals (PI) indicate whether differences in recovery times predicted 376 

using alternative measures (Bray-Curtis versus Aitchison) are significantly different. 377 

 378 

3.2 Alternative ecological and compositional measures 379 

Despite some differences in the expression of rehabilitation trajectories using Bray-Curtis 380 

versus Aitchison measures at Huntly, Eneabba, and Worsley (excluding southernmost 381 

samples), these measures produced comparable predictions for recovery time within each 382 

minesite (Figure 3; SI Appendix, Table S6). At Huntly, predicted recovery times differed by 383 

around 12 years, with a median recovery of 43 years for Bray-Curtis measures and 31 years 384 

for Aitchison measures. At Eneabba, the median Bray-Curtis recovery time was 60 years, 385 

while the median Aitchison recovery time was 50 years, however due to the spread of model 386 

outcomes, predictions from these measures were not significantly different (i.e., Δ 95% 387 

interval contains zero; Figure 3). Similarly, at Worsley (excluding southernmost samples), 388 

the median Bray-Curtis recovery time was 44 years, while the median Aitchison recovery 389 

time was 53 years, however predictions from these measures were not significantly different 390 

(i.e., Δ 95% interval contains zero; Figure 3). 391 

Among standard measures we found a general increase in similarity to reference 392 

values across the ecological measures, from Jaccard (generally lowest similarities), Bray-393 

Curtis, Unweighted UniFrac, to Weighted UniFrac (generally highest similarities) (SI 394 

Appendix, Figure S21, Table S5). The greatest y-axis span, and therefore greatest sensitivity 395 

to detect change, in similarity to reference values between the youngest rehabilitation ages 396 

and references occurred with Bray-Curtis measures (SI Appendix, Figure S21). The smallest 397 
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span (or flattest curves) in similarity to reference values between the youngest rehabilitation 398 

ages and references occurred with Weighted UniFrac measures. 399 

Except for the Unweighted Unifrac result at Huntly, Jaccard measures generally 400 

returned the longest predicted recovery times, followed by reduced or similar recovery times 401 

predicted using Bray-Curtis, Unweighted Unifrac and Weighted UniFrac measures (SI 402 

Appendix, Figure S22, Table S6). Low sample sizes (and corresponding low numbers of 403 

distance measures) represent a limitation in our analysis, and the ecologically-distant samples 404 

in the 17-year and 25-year rehabilitation age group at Huntly (Figure 2a) are likely 405 

contributing to the reduced similarity and longer rehabilitation trajectory in Unweighted 406 

UniFrac data. These 17-year and 25-year rehabilitation age group data at Huntly express 407 

reduced alpha diversity and evenness compared to other samples, however reasons for this 408 

are unclear (SI Appendix, Figures S3–S4). 409 

 410 

3.3 Grouping by sequence similarity (Huntly only) 411 

Grouping by sequence similarity resulted in progressive overall shifts towards increasing 412 

similarity to reference values from ASV-level (generally lowest similarities), 99%, 97%, 413 

95%, to 90%-identity clustered OTUs (generally highest similarities) (SI Appendix, Figure 414 

S23). Predicted recovery times with more broadly clustered OTUs followed continuous and 415 

seemingly predictable patterns of: (i) increasing recovery times with Jaccard measures, and 416 

(ii) decreasing to steadying recovery times with Bray-Curtis measures (SI Appendix, Figure 417 

S26a, Table S6). 418 

 419 

3.4 Taxonomic grouping (Huntly only) 420 

Moving from ASV to genus-level data resulted in a pronounced shift towards increasing 421 

similarity to reference, with similar although somewhat flatter rehabilitation trajectory curves 422 
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at higher taxonomic groupings (SI Appendix, Figure S24). Visually, there appeared to be 423 

little effect on the rehabilitation trajectory plots from pruning unclassified taxa (SI Appendix, 424 

Figure S24). Using Jaccard measures, moving from ASV-level to grouping at genus-level or 425 

higher groupings dramatically increased predicted recovery times, compared to other 426 

measures (SI Appendix, Figure S26b, Table S6). Also, pruning of unclassified groups 427 

reduced the smoothness or continuity in Jaccard-predicted recovery times (SI Appendix, 428 

Figure S26b). Using Bray-Curtis measures, we found a non-linear pattern of recovery times 429 

across the taxonomic groupings, with shorter times to reach the target in genus, family, and 430 

order-level groups, and longer recovery times in other groupings (SI Appendix, Figure S26b; 431 

see SI Appendix, Figures S5–S13 for relative abundances of order, class, and phylum-level 432 

taxa for each minesite). Richness and evenness of bacterial communities varied across 433 

rehabilitation age groups and taxonomic groupings (e.g., data for phylum, class, and order-434 

level are shown in SI Appendix, Figure S27), which may help explain the somewhat erratic 435 

results from taxonomic grouping. 436 

 437 

3.5 Excluding rare taxa (Huntly only) 438 

Removing rare taxa to the point of retaining ASVs with >0.01% relative abundance produced 439 

results from the Jaccard analysis that appeared to mimic results from the Bray-Curtis analysis 440 

(SI Appendix, Figure S25). When only more common ASVs with >0.1% relative abundance 441 

were retained, both the Jaccard and Bray-Curtis results appeared to reflect over-simplified 442 

communities, resulting in shorter predicted recovery times. However, including only ASVs 443 

with >0.001% relative abundance resulted in a dataset with approximately 60% of the 444 

original taxa and 95.8% of total sequences after rarefying (i.e., 17,941 compared to 30,751 445 

ASVs and 603,072 compared to 629,460 sequences; SI Appendix, Table S4) and produced 446 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018


 22

only a small increase in predicted recovery times for both Jaccard and Bray-Curtis measures 447 

(SI Appendix, Figure S26c, Table S6). 448 

 449 

3.6 Correcting for spatial autocorrelation 450 

We modelled the slope-trends of the relationships between ecological distance to references 451 

and geographic distance to references, within rehabilitation age classes, for each of the 452 

minesites using Bray-Curtis measures (see SI Appendix, Huntly and Eneabba: Figures S28–453 

S29; Worsley: Figure 4). We also applied a ‘correction’ for the spatial autocorrelation, such 454 

that rehabilitation age groups were adjusted to display the same ecological-geographic slope 455 

trend as found in references (refer to the ‘c’ panels in SI Appendix, Figures S28–S29; Figure 456 

4). Figure 4d–f also includes the Worsley ‘filtered’ dataset and corresponding correction, 457 

where the three southernmost geographically separate samples were excluded. Rehabilitation 458 

trajectory plots, and predicted recovery times, using corrected data were compared to the 459 

original uncorrected data (see Figure 5 and SI Appendix, Table S6). 460 

Worsley displayed a strong ecological distance-geographic distance trend in among-461 

reference data indicating excessive spatial autocorrelation (note the upward sloping ‘Ref’ line 462 

in Figure 4a), and the greatest divergence of all the minesites in predicted recovery times 463 

between original and corrected data (Figure 5; SI Appendix, Table S6). Notably, the spatial 464 

autocorrelation correction at Worsley caused such an adjustment in similarity to reference 465 

values that the youngest rehabilitation age group was included in the logarithmic trajectory 466 

models in the corrected data, but not in the original data. However, with exclusion of the 467 

southernmost Worsley samples (i.e., the filtered dataset), the signal of spatial autocorrelation 468 

disappeared (i.e., absence of upward sloping lines in Figure 4d, f) and predicted recovery 469 

times for filtered and filtered-corrected data displayed almost identical distributions (Figure 470 

5; SI Appendix, Table S6). 471 
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 472 

 473 

 474 
FIGURE 4. Exploring spatial autocorrelation in the Worsley (a–c) and filtered Worsley 475 

(excluding southernmost samples) (d–f) datasets, based on Bray-Curtis distance measures. 476 

(a, d) Ecological distance to reference versus geographic distance to reference for 477 

rehabilitation age groups. (b, e) Mean-centred difference in ecological distance to reference 478 

between rehabilitation age groups and among references. (c, f) Corrected ecological distance 479 

to reference versus geographic distance to reference for rehabilitation age groups, to match 480 

the slope-trend of ecological to geographic distances as found among references. 481 
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 482 

 483 
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FIGURE 5. Modelled rehabilitation trajectories (a) and predicted recovery times (b) for 484 

Huntly, Eneabba, Worsley, and Worsley (excluding southernmost samples) based on surface 485 

soil bacterial community similarity to reference data using Bray-Curtis measures, with and 486 

without correction for spatial autocorrelation. Other features are as described in Figure 3. 487 

 488 

4. DISCUSSION 489 

4.1 Standard vs. compositional data analysis 490 

Our rehabilitation trajectory models produced comparable predictions for recovery times 491 

using Bray-Curtis (standard) and Aitchison (compositional) measures. At Huntly, Eneabba, 492 

and Worsley (excluding southernmost samples) median recovery times differed by around a 493 

decade (i.e., 43 vs. 31 years, 60 vs. 50 years, 44 vs. 53 years respectively), however for two 494 

out of three minesites the distribution of bootstrap model predicted recovery times was not 495 

significantly different. We suspect that both Bray-Curtis (standard) and Aitchison 496 

(compositional) measures will provide slightly different perspectives to the trajectory 497 

modelling (discussed below), while neither method is perfect. 498 

Compositional data analysis has been recently promoted as a more robust approach 499 

for analysing microbiome datasets (Gloor et al., 2017; Quinn et al., 2019), however it is not 500 

without limitations particularly for sparse datasets (containing many zeros), and where low 501 

sequence counts are commonly encountered (Lovell et al., 2020). In particular, replacement 502 

of zeros with small positive numbers has potential to cause distortions in data that will affect 503 

the relative abundance of small counts to a greater degree than large counts (Lovell et al., 504 

2020). Distortions in data due to zero replacement are also increased where there are large 505 

numbers of zeros present (Martín-Fernández et al., 2015). Therefore, our approach to exclude 506 

taxa that contained zero counts in more than 90% of samples within each minesite represents 507 

a compromise between losing representation of less common taxa and potentially introducing 508 
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spurious log ratio abundance patterns within the compositional data analysis. Following log 509 

ratio analysis, only the relative information is of interest; for example, counts of 1,2,3 510 

become equivalent to counts of 100, 200, 300. However, advocates of these approaches have 511 

suggested that it is up to the analyst to decide whether the relative, rather than the absolute, 512 

structure of the parts is of primary interest (Martín-Fernández et al., 2015). Also, the 513 

replacement of absolute zeros (representing true absences; as opposed to zeros due to 514 

rounding or resulting from insufficiently large samples) with small numbers is potentially 515 

inappropriate (Martín-Fernández et al., 2015), and creates a theoretical challenge to 516 

performing log ratio analyses on soil microbiota data from diverse environments where many 517 

absolute zeros (true absences) are likely. 518 

 519 

4.2 Alternative standard ecological measures 520 

Bray-Curtis measures produced the greatest range in similarity values between young 521 

rehabilitation and reference samples, and therefore are likely to offer the greatest sensitivity 522 

to quantify the progress of recovery of soil bacterial communities towards reference states. In 523 

contrast, Weighted UniFrac offered limited sensitivity to detect changes with rehabilitation 524 

age (i.e., shallow trajectory curves) and may result in under-prediction of recovery times. 525 

Low variation in Weighted Unifrac similarities likely reflects a level of consistency of high 526 

proportions of somewhat closely related organisms across the samples. Jaccard distances 527 

represent the proportion of unshared taxa out of the total number of taxa recorded in two 528 

groups (Anderson et al., 2006). Unweighted UniFrac uses phylogenetic information and 529 

calculates the fraction of the branch length in a phylogenetic tree that leads to descendants in 530 

either, but not both, of the two communities (Lozupone et al., 2007). These qualitative 531 

measures reflect the survival and presence of taxa (Jaccard) and related lineages (Unweighted 532 

UniFrac), where loss of sequences may reflect extreme or limiting environmental conditions 533 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018


 27

(e.g., soil abiotic factors) or limited geographic distribution. Meanwhile, Bray-Curtis and 534 

Weighted UniFrac measures emphasise abundant organisms. Similarity to reference generally 535 

increased with increasing abundances of shared taxa for Bray-Curtis, and shared lineages of 536 

related sequences for Weighted UniFrac. The quantitative measures often reflect the growth 537 

or decline of certain organisms due to factors such as nutrient availability and variation in 538 

environmental conditions (Lozupone et al., 2007). 539 

 540 

4.3 Grouping by sequence similarity 541 

Grouping near identical sequences will reduce the denominator used in calculating Jaccard 542 

distances. For a given number of unshared taxa between samples, using broader OTU clusters 543 

will make the proportion of unshared taxa (compared to all taxa) larger when there are a 544 

smaller number of total taxa present. Our data suggest this shifting Jaccard calculation can 545 

impact some samples strongly (e.g., note the 17-year age group in SI Appendix, Figure S23) 546 

resulting in a gradual increase in predicted recovery times with broader (reduced identity 547 

threshold) OTU clusters. On the other hand, broader OTU clusters will aggregate some 548 

sequences into already large groups and will tend to further emphasise abundant groups. 549 

Consequently, our Bray-Curtis data suggest broader OTU clustering will make the target 550 

similarity easier to reach and predicted recovery times reduced accordingly. 551 

 552 

4.4 Taxonomic grouping 553 

We do not recommend grouping 16S rRNA data by taxonomy to quantify recovery in soil 554 

bacterial communities due to the erratic behaviour of predicted recovery times. 555 

 556 

4.5 Excluding rare taxa 557 
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We show that filtering out of rare taxa to a limited extent (>0.001% relative sequence 558 

abundance) produces a relatively small increase in predicted recovery times for both Jaccard 559 

and Bray-Curtis measures. In our case, this filtering removed many ASVs but only a low 560 

percentage of total sequences. Interestingly, this low level of exclusion of rare taxa does not 561 

appear to moderate the assessment by producing reduced recovery times. At the low level of 562 

exclusion, our analysis using rarefied data and similarity to reference measures may help 563 

mitigate some of the impacts and concerns of removal of rare sequences experienced 564 

elsewhere (e.g., Schloss, 2020). This raises the prospect to reduce sequencing depth, and 565 

potential for shifting investment towards more robust assessments that incorporate a larger 566 

number of samples with reduced sequencing depth and cost per sample. 567 

 568 

4.6 Influence of ‘direct return’ soils in young rehabilitation sites 569 

For reasons discussed here and below, we suggest it is prudent for these similarity to 570 

reference trajectory assessments to exclude young rehabilitation sites with ‘direct return’ soils 571 

that display elevated similarity to reference—as we implemented in our automated trajectory 572 

modelling algorithm. In earlier preliminary work at Eneabba and Worsley, we observed that 573 

the inclusion of young rehabilitation samples that were overly similar to references resulted 574 

in seemingly biased, longer predictions of recovery time. The industry best practice of ‘direct 575 

return’ of topsoil to new rehabilitation sites is based on objectives to minimise soil 576 

degradation and expedite ecosystem recovery. However, our use of monotonic logarithmic 577 

models applied to a data series that contains young rehabilitation sites with elevated 578 

similarity to reference values, followed by older sites with reduced similarity to reference 579 

values, results in the seemingly perverse outcome of a flatter, longer modelled trajectory of 580 

recovery. The enhanced ecological similarity to reference in young rehabilitation sites with 581 

‘direct return’ soils reflects a biological inertia, or temporary carryover effect, from unmined 582 
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areas where the soils originate, and confounds the relationship between soil microbiota 583 

development and rehabilitation age. For ‘direct return’ soils, we speculate the time taken for 584 

local influences to become dominant in shaping the resident microbiota may be in the order 585 

of 1-10 years, varying on a case-by-case basis, e.g., due to soil factors including organic 586 

matter and clay content, as well as the magnitude of environmental influences. Soil 587 

microbiota will be shaped by influences including local rainfall, temperature, aspect, soil 588 

water availability and transport (e.g., run-on, lateral flow), and vegetation communities via 589 

plant-soil feedbacks. Existing deeper soil and substrate may also influence rehabilitation 590 

surface soils via upward movement of water, nutrients, and some microbiota through 591 

mechanisms including: hydraulic redistribution by plant root systems (Neumann & Cardon, 592 

2012); potential microbiota uptake and transfer via xylem into the phyllosphere (Deyett & 593 

Rolshausen, 2019; Fausto et al., 2018) and subsequent leaf litter; and capillary rise in heavier 594 

textured soils under conditions of soil water evaporation. Other factors affecting the 595 

similarity to reference of direct return soils include their source location (are they taken from 596 

sites that are generally closer to other reference sites or adjacent to rehabilitation sites?), the 597 

depth of fresh topsoil applied, the condition of subsurface layers (e.g., fresh vs. stockpiled), 598 

and the depth and method of tillage or mixing of the soil surface and subsurface layers 599 

following soil return. Our approach to automate the commencement of logarithmic models 600 

once there is at least an initial increase in similarity to reference values provides an objective 601 

approach to help overcome the potential model-biasing effect of biological inertia that is 602 

found in some direct return soils. 603 

 604 

4.7 Spatial autocorrelation 605 

We found signals of excessive spatial autocorrelation where strong slopes were detected in 606 

plots of ecological distance to reference versus geographic distance to reference, and where 607 
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substantial differences were detected in the logarithmic models and/or predicted recovery 608 

times between original and corrected datasets. Excluding geographic outliers in the filtered 609 

Worsley analysis also removed a clear spatial autocorrelation signal in the data, which 610 

indicates the importance of sampling designs. If rehabilitation sites reflect environmental 611 

settings or imported soils that are overly similar or dissimilar to references (i.e., different to 612 

natural background rates of spatial autocorrelation), this may unduly bias predicted recovery 613 

times. Where possible, we recommend a sampling approach that resembles the approach used 614 

at Huntly, where each reference site was spatially paired with an adjacent rehabilitation site. 615 

This approach helps capture variation among references (within a given minesite) relevant to 616 

the broader range of rehabilitation sites; and provided there is adequate spatial replication and 617 

geographic outliers are avoided, then undue influence from spatial autocorrelation should be 618 

avoided. 619 

Our analysis of spatial autocorrelation should be viewed as introductory and 620 

illustrative. For ‘direct return’ soils at young rehabilitation sites, our approach is deficient 621 

because we do not account for their previous location. Although, we anticipate localised 622 

influences would dominate the shaping of resident soil microbiota in rehabilitation sites after 623 

a few years, as discussed above. 624 

Plant-soil-microbiota feedbacks represent a complicating factor for disentangling 625 

effects of soil abiotic condition, rehabilitation age, and residual/unexplainable spatial 626 

autocorrelation in restoration chronosequence studies. This is because chronosequence 627 

studies (which presume a ‘space-for-time’ proxy relationship between treatments and 628 

outcomes) typically do not collect sufficient data to determine whether soil conditions have 629 

influenced rehabilitation outcomes, plants have conditioned soils, or both situations have 630 

occurred. Studies that have considered plant-soil feedbacks in restored Jarrah forest (Huntly) 631 

sites have shown differential correlative effects of rehabilitated soil biotic and abiotic 632 
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properties (Orozco-Aceves et al., 2017). Also, plant-soil feedbacks behave differently in 633 

unmined versus rehabilitated soils (Orozco-Aceves et al., 2015). Further work is required to 634 

build understanding of this topic (e.g., via longitudinal studies). 635 

 636 

4.8 Other limitations 637 

There are important limitations in our study, in addition to those already discussed. The 638 

robustness of our study would be improved with more samples per minesite to help better 639 

capture minesite-wide variation. We did not consider soil microbiota patterns at depth, which 640 

are also important. Also, major changes to rehabilitation practices over time will disrupt the 641 

‘space-for-time’ substitutive modelling approach that is relied upon in chronosequence 642 

studies such as ours. For any restoration chronosequence study careful sample selection is 643 

required to avoid confounding factors as much as possible (Walker et al., 2010). There are 644 

potential limitations in our study associated with the phylogenetic trees we used to generate 645 

UniFrac distances (see SI Appendix, Supplementary Methods for details). Tree-building 646 

often represents a compromise between accuracy in representing phylogenetic relationships 647 

and computing time, and it was beyond the scope of our study to test the sensitivity of our 648 

UniFrac-based analyses to the quality of trees used. We used logarithmic models which 649 

assume a monotonic recovery function, however other models that account for variable trends 650 

over time, and varying success for different rehabilitation techniques or sites, may offer 651 

improved estimates of recovery time. We suggest these limitations should be investigated in 652 

future studies. 653 

 654 

5. CONCLUSIONS 655 

We provide a proof-of-concept demonstration of an innovative, chronosequence-based, 656 

similarity to reference trajectory assessment method, to quantitatively track progress in soil 657 
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microbiota with post-mining rehabilitation. Through incorporating microbiota survey data 658 

from multiple reference sites of varying character, we revealed substantial variation among 659 

reference ecosystems within each minesite that can inform realistic rehabilitation targets. Our 660 

method reduces the complexity associated with microbiota data and enables prediction of 661 

recovery time to reach reference-based targets with explicit inclusion of uncertainty in 662 

assessments. Also, the use of soil microbiota data provides another line of evidence, which in 663 

conjunction with wider minesite information, could assist in the examination of potential 664 

impediments to the progress of rehabilitation, thereby helping to inform adaptive 665 

management. From our investigations, we recommend using ASV-level Bray-Curtis 666 

similarities which appear to offer a relatively sensitive and stable basis for modelling 667 

rehabilitation trajectories. We recommend wherever possible to maximise sample sizes, 668 

employ spatial pairing of reference and rehabilitation sites, and to exclude geographically-669 

distant, non-representative sampling areas. We used an automated modelling routine to 670 

exclude young rehabilitation sites with 'direct return' soils that displayed elevated similarity 671 

to reference values, which would have biased the trajectory modelling. Further fine-tuning to 672 

identify possible minor reductions in sequencing depths (eliminating some rare taxa) offers 673 

promise to reduce per sample costs, enabling investment in more samples, to help deliver 674 

more robust assessments. This work represents an important step towards a reduced-675 

complexity microbiota-based monitoring and evaluation framework consistent with many 676 

best practice principles for setting, monitoring and managing towards mine completion 677 

criteria recommended by (Manero et al., 2021). We anticipate that our approach could be 678 

expanded to other eDNA sequence-based survey data (e.g., fungal ITS and eukaryote 18S 679 

rRNA marker genes, functional potential from shotgun metagenomic data), and may have 680 

application in wider contexts where there is interest in monitoring restorative processes that 681 

facilitate a shift in microbiota towards reference states.  682 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018


 33

ACKNOWLEDGEMENTS 683 

We acknowledge the contribution of the Australian Microbiome consortium in the generation 684 

of data used in this publication. The Australian Microbiome is supported by funding from 685 

Bioplatforms Australia and the Integrated Marine Observing System (IMOS) through the 686 

Australian Government’s National Collaborative Research Infrastructure Strategy (NCRIS), 687 

Parks Australia through the Bush Blitz program funded by the Australian Government and 688 

BHP, and the CSIRO. This research was also supported by the Australian Research Council 689 

(LP190100051). 690 

 691 

AUTHOR CONTRIBUTIONS 692 

CL, SLK, MT and MFB conceived the ideas and designed the study; SLK, RJB, LCD, PB, 693 

MPD, AG collected the data; CL, SLK, AB, MFB analysed and interpreted the data with 694 

contributions from all authors; CL led the writing of the manuscript. All authors contributed 695 

critically to the drafts and gave final approval for publication. 696 

 697 

DATA AVAILABILITY STATEMENT 698 

Data and code are available at: https://data.bioplatforms.com/organization/about/australian-699 

microbiome and https://github.com/liddic/resto_traj 700 

 701 

ORCID 702 

Craig Liddicoat – https://orcid.org/0000-0002-4812-7524 703 

Siegfried L. Krauss – https://orcid.org/0000-0002-7280-6324 704 

Andrew Bissett – https://orcid.org/0000-0001-7396-1484 705 

Ryan J. Borrett – https://orcid.org/0000-0001-8663-0844 706 

Shawn D. Peddle – https://orcid.org/0000-0003-3464-3058 707 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018


 34

Mark P. Dobrowolski – http://orcid.org/0000-0001-5586-4023 708 

Andrew Grigg – https://orcid.org/0000-0002-5818-2973 709 

Mark Tibbett – https://orcid.org/0000-0003-0143-2190 710 

Martin F. Breed  – https://orcid.org/0000-0001-7810-9696 711 

 712 

  713 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018


 35

REFERENCES 714 

 715 

Anderson, M. J., Ellingsen, K. E., & McArdle, B. H. (2006). Multivariate dispersion as a 716 
measure of beta diversity. Ecology Letters, 9(6), 683-693. 717 
doi:https://doi.org/10.1111/j.1461-0248.2006.00926.x 718 

Australian_Government. (2016). Mine Rehabilitation: Leading Practice Sustainable 719 
Development Program for the Mining Industry. Retrieved from 720 
https://www.industry.gov.au/sites/default/files/2019-04/lpsdp-mine-rehabilitation-721 
handbook-english.pdf 722 

BenDor, T., Lester, T. W., Livengood, A., Davis, A., & Yonavjak, L. (2015). Estimating the 723 
Size and Impact of the Ecological Restoration Economy. PLoS One, 10(6), e0128339. 724 
doi:10.1371/journal.pone.0128339 725 

Bissett, A., Fitzgerald, A., Meintjes, T., Mele, P. M., Reith, F., Dennis, P. G., . . . et_al. 726 
(2016). Introducing BASE: the Biomes of Australian Soil Environments soil 727 
microbial diversity database. GigaScience, 5(1), 21. doi:10.1186/s13742-016-0126-5 728 

Bulgarelli, D., Schlaeppi, K., Spaepen, S., Themaat, E. V. L. v., & Schulze-Lefert, P. (2013). 729 
Structure and Functions of the Bacterial Microbiota of Plants. Annual Review of Plant 730 
Biology, 64(1), 807-838. doi:doi:10.1146/annurev-arplant-050312-120106 731 

Delgado�Baquerizo, M., Reith, F., Dennis, P. G., Hamonts, K., Powell, J. R., Young, A., . . . 732 
Bissett, A. (2018). Ecological drivers of soil microbial diversity and soil biological 733 
networks in the Southern Hemisphere. Ecology, 99(3), 583-596. 734 
doi:doi:10.1002/ecy.2137 735 

Deyett, E., & Rolshausen, P. E. (2019). Temporal Dynamics of the Sap Microbiome of 736 
Grapevine Under High Pierce’s Disease Pressure. Frontiers in Plant Science, 737 
10(1246). doi:10.3389/fpls.2019.01246 738 

Fausto, C., Mininni, A. N., Sofo, A., Crecchio, C., Scagliola, M., Dichio, B., & Xiloyannis, 739 
C. (2018). Olive orchard microbiome: characterisation of bacterial communities in 740 
soil-plant compartments and their comparison between sustainable and conventional 741 
soil management systems. Plant ecology & diversity, 11(5-6), 597-610. 742 
doi:10.1080/17550874.2019.1596172 743 

Fernandez Nuñez, N., Maggia, L., Stenger, P.-L., Lelievre, M., Letellier, K., Gigante, S., . . . 744 
Carriconde, F. (2021). Potential of high-throughput eDNA sequencing of soil fungi 745 
and bacteria for monitoring ecological restoration in ultramafic substrates: The case 746 
study of the New Caledonian biodiversity hotspot. Ecological engineering, 173, 747 
106416. doi:https://doi.org/10.1016/j.ecoleng.2021.106416 748 

Gann, G. D., McDonald, T., Walder, B., Aronson, J., Nelson, C. R., Jonson, J., . . . Dixon, K. 749 
W. (2019). International principles and standards for the practice of ecological 750 
restoration. Second edition. Restoration Ecology, 27(S1), S1-S46. 751 
doi:https://doi.org/10.1111/rec.13035 752 

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). Microbiome 753 
Datasets Are Compositional: And This Is Not Optional. Frontiers in Microbiology, 8, 754 
2224-2224. doi:10.3389/fmicb.2017.02224 755 

Harris, J. (2009). Soil Microbial Communities and Restoration Ecology: Facilitators or 756 
Followers? Science, 325(5940), 573-574. doi:10.1126/science.1172975 757 

IPBES. (2018). The IPBES assessment report on land degradation and restoration. Retrieved 758 
from Bonn, Germany:  759 

Janzen, H. H. (2016). The Soil Remembers. Soil Science Society of America Journal, 80(6), 760 
1429-1432. doi:10.2136/sssaj2016.05.0143 761 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018


 36

Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., & Wei, G. (2018). Soil microbiomes with 762 
distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients 763 
in reforested ecosystems. Microbiome, 6(1), 146. doi:10.1186/s40168-018-0526-0 764 

Liddicoat, C., Weinstein, P., Bissett, A., Gellie, N., Mills, J., Waycott, M., & Breed, M. 765 
(2019). Can bacterial indicators of a grassy woodland restoration inform ecosystem 766 
assessment and microbiota-mediated human health? Environment International, 129, 767 
105-117. doi:https://doi.org/10.1016/j.envint.2019.05.011 768 

Lloyd-Price, J., Abu-Ali, G., & Huttenhower, C. (2016). The healthy human microbiome. 769 
Genome Medicine, 8(1), 51. doi:10.1186/s13073-016-0307-y 770 

Lovell, D. R., Chua, X.-Y., & McGrath, A. (2020). Counts: an outstanding challenge for log-771 
ratio analysis of compositional data in the molecular biosciences. NAR genomics and 772 
bioinformatics, 2(2). doi:10.1093/nargab/lqaa040 773 

Lozupone, C. A., Hamady, M., Kelley, S. T., & Knight, R. (2007). Quantitative and 774 
qualitative beta diversity measures lead to different insights into factors that structure 775 
microbial communities. Applied and Environmental Microbiology, 73(5), 1576-1585. 776 
doi:10.1128/AEM.01996-06 777 

Manero, A., Standish, R., & Young, R. (2021). Mine completion criteria defined by best-778 
practice: A global meta-analysis and Western Australian case studies. Journal of 779 
Environmental Management, 282, 111912. 780 
doi:https://doi.org/10.1016/j.jenvman.2020.111912 781 

Martín-Fernández, J.-A., Hron, K., Templ, M., Filzmoser, P., & Palarea-Albaladejo, J. 782 
(2015). Bayesian-multiplicative treatment of count zeros in compositional data sets. 783 
Statistical Modelling, 15(2), 134-158. 784 
doi:http://dx.doi.org/10.1177/1471082X14535524 785 

McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive 786 
Analysis and Graphics of Microbiome Census Data. PLoS One, 8(4), e61217. 787 
doi:10.1371/journal.pone.0061217 788 

Menz, M. H. M., Dixon, K. W., & Hobbs, R. J. (2013). Hurdles and Opportunities for 789 
Landscape-Scale Restoration. Science, 339(6119), 526. doi:10.1126/science.1228334 790 

Neumann, R. B., & Cardon, Z. G. (2012). The magnitude of hydraulic redistribution by plant 791 
roots: a review and synthesis of empirical and modeling studies. New Phytologist, 792 
194(2), 337-352. doi:https://doi.org/10.1111/j.1469-8137.2012.04088.x 793 

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., . . . Wagner, 794 
H. (2020). vegan: Community Ecology Package. R package version 2.5-7. Retrieved 795 
from https://CRAN.R-project.org/package=vegan 796 

Orozco-Aceves, M., Standish, R. J., & Tibbett, M. (2015). Soil conditioning and plant-soil 797 
feedbacks in a modified forest ecosystem are soil-context dependent. Plant and Soil, 798 
390(1/2), 183-194. doi:10.1007/s11104-015-2390-z 799 

Orozco-Aceves, M., Tibbett, M., & Standish, R. J. (2017). Correlation between soil 800 
development and native plant growth in forest restoration after surface mining. 801 
Ecological engineering, 106, 209-218. doi:10.1016/j.ecoleng.2017.06.004 802 

Palarea-Albaladejo, J., & Martín-Fernández, J. A. (2015). zCompositions — R package for 803 
multivariate imputation of left-censored data under a compositional approach. 804 
Chemometrics and Intelligent Laboratory Systems, 143, 85-96. 805 
doi:https://doi.org/10.1016/j.chemolab.2015.02.019 806 

Quinn, T. P., Erb, I., Gloor, G., Notredame, C., Richardson, M. F., & Crowley, T. M. (2019). 807 
A field guide for the compositional analysis of any-omics data. GigaScience, 8(9). 808 
doi:10.1093/gigascience/giz107 809 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018


 37

Quinn, T. P., Richardson, M. F., Lovell, D., & Crowley, T. M. (2017). propr: An R-package 810 
for Identifying Proportionally Abundant Features Using Compositional Data 811 
Analysis. Scientific Reports, 7(1), 16252. doi:10.1038/s41598-017-16520-0 812 

R-Core-Team. (2020). R: A language and environment for statistical computing. Vienna, 813 
Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-814 
project.org/ 815 

Rydgren, K., Halvorsen, R., Töpper, J. P., Auestad, I., Hamre, L. N., Jongejans, E., & 816 
Sulavik, J. (2019). Advancing restoration ecology: A new approach to predict time to 817 
recovery. Journal of Applied Ecology, 56(1), 225-234. 818 
doi:https://doi.org/10.1111/1365-2664.13254 819 

Schloss, P. D. (2020). Removal of rare amplicon sequence variants from 16S rRNA gene 820 
sequence surveys biases the interpretation of community structure data. bioRxiv, 821 
2020.2012.2011.422279. doi:10.1101/2020.12.11.422279 822 

Schmid, C. A. O., Reichel, R., Schröder, P., Brüggemann, N., & Schloter, M. (2020). 823 
52 years of ecological restoration following a major disturbance by opencast lignite 824 
mining does not reassemble microbiome structures of the original arable soils. 825 
Science of The Total Environment, 745, 140955. 826 
doi:https://doi.org/10.1016/j.scitotenv.2020.140955 827 

Tibbett, M. (2010). Large-scale mine site restoration of Australian eucalypt forests after 828 
bauxite mining: soil management and ecosystem development. In Ecology of 829 
Industrial Pollution (pp. 309-326). 830 

Tibbett, M. (2015). Mining in Ecologically Sensitive Landscapes. Victoria: Victoria: CSIRO 831 
Publishing. 832 

Turner, T. R., Ramakrishnan, K., Walshaw, J., Heavens, D., Alston, M., Swarbreck, D., . . . 833 
Poole, P. S. (2013). Comparative metatranscriptomics reveals kingdom level changes 834 
in the rhizosphere microbiome of plants. The ISME Journal, 7(12), 2248-2258. 835 
doi:10.1038/ismej.2013.119 836 

van der Heyde, M., Bunce, M., Dixon, K., Wardell-Johnson, G., White, N. E., & Nevill, P. 837 
(2020). Changes in soil microbial communities in post mine ecological restoration: 838 
Implications for monitoring using high throughput DNA sequencing. Science of The 839 
Total Environment, 749, 142262. doi:https://doi.org/10.1016/j.scitotenv.2020.142262 840 

Walker, L. R., Wardle, D. A., Bardgett, R. D., & Clarkson, B. D. (2010). The use of 841 
chronosequences in studies of ecological succession and soil development. Journal of 842 
Ecology, 98(4), 725-736. doi:https://doi.org/10.1111/j.1365-2745.2010.01664.x 843 

Watkins, H., Robinson, J. M., Breed, M. F., Parker, B., & Weinstein, P. (2020). Microbiome-844 
Inspired Green Infrastructure: A Toolkit for Multidisciplinary Landscape Design. 845 
Trends in Biotechnology, 38(12), 1305-1308. 846 
doi:https://doi.org/10.1016/j.tibtech.2020.04.009 847 

 848 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018

