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Abstract

Mutational signatures can reveal the mechanism of tumorigenesis. We developed

the RNMF software for mutational signatures analysis, including a key model of

cumulative contribution abundance (CCA) which was designed to highlight the

association between genes and mutational signatures. Applied it to 1073 esophageal

squamous cell carcinoma (ESCC) and found that APOBEC signatures (SBS2* and

SBS13*) mediated the occurrence of PIK3CA E545k mutation. Furthermore, we

found that age signature is strongly linked to the TP53 R342* mutation. In addition,

the CCA matrix image data of genes in the signatures New, SBS3* and SBS17b*

were helpful for the preliminary evaluation of shortened survival outcome. In a word,

RNMF can successfully achieve the correlation analysis of genes and mutational

signatures, proving a strong theoretical basis for the study of tumor occurrence and

development mechanism and clinical adjuvant medicine.
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The cancer genomes contain many mutations, which are derived from exogenous

and endogenous mutational processes that operate during the cell lineage [1]. These

mutational processes are cumulative effects of DNA damage and repair processes,

indicating unique patterns in tumorigenesis, namely mutational signatures [2-5]. Each

mutational process from a tumor may involve some particular signatures that their

biological combination processes could induce a large number of mutations [6-7]. Via

studying the completeness of these mutations and identifying the digital genomic

footprints that contribute to the mutation characteristics of tumors, we can not only

reveal the potential mutational process information, understand the carcinogenic

mechanism of tumor occurrence and development, but also provide biomarkers for

early diagnosis, accurate cancer stratification and clinical response prediction, and

realize individual treatment strategies [8-13]. Analysis of mutational signatures may

reveal previously unknown mutation mechanisms and mysterious environmental

exposure, such as herbal supplements containing aristolochic acid [13]. However,

understanding of the pathogenic biological processes is still limited. Therefore, in

order to systematically describe the mutational process leading to cancer, it is

necessary to decipher the mutational signatures from the somatic mutation catalog by

using mathematical statistical methods [14-23], the number of mutations that each

feature in a single sample can be attributed to each feature, which annotate the

probability of each mutation class in each tumor and the possibility of each feature

producing.

Currently, the final referenced mutational signatures are archived in the catalogue

of cancer of somatic mutations in cancer (COSMIC,

https://cancer.sanger.ac.uk/cosmic/signatures). Most of them are common in various

tumors, of which are specific to a certain type of tumor, of which are part of normal

cell biology, and of which are related to abnormal exposure or tumor progression

[24-31]. They may be attributed to known environmental exposure and mutation

processes, such as tobacco smoke, ultraviolet radiation, the activity of the APOBEC

series of cyclobutylaminases, and DNA mismatch repair defects or mutations in

POLE. Besides, as known to us, the association between genes and mutational

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456096doi: bioRxiv preprint 

https://www.sciencedirect.com/science/article/pii/S221334371730324X
https://cancer.sanger.ac.uk/cosmic/signatures).
https://doi.org/10.1101/2021.08.12.456096
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

signatures was confirmed, and much focus were paid to study the role of hotspot

mutations in the formation of mutational signatures, which provides a good research

idea for the mechanism of tumorigenesis and development. However, at present, there

are few tools systematically and in-depth mining the relationship between genes and

mutational signatures [32, 33], which undoubtedly does not bring much convenience

to the causal association between mutational signatures and genes.

Here, we first used the R language to design a simple and convenient package

RNMF, which can directly start from the mutation data set to realize the correlation

analysis of mutational signatures. Then, we pooled 1073 samples from Asian ESCC

population, and then used RNMF to verify the practicability of this method framework.

During the analysis, we highlighted interesting correlations through association

analysis with driving mutations. Finally, deep learning method is used to explore the

CCA matrix image data of gene under fixed features, and hierarchical learning of

prognosis is done.

Results

Framework analysis of RNMF

Optimizing and improving the derivation of mutational signatures can not only

rediscover some known features, but also produce new discoveries that were

previously masked by technical and biological confusions. Here, we designed a

simple and convenient process framework by R language (Fig. 1), and developed a

novel R package called RNMF (https://github.com/zhenzhang-li/RNMF). The

package RNMF can directly analyze the mutation data set which exist in the form of

MAF or VCF format files, rapidly obtain the number of specific mutation types in

each sample and then resolve the mutational signatures. This software can achieve 7

kinds of outstanding functions: (1) the mutation rate per M shown in LEGO graph; (2)

rapidly extraction of mutational signatures; (3) accurately evaluating the contribution

of each sample to the known mutation profile; (4) deeply studying on the similarity of

mutational signatures and displaying the heat-map; (5) calculating the cumulative

contribution abundance (CCA) matrix of genes; (6) studying the causal relationship
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between mutational signatures and genes; (7) studying on the relationship between

hotspot mutation of driving factors and mutational signatures.

One outstanding function of RNMF is defined as SigsInput, which is suitable for

large or most small datasets, providing analysis interfaces for different types of

genomic DNA changes, such as single base substitutions (SBS), double base

substitutions (DBS), small insertion and deletion mutation (ID). To prove high

performance of our designed RNMF, the mutation data sets of 1073 ESCC samples

from Asia (including 508 WGS data) are analyzed thoroughly. These mutation data

were extracted from the appendix of published articles (Table S1), and were

annotated by Oncotator [34]. As shown in Fig. 1, by extracting the mutational

signatures with the designed denovoNMF function, the evaluation results exhibits the

change of silhouette coefficient and error gradient. The criteria we chose are: 1) stable,

without sudden decline or relatively large gradient of descent and large width of

confidence interval; 2) small standard error term, and the gradient of standard error

between adjacent classes tends to be gentle.

In the Fig. 1, an application interface "InverseNMF" can calculate the fraction of

one sample which is contributed to each provided mutational signatures. Here, the

threshold is set to 0.9. By our designed RNMF, we analyzed the contribution scores of

these coding region mutations to each mutational signature which are gotten from the

COSMIC Mutational Signatures (v2.0 - March 2015). The results are highly

consistent with the analysis ones of the known "MutationalPatterns" [20] and

"deconstructSigs" softwares [35], as shown in Fig. S1a. It is worth noting that

operating speed of "InverseNMF" rivals to that of "MutationalPatterns" software,

however, is 12 times faster than that of "deconstructSigs" software (Fig. S1b). To go

insight into the inner link between mutational signatures and gene mutations, a series

of powerful functions are designed according to the the CCA calculation model of

gene, such as "cumulativeCA", "genePerMutSigs", "samFisherSigs",

"samPerMutSigs" and "eachMutationCA". The detailed analysis description will be

provided in the example of our designed RNMF.
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According to the previous reports [7, 24, 33], we define that if the CCA of a gene

in a sample to a signature is less than 6%, the gene in the sample has little effect on

the signature. Next, we combined non-silent mutations, sorted gene list and clinical

grouping information to obtain gene mutation image sets of samples under different

mutational signatures based on gene CCA matrix. Then, deep learning method was

used to process these image information for hierarchical learning, which could obtain

some biological cognition, so that we could deeply understand some useful

information for adjuvant therapy, such as prognosis evaluation, efficacy evaluation,

medication guidance and so on (Fig. 1).

In a word, as a versatile R package, RNMF can realize parallel operation that

helps to study and evaluate the mutational processes during tumor development. Thus,

molecular analysis can be performed based on extracted mutational signatures, further

revealing the molecular mechanisms and optimizing the diagnosis and treatment

decisions.

Identifying mutational signatures via RNMF

The incidence and mortality of esophageal cancer have always been relatively

high, as in China, for example, among which esophageal squamous cell carcinoma

(ESCC) accounts for 90% of esophageal cancer [36]. A previous study has provided a

large genome-wide sequencing cohort of Chinese ESCC population [37]. In order to

demonstrate the role of RNMF in the extraction of mutational singatures, our designed

RNMF is used to systematically analyze the mutation data set (single base mutations

and INDEL mutations) of this cohort data. In the overall single base mutation pattern

of ESCC, it is mainly C>T and C>G mutation, followed by C>Amutation, accounting

for 34.9%, 18.81% and 15.94%, respectively (Fig. S2). Besides the insertion of a

zero-length 1-bp T base homologous sequence, most other types of deficient

incongruities are characterized by long (≥5) thymine mononucleotide repeats.

In this cohort, the RNMF successfully identified 12 single base substitutions

signatures, named SBS1, SBS2, …, SBS12, respectively, which is compared with the

COSMIC signatures (https://cancer.sanger.ac.uk/signatures; Fig. 2, S3a, Table S2a-b).

Mutational Signatures description are represented in Table 1.
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To verify the accuracy of the above results, the known SigProfilerExtractor

software [23] is also used to analyze SBS signatures, and extract 13 features (Fig. S3b,

S4). By further making a similarity comparison, we found that whether using V2 or

V3 version of COSMIC signature, it shows strong consistency (Fig. 2, Fig. S5a-b).

Moveover, the results were basically consistent between RNMF and

SigProfilerExtractor (Fig. S5c). Thus, these results enough show the validity of the

RNMF. In addition, we also extract ID signature. Nine ID signatures were prominent

(Fig. S3c, Fig. 3, Table S2c-d), and three of them have been previously reported,

including two with known mutational processes [23]. Mutational Signatures

description are represented in Table 1.

Table 1. Mutational Signatures description.

Original
Name

Matching
COSMIC

Cosine
Similarity

Redefine
Name

Comments

SBS Signatures

SBS1 SBS3* 0.83 SBS3*

BRCA1 and BRCA2 mutations;

BRCA1 promoter methylation;

homologous recombination deficiency

SBS2 SBS16* 0.84 SBS16* Alcoholic consumption

SBS3 SBS18* 0.98 SBS18* CDH1 mutations [21];MUTYH mutations

SBS5 SBS33* 0.98 SBS33* Unknown

SBS6 SBS13* 0.98 SBS13* ABOPEC

SBS7 SBS2* 1.00 SBS2* ABOPEC

SBS8 SBS5* 0.90 SBS5* ERCC2 mutations; tobacco smoking

SBS9 SBS1* 0.96 SBS1* Age

SBS10 SBS17b* 0.90 SBS17b*
Gastric acid reflux; fluorouracil (5FU)

chemotherapy treatment

SBS11 SBS22* 0.98 SBS22* Aristolochic acid

SBS12 SBS15* 0.95 SBS15* DNA mismatch repair defificiency

SBS4 - - New Unknown

ID Signatures
ID3 ID6* 0.94 ID6* Homologous recombination-based repair

ID6 ID2* 0.99 ID2* DNA mismatch repair defificiency

ID2 ID14* 0.88 ID14* Unknown

ID1,ID4,ID5,

ID7-ID9
- - New1-New6 Unknown

Note: “-” represents there is no match feature or the similarity is generally very low.
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Estimation of sample contribution under known mutational signatures by RNMF

In order to verify the practicability of the functions in our framework, the

contribution of samples was analyzed in the known mutational signatures. We

collected a total of 115,130 somatic mutations from exon region of 1073 ESCC

samples, including 16 of them were hyper-mutated with mutation count more than

500 (Fig. 4a, Table S3). Comparing with 508-WGS cohort, we found that the overall

proportion of C>T mutations increased in the exon region, among which *[C>T]G

context changed greatly (Fig. S6a). However, the single base mutations in the exon

region were mainly C>T (48.19%) and C>G (18.2%), followed by C>A (13.8%),

indicating that the mutation pattern of exon region was similar to that of whole

genome.

To better explore and analyze the potential features of exon regions, we used

COSMIC Mutational Signatures (v3.2 - March 2021 and v2.0 - March 2015) as the

background to obtain the number of contribution mutations of samples in each

signature. We analyzed three single base mutation datasets: 508-WGS cohort

(WGS508), exon region of 508-WGS cohort (EXON508) and exon region of 1072

samples (EXON1073). For the 12 feature maps extracting from WGS data, the trends

of WGS508, EXON508 and EXON1073 are basically the same under the same

background (Fig. 4b, S6b). However, the results of WGS508 revealed that the

signature, which accounted for a large proportion, may not exist in the list of 12

decomposed signatures, and these signatures either have high similarity or low

similarity related to those 12 signatures. What's more, the results of WGS508 showed

that compared with the results of different versions of COSMIC Mutational

Signatures, we found that with the increase of features background analysis, high

similar or low similarity signatures with high proportion will be produced, indicating

that adding background features may introduce some unimportant or similar features

to share the load weight (Fig. 4b, S6b). Meanwhile, under the same background, the

results of EXON508 and EXON1073 showed that the number of samples play little

role in the proportion of signatures (Fig. 4b, S6b). In addition, previous reports [24,

37] showed that each kind of cancer has its own important characteristics. Of which
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the number or type of signatures is usually different. These different main signatures

play a leading role in the occurrence and development of different tumor types.

In this paper, by combining the results of our analysis and the reported results

(Fig. S4), we strongly believe that 12 stable SBS signatures, which is extracted from

the 508-WGS cohort, should be the outstanding features of ESCC, which are

considered as the leading mutation patterns in the occurrence and development of this

tumor. Therefore, these 12 features were selected as background walls for the analysis

of ESCC tumors (Table S3). We found that the signatures SBS1*, SBS2*, SBS5*,

SBS13* and SBS15* were effective in most samples containing more somatic

mutations, which are considered as ubiquitous signatures (Fig. 4c, S6c). By contrast,

signatures SBS3*, SBS16*, SBS17b*, SBS18*, SBS22*, New, and SBS33* were

sporadic signatures which exsit in rare samples (≤8% of cases). Interestingly, clinical

association analysis revealed that compared with non-drinking patients, drinking

patients contributed significantly more mutations to SBS5* and SBS16*, and their

contribution also increased significantly, suggesting that these two SBS signatures

may be related to alcohol consumption (Fig. 4d).

CCA analysis reveals potential prognostic features and mechanisms through

RNMF

In this work, a total of 717 cancer-related genes are screened from the COSMIC

census (https://cancer.sanger.ac.uk/census, Table S5) and their CCAs were calculated

via RNMF software with a given model function named cumulativeCA. Through this

program algorithm interface, CCA of a gene on a signature and CCA of a gene on a

signature in a sample can be obtained. We found that these cancer-related genes are

more enriched in ubiquitous signatures, especially signatures such as SBS1*, SBS2*,

and SBS13* (Fig. 4e). There are differences in CCA levels of genes under different

mutational signatures, which indicates that genes have their preference for mutational

signatures. At the same time, survival analysis found that CCA of several genes was

associated with prognosis (Fig.S7a, Table S6). In addition, a multivariate Cox model

was confirmed that some of them were still significant (Fig. S7b), such as ARHGAP5,

SETD2, RNF213, CDKN2A, NOTCH1, NFE2L2 and so on. Analysis of mutation
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characteristics showed that TP53 mutation significantly increased exposure to SBS1*,

but conversely, the contribution to SBS1* was significantly reduced in samples

carrying RNF213 mutation (Fig. 4f, S8a). Furthermore, among the TP53 mutant

samples, the contribution of the RNF213 mutant samples to SBS1* was significantly

reduced(Fig. S8a). Similarly, we found a significant increase in the contribution of

APOBEC signatures (SBS2*, SBS13*) in ESCC samples with PIK3CA mutations,

and the other three genes (ARHGAP5, SETD2 and UBR5) were also associated with

APOBEC signature (SBS13*) (Fig. 4f, S8a). It is noted that NFE2L2 mutation was

related to SBS16*. These above results indicate that there is a potential mechanism

between gene mutations and mutational signatures in the process of tumorigenesis and

development. Thus, we studied 40 representative genes from 717 cancer-related genes,

which contained about 3.6% of the total number of non-silent SNV mutations. Most

of these mutations preferred the characteristic SBS1* (15%), SBS2* (11%), SBS5*

(12%), SBS13* (10%), and SBS18* (12%), but were less distributed in SBS17b* (3%)

(Fig. 4g). We found that 66.5% of 1073 ESCC samples had non-silent SNV of TP53,

resulting in a highest level of CCA of TP53 gene, and the proportion of three SBS

signatures (SBS1*, SBS5* and SBS18*) was higher, followed by SBS15*. Obviously,

different genes have different ratios for different mutated traits. It attracts our

attention that PIK3CA gene is obviously in favor of APOBEC signatures (SBS2*),

which accounts for more than 50% (Fig. 4g). Hence, all findings above suggest that

preference of cancer-related genes for mutational signatures can be defined by CCA,

which can further expose some potential prognostic features or mechanisms.

CCA analysis exposing PIK3CA helical mutation E545K are strongly mediated

by APOBEC

According to the reports [38-40], PIK3CA is a typical proto-oncogene that

typically harbors some hotspot mutations in tumors and is enriched in APOBEC

characteristics in a variety of cancer types, especially these two most-common and

well-studied hotspots: E542K (c.1624G>A) and E545K (c.1633G>A) in the helical

domain. In ESCC, the cohort results of previous studies implicitly implicated

APOBEC activity as a key driver of PIK3CA mutagenesis [40, 41]. In this cohort, we
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are committed to further study the potential mechanism between PIK3CA biological

mutations and APOBEC signatures via CCAmodel.

By the CCA enrichment analysis, it is found that tumors with non-silent

mutations in PIK3CA had increased activity of the signature SBS2*

(ESCC1073-EXON: 89 tumors with non-silent PIK3CA mutations and a median

increase CCA of 0.74 per sample; q=0, P=0; Regular tumors of ESCC1073-EXON:

88 tumors with non-silent PIK3CA mutations and a median increase CCA of 0.74 per

sample; q=0, P=0; WGS508-EXON: 38 tumors with non-silent PIK3CA mutations

and a median increase CCA of 0.741 per sample; q=0, P=0; Fig. 5a, S8b).

Analogously, those tumors with non-silent mutations in PIK3CA also had increased

activity of the signature SBS13* (ESCC1073-EXON: 89 tumors with non-silent

PIK3CA mutations and a median increase CCA of 0.136 per sample; q=0, P=0;

Regular tumors of ESCC1073-EXON: 88 tumors with non-silent PIK3CA mutations

and a median increase CCA of 0.1359 per sample; q=0, P=0; WGS508-EXON: 38

tumors with non-silent PIK3CA mutations and a median increase CCA of 0.133 per

sample; q=0.0008, P=0.0001; Fig. 5b, S8c). In order to further prove these

connections, we performed mutational signature enrichment analyses and gained the

same results (Fig. S8b, Fig. S8c), providing the strongest statistical evidence for the

relationship between PIK3CA mutation and APOBEC signatures activity in ESCC.

Together, these results further strongly suggest that, although APOBEC signatures

activity are present in all tumors, somatic PIK3CA mutations are associated with a

significant increase in APOBEC signatures activity.

We also dissect the mutation spectrum of PIK3CA non-silent mutations, revealing

the underlying mechanism of during mutation processing. In our series, 65.22% of

PIK3CA non-silent mutations were C>T substitution, and those mutations were

frequent presenters that mostly contributed to APOBEC signatures (SBS2* and

SBS13*) with highest percentage (Fig. 5c). Simultaneously, we investigated the

PIK3CA helical (E545K: 36.96%; E542K: 14.13%) and kinase (H1047R: 11.96%)

hotspot mutations, and found that only the helical mutations had a high cumulative

proportion for APOBEC signatures (SBS2* and SBS13*)(Fig. 5c). Then, We related
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the PIK3CA helical mutations to each APOBEC signatures, and observed a significant

increase for mutational exposure of APOBEC signatures in samples harboring helical

domain mutations (Fig. 5d-e). Significantly, tumors carrying a hotspot mutation

E545K significantly hold a high degree of contribution fraction of SBS2*, yet hotspot

mutation E542K can not bring significant benefits to SBS2*, as well as the other

mutations (Fig. 5d), implying that only mutation E545K can affect the benefit of the

overall mutation data of the sample on SBS2* compared with other mutations.

Similarly, we found that although the E542K mutation significantly increased the

benefits of SBS13*, the significant intensity of the increase was not as high as that of

E545K (Median: 0.146 vs. 0.172) (Fig. 5e), indicating that the E545K mutation in

PIK3CA can accelerate the increase of SBS13* activity. Furthermore, from the

perspective of gene itself, the CCA of PIK3CA genetic hotspot mutations for

APOBEC signatures was significantly higher than that of other mutations (Fig. 5f-g).

However, compared with E542K mutation, the effect of E545K mutation is more

significant, indicating E545K among PIK3CA mutation is more closely associated

with APOBEC signatures. In a word, PIK3CA helical mutation E545K contributes

more significantly to APOBEC signatures, suggesting that they are strongly mediated

by APOBEC.

CCA analysis displaying the relationship between age signature and TP53 typical

hotspot mutations

In previous study, the results of TP53 mutations on mutational signatures

indicates that driver mutations of TP53 mutations are associated with specific

mutation processes in human cancers, such as colon, skin, bladder, lung, and liver

cancers [42, 43]. They only mentioned that the most frequent TP53 mutations were

associated with the most commonly observed age signature which featured by C>T

transitions at CpG dinucleotides. It is worth considering that there is no detailed report

on the association between TP53 typical hotspot mutations and age signature in the

related studies of ESCC, including the previous large cohort analysis of ESCC [37,

44]. Here, we analyzed the association between TP53 mutations and age signature

confirming that age signature was associated with TP53 mutations via CCA
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enrichment analysis (Regular tumors of ESCC1073-EXON: 715 tumors with

non-silent TP53 mutations and a median increase CCA of 0.0823 per sample; q = 0, P

= 0; ESCC1073-EXON: 728 tumors with non-silent TP53 mutations and a median

increase CCA of 0.085 per sample; q = 0, P = 0; Fig. S8d). Moreover, mutational

signature enrichment analyses also revealed the strong relationship between TP53

mutation and age signature activity (Fig. S8d). It's worth noting that TP53 was mainly

enriched with C>T substitutions (44.51%) with a large proportion of them were

preferentially contributed to age signatures (SBS1*)(Fig. 6a). We screened the six

kinds of hotspot mutations with the highest risk rate (R342* : 4.07%; R213*: 3.37%;

R282W : 2.95%; R175H: 2.81%; R273H: 2.53%; R248Q: 2.11%) and analyzed their

association with mutational signatures. We found that except R175H, the other five

hotspots preferred the age signatures (SBS1*) (Fig. 6a), which indicated that there

was a potential mechanism between these hotspots and age signatures (SBS1*).

Compared with other mutations, tumors harboring at least one of these hotspots will

significantly increase its contribution to age signature (SBS1*) (Fig. 6b). Actually,

although R282W can improve the contribution of the sample to age signature (SBS1*)

(R282W vs. Other Mutation vs. Wild-type: median increase of 0.367 vs. 0.306 vs.

0.276), only hotspot mutation R342* can significantly affect the benefit of the whole

mutation data of the sample to age signature (SBS1*) (R342* vs. Other Mutation vs.

Wild-type: median increase of 0.388 vs. 0.305 vs. 0.276; Fig. 6b), indicating that

R342* mutation is the primary factor to increase the activity of age signature (SBS1*).

However, from the perspective of gene mutation itself, the CCA of TP53 typical

hotspot mutations for age signatures was significantly higher than that of other

mutations (Fig. 6c), which indicated that except for R342* and R282W mutations, the

other four hot spot mutations could not significantly improve the overall mutation

contribution level of the sample, but they are still involved in the specific mutational

process. In addition, under age signature (SBS1*), tumors with CCA of TP53 no less

than 0.06 were significantly associated with poor prognoses (P=0.44, Fig.S7a).

Notably, CCA of TP53 in tumors carrying TP53 mutation R248Q were more than

0.06, and those cases were associated with deceased survival outcomes (Fig. S8e).

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456096doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456096
http://creativecommons.org/licenses/by-nc-nd/4.0/


13

Multivariate cox model shows that TP53 hotspot mutation R248Q are independent

prognosticators for poor survival in ESCC (Fig. S8f). Finally, we also found that

TP53 small INDEL mutations were related to New3 (ID signature; Fig. S8g).

Image analysis based on CCAmatrix of genes

To obtain some favorable statistical information, and even get some prognosis

evaluation or medication guidance, which is helpful for clinical treatment, we

designed a way to transform CCA of gene in each mutational signature into intuitive

image information. The detailed operations are as follows: 1) we can sequence these

genes through some potential relationships, such as similarity, pathway, or clinical

association; 2) according to these CCA matrix results, some standard visual impact

images are generated; 3) we can apply these images to deep learning model, combined

with clinical information for analysis and mining.

In this work, we use 'hclust' clustering to get the gene sequence based on the CCA

matrix of genes. From our mutation data set, we will screen out the list of all

non-silent mutation genes in the existing mutation set and do intersection processing

with 717 genes. The intersecting gene set is the final data information transformed

into image. We organize the data set into a N×N matrix (where

Number of intersecting genesN  ). In this paper, we arrange the genes from top to

bottom with the aim of obtaining the effect picture of gene mutation. To study the

effect of CCA changes in each mutational signature on the prognosis, the deep

learning framework PyTorch [45] was performed to train some publicly available

models, such as ResNet [46] (ResNet50, ResNet101), DenseNet [47, 48]

(DenseNet-121, DenseNet-161), Inception-V4 [49] and MoblieNet-V2 [50], V3 [51].

First of all, we uniformly limit the pixels of the picture to 500*500. Because G1

individuals are living and their follow-up time is less than 3 years, we will use G2-3-4

groups for the next analysis and mining, as shown in Table S7a. Limited by clinical

information, and in order to better evaluate the prognosis, we especially compared G2

and G4 groups. For choosing an ideal model, we randomly select a feature as a

template for training, and take the high average accuracy as the judgment basis for
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model selection. Here we choose one SBS signature (New) as an example, as shown

in Table S7b. Four of them have higher accuracy, and they are Resnet50 (68.571%),

DenseNet121 (71.429%), MoblieNetV2 (68.571%), and InceptionV4 (68.571%). In

order to test the stability of our model, the above four models were trained for 10

times. In the training process, the model parameter random seed was fixed, other

parameters are the same. Finally, through the analysis, we found that DenseNet-121

model has a higher average accuracy (Table S7b; Fig. S9a). Consequently, we chose

DenseNet-121 as a model to analyze all signatures, the full schematic representation

as shown in Fig. S9b. In the process, a stochastic gradient descent method [52] was

used with an initial learning rate of 0.01, weight decay of 10-4 and momentum of 0.7

in the process of training. Next, dropout, data augmentation and L2-regularization

were applied to prevent overfitting. The above parameter sets were properly tuned for

DenseNet-121 model. Then, for testing the stability of data and finding the global

optimal solution, the model DenseNet-121 was trained 10 times for each sub-feature

data of G2-G4. Random seed was set free in the training process. That some less

accuracy than others may be a local optimal solution, because stochastic gradient

descent method was used as the optimizer in the training process. We found that the

accuracy was comparatively stable to each sub-feature and relatively higher in

mutational SBS3*, New and SBS17b* (Fig. S9c), suggesting that the beneficial

feasibility of this conversion method of the CCA matrix image data of gene.

Simultaneously, the results are given the best accuracy of G2-G4 is the sub-feature

SBS17b* (77.500%), followed by SBS3* (72.500%) and New (71.429%).

Furthermore, the probability distribution over the above 3 sub-features of G3 group in

the G2-G4 was tested. Interestingly, the distribution of G3 group is more likely to fall

on G2 group (Fig. S9d). So further the model DenseNet-121 was also trained 10 times

for each sub-feature data of G2G3-G4 (Fig. S9c). The results show that the best

accuracy of G2G3-G4 is the sub-feature SBS3* (76.190%), followed by New

(72.973%), SBS16* (71.111%) and SBS17b* (70.732%), as shown in Table S7c. This

illustrate that the G3 group addition has slight effect on the classification results.

Additionally, the mutational signatures such as SBS3*, New and SBS17b* still have a
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high degree of explanation for G2-G4 and G2G3-G4 (Fig. 7). Finally, we found that

the survival group or the samples with a follow-up time of no less than 3 years had a

higher contribution to SBS3* and SBS17b*, respectively (Fig. S9e).

Discussion

Here, we provide an integrated mutational signature analysis framework with a

CCA model of genes, achieve a meta-analysis of 1073 ESCC samples, and verify the

practicability and application value of our framework. Via this framework, we

obtained known and uncovered previously undescribed signatures (including 12 SBS

signatures and 9 ID signatures) from 508 WGS tumors of 1073 ESCC cases. And

further identified and highlighted an association between PIK3CA helical mutation

E545K and activity of APOBEC signatures. Similarly, we also reported that age

signature and the hotspot mutation R342* of TP53, and TP53 (R248Q) is a poor

predictor for ESCC. In addition, the CCA matrix image data of genes under

mutational signatures New, SBS3* and SBS17b* were calculated. This is helpful for

the preliminary evaluation of short-term prognosis.

In addition to feature extraction and sample contribution analysis, we can also

assign graph variation features to each sample by the designed framework, or even

each gene, and then CCA of gene under a certain signature can be also obtained. Yet,

compared with the previously published software [23], our framework spends more

time on a de novo extraction of signature analysis. The reason is that we design a

correction process “Re-updated the initial value” and a solution space process “build a

solution space”. Hence, this is a weakness in the framework that need to be optimized

in the future. However, our framework provides a new idea for understanding the

panorama of tumor occurrence and development, and help scientific researchers to

study the mechanisms of tumor progression. It is of great application value to study

the characteristics and statistical distribution of one gene under a certain signature by

assigning the signature. In this study, based on previous reports [23, 24, 37] and

statistical evaluation (Fig. 4b, S6b), we confirmed the background of expected

mutational signatures of ESCC. Concurrently, 717 cancer-related genes from the

COSMIC census (https://cancer.sanger.ac.uk/census, Table S5) were selected as the
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base to calculate CCA. Due to the inconsistent sequencing background of the data, we

uniformly analyzed the data of coding regions, and calculated the contribution of each

sample to these signatures for subsequent analysis. However, this analysis will have

some limitations. In order to avoid the impact of this limitation, we are committed to

explore the ubiquitous signatures such as APOBEC signatures and age signatures, and

discuss those frequently mutated genes that present in ESCC, such as TP53 and

PIK3CA.

Previous reports have revealed that mutations in the helix domain and kinase

domain of PIK3CA cause activation through different mechanisms, and the mutation

process may be related to driving mutations in a variety of cancers [53]. In ESCC

studies, it was also mentioned that PIK3CA mutation was associated with the

APOBEC signatures [40, 43]. Furthermore, we found that there was a close

relationship between APOBEC signatures and PIK3CA mutations in the meta-analysis

of 1073 ESCC tumors, especially PIK3CA mutation E545K. In conclusion, APOBEC

mediated driver mutations, especially the known hotspot mutation E545K of PIK3CA,

suggests that the activity of APOBEC is the main source of PIK3CA mutation in

ESCC and an important factor in tumor development.

Next, we analyzed the association of TP53 hotspot mutations and mutational

signature. Notably, the most frequent TP53 mutations found in ESCC were associated

with the most commonly observed mutational signature, age signature, which reflects

the natural degradation of 5-methylcyto sine to thymine [54]. In particular, the

mutation R342* of TP53 can affect the mutation process of tumor occurrence and

development, resulting in a significant increase contribution of the sample to age

signature (Fig. 6b). This led us to put forward the hypothesis that the mutation R342*

of TP53 in ESCC which is the primary factor to increase the activity of age signature.

In many tumor types, driver mutations of TP53 appear to be strongly associated with

multiple signatures, and their probably arises due to the selection of loss-of-function

(LOF) and dominant-negative (DN) alleles which are generated by specific mutational

processes [41, 42]. In our analysis, TP53 mutations R213* was also shown to be an

independent prognostic factor.
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In addition to the CCA matrix image, deep convolutional neural network

denseNet-121 was used to analyze and the CCA matrix image data of gene in SBS3*

and SBS17b*, which can be preliminarily distinguished the shortened survival

outcome (follow-up time no less than three years). This finding indicates that the

results of this method serves as one of the criteria to evaluate the prognosis of

three-year survival. Combined with AI technology, our designed scheme directly

provides a new way to explore from the single gene relationship research to the multi

gene association analysis. In general, the number of individuals studied in this paper

is relatively small, which is one of the shortcomings of model learning. We hope to

further achieve the useful information in the era of big data. More excellent learning

model is also one of the improvement ideas to obtain accurate results, which needs

further research in the future. At the same time, complete clinical information,

including treatment methods, medication information, extended follow-up time and so

on, is of great clinical significance for the further exploration of this idea.

We are reasonably optimistic that in the future, CCA matrix of genes can be used to

evaluate the prognosis, metastasis risk, recurrence risk, and even provide medication

guidance and suggestions for individuals.

Overall, it is indispensable to understand and explore the mechanism of

tumorigenesis and development by studying the relationship between genes and

mutational signatures. The potential application of CCA of genes needs to be further

studied and explored, such as giving some specific gene lists, forming image pictures,

and perhaps evaluating prognosis and guiding medication through deep learning.

Method

Genomic data collection

All somatic mutations were initially collected from the supplementary data of six

previous studies (See Table S1) comprising 1073 esophageal squamous cell

carcinoma (ESCC) cases, including 508 genome-wide data and 564 exon sequencing

data.

R package link and parsing description

In the analysis process of this software, somatic variants can be imported from a
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Variant Call Format (VCF) file or a Mutation Annotation Format (MAF) file. Then it

relies on the Bioconductor library, such as BS.genome.Hsapiens.UCSC.hg19 or

BS.genome.Hsapiens.UCSC.hg38, to acquire an information matrix of mutation types

(SBS, DBS and ID, etc). Subsequently, the program extracts mutational signatures

according to the generated data, and finally obtains the result files. The R package is

publicly available at https://github.com/zhenzhang-li/RNMF. The detailed document

file also provides some examples of commands usage. In addition, scripts for running

the package will also be provided in the R package.

Optimal mutational signature extraction framework

Based on the model definition in previous reports [55, 56], we can obtain a

classical formula V = PS + E, which is used to extract the mutational signatures in

human cancers. In this equation, V refers to the observation matrix with size M×N, of

which M represents the observed characteristics, and N is the number of samples.

Supposing the number of mutational signatures is K, then we can estimate a

non-negative mutational signature matrix P with size M×K and a non-negative

abundance fractions matrix S with size K×N. Simultaneously, error matrix E that

refers to nonsystematic errors and sampling noise is calculated during the processing.

For an observed mutational catalogs V, these K mutational signatures could be

extracted by denovoNMF (Fig. 1) as following:

Step 1 (Capture random matrices): We randomly generate matrices P(P≥0) and

S(S≥0). Ideally, for a mutational signature, its components are basically fixed, so the

sum of its standardized components is equal to 1; for one sample, the total of

normalized abundance fractions for each mutational signature should be infinitely

close to 1. Hence, here we require that  
k

kn
m

mk SP 1,1 .

Step 2 (Optimize the initial value): We apply resampling to obtain a new matrix

)~(~ VVV  by using the Dirichlet distribution, and straighten matrices P and S by

columns and then merge them into a solution vector x . An optimized objective

function  
 ji

ij
jiji

j
T
iSP

SPPPSVSPE
,,,
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,
||||

2
1),,,(min  which previously

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456096doi: bioRxiv preprint 

https://github.com/LuoLicgigjs/RNMF.
https://doi.org/10.1101/2021.08.12.456096
http://creativecommons.org/licenses/by-nc-nd/4.0/


19

reported [55] is used to find the best solution. After smoothing x~ , the updated

matrices P and S are restored according to the straightening rules. Finally, we generate

a new initial mutational signature matrix P and a new initial abundance fractions

matrix S through 20000 iterations via referring to the previous implementation

process [15].

Step 3 (Re-updated the initial value): Perform Steps 1 and 2 for )5( II

iterations. Their errors generated by iterations are calculated by formula

2|||| PSVE  , and the results of the 5 items with the smallest error are selected.

Then we apply the k-means [57] algorithm to the set of matrices P and S to cluster the

data into K clusters, respectively. Subsequently, class-center P~ and S~ are obtained.

Similar to Step 2, we straighten them to calculate the optimal solution space, and

finally gain the excellent initial value.

Step 4 (Rerun NMF): In this step, we still use the multiplicative update rules to

generate the final matrix. The iterative model is as follows:

,,



PSP
VPSS

PSS
VSPP T

T

T

T

Where γ is a parameter to control the accelerated convergence. Iterate until P and S

convergence or until the maximum number of 100,000 iterations is reached.

Step 5 (Build a solution space): Repeat the process of steps 1 to 5 with )20ˆ(ˆ ΙΙ

times to generate a solution space for all the value of )( NKK . Then suitable

selection in this solution space using the silhouette coefficient measure and error

gradient.

After a series of analysis process, the final mutational profiles of each K clusters

can be acquired. Follow the previous experience [20], we use the cosine similarity to

determine the similarity between two mutational signature A and B.

Deriving the contribution of defined mutational signatures

At the same time, we also developed a reversible method named InverseNMF

(Fig. 1), which can identify mutational signatures within a small dataset or a single
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tumor sample. Previous reports [20, 33] have confirmed the importance of such

applications and provided another analytical strategy for tumor characteristic map

studies.

In this step, the P matrix is a user-defined matrix (such as the signature matrix

provided by COSMIC), and then a feasible sample contribution matrix S can be

estimated iteratively by observing matrix V. The iterative model is as follows:

,



PSP
VPSS T

T

where γ is a parameter to control the accelerated convergence. Iterate until S

convergence or until the maximum number of 100,000,000 iterations is reached.

Mutational signature operative in ESCC

We applied our framework to extract mutational signatures from 508 WGS samples of

1073 ESCC tumors. At the same time, the previously reported tool

"SigProfilerExtractor" [23] was used to analyze the data. Finally, the similarity

between the two results was analyzed (Fig. S5). Our framework optimizes the non

negative matrix factorization (NMF) algorithm and takes the change of silhouette

coefficient and error gradient as the evaluation index of feature number selection (Fig.

S3a,c).

In order to analyze and explore the potential features of exons of 1073 ESCC

samples, We used COSMIC Mutational Signatures (v3.2 - March 2021 and v2.0 -

March 2015) and mutational signals extracted from 508 WGS data as the background

to obtain the number of mutations in each mutational signatures. Based on the results

of three single base mutation data sets (508-WGS cohort renames as WGS508, exon

region of 508-WGS cohort renames as EXON508, and exon region of 1072 samples

renames as EXON1073), the eigenvalues of mutational signatures for subsequent

analysis of ESCC were determined.

Cumulative contribution abundance (CCA) of genes

As described earlier [7], since each mutational process takes into account the

mutation category and the generation of mutations in tumor is attributed to each

corresponding process, we define that the influence of mutations of category m in
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tumor n during the mutational process can be expressed as:

,)(
1




K

k
knmkSPmn

Where the unit PmkSkn represents the influence of mutations of category m attributed to

signature k in tumor n. Then the probability effects in mutations of category m due to

signature k in tumor n can be expressed as:

.),(
1 

 K

k knmk

snms

SP
SPmns

Let us now consider that all genes with the number of mutations of each mutation

type in tumor n can be calculated in matrix Γ that designed as following:
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where the G represents the number of gene lists in the dataset. Here, we define

mg
n as the impact factor of mutations of category m in sample n due to a gene g，

and it can be calculated by the following formula:
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Then the contribution of mutational signature s to mutations of category m in a

gene g in tumor n can be estimated as:

.),(
11  
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Therefore, we consider that the cumulative abundance of a gene g that is

attributed to mutational signature s in tumor n can be estimated as follows:

.),(),(
1 1  


M

k

N

n
mnsggs 

On the other hand, considering the influence of gene length, we also define the

relative abundance of a gene g that is attributed to mutational signature s in tumor n,

which can be calculated as follows:

.),sg(),(
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Where lg represents the length of the gene g. And ),( mnsg is on behalf of the

relative abundance of mutational signature s to mutations of category m in a gene g in

tumor n can be estimated as:

.),(
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Where the mg
n can be calculated by the following formula:
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Finally, based on the research results of the previous workers [7, 14, 21, 35], we

integrated and optimized some methods to evaluate the association between gene

mutation and mutational signatures. We hope that through these methods, we can

provide a convenient program interface for researchers, and further provide new ideas

for the study of tumor mechanism.

Prognostic analysis

Kaplan–Meier survival analysis and Cox proportional hazards model were used

to analyze an association between cancer-related genes and prognosis. Kaplan–Meier

survival and Cox regression analyses were carried out with the R survival package

(2.40-1). P-value less than 0.05 was considered to be statistically significant.
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Legend

Figure text

Figure 1. Overview of RNMF workflows. The automatic process can start from

inputting mutation data files in MAF or VCF format to generate the necessary

mutation type matrix, including SBS mutation types with 96 different contexts, 78

strand agnostic DBS mutation types, and a compilation of 83 different types of ID

mutation types. Next, the process can use two program interfaces (denovoNMF and

InverseNMF) for signature analysis to get the mutational profiles. Then, according to

the clinical grouping, non silent mutation data and the list of genes to be studied,

combined with P matrix and S matrix, the CCAmatrix of genes was calculated. At the

same time, the corresponding image data are generated according to the specified

order, and finally the training and analysis are carried out by machine learning or deep

learning methods, so as to obtain the expected results.

Figure 2. SBS signatures extracted from 508 Chinese ESCC patients. The left side

of the picture shows the classifications of 96 mutation types. Each color is used to

illustrate the positions of each mutation subtype on each plot. The right side of the

picture shows heatmap of the cosine similarity between mutational signatures and

COSMIC Mutational Signatures (v3.1 - June 2020). The shade of color corresponds to

different cosine similarity scores. The SBS signatures with cosine similarity score no

less than 0.6 are shown at the bottom of the figure, and the most similar one is

highlighted in red.

Figure 3. ID signatures extracted from 508 Chinese ESCC patients. The left side

of the picture shows the classifications of 83 mutation types. Each color is used to

illustrate the positions of each mutation subtype on each plot. The right side of the

picture shows heatmap of the cosine similarity between mutational signatures and

COSMIC Mutational Signatures (v3.1 - June 2020). The shade of color corresponds to

different cosine similarity scores. The ID signatures with cosine similarity score no

less than 0.6 are shown at the bottom of the figure, and the most similar one is

highlighted in red. At the bottom of the figure, the specific information of 83 mutation

types is given, and the colors correspond to the columns in the left image one by one.
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Figure 4. Mutational signatures reconstruction from 1073 ESCC cases. (a) The

top figure of the graph shows the statistics of hypermutation. Using Ckmeans.1d.dp to

cluster the number of mutations of 1073 ESCC samples, 16 hypermutated samples

(red dots) and 1057 regular tumors (yellow and gray dots) are found. The bottom

figure of the graph shows the proportion of six mutation types of 1073 ESCC samples

with point mutation, and the X-axis represents the sample, Each sample has a single

column, and each color represents a mutation type. (b) Based on the background

mutation contribution probability of COSMIC Mutational Signatures (v3.2 - March

2021), each color represents a mutational signature, the length of each column

represents the contribution ratio of mutation to the signature, the red mark represents

the signature most similar to the 12 mutational signature, and the green arrow and

green font indicate that this signature is very similar to the 12 mutational signature.

Yellow means that the similarity between the signature and 12 mutational signatures

is very low. (c) Percentage of ESCC tumors in each signature was displayed (top) and

mutation rate for each signature in the relevant samples (bottom). If the contribution

of a sample assigned to one signature is not less than 20%, we would consider that

this signature is present in the sample. (d) The association between mutational activity

of SBS signatures (SBS5* and SBS16*) and alcohol consumption. The violin

compared the difference between drinking and non drinking groups from the mutation

count and the contribution of samples to the signatures, and the significant p value

was statistically analyzed by Student's T-test with two-sided. (e) The heatmap shows

the distribution of CCA of cancer-related genes from the COSMIC census, and the

depth of color represents the degree of correlation. (f) Box plot showing that the SBS

signatures were associated with cancer-related genes mutations (including SNV and

indel), where n represents the number of samples. Statistical significance was tested

by rank sum test with two sided. (g) The contribution of non-silent mutations in the

coding regions of 40 cancer-related genes is statistically analyzed. Each color

represents a class of mutation feature map, and the pie chart shows the proportion of

each feature. In the figure, the top figure shows the total CCA of each gene in 1073

samples, while the bottom figure shows the proportion of each mutational signature,
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and a column represents a gene. Gene selection rules: the number of non-silent

mutations is more than 30 and belongs to cancer-related genes from the COSMIC

census.

Figure 5. CCA enrichment analysis identifies an association between somatic

PIK3CA mutations and activity of SBS2* or SNS13* in ESCC. (a-b) Here, we use

two datasets: exon regions of 1073 and 508 ESCC cases. First, the median CCA of

each gene in the current signature is calculated, and then the contribution importance

of each gene is calculated by PERMUTATION test to study the association between

gene and signature. The regular patterns in the figure represent the samples with non

hypermutated. For genes mutated in >5% of samples, the CCA of genes attributed to

SBS2* or SBS13* was compared in tumors with wild-type versus mutated copies of

the gene. Genes with FDR q < 0.1 are highlighted in red. (c) Mutation trend and

hotspot analysis of PIK3CA non-silent mutations: the pie chart on the top left shows

the proportion of six mutation types, and the pie chart on the top right shows the

proportion of coding protein, with the name of the protein that accounts for a large

proportion. Each color in the figure below represents a mutational signature, and the

statistical proportion of the contribution of six mutation types to each mutation

signature is on the left, a column represents a mutation type; The figure on the right

shows the contribution abundance of classical hotspot mutant protein to each

signature, and a column represents a classical mutant protein. (d-e) The violin

diagram shows the difference of contribution to SBS2* and SBS13* between the

samples with PIK3CA hotspot mutation and other types of samples, while (f-g) shows

the difference of contribution abundance between the samples with PIK3CA

non-silent mutations (E545K and E542K) and other samples. The Wilcoxon rank sum

test with two-sided is used here, * represents (0.01 < = P < 0.05), * * (0.001 < = P <

0.01), ***represents (P < 0.001) and ns represents (P > = 0.05).

Figure 6. CCA enrichment analysis identifies an association between somatic

TP53 mutations and activity of SBS1* in ESCC. (a) Mutation trend and hotspot

analysis of TP53 non-silent mutations: the pie chart on the top left shows the

proportion of six mutation types, and the pie chart on the top right shows the
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proportion of coding protein, with the name of the protein that accounts for a large

proportion. Each color in the figure below represents a mutation feature, and the

statistical proportion of the contribution of six mutation types to each mutation

signature is on the left, a column represents a mutation type; The figure on the right

shows the contribution abundance of classical hotspot mutant protein to each

signature, and a column represents a classical mutant protein. (b) The violin diagram

shows the difference of contribution to SBS1* between the samples with TP53

hotspot mutation and other types of samples, while (c) shows the difference of

contribution abundance between samples with TP53 hotspot mutations and other

samples. The Wilcoxon rank sum test with two-sided is used here, * represents (0.01

< = P < 0.05), * * (0.001 < = P < 0.01), ***represents (P < 0.001) and ns represents

(P > = 0.05).

Figure 7. Application of CCA matrix of genes in prognosis for ESCC. The

sensitivity-specificity curve of set classifier at the test sample sets for Urgent versus

Non-urgent binary classification.
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Supplementary Figure Text

Supplementary Figure 1. Comparison of signature contributions identified with

deconstructSigs, MutationalPatterns and RNMF framework. (a) Scatterplots

represent the relationship between the weighted proportions calculated using three

methods on a set of exon region of 1073 ESCC samples. Each point plotted represents

the weights assigned by both methods to one signature detected in a individual. (b)

The runtime (elapsed time) in seconds to find the optimal linear combination of

mutational signatures from 1073 samples for both packages.

Supplementary Figure 2. Mutation rate of 508 ESCC. Lego plot and bar plot

representation of mutation patterns in 508 ESCC with whole genome sequencing.

Single-nucleotide substitutions are divided into six categories with 16 surrounding

flanking bases. Inset pie chart shows the proportion of six categories of mutation

patterns. And 83 mutation types were used to display the small insert and deletion.

Each column represents the mutation proportion of this mutation type.

Supplementary Figure 3. Deciphering mutational signatures from a set of

mutational catalogs from 508 ESCC. (a) Identifying the number of SBS signatures

in a set of 508 ESCC genomes based on strong stability, low error rate and more

stable gradient of error. We choose the classification with stability not less than 0.9 as

the best number of SBS signatures for final decomposition, in which the green clipper

on each graph indicates the current classification position to be selected. The light

purple band represents the confidence region of stability change under the current

classification number. (b) The classification selection is adopted by

SigProfilerExtractor method, and the gray strip represents the current optimal number

of selected signatures. (c) Identifying the number of ID signatures in a set of 508

ESCC genomes based on strong stability, low error rate and more stable gradient of

error. We choose the classification with stability not less than 0.9 as the best number

of ID signatures for final decomposition, in which the green clipper on each graph

indicates the current classification position to be selected. The light purple band

represents the confidence region of stability change under the current classification

number.
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Supplementary Figure 4. SBS mutational signatures extracted from 508 WGS

cases of Chinese ESCC. The classifications of each mutation type (SBS, 96 classes)

are shown in the picture, separately. Each color is used to illustrate the positions of

each mutation subtype on each plot.

Supplementary Figure 5. Heatmap of the cosine similarity between mutational

signatures and COSMIC signatures. (a) The cosine similarity between SBS

signatures and COSMIC signatures with version 2 is evaluated, and the extraction

methods of mutational signatures include RNMF and SigProfilerExtractor. (b) The

cosine similarity between SBS signatures which deciphered by SigProfilerExtractor

and COSMIC signatures with version 3. (c) Cosine similarity comparison of SBS

signatures between RNMF and SigProfilerExtractor. The red mark represents the

signature with the highest similarity.

Supplementary Figure 6. (a) Lego plot representation of mutation patterns in exon

region of 1073 ESCC cases. Single-nucleotide substitutions are divided into six

categories with 16 surrounding flanking bases. Inset pie chart shows the proportion of

six categories of mutation patterns. (b) Based on the background mutation

contribution probability of COSMIC Mutational Signatures (v2.0 - March 2015), each

color represents a mutational signature, the length of each column represents the

contribution proportion of mutation to the signature, the red mark represents the

signature most similar to the 12 mutational signature, and the green arrow and green

font indicate that this signature is very similar to the 12 mutational signature. (c) The

proportion of 1073 ESCC samples in 12 mutational signatures, each color represents a

feature, in which red represents the proportion of ubiquitous signatures.

Supplementary Figure 7. (a) Association of CCA of cancer-related genes from the

COSMIC census assigned to SBS signatures with prognosis. Kaplan-Meier survival

analysis classified by the status that CCA of genes assigned to SBS signatures with a

threshold 6%. (b) Multivariate Cox regression analysis of CCA of genes assigned to

SBS signatures with age, gender, stage and CCA of genes assigned to SBS signatures.

Red is marked with significant items.

Supplementary Figure 8. (a) Box plot showing that the SBS signatures were
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associated with cancer-related genes mutations (only SNV), where n represents the

number of samples. (b-d) CCA enrichment analysis and mutational signature

enrichment analyses identify an association between somatic mutations and activity of

signatures in ESCC. Here, we use two datasets: exon regions of 1073 and 508 ESCC

cases. First, the median CCA of each gene in the current mutational signature is

calculated, and then the contribution importance of each gene is calculated by

PERMUTATION test or Fisher's test to study the association between gene and

feature. The regular tumors in the figure represent the samples with non hypermutated.

For genes mutated in >5% of samples, the CCA of genes attributed to SBS or ID

signatures was compared in tumors with wild-type versus mutated copies of the gene.

Genes with FDR q < 0.1 are highlighted in red. (e) Association of TP53 mutations

with prognosis. Kaplan-Meier survival analysis classified by the status that TP53

hotspot mutation (p.R248Q). (f) Multivariate Cox regression analysis of TP53 CCA

assigned to SBS1 with age, gender, stage, Location, TP53 hotspot mutation p.R248Q

status and CCA of TP53 assigned to SBS1*. (g) CCA enrichment analysis and

mutational signature enrichment analyses identify an association between somatic

mutations and activity of signatures in ESCC. First, the median CCA of each gene in

the current mutational signature is calculated, and then the contribution importance of

each gene is calculated by PERMUTATION test or Fisher's test to study the

association between gene and feature. The regular tumors in the figure represent the

samples with non hypermutated. For genes mutated in >5% of samples, the CCA of

genes attributed to SBS or ID signatures was compared in tumors with wild-type

versus mutated copies of the gene. Genes with FDR q < 0.1 are highlighted in red.

Supplementary Figure 9. The application and association of CCAmatrix of genes.

(a) Accuracy evaluation of model test between G2 group and G4 group. Wilcoxon

rank sum test with two-sided was used for statistical significance. (b) Full schematic

representation of DenseNet-121. (c) The model DenseNet-121 was trained 10 times

for each sub-feature data of G2-G4 and G2G3-G4. For each result, we randomly

select 90% of the samples as training, and the remaining 10% as test data set for

analysis. Each box represents a mutational signature and is marked in a different color.
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One way ANOVA test was used for statistical significance. The higher accuracy level

of mutational signature is marked in red. (d) The distribution of G3 groups in the

parameter model obtained by G2-G4. A color represents a group, a curve represents a

density curve. (e) The difference of sample contribution in different groups was

compared. Wilcoxon rank sum test with two-sided was used for statistical

significance.
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