
A low-cost greenhouse-based high-throughput1

phenotyping platform for genetic studies: a case study2

in maize under inoculation with plant growth-promoting3

bacteria4

Rafael Massahiro Yassue1, Giovanni Galli1, Ronaldo Borsato Junior1, Hao5

Cheng2, Gota Morota3,4,*, and Roberto Fritsche-Neto1,5,*6

1Department of Genetics, Luiz de Queiroz College of Agriculture, University7

of São Paulo, São Paulo, Brazil8

2Department of Animal Science, University of California, Davis, USA9

3Department of Animal and Poultry Sciences, Virginia Polytechnic Institute10

and State University, Blacksburg, USA11

4Center for Advanced Innovation in Agriculture, Virginia Polytechnic12

Institute and State University, Blacksburg, VA 24061 USA13

5Quantitative Genetics and Biometrics Cluster, International Rice Research14

Institute, Los Baños, Philippines15

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456112doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456112
http://creativecommons.org/licenses/by/4.0/


Running title: A low-cost high-throughput maize phenotyping platform to study plant16

growth-promoting bacteria17

18

Keywords: biostimulant, genomic correlation, genomic heritability, image-derived phenotyp-19

ing, maize20

21

Abbreviations: canopy coverage (CC); canopy volume (CV); genomic best linear unbiased22

prediction (GBLUP); ground control points (GCP); ground resolution of the orthomosaics23

(GRO); growing degree days (GDD); high-throughput phenotyping (HTP); high-throughput24

phenotyping plant height (PHHTP); Luria-Bertani medium (LB); normalized difference vege-25

tation index (NDVI); number of fully expanded leaves (NL); plant growth-promoting bacteria26

(PGPB); plant height (PH); real time kinematic (RTK); shoot dry mass (SDM); single-27

nucleotide polymorphism (SNP); unoccupied aerial vehicle (UAV).28

29

Core ideas30

• A low-cost greenhouse-based HTP platform was developed.31

• Image-derived phenotypes presented moderate to high genomic heritabilities and cor-32

relations.33

• Plant growth-promoting bacteria can improve plant resilience under nitrogen-limited34

conditions.35

∗ Corresponding author36

E-mail: morota@vt.edu (GM) and r.fritscheneto@irri.org (RFN)37

38

ORCID: 0000-0002-7424-2227 (RMY), 0000-0003-2792-4695 (RBJ), 0000-0002-3400-7978 (GG),39

0000-0001-5146-7231 (HC), 0000-0002-3567-6911 (GM), and 0000-0003-4310-0047 (RFN)40

41

Email addresses: rafael.yassue@usp.br (RMY), giovannigalli@alumni.usp.br (GG), ronal-42

doborsatojr@usp.br (RBJ), qtlcheng@ucdavis.edu (HC), morota@vt.edu (GM), and r.fritscheneto@irri.org43

(RFN)44

45

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456112doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456112
http://creativecommons.org/licenses/by/4.0/


Abstract46

Greenhouse-based high-throughput phenotyping (HTP) presents a useful approach for study-47

ing novel plant growth-promoting bacteria (PGPB). Despite the potential of this approach48

to leverage genetic variability for breeding new maize cultivars exhibiting highly stable sym-49

biosis with PGPB, greenhouse-based HTP platforms are not yet widely used because they50

are highly expensive; hence, it is challenging to perform HTP studies under a limited budget.51

In this study, we built a low-cost greenhouse-based HTP platform to collect growth-related52

image-derived phenotypes. We assessed 360 inbred maize lines with or without PGPB inocu-53

lation under nitrogen-limited conditions. Plant height, canopy coverage, and canopy volume54

obtained from photogrammetry were evaluated five times during early maize development.55

A plant biomass index was constructed as a function of plant height and canopy coverage.56

Inoculation with PGPB promoted plant growth. Phenotypic correlations between the image-57

derived phenotypes and manual measurements were at least 0.6. The genomic heritability58

estimates of the image-derived phenotypes ranged from 0.23 to 0.54. Moderate-to-strong59

genomic correlations between the plant biomass index and shoot dry mass (0.24–0.47) and60

between HTP-based plant height and manually measured plant height (0.55–0.68) across61

the developmental stages showed the utility of our HTP platform. Collectively, our results62

demonstrate the usefulness of the low-cost HTP platform for large-scale genetic and man-63

agement studies to capture plant growth.64
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Introduction65

Recent studies have reported the benefit of using plant growth-promoting bacteria (PGPB) to66

increase yield and resilience against biotic and abiotic stresses (Arif et al., 2020; Kumar et al.,67

2020) through various molecular mechanisms, including nitrogen fixation and phytohormone68

production (Compant et al., 2010; Manoj et al., 2020). Importantly, Wintermans et al.69

(2016) and Vidotti et al. (2019a) found a differential response of genotypes under PGPB70

inoculation, suggesting that the response has a genetic basis. These findings opened frontiers71

for a plant breeding program to breed new cultivars having highly stable PGPB responses72

(Vidotti et al., 2019b). However, the difficulty of monitoring a large number of lines across73

phenological growth stages under different inoculation conditions constrains our ability to74

analyze the genetics of dynamic PGPB responses.75

With the advancement in genotyping technologies, phenotyping is considered a new bot-76

tleneck in plant breeding (Furbank and Tester, 2011; Araus et al., 2018). Image-derived77

high-throughput phenotyping (HTP) presents a new avenue for automatic characterization78

of plants, owing to its capacity to generate difficult-to-measure phenotypes over time using79

advanced sensors and cameras (Mazis et al., 2020; Campbell et al., 2019). Greenhouse-based80

HTP platforms have been developed to evaluate a number of plant responses, such as mor-81

phological (Brichet et al., 2017), disease (Thomas et al., 2018), and physiological (Wang82

et al., 2018) under microbial inoculants (Chai et al., 2021) and biotic and abiotic stresses83

(Araus and Cairns, 2014; Campbell et al., 2018). Therefore, leveraging HTP to evaluate84

hundreds or thousands of genotypes non-destructively under different managements (Araus85

et al., 2018; Rouphael et al., 2018) is a promising approach to study PGPB. The choice of86

the HTP platform largely depends on the trade-off between the precision of phenotypes, the87

number of managements it can evaluate, and cost.88

One major factor limiting the wide deployment of image-derived HTP in plant breeding89
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programs is the high cost of setting up an HTP platform, especially for small breeding90

programs or research institutions. In field trials, an unoccupied aerial vehicle (UAV) is91

the commonly used cost-effective HTP technology to collect high-throughput data (Xie and92

Yang, 2020). In greenhouses, conveyor (plant-to-sensor) and benchtop (sensor-to-plant) type93

systems are often used for automated HTP platforms (Li et al., 2021). The conveyor type94

automatically transports potted plants into an imaging room. In contrast, the benchtop type95

is equipped with a computer-controlled mechanical arm that can automatically locate the96

position of a plant for phenotyping. Although both conveyor and benchtop systems support97

diverse cameras, their installation costs are too expensive and may require modification of the98

existing greenhouse facilities. When there are budget constraints, researchers are motivated99

to build self-developed HTP platforms because large-scale greenhous-based HTP platforms100

are produced mainly by commercial companies (Czedik-Eysenberg et al., 2018), which are101

forbiddingly expensive.102

Several efforts have been made to develop a novel low-cost custom greenhouse HTP plat-103

form (Zhou et al., 2018; Du et al., 2021). The most common approach is to use a sliding104

track or cable railing system to move the imaging system that consists of the camera in the x105

and y axes. The images are processed using image stitching or photogrammetry techniques106

to obtain 2-D or 3-D phenotypes. However, this type of HTP platform is yet to be widely107

adopted in genetic and management studies because the number of genotypes or manage-108

ments that can be accommodated is limited. Therefore, the objective of this study was109

to build a low-cost non-commercial sensor-to-plant greenhouse-based HTP platform using110

a multispectral camera that has the capacity to accommodate hundreds of maize lines and111

develop an image-processing pipeline to obtain growth-related image-derived phenotypes.112

We assessed the utility of the image-derived phenotypes by evaluating 360 genotypes under113

different PGPB management in the early stages of maize development.114
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Materials and Methods115

Low-cost high-throughput phenotyping platform116

A low-cost greenhouse HTP platform was built, wherein the camera was positioned in a117

way that it obtained images from directly above the plants. The system was built in a118

conventional greenhouse with dimensions of 3.5 × 11 × 6 m height, width, and length,119

respectively. A cooling wall and ventilation were used to maintain the desired temperature,120

and additional luminosity was supplied using LED lamps.121

The image capture system was inspired by the UAV flight plans. It consists of two122

fixed parallel tracks (9 m) and one mobile perpendicular track (5 m). They were positioned123

2.5 m above the ground. The two parallel tracks were fixed to the greenhouse roof, as124

well as two support tracks to ensure stability and alignment. The parallel tracks move the125

perpendicular track along the x-axis, whereas the perpendicular track moves the sensors126

along the y-axis. Each track contained an individual 96-watt electric motor. These electric127

motors were remotely controlled to achieve the desired overlap (Figure 1). The speed of the128

tracks was set at 0.16 m/s.129

A medium-density fiberboard platform was designed to accommodate the multispectral130

camera, light sensor, and battery. The fiberboard platform was attached to the y-axis131

mobile track. Four ground control points (GCP) geo-referenced with real-time kinematic132

(RTK) were used to assemble the orthomosaics. Top-view image data collection was per-133

formed between 12:00 and 13:00 with an overlap of 80 % frontal and 70% lateral views. The134

multispectral camera used was a Parrot Sequoia (Parrot SA, Paris, France), including green135

(550 nm), red (660 nm), red-edge (735 nm), and near-infrared (790 nm).136
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Image processing and data extraction137

Multispectral images were processed by assembling orthomosaics and the dense point cloud138

using Agisoft Metashape software (Agisoft LLC, St. Petersburg, Russia). The images were139

imported, aligned, and optimized using GCP. This was followed by the calculation of the140

dense point clouds and the stitching of orthomosaics.141

The orthomosaics were analyzed using QGIS software (QGIS Development Team, 2021)142

to obtain a shapefile for each plot. The plots were manually identified, and a geometry point143

was assigned at the center of the plant. Then, a round positive buffer of 0.10 m was drawn144

for each plot. The shapefile of each plot was manually adjusted to reduce overlaps across145

plants. We applied image segmentation to the orthomosaics using the normalized difference146

vegetation index (NDVI) (Rouse et al., 1974) with a threshold of 0.35 to separate canopy147

vegetation from the background. The reflectance of each plot was calculated as the mean of148

each wavelength (green, red, red-edge, and near-infrared) using the R package FIELDimageR149

(Matias et al., 2020). The NDVI was calculated using the following formula: NDVI = (NIR -150

RED)/ (NIR + RED), where NIR and RED are the reflectances at the near-infrared and red151

wavelengths, respectively. Canopy coverage (CC) was calculated from the sum of the pixels152

in the canopy vegetation and transformed to cm2 based on the resolution of the orthomosaics153

(mm pixel−1).154

Dense cloud points were used to estimate plant height (PHHTP) and canopy volume155

(CV). Each point from the dense cloud point was composed of GPS coordinates (latitude,156

longitude, and altitude in the universal transverse mercator). The dense cloud point data157

were processed using the R package lidR (Roussel and Auty, 2021). A round positive buffer158

of 0.01 m was generated at the center of each plant to obtain the corresponding points of159

each plot. PHHTP was constructed from the difference between the 90 percentile of the top160

of the point cloud altitude and the pot altitude before plant germination (0 leaves) (Figure161

2) (Galli et al., 2021). The image-derived plant biomass index, f(biomass), was derived162
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from the product of PHHTP (cm) and CC (cm2) (Li et al., 2020). For CV, the dense cloud163

points were filtered by colors using the “Select Points by Color” function in the Agisoft164

Metashape software to remove the background. Plants were then reconstructed from the165

point cloud data, and the CV was estimated using the α-shape algorithm (Lafarge and166

Pateiro-Lopez, 2020). The algorithm requires an α value that controls the tightness of the167

3-D reconstruction of the points. The optimal value of α that yielded the greatest correlation168

with manual measurements was 0.01 (Moreno et al., 2020).169

Plant growth-promoting bacteria experiment170

A tropical maize association panel containing 360 inbred lines was used to study the response171

to PGPB. Of these, 179 inbred lines were from the Luiz de Queiroz College of Agriculture-172

University of Sao Paulo (ESALQ-USP) and 181 were from the Instituto de Desenvolvimento173

Rural do Paraná (IAPAR). More information about this panel is available on the Mendeley174

platform (https://data.mendeley.com/datasets/5gvznd2b3n).175

The inbred lines were evaluated under two managements: with (B+) and without (B-)176

PGPB inoculation under nitrogen stress. The B+ management consisted of a synthetic pop-177

ulation of four PGPB. Bacillus thuringiensis RZ2MS9, Delftia sp. RZ4MS18 (Batista et al.,178

2018, 2021), Pantoea agglomerans 33.1 (Quecine et al., 2012), and Azospirillum brasilense179

Ab-v5 (Hungria et al., 2010) were selected based on a preliminary experiment that showed180

their ability to promote growth when co-inoculated. Each species was grown individually181

in Luria-Bertani (LB) medium at 28◦C with agitation at 150 rpm for 24 h. The synthetic182

population was composed of an adjusted volume of each bacterial culture medium containing183

approximately 108 colony-forming units/mL. The B- management consisted of an inoculum184

with liquid LB only. Each plot containing three seeds was individually inoculated with 1185

ml of the respective management, agitated, and sown afterwards. Each line was replicated186

twice across time, and each replication was composed of an augmented block design with six187
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blocks and three common checks.188

A total of 13,826 single-nucleotide polymorphisms (SNPs) were available for the maize189

inbred lines using a genotyping-by-sequencing method following the two-enzymes (PstI and190

MseI) protocol (Sim et al., 2012; Poland et al., 2012). DNA was extracted using the191

cetyltrimethylammonium bromide method (Doyle and Doyle, 1987). SNP calling was per-192

formed using the TASSEL 5.0 software (Bradbury et al., 2007) with B73 (B73-RefGen v4)193

as the reference genome. The SNP markers were filtered if the call rate was less than 90%,194

non-biallelic, and the minor allele frequency was less than 5%. Missing marker codes were195

imputed using the Beagle 5.0 software (Browning et al., 2018). Markers with pairwise linkage196

disequilibrium higher than 0.99, were removed using the SNPRelate R package (Zheng et al.,197

2012).198

Manually measured and high-throughput phenotypes199

The experiments were performed at ESALQ-USP in Brazil (22◦42’39 ”S; 47◦38’09 ”W, alti-200

tude 540 m). The final evaluation was conducted when most plants had developed six fully201

expanded leaves, approximately 33 days after sowing. The growth-related manually mea-202

sured traits that were evaluated were plant height (PH) and shoot dry mass (SDM). Plant203

height was measured from the soil to the last expanded leaf’s ligule, and SDM was obtained204

from the dry mass of the leaves and stalk.205

The image-derived phenotypes were collected over time to capture plant growth, as pre-206

viously described. For each replication, measurements were made at six time points defined207

by the number of expanded leaves: 0 (before germination), 2, 3, 4, 5, and 6 (Hanway, 1966).208

Since the genotypes presented expected inconsistencies in growth stages, it was determined209

as the mode of the population at a given time. A time point before the germination step210

was used to obtain the PHHTP. Heat accumulation was calculated from the growing degree211

days (GDD) based on the formula: GDD =
∑m

i=1 Ti − Tbase, where Ti is the daily mean air212
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temperature and Tbase is the base temperature of 10◦C. Mean air temperature was calculated213

using the following formula: Ti = Tmax−Tmin

2
, where Tmax and Tmin are the maximum and214

minimum temperatures, respectively, of day i (Gilmore and Rogers, 1958). The R package215

pollen (Nowosad, 2019) was used to calculate GDD. Phenotypic correlations were estimated216

using Pearson correlations between the image-derived phenotypes (PHHTP, CC, f(biomass),217

and CV) and manually measured phenotypes (PH and SDM).218

Likelihood-ratio and Wald tests219

The following model was used to test the effects of genotype, management (B+ and B-), and

their interaction.

y = 1µ+ X1r + X2b + X3m + Z1g + Z2gm + ε

where y is the vector of phenotypes; 1 is the vector of ones; X1, X2, and X3 are the incidence220

matrices for the fixed effects; Z1 and Z2 are the incidence matrices for the random effects; µ221

is the overall mean; r, b, and m are the fixed effects for replication, block within replication,222

and management (B+ and B-), respectively; g ∼ N (0, Gσ2
g) is the vector of random effect223

of genotype; gm ∼ N (0, G⊗Iσ2
gm) is the vector of random effects of the interaction between224

genotype and management; and ε ∼ N (0, Iσ2
ε ) is the random residual effect. Here G is the225

additive genomic relationship matrix (VanRaden, 2008); I is the identity matrix; σ2
g is the226

additive genomic variance; σ2
gm is the genotype-by-management interaction variance; and227

σ2
ε is the residual variance. The significance of random and fixed effects was assessed using228

the Wald and likelihood-ratio tests, respectively. The analysis was performed using the R229

package ASReml-R (Butler et al., 2017).230
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Bayesian genomic best linear unbiased prediction231

Univariate and bivariate Bayesian genomic best linear unbiased prediction (GBLUP) models

were used to estimate genomic heritability and genomic correlation separately for B+ and

B-. These Bayesian models were the same as those used for the Wald and likelihood-ratio

tests, but the management (m) and genotype-by-management interaction terms (gm) were

dropped. For the univariate model, a flat prior was assigned to r and b. The variance

components, σ2
g and σ2

ε , were drawn from a scaled inverse χ2 distribution. For the bivariate

model, y is the vector of phenotypes of two responses; g ∼ N (0, Σg ⊗ G) is the vector of

genotypes; ε ∼ N (0, Σε⊗ I) is the residual; ⊗ is the Kronecker product; and Σg and Σε are

the variance-covariance matrices for additive genomic and residual effects taking the forms

of

Σg =

σ2
g1

σg12

σg21 σ2
g2

 , Σε =

σ2
ε1

σε12

σε21 σ2
ε2

 ,
where subscripts 1 and 2 refer to the first and second phenotypes. An inverse Wishart232

distribution was assigned to Σg and Σε with degrees of freedom ν = 4 and scale matrix233

S such that the prior means of Σg and Σε equal half of the phenotypic variance. All the234

Bayesian GBLUP models were fitted using 60,000 Markov chain Monte Carlo samples, 10,000235

burn-in, and a thinning rate of 60 implemented in JWAS software (Cheng et al., 2018a,b).236

Model convergence was assessed using trace plots of the posterior distributions of the variance237

components.238
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Heritability and genomic correlation239

The variance components obtained from the univariate Bayesian GBLUP were used to esti-

mate genomic heritability using the following formula.

h2 =
σ2
g

σ2
g + σ2

e

nr

,

where nr is the number of replications (2). The estimates of genomic correlation were ob-240

tained from the estimated variance-covariance matrix in the bivariate Bayesian GBLUP241

model.242
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Results243

Image processing and data extraction244

A total of 756 plots in each replication across time were evaluated during plant develop-245

ment. Each collection of images took approximately 10 min. The ground resolution of the246

orthomosaics was approximately 2.30 mm pix−1, and the GCP error was approximately 4247

cm (Table 1). Despite the difference between days after sowing, accumulated GDD were248

similar between replication 1 and replication 2. Additionally, the ground resolution of the249

orthomosaic values was consistent, and GCP errors were low across different numbers of250

leaves.251

Plant growth-promoting bacteria experiment252

Statistical test and phenotypic correlation253

The management and genotype effects were statistically significant for all image-derived phe-254

notypes across the different stages of maize development (Supplementary Tables S1-S4). This255

suggests that the presence of PGPB and genetic diversity significantly affect plant develop-256

ment and growth. However, the genotype-by-management interaction was not statistically257

significant. Similarly, the main effects of management and genotype were consistently sig-258

nificant, but the genotype-by-management interaction was absent for manually measured259

PH and SDM (Supplementary Table S5). Figure 3 shows the growth patterns of the image-260

derived phenotypes with (B+) or without (B-) PGPB inoculation. The B+ management261

produced higher mean values than the B- management for all image-derived phenotypes, sug-262

gesting that PGPB inoculation promotes plant growth as expected. Moderate phenotypic263

correlations were observed between the HTP and manually measured phenotypes (Table 2).264

Phenotypic correlations between PHHTP and PH ranged from 0.23 to 0.64 (B+) and 0.36 to265

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456112doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456112
http://creativecommons.org/licenses/by/4.0/


0.57 (B-). Image-derived phenotypes CC, f(biomass), and CV were equally correlated with266

SDM. The later growth stages tended to show higher phenotypic correlations (4, 5, and 6267

leaves). Overall, B+ and B- showed a similar pattern of phenotypic correlations.268

Genomic heritability269

Estimates of genomic heritability varied across image-derived phenotypes and stages of maize270

development (Table 3). Earlier developmental stages tended to show higher estimates of her-271

itability. Among image-derived phenotypes, PHHTP showed the highest estimates of genomic272

heritability ranging from 0.35 to 0.54 (B+) and 0.34 to 0.48 (B-). In contrast, CV showed273

the lowest genomic heritability estimates, particularly when the number of leaves was five.274

The genomic heritability estimates of manually measured PH were 0.61 (B+) and 0.57 (B-),275

while those of SDM were 0.30 (B+) and 0.28 (B-). Overall, the difference in the habitability276

estimates between B+ and B- was small.277

Genomic correlation278

The genomic correlations between HTP and manually measured phenotypes showed a similar279

tendency to those of phenotypic correlations (Table 2). High genomic correlations were280

observed between PHHTP and PH in the later stages of maize development for both B+ and281

B-. The image-derived f(biomass) showed the strongest genomic correlations with SDM,282

followed by CC. No differences in genomic correlations were observed between B+ and B-.283

Additionally, moderate-to-strong phenotypic and genomic correlations were observed across284

the developmental stages for each image-derived phenotype (Figure 4). As expected, the285

number of adjacent leaves showed higher correlations.286
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Discussion287

A greenhouse HTP platform was developed to evaluate the influence of PGPB on plant288

growth using image-derived phenotypes. HTP platforms play an important role in plant289

breeding programs because they allow the evaluation of plant growth and development in290

a non-destructive, time-efficient, and less laborious manner. The image-capture system and291

processing were designed to be similar to those of UAVs. The roof structure of the greenhouse292

was used to attach the tracks to save costs and enable easy installation without restructuring293

the greenhouse itself. The total cost to develop our greenhouse-based HTP system was294

approximately US$5,000. Our expenses were higher than those of a recently developed HTP295

system for soybean (Zhou et al., 2018). However, the size of the HTP platform developed296

in this study is larger and can accommodate more genotypes. In terms of cost per m2, our297

HTP platform is relatively cost-efficient because the cost associated with our HTP system298

was $75 per m2, whereas that of Zhou et al. (2018) was $40 per m2. The image overlap299

during the capture was controlled by the opening angle of the camera, speed of the track,300

and the y-axis distance, so that different cameras can be easily utilized by adjusting these301

factors. The coordinate system used for GCP was a universal transverse mercator obtained302

from RTK GPS, which may not always work indoors because of the greenhouse roof. An303

alternative option is to use a local coordinate system.304

The image analysis pipeline consisted of aligning the images, obtaining dense cloud points,305

and mosaicking. The most laborious steps were to manually identify each plot and adjust306

its shapefile to avoid overlapping plots. Several approaches have been proposed to automate307

the plot identification step, such as the fieldShape function in the FIELDimageR R package308

(Matias et al., 2020) or a negative buffer area (Galli et al., 2020). However, these methods309

did not produce adequate results in our case, probably because of leaf overlapping (Ahmed310

et al., 2019). An alternative emerging approach is to implement semantic segmentation and311
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object detection based on deep learning (Xie et al., 2017; Zou et al., 2020).312

The effects of genotype and management were significant and consistent between the313

image-derived and manually measured phenotypes. This suggests that image-derived phe-314

notypes can be used to assess the differences within genotypes or managements. Additionally,315

the image-derived phenotypes were capable of capturing plant growth at different stages of316

plant development. The HTP genomic heritability estimates tended to be lower than those317

of manually measured phenotypes and decreased as the plants developed. This was likely318

due to the difficulty in accurately phenotyping taller plants. The magnitude of the genomic319

correlations and genomic heritabilities were similar between management groups B+ and320

B-. This was expected because the genotype-by-management interaction term was not sig-321

nificant. Our HTP platform was able to consistently capture genetic variability within each322

management.323

No significant interaction between genotype and management for both HTP and manu-324

ally measured phenotypes may also indicate the absence of phenotypic plasticity for PGPB325

responses in our population. Our findings agree with those of Vidotti et al. (2019a) and326

Vidotti et al. (2019b), who did not find significant genotype and management interactions in327

hybrid maize using different genotypes and PGPB from this study. This might be because328

both managements were tested under nitrogen-limited conditions or the experiment only329

covered the early developmental stages. For example, Guo et al. (2020) reported that low330

nutrients in optimal irrigated growth conditions might contribute to the absence of genotype-331

by-water availability interaction in wheat. On the other hand, the significant management332

effect suggests that PGPB can promote plant growth. Nevertheless, further studies are333

needed to vary nitrogen levels, assess PGPB responses at the later stages of development,334

and validate our results in field trials.335

Moderate-to-strong phenotypic and genomic correlations between PHHTP and PH re-336

vealed that image-derived PHHTP can be a good predictor for manually measured PH. Simi-337

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456112doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456112
http://creativecommons.org/licenses/by/4.0/


larly, a moderate genomic correlation between f(biomass) and SDM suggests that f(biomass)338

can be used as a secondary or correlated phenotype for SDM in genomic predictions (Rutkoski339

et al., 2016). We also investigated the utility of spectral indices (e.g., NDVI) as a proxy for340

SDM. However, the phenotypic correlation between NDVI and SDM was low. A potential341

reason for this might be the difficulty in accurately calibrating images using a calibrated re-342

flectance panel or a sunshine (light) sensor. The reduction of sunlight inside the greenhouse343

due to the polyethylene roof may have limited the calibration accuracy. Unlike Li et al.344

(2020), this was the main reason why we did not include NDVI to calculate f(biomass).345

The architecture of maize plants makes image-derived phenotyping harder because stalks346

and leaves grow beyond their pots and interfere with neighboring pots. This can be min-347

imized by increasing the distance between the pots and distributing them equidistantly if348

a larger greenhouse is available. Another limiting factor that may reduce the correlation349

between PHHTP and PH is related to plant morphology. For instance, during maize growth,350

the leaf development stage directly impacts plant height projection. Alternatively, we can351

measure PHHTP at the leaf ligule of the last fully expanded leaf. However, locating the leaf352

ligule in the HTP platform is a challenging task because PHHTP is based on plant height353

projection (Figure S1).354

There are several greenhouse-based HTP platforms available that differ in terms of pre-355

cision, resolution, and applications (Li et al., 2021). The advantage of our HTP platform356

is its low cost compared to commercial platforms, while having the capacity to phenotype357

many lines. Despite the fact that our image-derived phenotypes were slightly less correlated358

with manually measured phenotypes than other related studies found in the literature, our359

results confirm that image-derived phenotypes can provide valuable information for captur-360

ing temporal PGPB responses in maize. Further research is warranted to evaluate the utility361

of image-derived phenotypes to study PGPB responses in longitudinal genomic predictions362

and genome-wide association studies (Campbell et al., 2019; Baba et al., 2020).363
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Conclusions364

We developed a low-cost high-throughput phenotyping platform capable of capturing plant365

growth across developmental stages. This platform was used to study the symbiosis between366

PGPB and maize. We found a moderate-to-strong phenotypic and genomic correlation367

between the image-derived and manually measured phenotypes, where PGPB promoted368

growth in the population. The findings reported in this study will help small plant breeding369

programs or public research institutions to integrate phenomics, genetic, and management370

studies under a limited budget.371
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Tables548

Table 1: Replication (Rep), number of fully expanded leaves (NL), days after sowing (DAS),
ground resolution of orthomosaic (GRO), ground control points (GCP) error, and accumu-
lated growing degree days (GDD) across five evaluations during maize growth development.

Rep NL DAS GRO (mm pixel−1) GCP error (m) GDD (◦C)a

1 2 11 2.32 0.04 169.6
1 3 15 2.29 0.06 229.3
1 4 18 2.27 0.05 268.5
1 5 22 2.25 0.05 320.4
1 6 27 2.25 0.04 394.8
2 2 14 2.34 0.03 172.1
2 3 21 2.35 0.03 250.1
2 4 27 2.31 0.03 310.6
2 5 30 2.31 0.03 338.8
2 6 37 2.29 0.03 410.3

a The base temperature used for GDD estimation was 10◦C
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Table 2: Phenotypic (rp) and genomic (rg) correlations between high-throughput phenotyp-
ing and manually measured phenotypes across maize development with (B+) or without
(B-) plant growth-promoting bacteria inoculation. PHHTP: image-derived plant height; PH:
manually measured plant height; CC: canopy coverage; SDM: shoot dry mass; f(biomass):
plant biomass index; CV: canopy volume; and NL: number of fully expanded leaves.

NL
PHHTP:PH CC:SDM f(biomass):SDM CV:SDM
rp rg rp rg rp rg rp rg

B+
2 0.29 0.55 0.35 0.20 0.35 0.24 0.42 0.14
3 0.23 0.59 0.45 0.30 0.39 0.39 0.62 0.29
4 0.61 0.64 0.51 0.35 0.62 0.47 0.38 0.36
5 0.64 0.67 0.47 0.30 0.64 0.43 0.62 0.32
6 0.54 0.66 0.53 0.32 0.60 0.42 0.65 0.31

B-
2 0.38 0.60 0.35 0.35 0.38 0.41 0.29 0.21
3 0.36 0.67 0.51 0.41 0.48 0.46 0.49 0.29
4 0.53 0.68 0.59 0.47 0.59 0.43 0.40 0.36
5 0.57 0.63 0.62 0.45 0.66 0.47 0.50 0.32
6 0.56 0.67 0.63 0.32 0.63 0.44 0.61 0.31
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Table 3: Genomic heritability estimates of image-derived phenotypes across maize devel-
opment with (B+) or without (B-) plant growth-promoting bacteria inoculation. PHHTP:
image-derived plant height; PH: manually measured plant height; CC: canopy coverage;
SDM: shoot dry mass; f(biomass): plant biomass index; CV: canopy volume; and NL: num-
ber of fully expanded leaves.

NL
PHHTP CC f(biomass) CV

B+ B- B+ B- B+ B- B+ B-
2 0.54 0.48 0.46 0.43 0.46 0.45 0.31 0.29
3 0.36 0.44 0.33 0.37 0.32 0.40 0.23 0.33
4 0.43 0.36 0.35 0.36 0.36 0.34 0.23 0.22
5 0.41 0.44 0.23 0.22 0.25 0.24 0.21 0.21
6 0.35 0.34 0.23 0.23 0.24 0.25 0.27 0.25
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Figures549
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Figure 1: Summary of the image acquisition using a low-cost high-throughput phenotyping
platform for greenhouse experiments. The blues lines indicate the y and x sliding tracks.
The small arrows show the direction of the camera path. Each blue square represents a
photo taken by the multispectral camera.
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Figure 2: Summary of the multispectral image processing. (A) image acquisition; (B) mo-
saicking; (C) plot clip; (D) canopy coverage (CC), (E) dense cloud point; (F) plant height
(PH) was calculated from the difference between the dense cloud point with the plants and
the dense cloud point with only the pot; (G) dense cloud point after applying the filter to
remove the background; (H) dense cloud point for each plot; (I) 3-D reconstruction of the
dense cloud point to obtain canopy volume (CV); and (J) f(biomass) (plant biomass index)
was obtained from PH and CC.

32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456112doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456112
http://creativecommons.org/licenses/by/4.0/


Figure 3: Growth patterns of genotypes across maize development with (B+) or without
(B-) plant growth-promoting bacteria inoculation. The blue and red dashed lines represent
the means of B+ and B- managements, respectively. Each thin colored line represents the
mean of a genotype.
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Figure 4: Graphical display of phenotypic and genomic correlations for image-derived pheno-
types across maize development (number of leaves varied from 2 to 6). The upper and lower
diagonal elements show phenotypic and genomic correlations, respectively. PHHTP: plant
height from high-throughput phenotyping; CC: canopy coverage, f(biomass): plant biomass
index; and CV: canopy volume.

34

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456112doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456112
http://creativecommons.org/licenses/by/4.0/

