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Abstract 29 

Microbes play a critical role in regulating the size, composition, and turnover of 30 

dissolved organic matter (DOM), which is one of the largest pools of carbon in aquatic 31 

ecosystems. Global change may alter DOM-microbe associations with implications for 32 

biogeochemical cycles, although disentangling these complex interactions remains a 33 

major challenge. Here we develop a framework called Energy-Diversity-Trait integrative 34 

Analysis (EDTiA) to examine the associations between DOM and bacteria along 35 

temperature and nutrient gradients in a manipulative field experiment on mountainsides 36 

in contrasting subarctic and subtropical climates. In both study regions, the chemical 37 

composition of DOM correlated with bacterial communities, and was primarily controlled 38 

by nutrients and to a lesser degree by temperature. At a molecular-level, DOM-bacteria 39 

associations depended strongly on the molecular traits of DOM, with negative 40 

associations indicative of decomposition as molecules are more biolabile. Using bipartite 41 

networks, we further demonstrated that negative associations were more specialized than 42 

positive associations indicative of DOM production. Nutrient enrichment promoted 43 

specialization of positive associations, but decreased specialization of negative 44 

associations particularly at warmer temperatures in subtropical climate. These global 45 

change drivers influenced specialization of negative associations most strongly via 46 

molecular traits, while both molecular traits and bacterial diversity similarly affected 47 

positive associations. Together, our framework provides a quantitative approach to 48 

understand DOM-microbe associations and wider carbon cycling across scales under 49 

global change.  50 
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Introduction 52 

Dissolved organic matter (DOM), one of the largest pools of carbon in aquatic 53 

ecosystems 1, is intimately interlinked with the metabolic processes of complex microbial 54 

communities 2. Microbial consortia generate “chemodiversity” in the DOM pool by 55 

degrading larger molecules into smaller molecules and by synthesizing more refractory 56 

compounds from labile substrates 3. These basic processes together lead to the emergence 57 

of molecular traits of DOM including chemical structure, stoichiometry, oxidation state, 58 

and bioavailability 4-6 that directly determine its environmental persistence 7, 8. DOM, as a 59 

carbon source for microbial metabolism, also influences the diversity, structure, and 60 

functioning of microbial communities via decomposition and biosynthetic processes 9-13. 61 

The resulting resource-consumer relationships can now be characterised in both aquatic 62 
14-16 and terrestrial 17 ecosystems owing to recent advances in ultrahigh-resolution mass 63 

spectrometry and high-throughput sequencing. Despite the availability of these 64 

technologies, little is known about how DOM-microbe associations can be quantified in 65 

nature, and are interactively and independently affected by global change drivers, such as 66 

elevated temperatures and eutrophication. 67 

The effects of global change on DOM-microbe associations can be viewed 68 

through three proximal controls (Fig. 1). First, energy supply, such as primary 69 

productivity, represents the major source of DOM that supports microbial metabolism 18-70 
20. In particular, elevated temperature and nutrient inputs can stimulate primary 71 

productivity in ways that influences the composition and availability of organic matter 21, 72 
22, but this process also indirectly influence DOM-microbe associations by controlling 73 

their diversity and traits 22-25. Second, diversity can generally beget diversity. For 74 

example, an increase in the diversity of DOM promotes microbial diversity, and vice 75 

versa 15, which should be reflected as signatures in resource-consumer relationships. Such 76 

patterns may arise because resource diversity promotes microbial specialization during 77 

biochemical transformations by creating more unique resource niches for consumers to 78 

partition 26, 27. Likewise, higher microbial diversity provides more metabolic pathways to 79 

decompose and produce molecules, which influences the vulnerability of DOM to 80 

degradation 3. Third, DOM-microbe associations depend on the molecular traits of DOM, 81 
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such as its bioavailability, measured with H/C ratios of individual molecules 28, and 82 

microbial traits like life history (i.e., r- versus K-selection) 29 and resource acquisition 83 

(i.e., generalists versus specialists) 27.  84 

To integrate the three proximal controls to examine how DOM-microbe 85 

associations vary under global change, we developed a framework called Energy-86 

Diversity-Trait integrative Analysis (EDTiA) (Fig. 1). EDTiA relies on the construction 87 

of bipartite networks 30 to quantify the specialization between organic molecules and 88 

microbial taxa. These networks are investigated using measures of entropy such as the H2’ 89 

index 31, which quantify resource-consumer relationships at an ecosystem-level. For 90 

example, elevated H2’ values convey that there is a high degree of specialization between 91 

DOM and microbes 31, where in the extreme example, one bacterial taxon consumes or 92 

produces a single DOM molecule. By contrast, lower H2’ reflects a more generalized 93 

bipartite network where different DOM molecules can be used by a large range of 94 

bacterial taxa. Furthermore, EDTiA allows for the integration of global change drivers to 95 

explore their relative importance of proximal controls on the specialization of DOM-96 

microbe associations (Fig. 1).  97 

We therefore used the EDTiA framework to test how associations between DOM 98 

and bacteria were jointly influenced by temperature and nutrient loading in a 99 

manipulative field experiment on subtropical and subarctic mountainsides in China and 100 

Norway 32. This macroecological approach involved creating microcosms with consistent 101 

initial DOM composition but different locally colonised microbial communities and 102 

newly produced endogenous DOM. Briefly, we selected five locations with different 103 

elevations on each mountainside that spanned a mean annual temperature gradient of 4.2-104 

12.9°C in China and -2.9-0.7 °C in Norway. We established 300 sterile aquatic 105 

microcosms composed of natural lake sediments and artificial lake water, which included 106 

ten nutrient levels at each elevation. The sediments originated from Taihu Lake, a large 107 

eutrophic shallow lake in China, and were added to each microcosm after sterilisation to 108 

ensure identical initial DOM supply and composition. Microcosms were left in the field 109 

for one month allowing airborne bacteria to colonise, and sediment bacteria were 110 

examined using high-throughput sequencing of 16S rRNA genes 32. Additionally, we 111 
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applied ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron 112 

resonance mass spectrometry (FT-ICR MS) to examine sediment DOM features, such as 113 

chemodiversity and molecular traits.  114 

Our study addresses three questions: (1) How do associations between 115 

chemodiversity and microbial biodiversity respond to temperature and nutrient 116 

enrichment? (2) How does the specialization of molecular-level associations between 117 

DOM and microbes vary along temperature and nutrient gradients? (3) How is the 118 

specialization interactively and independently influenced by temperature and nutrient 119 

enrichment via the three proximal controls? Results from our study will help advance 120 

biogeochemical modeling and improve predictions about carbon turnover along with 121 

feedbacks based on resource-based constraints on microbial diversity. 122 

 123 

Results and Discussion 124 

(1) DOM features and their microbial associations at a compositional-level 125 

The diversity and molecular traits of DOM were strongly controlled by nutrient 126 

enrichment but less by temperature in both mountainsides (Figs. S2-4). Nutrient 127 

enrichment generally promoted molecular richness in both regions when all molecular 128 

components were considered (Figs. 2a, S5). Using piecewise regression 33 and gradient 129 

forest analysis 34, we identified breakpoints in molecular composition that mostly 130 

occurred between 1.80 and 4.05 mg N L-1 along the nutrient gradient for all molecules at 131 

each elevation (Figs. 2a, S6). The effects of nutrient enrichment on molecular traits, 132 

however, varied between the two ecoregions (Figs. 2a, S5, S7). For instance, the 133 

weighted mean of the H/C ratio in each microcosm decreased with nutrient addition to < 134 

1.5, especially at high elevations in China, indicating less bioavailable DOM (Figs. 2a, 135 

S5c). The ratio remained consistently higher (≥ 1.5) across all nutrient levels in Norway 136 

(Figs. 2a, S5c). Given the identical DOM composition in our study initially, this finding 137 

suggests that the contrasting responses reflect differences in the temperature-sensitivity of 138 

decomposition and/or nutrient-limited production of DOM by colonising microbes. This 139 
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inability to resolve the mechanisms underlying these patterns highlights the need for a 140 

more mechanistic approach offered by the EDTiA framework. 141 

DOM composition was strongly associated with bacteria in both regions, and was 142 

mediated by temperature and nutrient enrichment. For instance, although environment 143 

(temperature and nutrients) and energy supply had dominant effects on DOM 144 

composition, their shared effects with biodiversity (1.0 to 26.7% of explained variation) 145 

indicated that these variables also indirectly influenced the associations between DOM 146 

and bacteria (Figs. S8-10). These DOM-microbe associations were also supported by a 147 

Procrustes analysis 35, 36, which revealed that more similar mixtures of molecules were 148 

related to more similar bacterial communities (M2 = 0.701, P ≤ 0.001; Fig. 2b), and their 149 

associations varied with temperature (that is, elevation) and nutrient enrichment. For 150 

example, compositional differences, indicated by the residuals of Procrustes analysis, 151 

significantly (P ≤ 0.05) decreased for all compound classes or elemental combinations at 152 

colder temperatures in China (Fig. S11). In Norway, the differences were always lower, 153 

on average, and did not vary with temperature (Fig. S11). Nutrient enrichment similarly 154 

influenced the correlations between DOM molecular and bacterial compositions 155 

estimated from both alpha and beta diversity (Fig. 2c), and these correlations also varied 156 

with nutrients for individual compound classes or elemental combinations (Figs. S12, 157 

S13). Interestingly, the coordinated compositional changes in DOM and bacteria, 158 

measured by the correlation between beta diversities, increased more strongly with 159 

nutrient enrichment in Norway than in China, especially at low nutrient levels beneath 160 

1.80 mg N L-1 (Figs. 2c, S13). 161 

 162 

(2) Networks between DOM and bacteria at a molecular-level 163 

To quantify the associations between DOM and bacteria further at a molecular-164 

level, we first correlated the relative abundance of DOM molecules and bacterial taxa. 165 

According to resource-consumer relationships, negative associations likely indicate the 166 

degradation of larger molecules into smaller structures, while positive associations may 167 

relate to the production of new molecules via degradation or biosynthetic processes. We 168 

found that the distribution of negative and positive correlations between DOM molecules 169 
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and bacterial operational taxonomic units (OTUs) depended strongly on molecular traits. 170 

For example, more labile molecules, such as those with H/C ≥ 1.5, were more likely to 171 

show negative Spearman’s correlation coefficients ρ with individual OTUs (P ≤ 0.05), 172 

whereas more recalcitrant molecules (H/C < 1.5) generally showed more positive 173 

correlations (P ≤ 0.05), especially in Norway (Fig. S14). These findings were even more 174 

clearly supported by the differences between the mean of the positive and negative ρ 175 

values for each molecule (Figs. 3a, S15). Correlations with individual OTUs were 176 

predominantly negative for molecules within a H/C of 1.5-2.0 and O/C of 0.4-1.0, 177 

suggesting they were the outcome of degradation processes, while ρ differences peaked 178 

with mainly positive values at a H/C of 1.0-1.5 and O/C of 0-0.5 indicative of in situ 179 

production (Fig. 3a). 180 

Subsequently, we quantified DOM-microbe associations along temperature and 181 

nutrient gradients using the EDTiA framework. We built bipartite networks of negative 182 

and positive interactions between DOM and bacteria at the genus level using Sparse 183 

Correlations for Compositional data (SparCC) 37. SparCC relies on algorithms for sparse 184 

neighborhood and inverse covariance selection, and can infer correlations with a high 185 

degree of accuracy under these conditions 37. In total, there were 6,916 and 8,409 186 

interactions for negative and positive networks (|SparCC ρ| ≥ 0.3), respectively, in China, 187 

and 1,313 and 2,888 negative and positive interactions, respectively, in Norway (Fig. 3b). 188 

The weighted mean of the percentage of SparCC ρ values that were strongly negative (P 189 

≤ 0.05) increased towards high nutrient levels, with the reverse pattern for positive 190 

networks, almost exclusively in China (Fig. S16). Such patterns were consistent with the 191 

weighted mean SparCC ρ in China (Fig. S16). 192 

The negative and positive interaction networks strongly depended on molecular 193 

traits, which was further supported by three observations. First, negative and positive 194 

networks were associated with different molecule groups categorised by hierarchical 195 

cluster analysis based on the 16 molecular traits (Figs. 3b, S17). In China, negative 196 

interactions were dominant between molecule clusters 4 and 5, which were largely 197 

comprised of recalcitrant molecules with a H/C of < 1.5 (Fig. S17), and bacteria in the 198 

phyla Proteobacteria, Bacteroidetes, or Firmicutes (Fig. 3b). The positive interactions 199 
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were mostly linked to clusters 1 and 3 (Fig. 3b), which mostly represented labile 200 

molecules with a H/C of ≥ 1.5 (Fig. S17). In Norway, molecule cluster 4 was mainly 201 

negatively linked to Firmicutes and positively linked to α- and β-Proteobacteria (Fig. 3b). 202 

Second, molecules generally covaried more similarly with microbes as they shared more 203 

similar traits. For example, we detected statistically significant correlations between the 204 

pairwise Gower distances 38 of the traits and SparCC ρ values of DOM molecules in each 205 

region (Mantel test, P ≤ 0.001; Fig. 3c). Third, molecular traits were more strongly 206 

correlated with SparCC ρ in the negative than positive interaction networks for all 207 

molecules (Fig. 3c), which was also true for most of the networks when considering 208 

compound classes or elemental combinations (Fig. 3d). These correlations, consistent at 209 

the OTU level (Fig. 3c), indicate that molecular traits may be better at predicting the 210 

decomposition than production of DOM. 211 

Finally, we calculated the degree of specialization between DOM and bacteria in 212 

the entire negative and positive interaction networks using the H2’ index 31. We also 213 

calculated specialization d’ indices for individual DOM molecules and bacterial genera 31. 214 

Elevated H2’ or d’ values indicate a high degree of specialization, while lower values 215 

suggest increased generalization. We found that networks that were more specialized in 216 

the negative associations between DOM and bacteria (i.e., higher H2’ values) 217 

corresponded with more specialized communities of DOM molecules (i.e., higher 218 

weighted mean d’; Figs. S18, S19) 31. For positive networks, H2’ values mirrored those of 219 

d’ for both DOM and bacteria (Figs. S18, S19). These results suggest that in addition to 220 

the specialization perspective of bacteria or DOM, H2’ can summarise resource-consumer 221 

relationships at an ecosystem-level. In both regions, H2’ was higher, on average, in 222 

negative than positive interaction networks (t-test, t = 2.11, P = 0.04 in China and t = 223 

23.57, P ≤ 0.001 in Norway; Figs. 4a, S20), indicating a higher degree of specialization in 224 

the decomposition than production processes of microbes. Copiotrophs may have a high 225 

substrate specificity for labile resources as compared with oligotrophs 39, which have 226 

multiple metabolic pathways for resource acquisition of complex organic matter and 227 

hence lower specialization 40. The mean specialization H2’ of negative (t-test, t = -10.19, 228 

P ≤ 0.001) and positive (t-test, t = -6.56, P ≤ 0.001) networks were also significantly 229 
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higher in Norway than in China (Fig. 4a), suggesting more specialized decomposition 230 

(i.e., negative networks) and thus potentially more degradable DOM in subarctic regions. 231 

Nutrient enrichment showed divergent effects on the H2’ of negative or positive 232 

interaction networks between the two study regions. Specifically, nutrient enrichment 233 

substantially decreased the H2’ of negative networks for all molecules in China (Fig. 4a), 234 

which was particularly true when considering only recalcitrant components, such as 235 

lignin and CHNO (Fig. S21). Compared to Norway, nutrient enrichment increased the H2’ 236 

of positive interactions relatively more at lower elevations in China (Fig. 4a). Nutrient 237 

enrichment at the warmer temperatures in the subtropical region could thus contribute to 238 

the greater recalcitrance of DOM by reducing the specialization of decomposition (i.e., 239 

negative networks) and resulting in more specialized production of molecules (i.e., 240 

positive networks). 241 

 242 

(3) Drivers of DOM-microbe associations 243 

We explored the following distal and proximal controls on negative and positive 244 

DOM-microbe networks under the EDTiA framework (Fig. 1). The distal drivers were 245 

temperature and nutrient enrichment as proxies of climate change and human impacts, 246 

respectively. The three proximal drivers were energy supply, such as primary 247 

productivity and sediment total organic carbon, the diversity of bacteria and DOM, that is 248 

the richness and composition of bacteria and DOM, and the DOM molecular traits (Table 249 

S1). In addition to bacterial diversity and chemodiversity, molecular traits strongly 250 

correlated with H2’ and influenced it through hypothesised casual relationships in 251 

structural equation models (SEM) 41 (Fig. S1).  252 

The importance of molecular traits was supported by Pearson correlations (Fig. 253 

S22), multiple regression models (Fig. S23) and random forest analyses 42 (Fig. 4b). For 254 

the negative networks, H2’ showed the highest Pearson correlation coefficient of r = 0.77 255 

with molecular composition (P ≤ 0.001), followed by molecular richness (r = -0.76, P ≤ 256 

0.001) and N/P ratio (r = 0.76, P ≤ 0.001, Fig. S22). In contrast, H2’ was less correlated 257 

with molecular traits for the positive networks (Fig. S22). Multiple regression models 258 
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revealed that, for negative and positive networks in China, there were statistically 259 

significant (P ≤ 0.01) improvements in the explained variances of models by between 6.2% 260 

and 9.1% from including either diversity or molecular traits (Fig. S23). These 261 

improvements were larger for the negative interaction networks in Norway (Fig. S23). 262 

These effects of diversity and molecular traits were further supported by random forest 263 

analyses. Diversity and molecular traits improved the predictive power of models of H2’ 264 

by 7.9-26.1% and 2.1-14.8%, respectively, and again, most strongly for the negative 265 

interactions in both regions (Fig. S23). Furthermore, H2’ was mainly affected by 266 

chemodiversity, such as molecular richness or DOM composition, followed by molecular 267 

traits, such as N/P or N/C ratios, in the negative networks, whereas chemodiversity, 268 

biodiversity, environmental variables and energy supply were all similarly important in 269 

the positive networks (Fig. 4b). 270 

We also used SEM to test the hypothesised effects of two global change drivers, 271 

climate change and human impacts, on the specialization of DOM-bacteria networks. We 272 

compared these effects to other drivers like contemporary nutrients, energy supply, 273 

biodiversity, chemodiversity and molecular traits (Fig. S1). The SEM results strongly 274 

indicated that there were different constraints on DOM-microbe specialization between 275 

negative and positive interaction networks. For the negative networks, both global change 276 

drivers strongly influenced H2’ through indirect effects on energy supply and molecular 277 

traits, especially in China (Figs. 5, S24). In contrast to Norway, both climate change and 278 

human impacts had larger total mean effects of -0.23 and -0.49, respectively, on the H2’ 279 

of negative networks in China (Fig. 5a). However, molecular traits had the dominant 280 

direct effects on H2’ in both China and Norway, with similar mean standardised effect 281 

size of 0.57 (P ≤ 0.001; Figs. 5b, S24). For the positive networks, there were large total 282 

mean effects of climate change (0.51 and -0.40 for China and Norway, respectively) and 283 

human impacts (0.44 and 0.62, respectively), both of which indirectly influenced H2’ 284 

similarly through biodiversity, chemodiversity and molecular traits (Figs. 5, S24). 285 

 286 

(4) Implications 287 
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The factors that control microbial processing of DOM composition, and 288 

consequently its degradation, remain challenging to discern 43, yet are critical for 289 

predicting carbon cycling under global change scenarios. We found that associations 290 

between DOM and microbial decomposers depended on universal drivers of ecosystem 291 

functioning, such as energy supply 21, 22, both DOM and microbial compositions 8, 15, and 292 

molecular traits 7, 28. The EDTiA framework we developed provides a unified approach to 293 

identify when each of these different proximal drivers is more important, and to separate 294 

contrasting biological processes associated with DOM degradation and production that 295 

may have obscured previous analyses of bulk DOM pools. In addition to energy supply 296 

and the diversity of DOM and bacteria, we found that molecular traits generally helped 297 

shape DOM-microbe networks across contrasting climatic zones, especially the negative 298 

networks indicative of degradation processes. Although molecular traits are well known 299 

to be associated with DOM persistence or vulnerability to degradation 7, 44, their influence 300 

on the underlying biological mechanisms has remained poorly understood. Our results 301 

advance this work by demonstrating when the specialization of DOM-microbe 302 

associations changes with molecular traits, and by providing predictions of how 303 

specialization might vary under global change. 304 

We found that temperature and eutrophication can change DOM-microbe 305 

associations by shifting the three proximal drivers, namely energy, diversity, and traits. 306 

For positive bipartite networks, nutrient enrichment generally increased the specialization 307 

of DOM-microbe associations, and more so than temperature, by changing biodiversity, 308 

chemodiversity, and molecular traits. Positive interactions related to the production of 309 

new molecules depend on the specific interacting partners, which is partly supported by 310 

the positive relationships between H2’ and d’ (Fig. S19). By contrast, both temperature 311 

and nutrient enrichment reduced specialization in the negative networks, primarily via 312 

changing molecular traits and energy supply. Decomposition processes associated with 313 

negative networks may depend more on whether molecules contain structures that resist 314 

degradation 7, especially in the absence of temperature limitation 45. At higher 315 

temperatures, such as in subtropical China, energy to degrade these molecules may 316 

become more limiting 45. We also found that the importance of these distal drivers of 317 

climate change and human impacts varied between biomes. For instance, both elevated 318 
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temperature and eutrophication reduced the specialization of negative DOM-microbe 319 

networks indicative of decomposition processes in subtropical China, but these two 320 

drivers were less important in subarctic Norway. As their indirect effects via microbial 321 

composition varied between biomes, these responses may reflect differences in the 322 

biological traits of communities. Future studies with metagenomics could offer a 323 

powerful complement to test how microbial traits vary with DOM traits. 324 

As inland water worldwide continues to undergo changes in climate 46 and trophic 325 

state 47, our approaches could be applied to predict changes in how microbes degrade and 326 

produce DOM. For instance, since hyper-eutrophication occurred in Taihu Lake in May 327 

2007, total nitrogen has been reduced by a mean (± SD) of 1.24 (± 1.41) mg L-1 with 328 

strong lake management (Figs. S25, S26). Based on the estimated direct and indirect 329 

effects of distal controls in the SEM fitted to the Chinese data (Fig. S1), this 330 

oligotrophication, combined with a mean decrease in water temperature of 0.20 (± 331 

0.87) °C between 2007 and 2018, was predicted to change the specialization of DOM-332 

microbe associations. Specifically, H2’ changed by +0.65 (± 0.58) and -0.65 (± 0.46) for 333 

negative and positive networks, respectively, over this period (Fig. 6a). The greatest 334 

changes happened in the most eutrophic part of the lake, including the northwestern 335 

lakeshore and the northern Zhushan and Meiliang Bays (Figs. 6b, S27). Although our 336 

predictions ignored detailed spatiotemporal environmental variations as used to 337 

parameterize the SEM models, they do illustrate the potential to upscale our predictions 338 

in real-world settings. This understanding, facilitated through our EDTiA framework, 339 

could provide the first steps for improving Earth system models of global biogeochemical 340 

cycles 48. More generally, our work shows how the molecular traits of DOM will control 341 

the responses of DOM-microbe networks and their associated biogeochemical cycles in a 342 

changing world.  343 
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Material and methods 645 

Experimental design 646 

The comparative field microcosm experiments were conducted on Laojun 647 

Mountain in China (26.6959 N; 99.7759 E) in September-October 2013, and on 648 

Balggesvarri Mountain in Norway (69.3809 N; 20.3483 E) in July 2013, designed to be 649 

broadly representative of subtropical and subarctic climatic zones, respectively, as first 650 

reported in Wang et al. (2016) 32. The annual temperatures ranged from 4.2-12.9 °C in 651 

China and -2.9-0.7 °C in Norway. The experiments were characterised by an aquatic 652 

ecosystem with consistent initial DOM composition but different locally colonised 653 

microbial communities and newly produced endogenous DOM. While allowing us to 654 

minimise the complexity of natural ecosystems, the experiment provided a means for 655 

investigating DOM-microbe associations at large spatial scales by controlling the initial 656 

DOM supply. Briefly, we selected locations with five different elevations on each 657 

mountainside. The elevations were 3,822, 3,505, 2,915, 2,580 and 2,286 m a.s.l. on 658 

Laojun Mountain in China, and 750, 550, 350, 170 and 20 m a.s.l. on Balggesvarri 659 

Mountain in Norway. At each elevation, we established 30 aquatic microcosms (1.5 L 660 

bottle) composed of 15 g of sterilised lake sediment and 1.2 L of sterilised artificial lake 661 

water, which included one of ten nutrient levels of 0, 0.45, 1.80, 4.05, 7.65, 11.25, 15.75, 662 

21.60, 28.80 and 36.00 mg N L-1 of KNO3. Each nutrient level was replicated three times. 663 

The lake sediments were obtained from the centre of Taihu Lake, China, and were 664 

aseptically canned per bottle after autoclaving as previously described in Wang et al. 665 

(2016) 32. To compensate for nitrate additions shifting stoichiometric ratios, KH2PO4 was 666 

added to bottles so that the N/P ratio of the initial overlying water was 14.93, which was 667 

similar to the annual average ratio in Taihu Lake during 2007 (14.49). Nutrient levels for 668 

the experiments were selected based on conditions of the eutrophic Taihu Lake, and the 669 

highest nitrate concentration was based on the maximum total nitrogen in 2007 (20.79 mg 670 

L-1; Fig. S27). We chose the nutrient level of this year because a massive cyanobacteria 671 

bloom in Taihu Lake happened in May 2007 and initiated an odorous drinking water 672 

crisis in the nearby city of Wuxi. The microcosms were left in the field for one month 673 

allowing airborne bacteria to freely colonise the sediments and water, and the sediment 674 

bacteria were examined using high-throughput sequencing of 16S rRNA genes. The 675 
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sequences were processed in QIIME (v1.9) 49 and OTUs were defined at 97% sequence 676 

similarity. The bacterial sequences were rarefied to 20,000 per sample. Further details on 677 

field experiments, sample collection, physicochemical and bacterial community analyses 678 

are available in Wang et al. (2016).  679 

 680 

ESI FT-ICR MS analysis of DOM samples 681 

Highly accurate mass measurements of DOM within the sediment samples were 682 

conducted using a 15 Tesla solariX XR system, a ultrahigh-resolution Fourier transform 683 

ion cyclotron resonance mass spectrometer (FT-ICR MS, Bruker Daltonics, Billerica, 684 

MA) coupled with an electrospray ionization (ESI) interface, as demonstrated previously 685 
50 with some modifications. DOM was solid-phase extracted (SPE) with Agilent VacElut 686 

resins before FT-ICR MS measurement 51 with minor modifications. Briefly, an aliquot 687 

of 0.7 g freeze-dried sediment was sonicated with 30 ml ultrapure water for 2 h, and 688 

centrifuged at 5,000 g for 20 min. The extracted water was filtered through the 0.45 µm 689 

Millipore filter and further acidified to pH 2 using 1 M HCl. Cartridges were drained, 690 

rinsed with ultrapure water and methanol (ULC-MS grade), and conditioned with pH 2 691 

ultrapure water. Calculated volumes of extracts were slowly passed through cartridges 692 

based on DOC concentration. Cartridges were rinsed with pH 2 ultrapure water and dried 693 

with N2 gas. Samples were finally eluted with methanol into precombusted amber glass 694 

vials, dried with N2 gas and stored at -20 °C until DOM analysis. The extracts were 695 

continuously injected into the standard ESI source with a flow rate of 2 µl min-1 and an 696 

ESI capillary voltage of 3.5 kV in negative ion mode. One hundred single scans with a 697 

transient size of 4 mega words, an ion accumulation time of 0.3 s, and within the mass 698 

range of m/z 150-1200, were co-added to a spectrum with absorption mode for phase 699 

correction, thereby resulting in a resolving power of 750,000 (FWHM at m/z 400). All 700 

FT-ICR mass spectra were internally calibrated using organic matter homologous series 701 

separated by 14 Da (-CH2 groups). The mass measurement accuracy was typically within 702 

1 ppm for singly charged ions across a broad m/z range (150-1,200 m/z).  703 

Data Analysis software (BrukerDaltonik version 4.2) was used to convert raw 704 

spectra to a list of m/z values using FT-MS peak picker with a signal-to-noise ratio (S/N) 705 
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threshold set to 7 and absolute intensity threshold to the default value of 100. Putative 706 

chemical formulae were assigned using the software Formularity 52 following the 707 

Compound Identification Algorithm 53. In total, 19,538 molecular formulas were 708 

putatively assigned for all samples (n = 300) based on the following criteria: S/N > 7, and 709 

mass measurement error < 1 ppm, considering the presences of C, H, O, N, S and P and 710 

excluding other elements or an isotopic signature. All formula assignments were further 711 

screened to meet the criteria as follows 54: (1) formulae containing an odd number of 712 

nitrogen atoms had an even nominal m/z and those containing an even number of 713 

nitrogen atoms had an odd nominal m/z; (2) the number of hydrogen atoms was at least 714 

1/3 of carbon and could not exceed 2C+N+2; (3) the number of nitrogen or oxygen atoms 715 

could not exceed the number of carbon atoms; (4) the ratio of O/C was set to 0-1, H/C ≥ 716 

0.3, N/C ≤ 1, double bond equivalents (DBE) ≥ 0. 717 

The assigned molecules were categorised into eight compound classes or 12 718 

elemental combinations. The compound classes based on van Krevelen diagrams 55 were 719 

lipids (O/C = 0-0.3, H/C = 1.5-2.0), proteins and amino sugars (O/C = 0.3-0.67, H/C = 720 

1.5-2.2), carbohydrates (Carb; O/C = 0.67-1.2, H/C = 1.5-2), unsaturated hydrocarbons 721 

(UnsatHC; O/C = 0-0.1, H/C = 0.7-1.5), lignin (O/C = 0.1-0.67, H/C = 0.7-1.5), tannin 722 

(O/C = 0.67-1.2, H/C = 0.5-1.5), and condensed aromatics (ConHC; O/C = 0-0.67, H/C = 723 

0.2-0.7). The elemental combinations were CH, CHN, CHNO, CHNOP, CHNOS, 724 

CHNOSP, CHNS, CHO, CHOP, CHOS, CHOSP and CHS. 725 

 726 

Estimating DOM features 727 

We considered DOM features from three aspects: alpha diversity, beta diversity 728 

and molecular traits. These features were considered for all molecules (19,538 different 729 

formulae), but also for subsets of molecules within each category of compound classes or 730 

elemental combinations. The dataset based on all molecular formulae was named “All 731 

molecules”, while the datasets of subsets of formulae were named by “category name + 732 

compounds”. The relative abundance of molecules was calculated by normalizing signal 733 

intensities of assigned peaks to the sum of all intensities within each sample. We 734 

considered two additional aspects of chemodiversity: chemical alpha diversity and 735 
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chemical beta diversity. Chemical alpha diversity was calculated using a richness index 736 

that counts the total number of peaks in each sample. Chemical beta diversity was 737 

calculated with the Bray-Curtis dissimilarity metric, and further represented by the first 738 

two axes of a non-metric multidimensional scaling (NMDS) ordination of this 739 

dissimilarity. We also considered overall molecular composition, which was visualised 740 

across the elevations and nutrient enrichment treatments with detrended correspondence 741 

analysis (DCA) 56. The analyses of chemical diversity were performed using the R 742 

package vegan V2.4.6 57. 743 

We also calculated 16 molecular traits that could affect microbial associations and 744 

were related to molecular weight, stoichiometry, chemical structure, and oxidation state 745 

(Table S1). These traits were mass, the number of carbon (C) atoms, the modified 746 

aromaticity index (AIMod) 58, DBE 58, DBE minus oxygen (DBEO) 58, DBE minus AI 747 

(DBEAI) 58, standard Gibb’s Free Energy of carbon oxidation (GFE) 59, Kendrick Defect 748 

(kdefectCH2) 60, nominal oxidation state of carbon (NOSC), O/C ratio, H/C ratio, N/C 749 

ratio, P/C ratio, S/C ratio, and carbon use efficiency (Ymet) 61. All calculations were 750 

performed using the R package ftmsRanalysis V1.0.0 62 and the scripts at 751 

https://github.com/danczakre/ICRTutorial. DBE represents the number of unsaturated 752 

bonds and rings in a molecule 58. Higher values of DBE, AI and NOSC all indicate a 753 

higher recalcitrance of DOM. A large Kendrick Defect can indicate a higher degree of 754 

oxidation. Lower values of Ymet indicate a higher thermodynamic efficiency of metabolic 755 

reactions involved in biomass production 61. Weighted means of formula-based molecular 756 

traits (for example the Masswm for Mass) were calculated as the sum of the product of the 757 

trait value for each individual molecule (Massi) and relative intensity Ii divided by the 758 

sum of all intensities (Masswm = Ʃ(Massi × Ii) / Ʃ(Ii)) using the R package FD V1.0.12 63. 759 

In addition, ten molecular sub-mixtures were grouped based on the 16 molecular traits by 760 

hierarchical cluster analysis using Ward’s minimum variance method with the R package 761 

stats V3.6.1.  762 

 763 

Estimating bacterial communities 764 
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The relative abundance of OTUs was calculated by the normalization of read 765 

counts of OTUs to the sum of all reads within each sample. Likewise, we considered two 766 

aspects of biodiversity: bacterial alpha diversity and beta diversity. Bacterial alpha 767 

diversity was calculated using species richness that counts the total number of OTUs in 768 

each sample. Bacterial beta diversity was calculated with the Bray-Curtis dissimilarity 769 

metric, and further represented by the first two axes of NMDS of this dissimilarity. 770 

 771 

Estimating associations between DOM and microbes 772 

At the DOM composition level, we examined DOM-microbe associations from 773 

the following aspects: Pearson’s correlation between alpha diversity of DOM and bacteria, 774 

and a Mantel correlation between the beta diversity of DOM and bacteria. We also tested 775 

the congruence between DOM and bacterial composition using Procrustes analysis of 776 

NMDS coordinates estimated for each community across elevations and nutrient 777 

enrichment levels with the Bray-Curtis dissimilarity metric 35, 36. Procrustes analysis is a 778 

technique for comparing the relative positions of points in two multivariate datasets. It 779 

attempts to stretch and rotate the points in one matrix, such as points obtained from a 780 

NMDS, to be as close as possible to points in another matrix, thus preserving the relative 781 

distances between points within each matrix 35, 36. This procedure yields a measure of fit, 782 

M2, which is the sum of squared distances between corresponding data points after the 783 

transformation. Pointwise residuals indicate the difference between two different 784 

community ordinations for each sample. The statistical significance of the Procrustes 785 

analysis (i.e., M2) can then be assessed by randomly permutating the data 1,000 times 64. 786 

This analysis was performed using the R package vegan V2.4.6. 787 

We further quantified DOM-microbe associations at a molecular level using two 788 

different co-occurrence analyses. First, Spearman’s rank correlation coefficient ρ was 789 

calculated between the relative abundance of each molecule m/z ion and bacterial OTU 790 

(or genus). For each molecule, we then calculated the Spearman ρ difference by 791 

subtracting the mean absolute ρ value of the negative correlations across all bacterial 792 

OTUs from the mean of the positive correlations. Larger positive and negative values 793 

indicate that molecules were more strongly positively and negatively correlated with 794 
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bacterial communities, respectively. The relationships among the Spearman ρ difference, 795 

H/C and O/C were summarised using kriging interpolation with the R package automap 796 

V1.0.14 65. Second, SparCC (Sparse Correlations for Compositional data) was applied to 797 

build DOM-microbe bipartite networks. SparCC is a correlation method that can infer the 798 

interrelationships between DOM and bacteria for compositional data with higher 799 

accuracy 37 than general correlation approaches, such as Spearman’s correlation, because 800 

it explicitly assumes that the underlying networks have many missing associations. We 801 

used bacterial genera rather than OTUs for bipartite network analysis because there were 802 

over 20,000 and 10,000 bacterial OTUs for Norway and China, respectively, and there 803 

are computational limits on handling such large bipartite networks for the analyses 804 

described in the next paragraph. However, using bacterial genera was reasonable as 805 

individual DOM-bacteria associations were similar for both bacterial OTUs and genera 806 

(R2 > 0.80, P ≤ 0.001; Fig. S14). Similar conclusions were also obtained with either 807 

OTUs or genera when relating the pairwise distances of molecular traits with SparCC ρ 808 

values among DOM molecules in Fig. 3c. To reduce type I errors in the correlation 809 

calculations created by low-occurrence genera or molecules, the majority rule was 810 

applied, retaining genera or molecules observed in more than half of the total samples (≥ 811 

75 samples) in China or Norway. The filtered table, including 1,340 and 1,246 DOM 812 

molecules, and 75 and 49 bacterial genera in China and Norway, respectively, was then 813 

used for pairwise correlation calculation of DOM and bacteria using SparCC with default 814 

parameters 37. 815 

Finally, bipartite network analysis at a molecule and network level was performed 816 

to quantify the specialization of DOM-microbe associations. The threshold correlation for 817 

inclusion in bipartite networks was |ρ| = 0.30 to exclude weak interactions and we 818 

retained the adjacent matrix with only the interactions between DOM and bacteria. We 819 

then constructed two types of networks based on negative and positive correlations 820 

(SparCC ρ ≤ -0.30 and ρ ≥ 0.30, respectively). The SparCC ρ values were multiplied by 821 

10,000 and rounded to integers, and the absolute values were taken for negative networks 822 

to enable the calculations of specialization indices. A separate negative and positive 823 

network was obtained for each microcosm based on its species composition. For the 824 
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network level analysis, we calculated H2’, a measure of specialization 30, for each 825 

network: 826 

H2 = -∑ ∑ (pijlnpij)
j
j=1

i
i=1 , 827 

H2
' 	= H2max-H2

H2max-H2min
, 828 

where pij=	aij/m, represents the proportion of interactions in a i × j matrix. aij is 829 

number of interactions between DOM molecule i and bacterial genus j, which is also 830 

referred as “link weight”. m is total number of interactions between all DOM molecules 831 

and bacterial genera. H2’ is the standardised H2 against the minimum (H2min) and 832 

maximum (H2max) possible for the same distribution of interaction totals. 833 

For the molecular level analysis, we calculated the specialization index Kullback-834 

Leibler distance (d’) for DOM molecules (di
' ) and bacterial genera (dj

' ), which describes 835 

the levels of “vulnerability” of DOM molecules and “generality” of bacterial genera, 836 

respectively: 837 

di = ∑ (
aij

Ai
ln

aijm

AiAj
)j

j=1 , 838 

di
' 	= di-dmin

dmax-dmin
, 839 

where 𝐴%	= ∑ aij
j
j=1  and 𝐴&	= ∑ aij

i
i=1 , are the total number of interactions of DOM 840 

molecule i and bacterial genus j, respectively. di’ is the standardised di against the 841 

minimum (dmin) and maximum (dmax) possible for the same distribution of interaction 842 

totals. The equations of dj
'  are analogous to di

' , replacing j by i. 843 

Both specialization indices consider interaction abundance and are standardised to 844 

account for heterogeneity in the interaction strength and species richness. Weighted 845 

means of d’ for DOM were calculated for each network as the sum of the product of d’ 846 

for each individual molecule i (d’i) and relative intensity Ii divided by the sum of all 847 

intensities d’ = Ʃ(d’i × Ii) / Ʃ(Ii). Weighted means of d’ for bacteria were calculated as the 848 

sum of the d’ of each individual bacterial genus j (d’j) and relative abundance of bacterial 849 

genus Ij divided by the sum of all abundance. All calculations were performed using the 850 
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R package FD V1.0.12. The observed H2’ and d’ values ranged from 0 (complete 851 

generalization) to 1 (complete specialization) 31 (Fig. S28). To directly compare the 852 

network indices across the elevations or nutrient enrichment levels, we used a null 853 

modelling approach. We standardised the three observed specialization indices (Sobserved; 854 

that is, H2’, d’ of DOM, and d’ of bacteria) by calculating their z-scores 66 using the 855 

equation zS = (Sobserved - 𝑆)null) /(𝜎Snull) where 𝑆)null and 𝜎𝑆null  were, respectively, the mean 856 

and standard deviation of the null distribution of S (Snull). One hundred randomised null 857 

networks were generated for each bipartite network to derive Snull using the swap.web 858 

algorithm, which keeps species richness and the number of interactions per species 859 

constant along with network connectance. The relationships among H2’, weighted means 860 

of d’ for DOM molecules and bacterial genera were compared using kriging interpolation 861 

with the R package automap V1.0.14. The obtained network was visualised using circlize 862 

V0.4.10 67 and analysed using the R package bipartite V2.15 30. 863 

 864 

Statistical analyses 865 

We used the following explanatory variables related to distal and proximal 866 

controls on DOM-microbe associations. Distal environmental drivers included climate 867 

change (i.e., water temperature), human impacts (i.e., nutrient enrichment), and 868 

contemporary nutrients (i.e., sediment total nitrogen (TN), total phosphorus (TP), NOx-, 869 

NO2-, NH4+ and PO43-, and water NO3-, NO2-, NH4+ and PO43-). Proximal drivers included 870 

energy supply (i.e., sediment total organic carbon, dissolved organic carbon, water pH 871 

and sediment Chlorophyll a (Chl a)), biodiversity (i.e., the species richness and the first 872 

two axes of the NMDS of bacterial community composition), DOM chemodiversity (i.e., 873 

the species richness and the first two axes of the NMDS of molecular composition), and 874 

DOM molecular traits (i.e., mass, C, AIMod, DBE, DBEO, DBEAI, GFE, kdefectCH2, 875 

NOSC, O/C, H/C, N/C, P/C, S/C and Ymet). Detailed information about these explanatory 876 

variables is listed in Table S1. It should be noted that water pH could be considered to be 877 

relevant to primary productivity due to its strong positive correlation with sediment Chl a, 878 

but their relationships varied across elevations and nutrient levels 32. The response 879 

variables included DOM features (i.e., alpha diversity, beta diversity and molecular traits) 880 
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and DOM-microbe network statistics (e.g., H2’), and were analysed for their patterns and 881 

underlying drivers along the two main environmental gradients: elevation and nutrient 882 

enrichment. 883 

(1) Patterns of DOM features and DOM-microbe associations along the 884 

environmental gradients 885 

For DOM features, the relationships between nutrient enrichment and DOM 886 

richness or molecular traits were visualised with linear models for all formulae and 887 

subsets of formulae within each category of compound classes or elemental combinations 888 

across different elevations. We further tested the breakpoints or abrupt changes in DOM 889 

composition (i.e., the first axis of DCA) along the gradient of nutrient enrichment using a 890 

piecewise linear regression with the R package segmented V1.3.0 33. These breakpoint 891 

estimations were supported by gradient forest analysis 34, which was used to assess the 892 

DOM compositional changes and important breakpoints across multiple molecules along 893 

the gradient of nutrient enrichment. This analysis produces the standardised density of 894 

splits, that is the kernel density of splits divided by the observation density, which shows 895 

where important changes in the abundance of multiple molecules occur along the nutrient 896 

gradient and indicates the compositional rate of change. In addition, we estimated the 897 

standardised density of splits for subsets of molecules within each category of compound 898 

classes or elemental combinations across different elevations. This analysis was 899 

performed using the R packages gradientForest V0.1.17 34 and extendedForest V1.6.1 68. 900 

For DOM-microbe associations, the relationships between nutrient enrichment 901 

and associations at both community and network levels were tested with linear models for 902 

all formulae and subsets of formulae within each category of compound classes or 903 

elemental combinations across different elevations. 904 

(2) Drivers of DOM features and DOM-microbe associations 905 

To evaluate the key drivers of DOM features and DOM-microbe associations, we 906 

used variation partitioning analysis (VPA) 69, multiple regression, random forest analysis 907 
42 and structural equation modelling (SEM) 41. In particular, the first analysis 908 

disentangled the important roles of microbes from other explanatory variables, while the 909 
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latter three analyses tested the roles of molecular traits and diversity, and their interplay 910 

with environments and energy supply. 911 

First, VPA was used to quantify the relative contributions of driver categories 912 

towards DOM features. We partitioned explanatory variables into the following driver 913 

categories: environments (that is, climate change, human impacts and contemporary 914 

nutrients), energy supply and biodiversity (Table S1). We selected explanatory variables 915 

for regression analyses by forward selection with Akaike information criterion (AIC) 70. 916 

We also quantified the relative contributions of driver categories for subsets of molecules 917 

within each category of compound classes or elemental combinations. VPA was 918 

performed with R package vegan V2.4.6 71. 919 

Second, stepwise multiple regression was performed to test the statistical 920 

significance and predictive power of the net effects of diversity (i.e., biodiversity and 921 

chemodiversity) or molecular traits on the bipartite network specialization H2’. The net 922 

effects of diversity or molecular traits were evaluated by the improvements in the 923 

explained variances relative to models without diversity and molecular traits (i.e., in 924 

models using only the variables associated with environments and energy supply). The 925 

analysis was conducted with forward selection of explanatory variables 72. We chose the 926 

final model that had the lowest AIC value 73. ANOVA was used to test the statistical 927 

significance of two models including or excluding diversity or molecular traits as 928 

predictors, and the increase in the model R2 was determined as the net effects of diversity 929 

or molecular traits on H2’. 930 

Third, random forest analysis was conducted to identify the relative importance of 931 

environment variables, energy supply, bacterial diversity and DOM molecular drivers on 932 

specialization H2’. The importance of each predictor variable was determined by 933 

evaluating the decrease in prediction accuracy (that is, increase in the mean square error 934 

between observations and out-of-bag predictions) when the data for that predictor were 935 

randomly permuted. The accuracy importance measure was computed for each tree and 936 

averaged over the forest (2,000 trees). More details on this method were described in 937 

previous literature 74. In addition, random forest analysis was also used to test the net 938 
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effects of diversity or molecular traits on H2’. This analysis was conducted using the R 939 

package randomForestSRC V2.8.0 75, 76.  940 

Finally, SEM was used to explore how specialization H2’ is interactively 941 

influenced by global changes (that is, temperature and nutrient enrichment), diversity and 942 

molecular traits. The approach begins by hypothesising the underlying structure of causal 943 

links as shown in Fig. S1. Then, the model is translated into regression equations, and 944 

these equations are evaluated against the data to test the hypothesised links. Through this 945 

process, SEM provides an understanding of direct and indirect links of climate change 946 

and human impacts on H2’. Before modelling, all variables in the SEMs were Z-score 947 

transformed to allow comparisons among multiple predictors and models. Similar to 948 

previous studies 77, we used composite variables to account for the collective effects of 949 

climate change, human impacts, contemporary nutrients, energy supply, biodiversity, 950 

chemodiversity and molecular traits, and the candidate observed indicators are given in 951 

Table S1. The indicators for each composite were selected based on the multiple 952 

regressions for H2’ (Table S2). Based on all the hypothesised links among composite 953 

variables (that is, full model; Fig. S1), we examined all alternative models using AIC and 954 

overall model fit statistics 78. We chose the final model to report as that with the lowest 955 

AIC value from models with a non-significant χ2 test (P > 0.05), which tests whether the 956 

model structure differs from the observed data, high comparative fit index (CFI > 0.95) 957 

and low standardised root mean squared residual (SRMR < 0.05) (Table S3). We 958 

implemented the SEMs using R package lavaan V.0.5.23 79. 959 

 960 

Predictions of DOM-microbe associations in Taihu Lake 961 

Using the parameter estimates obtained from SEM fitted to the bipartite networks 962 

in subtropical China, we estimated spatiotemporal variation of DOM-microbe 963 

associations in Taihu Lake based on the direct and indirect effects of climate change and 964 

eutrophication via the proximal drivers. We first formulated five linear equations to 965 

predict the values of contemporary nutrients (Pnut), energy supply (Penergy), biodiversity 966 

(Pbiodiv), chemodiversity (Pchemodiv) and molecular traits (Ptrait) based on climate and 967 

eutrophication drivers: 968 
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Pnut = λnut,temp × XT + λnut,N × XN 969 

Penergy = λenergy,temp × XT + λenergy,N × XN + λenergy,nut × Pnut 970 

Pbiodiv = λbiodiv,temp × XT + λbiodiv,N × XN + λbiodiv,nut × Pnut + λbiodiv,energy × Penergy 971 

Pchemodiv = λchemodiv,temp × XT + λchemodiv,N × XN + λchemodiv,nut × Pnut + λchemodiv,energy × 972 

Penergy 973 

Ptrait = λtrait,temp × XT + λtrait,N × XN + λtrait,nut × Pnut + λtrait,energy × Penergy + λtrait,biodiv × 974 

Pbiodiv + λtrait,chemodiv × Pchemodiv  975 

where XT and XN were water temperature and total nitrogen, respectively, for the 976 

32 sites across the whole Taihu Lake (Fig. S27a). The abbreviations of path coefficients 977 

(λ) are detailed in Table S4. 978 

Similarly, we calculated the specialization of DOM-microbe associations (YH2) 979 

using a linear equation: YH2 = λH2,temp × XT + λH2,N × XN + λH2,nut × Pnut + λH2,energy × Penergy 980 

+ λH2,biodiv × Pbiodiv + λH2,chemodiv × Pchemodiv + λH2,trait × Ptrait. We used the predicted values 981 

for contemporary nutrients, energy supply, biodiversity, chemodiversity and molecular 982 

traits in the overall prediction model to account for the indirect effects of water 983 

temperature and total nitrogen on specialization. The models were calculated with a 984 

yearly time step based on the annual means of water temperature and total nitrogen for 985 

each site during 2007-2018. The temporal changes in specialization were calculated using 986 

2007 as a baseline to which all predictions were compared. 987 

The above predictions aimed to apply our EDTiA framework to estimate changes 988 

in DOM-microbe associations under temperature change and eutrophication in Taihu 989 

Lake, and potential uncertainties in the estimated associations should however be noted 990 

as follows. First, local environmental variation (e.g., N/P ratio changes) and different 991 

microbial species pools between our field microcosms and natural lake sediments would 992 

likely influence the accuracy of predictions. Second, spatial and temporal heterogeneity 993 

of sediments would influence local environments and the composition of both DOM and 994 

microbes and thus the projection of estimates across Taihu Lake. Third, the transferability 995 

and extrapolation of SEM models to Taihu Lake would be one of the difficulties in 996 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456177doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456177
http://creativecommons.org/licenses/by-nc-nd/4.0/


prediction practices. We thus selected the SEM models in China rather than Norway for 997 

more similar climatic conditions to the target lake. The annual mean water temperatures 998 

in Taihu Lake were covered by the temperature variations across the elevations between 999 

2,286 and 3,822 m a.s.l. in Laojun Mountain, and the annual mean total nitrogen fell into 1000 

the gradient of nutrient concentrations between 0 and 36 mg N L-1. Finally, lake 1001 

management such as mechanical removal of algae would affect energy supply and 1002 

consequently prediction accuracy. 1003 

 1004 
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Figure legends 1006 

Figure 1. A framework for studying the effects of global change on DOM-1007 

microbe associations. (a) DOM-microbe associations affected by the three proximal 1008 

controls, namely energy supply and both the diversity and traits of DOM and microbes. 1009 

The relationships among the three controls and their influences on the associations are 1010 

shown with single-sided arrows. The DOM-microbe associations, indicated by double-1011 

sided arrows, are measured by bipartite interactions between DOM molecules (circles C1-1012 

Ci) and microbial species (circles M1-Mj). The size of circles indicates the abundance of 1013 

DOM molecules or microbial species, and the width of arrows is the magnitude of 1014 

associations. Commonly used indices summarise the specialization of individual 1015 

molecule i and microbial species j, such as d’ for DOM and microbes, which describes 1016 

the levels of “vulnerability” of DOM molecules and “generality” of microbial species, 1017 

respectively. (b) Conceptual framework for understanding DOM-microbe associations 1018 

under distal drivers such as global change via the three proximal drivers. For better 3D 1019 

visualization, the sizes of triangles decrease towards the top-right, and the color changes 1020 

towards different corners of the triangles represent variations in the relative importance of 1021 

different proximal drivers under a global change scenario. The background depicts the 1022 

primary motivation of this study in examining distal drivers of climate change and 1023 

eutrophication in Taihu Lake, China. The left and right waters indicate clean and 1024 

cyanobacteria-dominated lake states, respectively, and are separated by a road having the 1025 

shapes of western lakeshore and northern Zhushan and Meiliang Bays of Taihu Lake. We 1026 

setup field microcosms on mountainsides by adding sediments collected from the lake 1027 

centre, and designed nutrient levels and N/P ratio based on nutrient conditions of this lake 1028 
32.  1029 

 1030 

Figure 2. DOM features and their microbial associations at a compositional 1031 

level. (a) The effects of nutrient enrichment on DOM alpha diversity (richness), 1032 

composition and molecular traits (e.g., H/C ratio) for all formulae across different 1033 

elevations in China (red lines) and Norway (blue lines). Molecular richness and weighted 1034 

mean (WM) of H/C ratio were plotted against the nutrient gradient of nitrate, and their 1035 
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relationships are indicated by solid (P ≤ 0.05) or dotted (P > 0.05) lines estimated using 1036 

linear models. For better visualization, we did not include the data points in Fig. 2a but 1037 

showed detailed scatter plots in Fig. S5. To visualise the compositional turnover of DOM, 1038 

we plotted the standardised density of splits showing where important changes in the 1039 

abundance of multiple molecules occurred along the nutrient gradient. The standardised 1040 

density of splits was determined by gradient forest analysis 34. (b) The congruence 1041 

between DOM and bacterial compositions across different elevations in China and 1042 

Norway was examined using Procrustes analysis 35, 36. Each line with circle and triangle 1043 

ends connects to a single community of DOM and bacteria, respectively, and is colored 1044 

by elevation in either China (red) or Norway (blue). The fit of overall Procrustes 1045 

transformation is reported as the M2 value. (c) The effects of nutrient enrichment on 1046 

DOM-microbe associations. The associations were quantified by the Pearson correlation 1047 

coefficient r between alpha diversity of DOM and bacteria (upper panel), and by the 1048 

Mantel r between the beta diversity of DOM and bacteria (lower panel). We then 1049 

visualised these associations with loess regression models along the nutrient gradient. 1050 

The colours of the lines indicate the DOM composition for all formulae and categories of 1051 

compound classes or elemental combinations. 1052 

 1053 

Figure 3. Networks between DOM and bacteria. (a) Strength of the correlations 1054 

between DOM molecules and bacterial OTUs in China (upper panel) and Norway (lower 1055 

panel). For each molecule, we subtracted the mean absolute Spearman’s rank correlation 1056 

coefficient ρ of all the negative correlations with individual bacterial OTUs from the 1057 

mean of the positive correlations to derive Δρ. Δρ was further visualised against the 1058 

molecular traits H/C and O/C. (b) The negative and positive bipartite networks between 1059 

DOM molecules and bacterial genera in China or Norway estimated using SparCC 1060 

(Sparse Correlations for Compositional data) 37. Upper nodes represent bacterial genera 1061 

coloured by their phylum, while lower nodes represent DOM molecules coloured by the 1062 

ten clusters obtained with hierarchical cluster analysis based on 16 molecular traits 1063 

described in Fig. S17 and Table S1. A line connecting two nodes indicates an interaction 1064 

between a DOM molecule and bacterial genus. (c-d) We examined the relationships 1065 
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between molecular traits and the negative (left panel) or positive (right panel) DOM-1066 

microbe bipartite networks in China (upper panel) or Norway (lower panel). For all pairs 1067 

of DOM molecules, we separately calculated pairwise Gower distances between the 1068 

molecular traits and their SparCC ρ values with bacterial OTUs. Statistical significance 1069 

between distance matrices was determined with a Mantel test with 999 permutations and 1070 

indicated by solid (P ≤ 0.05) or dotted (P > 0.05) lines. We considered all formulae (c) 1071 

and also subsets of formulae within the category of compound classes or elemental 1072 

combinations (d). For all formulae (c), we calculated SparCC correlation coefficients 1073 

based on both bacterial OTUs (grey lines) and genera (black lines). 1074 

 1075 

Figure 4. Relative importance of diversity and molecular traits in explaining 1076 

specialization of DOM-microbe networks. (a) We plotted specialization H2’ against 1077 

nutrient enrichment for negative (left panel) and positive (right panel) bipartite networks 1078 

for each elevation in China (red lines) and Norway (blue lines). Statistical significance of 1079 

linear model fits was indicated by solid (P ≤ 0.05) or dotted (P > 0.05) lines. For better 1080 

visualization, we omitted the data points but these are shown in Fig. S20. (b) We 1081 

examined the relative importance of all explanatory variables on the H2’ of negative (left 1082 

panel) and positive (right panel) bipartite networks in China (red lines) and Norway (blue 1083 

lines) using random forest. The relative contribution (%) of each variable towards H2’ is 1084 

shown in radar plots. The explanatory variables were grouped by environment, energy, 1085 

diversity and traits with consistent colors of ovals or rectangles as in Fig. S1. 1086 

Abbreviations of explanatory variables are detailed in Table S1. 1087 

 1088 

Figure 5. Structural equation models 41 to explain specialization of DOM-1089 

microbe networks. Stacked bar plots show the standardised effects (Std. effects) of 1090 

predictor variables on the H2’ of negative (left panel) and positive (right panel) bipartite 1091 

networks in China or Norway estimated from the best supported models. We considered 1092 

(a) the total and indirect effects of global change and human impacts via proximal 1093 

variables and (b) the total and direct effects of proximal variables. Proximal variables 1094 
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were energy supply, biodiversity, chemodiversity and molecular traits, and are described 1095 

in detail in Table S2. Details of the full structural equation models are shown in Fig. S24.  1096 

 1097 

Figure 6. Decadal change in predicted specialization of DOM-microbe 1098 

networks in Taihu Lake. (a) Changes in H2’ of negative (upper panel) and positive 1099 

(lower panel) bipartite networks from 2007 to 2018. (b) The spatial distribution of 1100 

changes in H2’ of negative (upper panel) and positive (lower panel) networks in 2018 1101 

across the Taihu Lake. Estimated changes in H2’ were calculated for the 32 sites across 1102 

the whole of Taihu Lake (Fig. S27a) by comparing with the baseline of 2007, and 1103 

represent the combined effects of climate change and eutrophication. The colored dots in 1104 

(a) indicate H2’ changes for individual sites which are consistent with the figure legend of 1105 

(b), and black dots are the mean values for each year. The box in (a) represents the 1106 

interquartile (50% of data), the horizontal line in the box represents the median, the 1107 

“notch” represents the 95% confidence interval of the median and the “whiskers” 1108 

represent the maximum and minimum values. 1109 

  1110 
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Figure 1 1111 
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