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Genetic design automation methods for combinational circuits often rely on stan-

dard algorithms from electronic design automation in their circuit synthesis and tech-

nology mapping. However, those algorithms are domain-specific and are hence often not
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directly suitable for the biological context. In this work we identify aspects of those

algorithms that require domain-adaptation. We first demonstrate that enumerating

structural variants for a given Boolean specification allows us to find better performing

circuits and that stochastic gate assignment methods need to be properly adjusted in

order to find the best assignment. Second, we present a general circuit scoring scheme

that accounts for the limited accuracy of biological device models including the vari-

ability across cells and show that circuits selected according to this score exhibit higher

robustness with respect to parametric variations. If gate characteristics in a library

are just given in terms of intervals, we provide means to efficiently propagate signals

through such a circuit and compute corresponding scores. We demonstrate the novel

design approach using the Cello gate library and 33 logic functions that were synthe-

sized and implemented in vivo recently (1 ). We show that an average 1.3-fold and a

peak 6.5-fold performance increase can be achieved by simply considering structural

variants and that an average 1.8-fold and a peak 30-fold gain in the novel robustness

score can be obtained when selecting circuits according to it.
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1 Introduction

Genetic design automation (GDA) parallels early efforts in electronic design automation

(EDA) and recently also got to use state-of-the-art EDA tools to generate gene-regulatory

circuits realizing combinational logic (1 , 2 ) as well as sequential logic (3 ). While historically

EDA quickly ran into unmanageable computational complexity and hence devised clever ap-

proximate methods, current GDA problems are yet too small to require such approximations.

In contrast to EDA’s scalability, GDA suffers from our limited understanding of what pa-
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rameters fully characterize a genetic part or device (4 –6 ) reflecting itself in GDA libraries

with models of insufficient accuracy and scope. In particular, the context-dependency of

circuit components (7 ) represents a central problem. That is, components behave differently

depending on their adjacent up and downstream DNA sequences (8 , 9 ), on the specific re-

source allocation of the host organism (10 , 11 ), on the cross-talk from native regulatory

factors (12 , 13 ) and on adjacent components that are biochemically up and downstream

of the circuit (14 , 15 ). Cell-to-cell variability – referring to the fact that even within an

isogenic cell population a synthetic circuit will behave differently from cell to cell – can also

be understood as another context effect, i.e., the circuit functioning depends on the specific

intracellular conditions realized within a particular cell. Cells may differ in their cell-cycle

stage, their plasmid copy number and inevitably they will differ due to the random nature of

biomolecular events, introducing copy number fluctuations in involved molecules (16 , 17 ).

Such intrinsic noise will especially be important when the circuit is realized through lower

abundant molecules, for instance through RNA regulators, (18 , 19 ), when compared to

transcription factor based implementations.

As a consequence of cell-to-cell variability, the individual on and off expression levels for

a genetic logic circuit may easily span one order of magnitude across a cell population (see

e.g. (1 )). For biomedical applications, such as disease detection and therapeutic circuits

(20 , 21 ), stringent specifications are needed that guarantee the proper functioning of a

circuit on the single-cell level and not just on bulk averages. As long as the on and off

output levels cannot be assessed for each cell individually, such specifications translate to

the requirement that the two distributions corresponding to the circuit’s on and off levels

across the cell population, accessible for instance through flow-cytometry, do not show any

overlap (22 ). In other applications such as biotechnology these requirements may be overly

stringent and one is more concerned with just the fold-change between on and off bulk levels.

Taken together, current GDA tools such as Cello (1 , 2 ) require further domain specific

adaptation in order to cope with context-dependency, the under-specification of part and de-

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.13.456094doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.13.456094


vice models and the intracellular variations encountered at the single-cell level. For instance,

considering host energetics, GDA should find the circuit topology with the minimal number

of components and should select the specific component realizations from the library that

lead to robust circuits functioning under varying conditions. Existing tools for genetic circuit

design (23 ) either use standard EDA methods and tools to determine the circuit topology,

including Cello (1 ) and GeneTech (24 ), or leave the specification of the topology to the user

and optimize inside its boundaries, like SBROME (25 ) does. iBioSim (26 ) uses an elaborate

technology mapping algorithm that structurally matches library gates on a subject graph

using branch-and-bound, but also constructs only one topology with minimal size in base

pairs. Furthermore, Cello scores circuits based on the on and off levels corresponding to their

median parametrization without incorporating variance information during the optimization

process but provides predicting output distributions of the synthesized circuit. GeneTech

doesn’t provide simulation capabilities, SBROME uses a deterministic gene expression model

for single level output prediction only and iBioSim – while being very flexible in integrating

simulation capabilities – couldn’t be found to incorporate simulation results in the synthesis

and technology mapping process.

To this end, we propose the following extensions to the state-of-the-art GDA workflow.

First, we demonstrate that better circuit topologies can be found compared to the ones

obtained through generic EDA tools, exemplified by the 33 circuits reported in (1 ). We

efficiently enumerate all structural circuit variants (27 ), which remains undoubtedly feasible

for circuit sizes currently encountered in synthetic biology. Second, we improve the simulated

annealing (SA) based gate assignment by employing neighborhood relation among all possible

assignments (28 –30 ). Since prominent placement tools for field programmable gate arrays

(31 ) also utilize such neighborhood relation we adopted schemes from them. Third, we

introduce parametric uncertainty in device models to mimic cell-to-cell variability, context-

dependency or under-specification and extend the circuit scoring function to account for

the incurred variability. We modify the traditional Wasserstein metric (32 , 33 ) to obtain
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a score that scales with the distance of the on and off levels and also reflects the degree of

overlap among the corresponding distributions. Accordingly, two realizations of the same

logic circuit showing same output medians across the complementary input assignments, and

hence leading to identical scores in the traditional setting, could now be scored differently due

to their possibly different output variability. Moreover, we develop a framework for robust

design in the absence of probability distributions for specifying parametric uncertainty. In

particular, if uncertainty is only given in terms of upper and lower bounds on the device

parameters or gate characteristics we present a worst-case design approach based on envelope

transfer function (see Fig. 1 for an overview).
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Figure 1: Different circuit design approaches. A) Traditional design and scoring approach
with a nominal parametrization without uncertainty, as used by Cello (1 ). Cello does al-
low the prediction of output distributions but performs circuit synthesis only on median
parametrizations

; B) robust design approach accounting for cell-to-cell variability when probability
distributions for device parameters are available, presented in this article; C) robust design
solely based on interval specifications of transfer characteristics, presented in this article

2 Results and Discussion

2.1 General Problem Statement

This work deals with the particular problems of circuit synthesis and technology mapping

in an automated generation of genetic logic circuits. It therefore focuses on jointly finding
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an optimal circuit topology γ in a set of topologies Γ and an optimal gate assignment a in a

set of possible assignments A – which varies with the topology γ – given a library of gates L

and a Boolean function specification φ ∈ F . To formulate an optimization problem, we need

a measure of compliance of a circuit (γ, a) with the functional requirement φ. This measure

S(γ, a), which we call the circuit score, will be the optimization objective and we state the

optimization problem as

(γ∗, a∗) = arg max
(γ,a)∈Γ×A

S(γ, a), (1)

with the optimal topology γ∗ and assignment a∗. It is now crucial for the quality of

the resulting logic circuit to take great care in specifying the set of possible topologies Γ on

the one hand and the circuit score S(γ, a) on the other. In the following, we will discuss

possible approaches to find and characterize application-optimal Γ and S(γ, a), which are

compared with the approaches being part of the Cello framework (1 ). Since the dependence

of A on the topology γ reflects the natural hierarchy of the problem, we will first address

the synthesis problem and then proceed with the discussion on technology mapping and the

score.

2.2 Circuit Synthesis involving Structural Variants

Prominent EDA tools, like ABC used in Cello, apply the cost functions area and delay (34 ),

which are not directly suitable for genetic circuits, where fold-change and robustness pose the

main challenges of design. We therefore enumerate circuits of all different topologies available

from a given library of logic gates, which satisfy the logic function of the circuit. Since

this structural enumeration is a combinatorial problem and quickly becomes infeasible, we

optimize this procedure by following a hierarchical approach by considering only equivalent

fan-out free circuits and performing pruning by isomorphism checking and the application of

synthesis and library constraints online during enumeration (see Fig. 2A and also Method
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Section 4.2). After all fan-out free circuits have been found, we remove redundant gates

inherent to this specific type of circuit topology to obtain the final set of circuits as generally

structured Directed Acyclical Graphs (DAGs).

In order to measure the benefit of including structural variety in genetic circuit synthesis,

we synthesized all 33 functions provided in (1 ) using Cello’s library of genetic logic gates.

In total, we carried out three runs of our proposed synthesis approach, constraining the

search space differently. We only included circuits of minimum size in the first run and

then relaxed this criterion to include one and two excess gates in the second and final run,

respectively. At this point, we still used Cello’s circuit score metric to rate the separation

of complementary Boolean outputs of the synthesized circuits. Finally, we compared our

results to the circuits synthesized by Cello. To prevent fairness issues coming from Cello’s

stochastic gate assignment optimization, we simulated all possible assignments exhaustively

for both Cello’s and our circuit structures.

We found, that in the first run we were able to improve the circuit score of 14 of the

examined 33 functions, while no circuit performed worse than the corresponding circuit

synthesized by Cello and exactly the same number of logic gates was used (Fig. 2B). A

6.5-fold improvement in the score could be achieved maximally (Fig. 2C), while on average

the scores improved by 28 %. Relaxing the considered circuit size to include up to one excess

gate, the circuit score for 28 of the 33 functions could be improved up to 7.4-fold, leading

to an overall improvement of 98 % on average compared to Cello. Relaxing the size by

two excess gates, this trend continued (improvement for 31 of 33 functions up to 7.8-fold,

106 % on average). Thus, our synthesis approach not only improves on Cello for many of

the considered functions using exactly the same number of logic gates, it also enables the

designer to trade off circuit size against circuit performance deliberately (Fig. 2B). It also

shows that genetic circuit synthesis profits from the additional degree of freedom of circuit

topology. While the gate libraries are constricted and feature gates with heterogeneous

transfer functions, it allows for placing well performing combinations of genetic gates in the
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circuit. For function 0x4D, for example, the proposed synthesis approach generated a circuit

topology in which the output is driven by a NOR gate instead of the implicit OR gate while

keeping the total number of genetic gates minimal (see. Fig. 2C). Fig. 2D depicts the

increased separation of the complementary output states that leads to the improved Cello

score of the proposed design.

2.3 Technology Mapping of Genetic Circuits using Neighborhood

Heuristics

In EDA, the process of choosing logic gates from a library to implement a given circuit is

called technology mapping (35 ). This process tries to find an assignment of gate realizations

a ∈ A from the library L of real logic gates to the abstract logic gates in the circuit topology

γ that optimizes a given score on the circuit. With regard to the presented circuit synthesis

approach and the following statistical circuit evaluation method, an elaborate heuristic for

technology mapping can contribute to alleviate the increased complexity in the synthesis

process.

Cello already addresses the technology mapping problem with a generic Simulated An-

nealing (SA) heuristic to find the optimal gate assignment. However, since no problem

specific knowledge is used during the generation of neighboring assignments by drawing

gates from the library, their implementation can exhibit a far from optimal solution quality

(see Fig. 2C). To alleviate this problem and obtain a more traversable assignment scoring

landscape, we design a Markov policy for the random draws, which uses a metric that de-

fines a distance between library gates on the space of analytical characteristics of the gates’

steady-state transfer functions (see Fig. 3A and also Method Section 4.3). Then a weighted

euclidean distance in this space is used to allow drawing gates from an adaptive radius during

SA (Fig. 3B, 3C).

To evaluate our technology mapping approach, we first compiled a set of 32 circuits

by synthesizing multiple circuit variants for the Boolean functions examined in (1 ) and

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.13.456094doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.13.456094


Figure 2: A) Synthesis flow for genetic circuits involving the enumeration of structural
variants (also see Methods Section 4.2); B) Synthesis results for the 33 Boolean functions
using Cello’s and our proposed synthesis approach with the number of excess gates allowed
denoted in parentheses. Every function is represented by one line and its colour codes the
size of its minimal circuit implementation. The monotonically ascending lines clearly show
that the majority of circuits perform better using the proposed synthesis approach, while
no circuit performs worse; C) Resulting circuits and their scores using Cello’s scoring metric
for function 0x4D using Cello’s synthesis (with SA and optimal gate assignment) and our
proposed synthesis approach. Given optimal gate assignments, the improved topology leads
to a 6.5-fold improvement in the circuit score. Both circuit topologies feature the same
number of genetic gates, as for the implicit output OR no physical realization is needed;
D) Plot showing the output histograms of the circuits for function 0x4D. The proposed
design features a lower output in the OFF case, thus increasing the separation between the
complementary outputs and the Cello score.
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Figure 3: A) Parametrization of a general repressor Hill transfer function with offset and
distribution of the considered genetic gates in the defined space of characteristics xm, ym
and y′(xm); B) Radius based informed move of SA. The realization of one randomly selected
gate of the circuit is swapped for a realization in the library based on the current radius r; C)
Exemplary SA trace illustrating the adaptive radius; D) Number of simulations needed for
mapping the set of benchmark circuits with SA applying 66 different weight configurations
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selecting circuits with 5 or more logic gates, thus sorting out circuits that are well assignable

exhaustively. The problem sizes ranged from ∼ 1×106 to ∼ 7.3×107 possible gate assignments

given the usage of Cello’s gate library. We then mapped the circuits using our basic SA

and SA with proximity based neighborhood generation with different ratios of the distance

weights. To account for SA’s stochastic run time, we repeated the mapping process 10 times

and determined the mean run time of all runs.

Table 1 shows the mean score and number of simulations needed for different SA con-

figurations compared to exhaustive search. Independently from the chosen weights, all SA

runs yielded near-optimal scores. The base SA algorithm (no metric) reduced the number of

simulations needed compared to exhaustive search by 97.5 %. Enabling the proximity based

neighborhood generation with equally weighted dimensions, a further 1.61-fold speedup over

basic SA is provided. For finding the best ratio of the weights given Cello’s gate library, we

repeated the evaluation for the 66 different configurations depicted in Fig. 3D. Using the

best configuration found, we were able to speed up the mapping process 2.23-fold across the

set of 32 circuits and 5.8-fold for single circuits maximally over basic SA while still yielding

near optimal technology mapping results. Mapping the benchmark set on a standard desk-

top PC, we measured a run time of 14.96 h for basic SA and 7.19 h using the best weight

configuration.

Table 1: Mean number of simulations needed and mean score for different simulated anneal-
ing configurations across 32 circuits.

Mapping Weight
wym wxm wy′(xm) Score Simulations Speedup

Algorithm Config.

Exhaustive − − − − 439.27 820,029,600 0.02

SA none 0.0 0.0 0.0 439.18 20,475,365 1.0
SA equal 1.0 1.0 1.0 439.00 12,696,430 1.61
SA best 0.1 0.9 0.0 439.10 8,987,015 2.23
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2.4 Robust Circuit Scoring

Signal propagation in genetic circuits varies significantly across members of a cell population

due to context effects including those collectively termed cell-to-cell-variability. Therefore,

a population-wide examination of such a circuit must naturally encompass a range of pos-

sible realizations of this circuit. We present two approaches to achieve such an inclusion.

The first is based on a stochastic description of the circuit, which uses statistics of gate

parametrizations and scores whole distributions of circuit outputs. The other is based on

interval representations of transfer functions and signals to bound ranges of possible signal

outputs of the circuit. Both approaches enter problem (1) by an appropriate choice of the

score S(γ, a), which defines how we identify an optimal circuit and how much effort is needed

to do so.

2.4.1 Expectation-based Score (E-Score)

The score used by Cello is calculated using median realizations of the mapped gates’ known

transfer function statistics, which are obtained empirically using flow cytometry measure-

ments of isolated gates. Although this approach ignores the cell-to-cell variability of the

circuit function, it results in a fast scoring procedure. While calculating any single circuit

realization demands a similar runtime, the median realization is presumed to pose as what

is deemed a typical realization of the respective circuit. However, this circumstance does

not allow the user to trade computation time for scoring detail. To allow such a trade-off,

we propose a sampling-based approach as an adjustable, parallelizable alternative, which –

given an assignment – calculates output samples based on randomly drawn transfer function

realizations from the known statistics and scores the resulting empirical distributions as a

whole with a score, which roots in the Wasserstein distance (32 ). We can show, that the

Wasserstein distance of the logarithmic output distributions emerges as a natural measure

of separation corresponding to the population-wide expected on-off difference (see Methods

4.4.3). While the distance alone is a suitable candidate for comparing possibly overlapping
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output distributions in the sense of obtaining a functionally robust circuit, it is agnostic

to variances in symmetric distributions. Although the obtained output distributions were

often found to be skewed (in the direction of the complementary Boolean output), this in-

sensitivity to variance is not suitable for a general score. We therefore chose to evaluate

the distance partially in the sense depicted in Fig. 4B. We name the so obtained new score

the E-score, and it allows us to score the negative impact of larger variance compared to an

optimal output under a given median distance as shown in Fig. 4A and detailed in Methods

4.4.3. For the calculation in particular consider (8) in 4.4.3. Note, that as a consequence,

the E-Score generally has a different absolute scale and a circuit scored by the E-Score is

not necessarily comparable to one scored by the Cello score.

A B

Figure 4: A) Proposed E-Score and Cello score of the two output distributions plotted
over their standard deviation σ. The medians stay constant for all σ. Although intuitively
the distributions with higher variance would be considered worse, Cello’s score doesn’t take
this into account; B) Illustration of the two scores. The CDF’s of the two distributions
representing Boolean on and off are plotted. An optimal output would concentrate all
probability mass at specific points, which are considered to be at the median locations in
accordance to Cello. Our score tries to capture the area enclosed by the inner tails of the
output distributions within the optimal boundaries in the way hatched in gold, while Cello
only builds the difference between two points. Choosing the Wasserstein-equivalent (cf. (7)
in Methods 4.4.3) scores the area between the two blue lines, which would equal Cello’s
score.

The sample realizations of the gate transfer functions themselves are obtained from sam-
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pled points of ”noisy” Hill functions. These sampled points are obtained from Cello’s median

realization processed together with histograms generated from flow cytometry data, which

are sourced from Cello’s user constraint files (UCFs). Processing these has been done in

accordance to the instructions from Cello’s supplementary material. The points are sam-

pled, such that they represent equal quantiles on the so obtained empirical CDFs. We fitted

Hill functions to these points, so that Cello’s median realization becomes a special case of a

set of quantile realisations leading to empirical output distributions, which as a whole score

the circuit (Fig. 4A and B). If we speak of quantile realizations, we mean these fitted gate

transfer functions, which match specific quantiles on the empirical CDFs from Cello’s data.

A more detailed description on how the samples have been obtained is given in Methods

4.4.2. To generate the circuit’s output distributions, first a sample circuit input is chosen.

Then, an individual sample quantile realization is taken for each of the circuit’s gates and

a circuit output sample is obtained from calculation of the circuit’s transfer function. This

is done multiples times with new samples each time, until a desired refinement of the so

obtained empirical output distribution is achieved. Details on the calculation are found in

Methods 4.4.1

To test the procedure, we first rescored all circuits with ≤ 6 gates with their previous op-

timal assignments obtained from the exhaustive search using Cello’s original score described

above, but this time drawing 5000 quantile realizations and using the E-Score. Unsurpris-

ingly, since our score is stricter than the Cello score, the scores have been significantly lower

(Fig. 4A). We kept the same circuit topologies obtained originally by Cello to retain com-

parability and only changed the gate assignment based on the new score. We found the best

gate assignments for these topologies exhaustively while incorporating all sample realizations

and the E-Score instead of only the median realizations and the original score. We could

improve 21 of 31 assignments. The median improvement (only the improved assignments)

was by 21.13% in score, while the mean improvement was at 179% (we will come back to

this in a few sentences). If the circuit could be improved, on average 44.7% of the gates have
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been exchanged in comparison to Cello. The mean number of gates in improved circuits has

been 5.39, while in kept circuits it has been 3.2. The reason for the large mean improvement

is, that we could – using the histogram data – identify some possibly error prone circuits in

Cello’s exhaustive results, which become erroneous under given variability. We use the term

”erroneous” circuit here as a simplifying term for circuits, which result in a large fraction

of inverted Boolean outputs using the sampled circuit realizations. We assume, the reason

for such an erroneous behaviour can generally be found in subsequent alignments of the like

depicted in Fig. 5. Since Cello’s score is agnostic to the distance of the median inputs to

the transition regions of the gate’s transfer functions, a so chosen assignment might lead to

inverted outputs in a real circuit where cell-to-cell variability is present. The E-Score aims

to avoid such assignments. This lead in the extreme to a nearly 30-fold improvement in score

in circuit 0x1C. The target output levels of 0x1C stayed unchanged, since the final gate has

been kept. Additionally, to demonstrate the practicability of the SA heuristic in combina-

tion with the E-Score, we mapped the two largest circuits 0x41 and 0x81 with ∼ 7.3 × 107

possible assignments using SA and compared the results with the (exhaustively obtained)

best possible assignments from Cello while still not modifying the circuit topology. Despite

the stochastic optimization, both circuits could be improved (0x41 and 0x81 significantly by

84.9% and 40.92%). Exemplary output histograms for circuit 0x81 and the restored non-

functional circuit 0x1C are given in Fig. 5C and D. We can conclude that, especially for

high cell-to-cell variability, a higher confidence in the functionality of the so obtained circuit

w.r.t a whole population can be achieved incorporating known statistics in the technology

mapping process. To give an overview of the experiments, we provide statistical results in

Table 2, where we compare sample scoring runs utilizing 5000, 500, 100, and 50 samples with

the result obtained using Cello’s score. While excluding erroneous circuits (c.f. Fig. 5D),

our score was able to reduce the variance of the logarithmic output distributions significantly

as well.
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A B

C D

Figure 5: A) Input, output and joint histograms for a sample gate I/O scenario. The
gate corresponds to promoter ’BM3R1’ with ribosome binding site ’B3’. The gates
transfer statistics are reconstructed using the flow cytometry data from the Cello UCF
’Eco1C1G1T1.pAN1201.UCF.json’. If only the medians of input distributions and gate
transfer functions are considered like in Cello, the blue output would be considered a better
result compared to the yellow one; B) Illustration of the sampling procedure. N parametriza-
tions are pre-drawn for each gate for the respective environment and combined under inde-
pendence assumption to yield the circuit output; C) and D) Plot showing the two histograms
generated for the best assignments chosen by the respective scoring scheme. C: 0x81 and
D: 0x1C. The optimal assignment of circuit 0x1C under Cello score results in many inverted
Boolean outputs with given cell-to-cell variability and under the independence assumption
made for the sampling.
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2.4.2 Interval-based Score (I-Score)

The E-Score uses inverse transform sampling to draw samples representing random quan-

tiles on the histograms obtained from flow cytometry. While for an acceptable amount of

samples and under correct assumptions this approach is versatile and guaranteed to provide

a consistent result, it might be useful to think about efficient alternatives with a stronger

focus on robustness. We present two such efficient alternatives based on interval estimation.

We call these variants I-Score. One of the two variants implements the maximin princi-

ple fundamental to robust optimization (36 ) the other is based on inscribed distributions.

Though by construction not able to express output separation tendencies in proportions of

the population, the score is able to identify assignments, which shift at least one individual

to wrong outputs or in proximity to possible decision boundaries. Details can be found in

Methods 4.5, but we give a short summary in the following. The basis of this score are

bounding envelopes derived from our set of estimated context parameters, which enclose all

or almost all of the known gate transfer function realizations. We then create a modified

circuit double in size to the original, which is able to propagate (interval bounded) signals

through the enveloped circuit and generate output intervals, which bound the output signals

of the whole population, see Fig. 6A. Scoring by the maximin principle on these intervals is

then performed by taking the distance of the smallest lower interval boundary correspond-

ing to Boolean 1 and the largest upper boundary corresponding to Boolean 0 (c.f. (11) in

Methods 4.5). An illustration of this idea is given in fig. 6. Having obtained the output

intervals, scoring by the maximin approach is just one among a variety of possibilities. As an

example, we could as well suspect these output intervals to support distributions of output

values again like in section 2.4.1. By having no additional information, a maximum entropy

assumption – and therefore uniform distributions on the support enclosed by the output

intervals – would be a reasonable choice, which we briefly refer to by uniform I-Score.

To evaluate the maximin approach, we again mapped all circuits with ≤ 6 gates using this

score as a maximizer. We then rescored all circuits and their worst-case optimal assignments
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Figure 6: A) Overview of the designs considered within this work. The black arrows illustrate
the direction of increasingly refined modelling

; A.1) Cello scoring: model representing median parametrization without considering
uncertainty; A.2) Expectation-based scoring (E-Score, eq. (8)): distributional information
provided by parameter statistics taken into account; A.3) Interval-based scoring (I-Score,
eq. (11)): enveloped model of transfer functions, consisting of a lower and upper envelope;

A.4) Modified envelope-free circuit equivalent to the one shown in A.3); B) Exemplary
illustration of an enveloped circuit and its envelope-free version below. Note, that the wires

in the enveloped circuit carry intervals and not scalar values, which is alleviated in the
equivalent envelope-free circuit.
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obtained with the maximin I-Score again using the expectation-based E-Score with 5000

quantile realizations. In comparison to Cello, of the 31 circuits 9 have been improved, 4 have

been kept, and 18 have been worsened w.r.t the E-Score. The mean E-Score was the lowest

of all tested scoring schemes, and as expected, the very bad E-Scores assumed by the Cello

solutions have been avoided. Remarkable is the maximal variance of the logarithmic outputs.

Their maximum has with 0.99 been significantly lower compared to Cello and also to some

degree compared to the expectation-based scoring schemes. The mean maximal variance

at 0.57 has been the lowest throughout. We then did the same experiment again with the

only difference being, that we didn’t use the maximin I-Score on the output intervals but

inscribed uniform distributions into these intervals and scored them using the E-Score. In

comparison to Cello, of the 31 circuits 15 have been improved, 5 have been kept, and 11

have been worsened. The mean uniform I-Score has been around 4 points larger than that of

Cello, while a very good minimum could be reached comparable to that of the full sampling

E-Scoring. The maximal variance of the logarithmic outputs has been low overall as well.

Its maximum has been the lowest throughout and its mean lies only a small portion above

that of the stricter maximin approach.

Both schemes avoid erroneous circuits (large fraction of inverted Boolean outputs) and

reduce output distribution overlap. Since the focus of the approach with inscribed uniform

distributions on population-wide output separation is stronger, its minimal score has been

almost as large as that of the baseline. Both interval-based approaches take less than two

times the runtime of the Cello score, which has been the fastest overall. Unsurprisingly,

the two interval-based scoring approaches also lead to output distributions with minimal

log-variance. Like above, an overview can be found in table 2.
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Table 2: Table listing the exhaustive runs (31 circuits) giving an impression of different
scoring schemes

(Cello score, E-Score (5000 samples – used as a reference), E-Score (500 samples), E-Score
(100 samples), E-Score (50 samples), I-Score (uniform), I-Score (maximin)). The median
reference E-Score was roughly the same ≈ 73 for all. Besides the reference score with 5000
samples, which incorporates the most detail of the output distributions among all scores

presented, we used the maximum variance of the logarithmic output distributions as
another measure of fitness for the resulting assignment. We remember the calculations (8)

for the E-Score and (11) for the I-Score
Assignment Distribution of Distribution of Runtime
Optimizer reference E-Scores of max{Var (logP )} (relative)

from 0 to 254.28 from 0 to 4.99

Cello score min = 2.11, µ = 93.17 max = 4.99, µ = 1.11 1.0
Median sample

E-Score min = 36.99, µ = 110.23 max = 1.05, µ = 0.67 ≈ 700
5k samples

E-Score min = 31.06, µ = 109.23 max = 1.05, µ = 0.68 74.3
500 samples

E-Score min = 27.27, µ = 107.2 max = 1.04, µ = 0.69 18.1
100 samples

E-Score min = 23.27, µ = 107.98 max = 1.22, µ = 0.68 11.3
50 samples

I-Score min = 35.47, µ = 99.82 max = 0.88, µ = 0.59 1.7
(uniform)

I-Score min = 18.54, µ = 87.92 max = 0.99, µ = 0.57 1.6
(maximin)
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3 Conclusions

This work provides improvements to the emerging domain of genetic design automation, in

particular for the synthesis of combinational logic circuits. We show that there is currently

little need to make aggressive approximations in the circuit synthesis and the technology

mapping step when compared to electronic design automation. Neither the implementable

logic circuits nor the device libraries reach sizes that would require them. Using 33 example

circuits from (1 ) we demonstrate that enumerating structural variants for a given Boolean

specification and having an optimized stochastic search strategy in the technology mapping

yield significantly better circuit realizations with an up to 27-fold improvement, all based on

the traditional Cello library and scoring scheme (see Fig. 2). Under optimal gate assignments

a 6.5-fold improvement can be achieved just due to structural variants, whereas for a given

circuit structure one can find better gate assignments through a fast stochastic search that

reliably finds the best assignment with a 2.2-fold speed-up (Table 1). Compared to the

invested experimental time to actually implement and test genetic circuits, the incurred

higher runtime for enumerating structural variants is negligible.

Going beyond those direct improvements of the established design process, the work

presents a more general design approach that takes into account unavoidable underspecifi-

cations within biological device libraries, context-effects and cell-to-cell variability of circuit

function. We show that accounting for them in the simplest way through parametric uncer-

tainty, the design process yields more robust circuits, quantified in terms of a novel scoring

metric that penalizes variance and overlap of the complementary circuit output distributions.

We use random parametric families of Hill curves, learned directly from flow-cytometry data

as gate models in the library and establish a fast Monte Carlo based scoring scheme. If

uncertainty is only specified in terms of interval boundary, we provide another robust scor-

ing scheme that just works with envelopes of gate characteristics and does not require any

sampling step. The general methodology developed in this paper is not bound to a particular

gate library. For libraries involving gates other than NOT and NOR gates, the neighbor-
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hood heuristic in the gate assignment can be adapted using correspondingly other features

of the gate response curves. The proposed interval propagation method (Fig. 6) works for

all monotone gate characteristics.

We see the work as a first step towards the use of more fine grained device models and

the development of domain-adapted logic synthesis and technology mapping tools. There

are several more extensions that we foresee in order for computer-based design methods to

reach the necessary predictive power to be routinely used in the lab. Context-effects such as

host energetics will require a more detailed biophysical model for how gate characteristics

change under different conditions. Even if a random parametrization can account for that to

a zeroths order, it will require the incorporation of a correlation structure among parameters

that will be induced by cellular confounders like the cell’s energy state. Another aspect

that also generates interdependence among gates is cross-talk due to, for instance, off-target

binding of involved regulators or polymerase readthroughs for adjacent expression units.

Such interdependency asks for enriched device models in libraries but will open up new

interesting computational challenges for the circuit synthesis. Methods that account for

intrinsic noise and for temporal aspects even for combinational logic (37 ), such as rise times

or simple reversibility of circuit responses, are also yet to be developed. Integrating the

temporal properties of genetic circuits that are central for designing sequential logic circuits

(3 ) into a consistent robust design and scoring framework is another challenge ahead.

4 Methods

4.1 Robust Circuit Synthesis and Technology Mapping

In the following, we introduce the optimization problem formally in more detail compared

to Section 2 and then dedicate separate sections to circuit synthesis and technology map-

ping/scoring. Let thus (G,Σ) be the set of all labelled DAGs where G ∈ G is a DAG with

G = (V,E), E ⊆ V × V and labeling Σ ∶ V → S with S denoting the set of available types of
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functions (i.e. gate types) in that technology. Circuit synthesis returns a finite set of circuit

topologies Γ ⊂ (G,Σ) based on the synthesis map from the space of specifications in terms

of Boolean formulae F and an available library L, i.e., T ∶ F × L → (G,Σ). The technology

mapping is the injective function M that takes each vertex of a topology γ in Γ and assigns it

one element of library L, i.e., M ∶ Γ×L → A ⊂ V ×L. Both processes jointly result in a circuit

(γ, a) with γ ∈ Γ and a ∈ A. Rating such a circuit is then done using a circuit score function

S ∶ Γ × A → R≥0 with the choice S(γ, a) = exp (s(γ, a)), which we conveniently define to be

the exponential of the log-score function s ∶ Γ×A → R. The definition of S as an exponential

allows us to tackle the scoring in the logarithmic domain, which is more amenable with

respect to the biological application. The score S is then quantifying the compliance of the

circuit outputs with the Boolean functional requirement φ ∈ F . Proceeding from here, we

can formulate the process of synthesis and technology mapping as an optimization problem

of the form

(γ∗, a∗) = arg max
(γ,a)∈Γ×A

S(γ, a) = arg max
(γ,a)∈Γ×A

s(γ, a),

using the monotonicity of the logarithm for the last equality, with (γ∗, a∗) being the

optimal structure and assignment combination w.r.t the score S. The efficient construction

of the set Γ and the proposed functional forms of s will be detailed in the following sections.

4.2 Circuit Synthesis involving Structural Variants

The problem of finding all structurally different implementations of a Boolean function is

a DAG-enumeration problem. Thus, we intermediately enumerate all fan-out free circuit

structures C = {γ ∈ Γ ∶ ∀v ∈ V ∶ ∣{u ∈ V ∶ (v, u) ∈ E}∣ = 1}, simplifying enumeration and

pruning (see Fig. 2A). During the systematic construction of C from the given set of gate

types S in a library of genetic logic gates L the found topologies are pruned according to

the optional synthesis constraints maximum circuit weight ω and depth δ, i.e. ∀γ ∈ C ∶ ∣γ∣ ≤
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ω ∧ l ≤ δ, with l being the longest path of γ. Furthermore, let φ be the n-ary Boolean target

function and Iγ = {i0, i1 . . .} be the set of unconnected gate inputs of γ then ∀γ ∈ C ∶ ∣Iγ ∣ ≥ n.

If the enumeration leads to isomorphism between the newly found topology γ′ and any

existing topology γ, i.e. ∃γ ∈ C ∶ γ ≃ γ′, γ′ is also discarded. The intermediate result is the

complete set of unique fan-out free circuits consisting of gates of types S with a sufficient

number of unconnected gate inputs to implement φ.

Then, a set of primary inputs P = {p0, . . . , pn−1} with pi ∈ B ≡ {0,1} is instantiated and

all possible assignments of unconnected gate inputs and primary inputs are generated, i.e.

M⊂ P×I. For each fully specified circuit the Boolean function is evaluated and thus the set

of circuits Cφ implementing φ is obtained, i.e. Cφ = {γ ∈ C,m ∈ M ∶ (γ,m) â φ}. Redundant

logic gates inherent to fan-out free circuits are then eliminated by evaluating their function

w.r.t to the primary inputs and merging functionally equivalent gates, thus returning to a

general DAG structure. This allows an application of final library constraints, i.e. checking

whether the total number of genetic realizations in L and the number of realizations per gate

type S is sufficient to implement each circuit.

4.3 Technology Mapping of Genetic Circuits Using Neighborhood

Heuristics

The smallest possible change that can be performed to generate a neighbor from a given

solution is the substitution of one gate realization by another realization of the same logic

type. Given that the gates, e.g., used in Cello differ greatly in their signal transfer behavior,

a random substitution of one gate leads to an arbitrarily big change in the gate’s transfer

function and thus in the circuit’s performance. Thus, we determine characteristic features of

the gate realizations’ transfer functions and combine them into a proximity measure, enabling

heuristic search algorithms to deliberately control the severity of changes to a solution during

neighborhood generation.

The elementary transfer behavior of Cello’s genetic logic gates is characterized by a Hill
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repressor function

y(x) = ymin +
ymax − ymin

1 + ( xK )n , (2)

where x and y denote the input and output promoter activity, ymin and ymax define

the output interval, K is the repression coefficient and n the Hill coefficient. This transfer

function gives the gates a NOT or a NOR characteristic, depending on how many signals

it is sensitive to. A feature used for characterizing electronic NOT gates is the switching

threshold Vm. It is defined as the point on the transfer function where Vin = Vout and impacts

the device’s noise margins (38 ). Because of the global voltage levels VDD and VGND used

commonly for input and output signals and thus symmetrical input and output intervals, Vm

can be found near the inverter curves inflection point for well built devices. Genetic logic

gates lack a common reference value for input and output levels. Thus, we redefined the

switching threshold for the considered genetic gates to be the point on the Hill curve, where

an output concentration halfway between the minimum and maximum output concentrations

is reached (see Fig. 3A). Let ym be that output concentration and xm the corresponding

input concentration. We choose these characteristic features to be the first two dimensions

of our proximity measure, i.e.,

d1 ∶= ym = 1

2
(ymax − ymin) + ymin, (3)

d2 ∶= xm =K (ymax − ymin

ym − ymin

− 1)
1
n

. (4)

Further examination of the given gate library showed that the gates transfer functions

differ greatly in the gradient at y(xm). Thus, we define the gradient y′(xm) at the switching

threshold to be another characteristic feature
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d3 ∶= y′(xm). (5)

Denote by di the three-dimensional feature vector of gate i and define the diagonal

weighting matrix W ∈ R3×3 with entries Wnm = wn/δn for n = m, where wn ∈ [0,1] is the

adjustable weight for feature n (see Fig. 3D) and δn the maximal absolute difference in the

n-th feature between two gates across the whole library, then we can quantify the similarity

between any two gates i and j in library by the W-norm

Dij = ∣∣di − dj ∣∣2W.

In order to evaluate if local search heuristics for the technology mapping of genetic circuits

can benefit from the proposed proximity measure, we integrated it into the neighborhood

generation of SA, that has been shown to profit from a well structured, problem specific

neighborhood (28 –30 ).

A major challenge when implementing SA is to specify central parameters like initial

temperature and annealing schedule that lead to the desired solution quality and a reasonable

run time. For the base implementation of the algorithm, we adopted these specifications

from VPR, a tool for FPGA logic synthesis that uses SA for FPGA placement (31 ). Then,

we adapted the algorithm to yield near-optimal results for the given technology mapping

problem by slowing down the annealing schedule and conditioning the number of iterations

per temperature level on the problem size. Here, the problem size is the number of possible

gate assignments resulting combinatorially from the composition of gates in the circuit and

in the library.

For every iteration k, VPR determines a radius rk in which logic cells on the chip are

considered to be swapped in the search process. The ratio of the number of accepted solutions

to the number of total evaluations α is calculated continuously during the annealing process
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and r is controlled to keep α near the empirically determined sweet spot of 0.44, i.e., rk =

rk−1(1 − 0.44 + α). When, caused by the decreasing temperature, α drops below 0.44, the

search radius r is decreased. This leads to a more local search for neighboring solutions

in the late phase of the annealing process that are likely to have similar score values, thus

leading to an increase of α. This ultimately results in the evaluation of less solutions with

low scores that would be rejected anyway. We adapted this approach to our proximity based

neighborhood generation. In our case, the radius controls which two gate realizations i and j

in the library are considered for a swap, based on their distance Dij. The radius is initialized

with the maximum distance of gates in the library, thus allowing for a global search in

the search space in the early, high temperature phase. During the annealing process, r is

decreased, progressively excluding gates with strongly differing transfer characteristics from

the neighborhood generation. Further implementation details can be learned from the code

available in a public repository.

4.4 Expectation-based Score (E-Score)

Like mentioned in section 2.4.1, to better represent the variability of the gates over different

cellular contexts, considering statistical descriptions of the circuits and their outputs is one

possible way. This improves the representation of population-wide circuit behaviour in the

score function S(γ, a) (and therefore s(γ, a), which is used as a proxy). However, before we

focus on the scoring in detail, we need a stochastic description of a genetic circuit. Therefore,

we first introduce such a description, then we talk about how to generate sample realizations

from this circuit, and finally, we talk about the score.

4.4.1 Circuit Description respecting Cell-to-Cell Variability

Let thus Ξ ∶ Γ × A → Θ denote the parametrization of a circuit (γ, a). To represent the

cellular context in terms of known statistics, we understand Ξ(γ, a) as a random variable

characterized by a distribution Ξ(γ, a) ∼ P (θ) associated with circuit (γ, a). In the following,
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if we speak of a circuit parametrization, a circuit realization or a specific context, we mean

a particular realization Ξ(γ, a) = θ, which we assume to be constant for each member in a

population. Our goal will be to not only calculate the circuit output based on the median

realization of the parameters, like Cello, but a set of sample outputs consistent with realiza-

tions based on the measured data, which jointly represent output distributions associated

with a whole cell population. Since the circuit function under a fixed parametrization is –

at this scale – assumed to be sufficiently deterministic, the output distributions depend on a

vector of realizations representing the M circuit inputs ub ∈ Ub ⊂ RM
≥0 and the vector of real-

izations θ ∈ Θ representing the (cellular) context. Let further the realization of the random

variable representing the 1-bit output be denoted by v. A Boolean label b ∈ B ≡ {0,1} is

attached to each set of input configurations Ub and its elements ub to indicate, which output

v is associated with a Boolean value 0 or 1 from the truth-table φ. If we just write u, we

usually mean an arbitrary input without caring about any underlying logic function. The

output density p (v) can be found by marginalization

p (v) = ∫
RM+
∫

Θ
p (v ∣ ub,θ)p (ub,θ)dθ dub, (6)

with p (v ∣ ub,θ) being the density of the circuit output conditioned on a particular input and

context realization. Given a gate library L containing L context-dependent gate quasi-steady

state transfer functions {g1, . . . , gL}, of which all are of a type g ∶ RMg
+ ×Θ→ R+, where Mg is

the number of gate inputs. Then, the circuit output can be calculated from a circuit transfer

function f (ub, θ) ≡ f (ub, θ, g′, g′′, . . . ) ≡ f (ub, θ, γ, a) depending on the set of gates in

the circuit g′, g′′, ⋅ ⋅ ⋅ ∈ L. This circuit transfer function can be evaluated from subsequently

calculating gate outputs. Therefore, the output conditional p (v ∣ u,θ) can be calculated

directly from f , since for a specific context θ and input realization u the circuits transfer

function f is deterministic (as are all gates g). Consequently, p (v ∣ u,θ) = δ (v − f (u, θ))
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is given by a degenerate distribution, where δ is the Dirac delta function. As a simplifying

assumption, we require the factorizations p (u,θ) ≡ p (u)p (θ) and p (θ) ≡ ∏g∈G p (θg). The

first assumes input distributions independent of the cellular context and circuit chosen and

the second, that the cellular context is acting independently on the gates in the circuit. This

allows us to equip every gate with an individual set of sample realizations independent of

which other gates are in the circuit. The latter enables initial sample generation for all gates

in the library to allow a fast simulation in a technology mapping process. We require further,

that gl (x, θ) ≡ gl (x, θl) for all gl ∈ L to allow learning the gate parameters from Cello’s

isolated gate measurements.

Cello’s gate library has some properties, we need to address briefly. It consists only

of NOT and NOR gates, where the latter combine multiple inputs to a single input via

implicit summation. This means, if we write g (x, θ), this also includes gates with Mg > 1

by g (x, θ) ≡ g (x0 + x1 + ⋅ ⋅ ⋅ + xMg , θ), c.f. (1 ).

4.4.2 Collecting Samples

We built our set of samples by taking the cytometry data from Cello’s UCFs. For each

binned dataset in the UCF file associated with an input concentration from the discrete

set x ≡ (x0, x1, . . . , xK) we define the empirical distribution P̃k represented by the random

variable ξk ∼ P̃k, so that P̃k is represented by the binned dataset with its median loga-

rithmically shifted to 0 (if not already). We multiplied these ξk with the Hill functions

representing median realizations g(x, θ̃) also present in the UCF file to obtain ”noisy” hill

function values g(xk, θ̃)ξk for each k (we added log(ξk) in the logarithmic domain). We

did this in accordance to the instructions from the Cello supplementary material. We thus

obtain a new distribution P̃ ′
k for each k with support logarithmically shifted by the constant

log(g(xk, θ̃)). Employing inverse transform sampling, we drew a set of N iid standard uni-

form random variates q = (q0, q1, . . . , qN) representing quantiles and – using these and the

inverses of the empirical CDFs – obtained N sets of K samples yn = (y(n)0 , y
(n)
1 , . . . , y

(n)
k )
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from the P̃ ′
k representing similar quantile locations for all the k. The relation between qn and

y
(n)
k is then given by qn = P̃k(y(n)k ). Let g (θ) ≡ (g (x0, θ) , . . . , g (xK , θ)) be the vector of

gate outputs for each of the xk under realization θ. We then solved the Tikhonov-regularized

least squares regression problems θn = minθ ∥g (θ)−yn∥2
2+λ∥θ− θ̃∥2

2 to obtain N sets of envi-

ronment parameter samples θn (we use Hill function parameters as a proxy) representing the

variability captured by the cytometry measurements. Under the independence assumptions

outlined in the previous section 4.4.1, we can generate the samples offline and store them in

an extended gate library.

4.4.3 The Score

Equipped with our definitions from above, we are now able to specify a suitable s(γ, a),

which we use to score a context-dependent circuit. Like Cello, we use the logarithmic on-

off difference as a basis for our score, which seems to be a suitable quantification of the

separation of two values in the positive reals. However, in contrast to Cello, which calculates

f(u1, θ̃)−f(u0, θ̃) with the median realization θ̃, we have probability distributions to score if

Ξ(γ, a) is a random variable. As a consequence f (u1, Ξ(γ, a)) − f (u0, Ξ(γ, a)) is a random

variable as well. Therefore, we first chose its expectation as a scoring candidate, which

manifests in the log-score

s(γ, a) = min
u1∈U1,u0∈U0

E (f(u1,Ξ(γ, a)) − f(u0,Ξ(γ, a))) , (7)

where U1/0 is the set of all real valued circuit input vectors associated with Boolean output

1/0 from the circuit’s truth-table φ. Let f(u0,Ξ(γ, a)) ∼ P0 and f(u1,Ξ(γ, a)) ∼ P1 for

a specific (u0, u1). So, P0 and P1 are the CDF’s of population-wide individual outputs

associated Boolean 1 and 0 for specific circuit inputs u0 and u1. Then, interestingly, the

expectation in (7) is equal to the Wasserstein distance of P0 and P1 if P0(v) − P1(v) never
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changes sign. This means, that looking at any arbitrary circuit output v′, there must lie

more probability mass below this value associated with Boolean 0 than with Boolean 1, so

P0(v′) > P1(v′). The Wasserstein distance, which is meant here, is defined on the metric

space (R≥0, ∣x1 − x0∣) by

W1 (P0, P1) = inf
F ∈J ∫R+2

∣x1 − x0∣ dF (x0, x1)

= ∫
R+

∣P0(v) − P1(v)∣ dv

= ∫
R+
P0(v) − P1(v)dv if ∀v ∈ R+ ∶ P0(v) − P1(v) ≥ 0

= E (f(u1,Ξ(γ, a)) − f(u0,Ξ(γ, a))) ,

where J is the set of all joint probability measures F on R2
+, which have marginals P0

and P1. Note, that the last equality holds unconditionally. In our case, where we have

two empirical distributions P̃0 with samples X0 = {x(1)
0 , x

(2)
0 , . . . , x

(N)
0 } and P̃1 with samples

X1 = {x(1)
1 , x

(2)
1 , . . . , x

(N)
1 }, the calculation of s(γ, a) reduces to (cf. the analogy for W1 in

(33 ))

E (f(u1,Ξ(γ, a)) − f(u0,Ξ(γ, a))) = 1

N ∫R+

N

∑
n

1
x
(n)
0 ≤v − 1x(n)1 ≤v dv

= 1

N

N

∑
n

x
(n)
1 − x(n)

0 ,

where x
(n)
0 is the n-th order statistic (n-th smallest sample) in X0. The same holds for x

(n)
1

and X1. We discussed in Section 2.4.1 that, however, this score is agnostic to variance in

symmetric distributions. Therefore, if the output distributions are symmetric, an overlap

could not be detected. We therefore modify the score in the sense depicted in Fig. 4B to

only score the negative deviation from a per-median optimal output window caused by the

distributions’ variances. This formalizes in the log-score
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s(γ, a) = min
u1∈U1,u0∈U0

E (min{f(u1,Ξ(γ, a)), f̃(u1)} −max{f(u0,Ξ(γ, a)), f̃(u0)}) , (8)

where f̃(u) ≡ f̃(u,Ξ(γ, a)) is the median circuit output for input u over Ξ(γ, a). We

call the exponential S(γ, a) = exp(s(γ, a)) with s(γ, a) from (8) the E-Score. Note, that

this modification doesn’t reduce the computational effort in comparison to W1(P̃0, P̃1) but

doesn’t increase it notably either. The expectation in the score (8) can be calculated on the

empirical output distributions by

E (min{f(u1,Ξ(γ, a)), f̃(u1)} −max{f(u0,Ξ(γ, a)), f̃(u0)})

= 1

N

⎛
⎜
⎝

⌊N
2
⌋

∑
n=1

x
(n)
1 − x̃0 +

N

∑
n=⌊N

2
⌋+1

x̃1 − x(n)
0

⎞
⎟
⎠
, (9)

where x̃0 and x̃1 are the medians of P̃0 and P̃1. Note, that these are not equal to f(u0, θ̃) or

f(u1, θ̃), since the output of the median circuit realization does not guarantee to yield the

median circuit output. Note, that the resulting score S(γ, a) generalizes Cello’s score. For

degenerate distributions (two “samples”), it is simply given by S(γ, a) = exp(x1−x0). In the

case of Cello, the x0, x1 are the logarithms of the circuit outputs produced by the median

realization θ̃ for two corresponding inputs u0 and u1.

4.5 Interval-based Score (I-Score)

Like mentioned in 2.4.2, we propose another approach, which is stricter and concentrates

more on robust optimization (39 ). It is a consequent implementation of Wald’s maximin

principle in the sense, that it doesn’t seek to negotiate the diversity of a population, like an

expectation does, but find just the weakest element. This can also be the case, if we do not

want to calculate samples to approximate an output distribution or do not have sufficient
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data to derive distributions of parameters. In this case, the circuit parametrization Ξ(γ, a)

is not understood to be random anymore, but becomes a set-valued map, returning a set

containing all known parameter realizations θ ∈ Ξ(γ, a) ⊂ Θ in circuit (γ, a). The associated

maximin-score is then

s(γ, a) = min
u1∈U1,u0∈U0

min
θ∈Ξ(γ,a)

(f(u1,θ) − f(u0,θ)) (10)

= min
u1∈U1,u0∈U0

( min
θ∈Ξ(γ,a)

f(u1,θ) − max
θ∈Ξ(γ,a)

f(u0,θ)) ,

with an additional minimizer over the range of possible parameters. We now, without

knowledge of existence, choose two parameter sets θ and θ, for which we demand the

conditions, that for any ub ∈ Ub with b ∈ B we have f(ub,θ) ≥ maxθ∈Ξ(γ,a) fb(ub,θ) and

f(ub,θ) ≤ minθ∈Ξ(γ,a) fb(ub,θ) so that we obtain the following lower bound s(γ, a) ≤ s̃(γ, a)

s(γ, a) ≡ min
u1∈U1,u0∈U0

(f(u1,θ) − f(u0,θ)) , (11)

which we use as an interval-based score and call its exponential S(γ, a) = exp(s(γ, a)) the

I-Score. We can show, that if all gates in the circuit (γ, a) have transfer functions g ∈ L

that are monotonous (either decreasing or increasing) for any fixed parametrization θ and

∀x ∈ R+ ∶ g(x,θ) ≥ g(x,θ), then θ and θ exist and the output intervals vb ≡ f(ub,θ) ≥

maxθ∈Ξ(γ,a) f(ub,θ) and vb ≡ f(ub,θ) ≤ minθ∈Ξ(γ,a) f(ub,θ) for b ∈ B can be calculated only

from the bounds θ and θ. Since, like explained in 4.4.1, we use Cello’s gate library, which

consists only of NOT gates and NOR gates with implicit summation, the monotonicity

condition for all g is satisfied. Additionally, because we derived all available samples from

Cello’s cytometry data and the bounds have been chosen appropriately, the inequality is

very strict given the knowledge. To calculate the output intervals [vb, vb] for b ∈ B, we can
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generate a modified circuit, which consists of 2K gates (if the circuit consists of K). This is

done by generating two gates g, g from one g ∈ L in the circuit, which contain the upper θ

and lower θ parametrizations. Then, for all following adjacent gates g′, we wire the output g

into g′ and g into g′. This resulting circuit then propagates input intervals [ub,ub] to output

intervals [vb, vb]. Once the output interval is calculated by standard signal propagation (see

4.4.1) through the modified circuit, the score (10) can be approximated by (11), taking the

smallest difference v1 − v0. The generation of g and g can thereby be done offline in advance

and the new information can be gathered in an extended gate library.

As a small addition, and to give an idea of possible further considerations, we also propose

a relaxed, less strict version of this score. Since it is easy to calculate output interval bounds

[v1, v1] associated with Boolean 1 and [v0, v0] associated with Boolean 0, we can again think

of these intervals as supporting output distributions. We could e.g. use this as a starting

point for approximations of (8). Doing so, a reasonable assumption – if nothing else than the

interval boundaries were known – would be assuming maximum entropy and therefore two

uniform distributions with support within the interval boundaries. These can then again be

scored using e.g. the E-Score (8).

The source code of the proposed synthesis and scoring methods is available at https:

//www.rs.tu-darmstadt.de/ARCTIC.

4.6 Supporting Information

(A) Pseudo code algorithms of the enumeration of structural circuit variants and the gener-

ation of equivalent envelope-free circuits (B) Circuit diagrams of designs synthesized using

structural variants and uncertainty-aware assignment optimization
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A Algorithms

A.1 Enumeration of Structural Circuit Variants

The following pseudo codes depict the enumeration and pruning procedure for synthesizing

structural circuit variants and its recursive enumeration kernel.
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input : A gate library L containing gate types S, a Boolean function specification
φ, maximum circuit weight ω and depth δ

output: A set Cφ of circuits implementing φ covered by L
Initialization

1 new C ← ∅; Cφ ← ∅;
2 new γ ← ∅; γm ← ∅; Circuits are arrays of rows of gates and terminal

elements

3 new b ∈ B;

Enumerate with online pruning

4 enumerate(γ,S, ω, δ, n(φ),C); n() returns the support size of a Boolean

function

Wire combinations of primary inputs P and circuit inputs I
5 foreach γ ∈ C,m ∈ M ⊂ P × I do
6 γm ← wire inputs(γ,m);

Match circuit and target function

7 if ¬(γm â φ) then
8 continue;
9 end if

Remove redundancies

10 foreach v ∈ V (γm) do
11 foreach u ∈ V (γm) do

f() returns the function of a gate with respect to P
12 if v ≠ u ∧ f(v) = f(u) then
13 substitute gate(v, u); Replaces u by a fan out of v
14 end if

15 end foreach

16 end foreach
Final check of library constraints

17 b← true;

18 foreach s ∈ S do
19 if ∣v ∈ V (γm) ∶ sv = s∣ > ∣g ∈ L ∶ sg = s∣ then
20 b← false;
21 break;

22 end if

23 end foreach
If circuit is implementable with L, add to output set

24 if b then
25 Cφ ← Cφ ∪ γm;
26 end if

27 end foreach

28 return Cφ;
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input: A circuit γ, gate types S, maximum circuit weight ω and depth δ, the
minimum number of inputs n

inout: A a set of fan-out free circuits C

1 Function enumerate(γ,S, ω, δ, n,C)
2 new l ← length(γ); l: depth of the circuit γ
3 new Iγ ← get unconnected inputs(γ); Iγ: set of unconnected gate

inputs of γ

Abort criterion

4 if l ≥ δ then
5 return;
6 end if

Iterate permutations of gates that match the number of unconnected

inputs

7 foreach r ∈ R ⊂ {S,∅}! ∶ ∣R∣ = max(∣Iγ ∣,1) do
8 new γ′ ← γ; Copy γ and add new row of gates

9 new Iγ′ ← get unconnected inputs(γ′);

10 γ′[l] ← r;
Prune circuits that are too big

11 if ωγ′ > ω then
12 return;
13 end if

Check, if γ′ supports φ and prune isomorph circuits

14 if ∣Iγ′ ∣ ≥ n ∧ ¬∃γ ∈ C ∶ γ′ ≃ γ then
15 C ← C ∪ γ′;
16 end if

17 enumerate(γ′,S, ω, δ, n,C); Recurse

18 end foreach
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A.2 Generation of an Equivalent Envelope-Free Circuit

The equivalent envelope-free circuit is just a ’common’ circuit C∗, which is capable of carrying

out the propagation of intervals through an original circuit C. Exploiting the monotonicity of

all gate transfer functions in an extended gate library Le, which contains tuples (g, g, g) ∈ Le
for each g ∈ L, the circuit C∗ contains twice as many gates, only twice as many edges and

its result is valid on the whole input domain.

For details on envelopes and the interval-based scoring, please refer to the Methods

section from the original manuscript.
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input : A circuit C ≡ (γ, a), a gate library Le with additional envelope
specifications

output: A circuit C∗ ≡ (γ∗, a∗) propagating the intervals of C

Initialization

1 new V ∗ ← ∅; E∗ ← ∅; a∗ ← ∅;

Build new circuit

2 new D ← ∅; Helper D associates v∗ ∈ V ∗ with v ∈ V
γ ≡ (V, E) consists of vertices V and edges E ⊂ V × V

3 foreach v ∈ V do
4 new v∗h; v∗l ;
5 V ∗ ← V ∗ ∪ {v∗h, v∗l };

Associate new nodes with old ones to connect correctly later

6 D ←D ∪ {v, {v∗h, v∗l }};
Elements (v, g) ∈ a consist of a v ∈ V and a g ∈ {g, gh, gl} ∈ Le

7 a∗ ← a∗ ∪ (v∗h, gh);
8 a∗ ← a∗ ∪ (v∗l , gl);
9 end foreach

10 foreach v ∈ V do
Add crossed incoming edges between corresponding node pairs in

V ∗

11 foreach e ∈ E where e = (w, v), w ∈ V do
12 {v∗h, v∗l } ← get associated(v, D);
13 {w∗h, w∗l } ← get associated(w, D);
14 E∗ ← E∗ ∪ (w∗h, v∗l );
15 E∗ ← E∗ ∪ (w∗l , v∗h);
16 end foreach

17 end foreach

Done. Return new circuit

18 new γ∗ ← (V ∗, E∗);
19 new C∗ ← (γ∗, a∗);
20 return C∗
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B Synthesized Circuit Designs

B.1 Structural Variants, Classical Assignment Optimization

In the following, circuits synthesized by Cello and their structural variants synthesized by

the proposed method are depicted, together with the optimal gate assignment found using

the Cello score. Their corresponding final Cello scores are written below each. The diagrams

have been automatically generated from the synthesis results.

Function 0x80

Cello Structural Variants

P1_PhlFS2_SrpR
Q1_QacR

A         A         

B         B         

C         C         

X        X        

S2_SrpRQ1_QacR
P1_PhlF

X       X       

B         B         

C         C         
A         A         

Score: 611.04 Score: 654.31

Q1_QacRB1_BM3R1
S2_SrpRR1_PsrA
P1_PhlF

X       X       

A         A         

C         C         

B         B         

Score: 671.24

Function 0x60

Cello Structural Variants

B3_BM3R1impl. OR
S2_SrpRP1_PhlF
A1_AmtRQ1_QacR

A         A         

B         B         

C         C         

X       X       

S2_SrpRP1_PhlF
Q1_QacRB3_BM3R1
A1_AmtR

X        X        

B         B         

C         C         
A         A         

Score: 155.63 Score: 654.19

S2_SrpRB3_BM3R1
P1_PhlFE1_BetI
Q1_QacRL1_LitR
H1_HlyIIR

X        X        

B         B         

C         C         

A         A         

Score: 654.26
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Function 0x08

Cello Structural Variant

S2_SrpRP1_PhlF
Q1_QacRB1_BM3R1

A         A         

B         B         
C         C         

X        X        

S2_SrpRB3_BM3R1
P1_PhlFQ2_QacR

X       X       

A         A         

B         B         

C         C         

Score: 611.04 Score: 671.49

Function 0xC8

Cello Structural Variant

P1_PhlFimpl. OR
S2_SrpR

A         A         

B         B         

C         C         

X        X        

S2_SrpRB1_BM3R1
Q1_QacRP1_PhlF

X        X        

A         A         

B         B         

C         C         

Score: 161.28 Score: 677.66

Function 0xE8

Cello Structural Variant

S2_SrpRA1_AmtR
B1_BM3R1Q1_QacR
P1_PhlFimpl. ORA         A         

B         B         

C         C         

X       X       

H1_HlyIIRB1_BM3R1
P1_PhlFQ1_QacR
A1_AmtRS2_SrpR
L1_LitR

X       X       
A         A         

B         B         
C         C         

Score: 161.28 Score: 677.65
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Function 0x78

Cello Structural Variants

impl. ORP3_PhlF
L1_LitRQ1_QacR
E1_BetIS2_SrpR

A         A         

B         B         

C         C         

X        X        

A1_AmtRS2_SrpR
Q1_QacRB3_BM3R1
P3_PhlF

X        X        

A         A         
B         B         

C         C         

Score: 86.79 Score: 460.75

L1_LitRQ1_QacR
S2_SrpRE1_BetI
A1_AmtRP1_PhlF
B3_BM3R1

X       X       

B         B         

C         C         

A         A         

Score: 676.24

Function 0x04

Cello Structural Variant

B3_BM3R1Q1_QacR
S2_SrpRP1_PhlF
A1_AmtRA         A         

B         B         
C         C         

X       X       

S2_SrpRQ2_QacR
A1_AmtRB3_BM3R1
P1_PhlF

X        X        

C         C         

A         A         

B         B         

Score: 590.35 Score: 671.49

Function 0xC4

Cello Structural Variant

S2_SrpRP1_PhlF
B1_BM3R1

A         A         

B         B         
C         C         

X        X        

P1_PhlFB1_BM3R1
Q1_QacRL1_LitR
S2_SrpR

X        X        

C         C         

B         B         

A         A         

Score: 671.16 Score: 677.67

Function 0x1C

Cello Structural Variant

N1_LmrAP1_PhlF
B3_BM3R1F1_AmeR
Q1_QacRS2_SrpR
impl. OR

A         A         

B         B         

C         C         

X       X       

Q1_QacRL1_LitR
S2_SrpRA1_AmtR
P3_PhlFE1_BetI

X       X       

B         B         
C         C         

A         A         

Score: 155.83 Score: 466.83
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Function 0xEA

Cello Structural Variant

P1_PhlFimpl. OR
S2_SrpR

A         A         

B         B         

C         C         

X        X        

B1_BM3R1P1_PhlF
Q1_QacRS2_SrpR

X        X        

A         A         

B         B         

C         C         

Score: 161.28 Score: 677.66

Function 0xF6

Cello Structural Variants

H1_HlyIIRS2_SrpR
Q1_QacRimpl. OR
A1_AmtRP1_PhlF
B3_BM3R1

A         A         

B         B         

C         C         

X        X        

Score: 161.49 Score: 161.56

H1_HlyIIRB3_BM3R1
L1_LitRS2_SrpR
Q1_QacRA1_AmtR
E1_BetIP1_PhlF

X        X        

B         B         

C         C         

A         A         

Score: 676.25

Function 0x0E

Cello Structural Variant

P1_PhlFS2_SrpR
Q1_QacRimpl. OR

A         A         

B         B         

C         C         

X        X        

P1_PhlFS2_SrpR
A1_AmtRQ1_QacR
B2_BM3R1

X        X        A         A         

B         B         

C         C         

Score: 155.84 Score: 677.40
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Function 0x8E

Cello Structural Variants

P1_PhlFQ1_QacR
S2_SrpRB1_BM3R1
impl. OR

A         A         

B         B         

C         C         

X       X       

impl. ORS2_SrpR
B3_BM3R1P1_PhlF
Q1_QacR

X       X       

A         A         

B         B         

C         C         

Score: 155.83 Score: 155.84

Q1_QacRA1_AmtR
H1_HlyIIRS2_SrpR
P1_PhlFB2_BM3R1

X        X        
B         B         

A         A         

C         C         

Score: 677.40

Function 0xAE

Cello Structural Variant

S2_SrpRP1_PhlF
Q1_QacRimpl. OR

A         A         

B         B         

C         C         

X       X       

S2_SrpRB1_BM3R1
L1_LitRP1_PhlF
Q1_QacR

X        X        

A         A         

B         B         

C         C         

Score: 159.18 Score: 677.66

Function 0x6E

Cello Structural Variant

B3_BM3R1S2_SrpR
impl. ORP1_PhlF
Q1_QacRA         A         

B         B         

C         C         

X        X        

L1_LitRQ1_QacR
P1_PhlFA1_AmtR
B2_BM3R1S2_SrpR

X        X        

A         A         

C         C         

B         B         

Score: 155.70 Score: 677.39
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Function Consensus

Cello Structural Variant

B3_BM3R1I1_IcaRA
L1_LitRQ1_QacR
S2_SrpRH1_HlyIIR
P3_PhlF

A         A         

B         B         

C         C         

X        X        

A1_AmtRR1_PsrA
E1_BetIQ2_QacR
S2_SrpRB3_BM3R1
P1_PhlFH1_HlyIIR

X        X        

A         A         

B         B         

C         C         

Score: 449.13 Score: 465.44

Function 0x41

Cello Structural Variant

H1_HlyIIRL1_LitR
P3_PhlFQ1_QacR
A1_AmtRS2_SrpR
E1_BetI

A         A         

B         B         

C         C         

X        X        

P1_PhlFQ1_QacR
L1_LitRA1_AmtR
S2_SrpRB3_BM3R1
H1_HlyIIR

X        X        

A         A         

B         B         

C         C         

Score: 466.04 Score: 590.31

Function 0x4D

Cello Structural Variants

L1_LitRE1_BetI
P3_PhlFS2_SrpR
Q1_QacRimpl. OR

A         A         

B         B         

C         C         

X        X        

S2_SrpRB3_BM3R1
P1_PhlFA1_AmtR
Q1_QacR

X       X       

A         A         

C         C         

B         B         

Score: 88.62 Score: 575.25

E1_BetIL1_LitR
P1_PhlFB3_BM3R1
S2_SrpRQ1_QacR
A1_AmtR

X       X       
B         B         

A         A         

C         C         

Score: 676.27
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Function 0xCD

Cello Structural Variants

P1_PhlFS2_SrpR
impl. ORB3_BM3R1
Q1_QacRA         A         

B         B         

C         C         

X       X       

B3_BM3R1P1_PhlF
S2_SrpRQ1_QacR

X        X        B         B         

C         C         

A         A         

Score: 162.07 Score: 575.72

A1_AmtRP1_PhlF
B3_BM3R1L1_LitR
S2_SrpRQ1_QacR

X        X        

A         A         

C         C         

B         B         

Score: 676.30

Function Multiplexer

Cello Structural Variant

B3_BM3R1P1_PhlF
S2_SrpRQ1_QacR

A         A         

B         B         

C         C         

X        X        

Q1_QacRL1_LitR
S2_SrpRA1_AmtR
B3_BM3R1P1_PhlF

X        X        A         A         

B         B         

C         C         

Score: 590.68 Score: 676.29

Function 0x3D

Cello Structural Variants

B3_BM3R1S4_SrpR
A1_AmtRP1_PhlF
impl. ORQ1_QacR

A         A         
B         B         

C         C         

X        X        

B3_BM3R1impl. OR
N1_LmrAP1_PhlF
Q1_QacRS2_SrpR

X       X       

A         A         

B         B         

C         C         

Score: 91.58 Score: 155.84

Q1_QacRL1_LitR
P1_PhlFS2_SrpR
A1_AmtRE1_BetI
B3_BM3R1

X       X       

A         A         

B         B         

C         C         

Score: 676.27
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Function 0xBD

Cello Structural Variants

impl. ORB3_BM3R1
I1_IcaRAP1_PhlF
S2_SrpRQ1_QacR

A         A         

B         B         
C         C         

X       X       

P1_PhlFimpl. OR
E1_BetIQ1_QacR
S2_SrpRB3_BM3R1

X       X       

A         A         

B         B         

C         C         

Score: 155.56 Score: 158.01

P1_PhlFA1_AmtR
S2_SrpRE1_BetI
B3_BM3R1L1_LitR
Q1_QacR

X        X        

A         A         

B         B         

C         C         

Score: 676.24

Function 0x0B

Cello Structural Variant

B3_BM3R1S2_SrpR
Q1_QacRP1_PhlF

A         A         

B        B        

C         C         

X       X       

B3_BM3R1L1_LitR
Q1_QacRP1_PhlF
S2_SrpRA1_AmtR

X        X        

C         C         

A         A         

B         B         

Score: 590.70 Score: 676.21

Function 0x3B

Cello Structural Variant

P1_PhlFimpl. OR
S2_SrpR

A         A         

B         B         
C         C         

X        X        

B3_BM3R1Q2_QacR
S2_SrpRP1_PhlF

X        X        

A         A         

C         C         
B         B         

Score: 428.50 Score: 678.07
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Function 0xFB

Cello Structural Variant

Q1_QacRS2_SrpR
impl. ORP1_PhlF
B1_BM3R1A         A         

B         B         

C         C         X        X        

A1_AmtRE1_BetI
L1_LitRB3_BM3R1
S2_SrpRP1_PhlF

X        X        

B         B         

C         C         

A         A         

Score: 473.85 Score: 678.08

Function 0x87

Cello Structural Variant

S2_SrpRP1_PhlF
impl. ORQ1_QacR
B3_BM3R1

A         A         

B         B         

C         C         

X       X       
P1_PhlFQ1_QacR
B3_BM3R1H1_HlyIIR
A1_AmtRS2_SrpR

X       X       

B         B         

C         C         

A         A         

Score: 150.51 Score: 676.08

Function 0xC7

Cello Structural Variant

Q1_QacRP1_PhlF
A1_AmtRB3_BM3R1
S2_SrpRL1_LitR

X        X        

B         B         

C         C         

A         A         

Score: 161.28 Score: 676.30
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Function 0x37

Cello Structural Variants

P1_PhlFS2_SrpR
Q1_QacRimpl. OR

A         A         

B         B         
C         C         

X        X        

Q1_QacRS2_SrpR
P1_PhlF

X        X        

A         A         

B         B         

C         C         

Score: 414.50 Score: 590.76

B3_BM3R1Q2_QacR
S2_SrpRA1_AmtR
P1_PhlF

X        X        

C         C         

A         A         
B         B         

Score: 678.07

Function 0xF7

Cello Structural Variants

Q1_QacRS2_SrpR
P1_PhlFimpl. OR

A         A         

B         B         

C         C         

X        X        

impl. ORP1_PhlF
S2_SrpRB1_BM3R1

X        X        

A         A         

B         B         

C         C         

Score: 161.63 Score: 473.93

P1_PhlFL1_LitR
S2_SrpRB3_BM3R1
Q1_QacR

X        X        

A         A         

B         B         

C         C         

Score: 678.08
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Function 0x7F

Cello Structural Variants

S2_SrpRimpl. OR
P1_PhlF

A         A         

B         B         

C         C         

X        X        

S2_SrpRP1_PhlF
impl. OR

X        X        A         A         

B         B         

C         C         

Score: 183.04 Score: 309.93

P1_PhlFQ1_QacR
S2_SrpRB1_BM3R1

X        X        

B         B         

C         C         
A         A         

Score: 678.01

B.2 Classical Structure, Uncertainty-Aware Assignment Optimiza-

tion

In the following, the three circuits mentioned in the main text 0x1c, 0x81 and 0x41 synthe-

sized by Cello (so the non-modified original circuit structure) are depicted together with the

optimal gate assignment found using the Cello score and the expectation-based score. The

least separated on and off output histograms and their resulting final Cello and expectation-

based scores are written below each.

Function 0x1C

Assignment by Cello Assignment by expectation-based score

S2_SrpRN1_LmrA
B3_BM3R1F1_AmeR
P1_PhlFimpl. OR
Q1_QacR

A         A         

B         B         

C         C         

X       X       

impl. ORH1_HlyIIR
L1_LitRB3_BM3R1
S2_SrpRQ2_QacR
P1_PhlF

A         A         

B         B         

C         C         

X        X        

Score by Cello: 155 — E-Score by us: 2.11 Score by Cello: 146 — E-Score by us: 56.85
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Function 0x81

Assignment by Cello Assignment by expectation-based score

B3_BM3R1Q1_QacR
S2_SrpRH1_HlyIIR
P3_PhlFL1_LitR
I1_IcaRA

A         A         

B         B         

C         C         

X        X        

A1_AmtRQ2_QacR
P1_PhlFS4_SrpR
H1_HlyIIRL1_LitR
B3_BM3R1

A         A         

B         B         

C         C         

X        X        

Score by Cello: 449.13 — E-Score by us: 54.55 Score by Cello: 375.33 — E-Score by us: 77.26

Function 0x41

Assignment by Cello Assignment by expectation-based score

S2_SrpRP3_PhlF
L1_LitRA1_AmtR
H1_HlyIIRE1_BetI
Q1_QacR

A         A         

B         B         

C         C         

X        X        

S2_SrpRE1_BetI
Q1_QacRP3_PhlF
L1_LitRB3_BM3R1
A1_AmtR

A         A         

B         B         

C         C         

X       X       

Score by Cello: 466.03 — E-Score by us: 48.63 Score by Cello: 366.91 — E-Score by us: 96.71
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