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Abstract 13 

Scientific studies often require assessment of similarity between ordered sets of values. Each 14 
set, containing one value for every dimension or class of data, can be conveniently 15 
represented as a vector. The commonly used metrics for vector similarity include angle-based 16 
metrics, such as cosine similarity or Pearson correlation, which compare the relative patterns 17 
of values, and distance-based metrics, such as the Euclidean distance, which compare the 18 
magnitudes of values. Here we evaluate a newly proposed metric, pairwise relative distance 19 
(PRED), which considers both relative patterns and magnitudes to provide a single measure 20 
of vector similarity. PRED essentially reveals whether the vectors are so similar that their 21 
values across the classes are separable. By comparing PRED to other common metrics in a 22 
variety of applications, we show that PRED provides a stable chance level irrespective of the 23 
number of classes, is invariant to global translation and scaling operations on data, has high 24 
dynamic range and low variability in handling noisy data, and can handle multi-dimensional 25 
data, as in the case of vectors containing temporal or population responses for each class. We 26 
also found that PRED can be adapted to function as a reliable metric of class separability 27 
even for datasets that lack the vector structure and simply contain multiple values for each 28 
class. 29 

 30 

Introduction 31 

Vectors are ubiquitous data structures. As a result, the assessment of vector similarity is one 32 
of the most frequently performed data operations in diverse areas of science and engineering. 33 
To list examples within only biology, vector similarity has been used to show that reef fish 34 
species in different ecoregions resemble each other in traits, not taxonomy or phylogeny  35 
(McLean et al., 2021); that cancerous cell lines’ gene expression patterns cluster according to 36 
their tissue of origin and cancer stage (Ross et al., 2000); and that certain brain regions have 37 
similar fMRI brain activation patterns over time, suggesting they are functionally connected  38 
(Sasai et al., 2021). In these examples, the vectors represented the trait, taxonomical or 39 
phylogenetic properties of each ecoregion; the gene expression profile of each cell line; and 40 
the temporal activation pattern of each brain region, respectively. Similarly, other examples 41 
of scientific data that can be represented as vectors include the firing rates of a cortical 42 
neuron to different visual stimuli (Hubel and Wiesel, 1962; Stringer et al., 2019; Victor and 43 
Purpura, 1996), the eye blinking rates of a human under different airflow conditions 44 

(VanderWerf et al., 2003), and the sensory preferences of an animal to a given stimulus at 45 
different time points (Buchanan et al., 2015; Honegger et al., 2020; Kain et al., 2015; 46 
Linneweber et al., 2020)). Any scientific question involving the comparison of such vectors 47 
requires metrics that can determine the level of similarity between vectors. 48 

Common metrics for vector similarity include Pearson’s correlation, cosine similarity, and 49 
Euclidean distance. Distance-based metrics, like Euclidean distance or Manhattan distance, 50 
compare the magnitude of difference between the values in the two vectors. On the other 51 
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hand, angle-based metrics, like the cosine similarity or the Pearson’s correlation, compare the 52 
relative pattern of values within a vector with that in another vector. To take a straightforward 53 
example, consider the vectors [1 2 3] and [10 20 30]. A distance-based metric would call 54 
them different, while an angle-based metric would call them very similar. On the other hand, 55 
the vectors [1 2 3] and [3 2 1] would be described as relatively similar by the distance-based 56 
metrics and dissimilar by the angle-based metrics. Both types of metrics provide useful and 57 
complementary information; however, in practice, multiple metrics are rarely used together. 58 
In many applications, instead of choosing between one of the two types of metrics, it would 59 
be desirable to combine the similarity in the magnitudes and the similarity in the relative 60 
patterns into a single, reliable indicator of vector similarity.  61 

We recently devised a metric, called Pairwise Relative Distance (PRED), to quantify the level 62 
of similarity in different individuals’ neuronal responses to the same set of odors (Mittal et 63 
al., 2020). PRED captured the similarities both in the absolute values and the across-odor 64 
patterns of the responses and provided more intuitive values of similarity than correlation in 65 
quantifying stereotypy in sensory responses (Mittal et al., 2020). These initial results led us to 66 
ask whether PRED could serve as a general-purpose metric for analyzing vector similarity in 67 
different types of datasets. 68 

Here, we generalize PRED as a robust metric for assessing vector similarity and class 69 
separability. Using simulations and experimental data, we show the advantages of PRED over 70 
the commonly used metrics and demonstrate its reliability in analyzing noisy or incomplete 71 
data. We illustrate PRED’s ability to capture the similarity in temporal or population-level 72 
data while preserving the dataset’s structure. Although we illustrate the usefulness of PRED 73 
using examples from the olfactory system, one can use PRED equally well in other sensory 74 
modalities in neuroscience, non-neuroscience biological fields like the examples described 75 
above, and non-biological fields like machine learning. Overall, our results present Pairwise 76 
Relative Distance as a reliable metric of similarity or separability in neuroscience and 77 
beyond. 78 

 79 

Results 80 

PRED as a general metric for vector similarity 81 

In this work, we generalize PRED to all datasets that can be expressed as a matrix, whose 82 
columns are specific classes (dimensions) and rows are the vectors being compared; we will 83 
refer to this organization as class-vector structure (Figure 1a). For example, consider the 84 
responses of different retinal neurons to the same set of visual stimuli. In this case, each 85 
visual stimulus can be considered a class (column) and each neuron (row) a vector of 86 
responses to the different classes (i.e., the set of stimuli). For any such dataset, PRED 87 
provides a unified measure of the similarity between the vectors and the separability of the 88 
classes. Put simply, class-vector PRED measures whether vector A’s value in a class is more 89 
similar to vector B’s value in the same class than to B’s value in another class. PRED is high 90 
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when the distances are larger between values belonging to different vectors and different 91 
classes than between values belonging to different vectors but the same class (Figure 1a). In 92 
other words, a high value of PRED means that the two vectors have values not only with 93 
similar magnitudes but also with similar patterns across the classes. A zero value of PRED 94 
indicates that the two vectors have unrelated patterns across the classes. A negative value of 95 
PRED indicates that the two vectors have opposite patterns across the classes. Unlike 96 
correlation, PRED also accounts for the absolute differences between the values in the given 97 
vectors. 98 

We compared PRED and five other metrics on their ability to report the similarity across 99 
vectors within a class-vector dataset. These five metrics included Pearson’s correlation (PC), 100 
Cosine similarity (COS), Manhattan distance (MAN), Euclidean distance (EUC), and 101 
Chebyshev’s distance (CHEB). PRED, PC, and COS values range between -1 and 1, where 1 102 
denotes high similarity; MAN, EUC, and CHEB range from 0 to ∞, where 0 denotes high 103 
similarity. To enable a direct comparison of the values of all these metrics, we transformed 104 
the distance-based metrics (MAN, EUC, and CHEB) to a range between 0 and 1 using a 105 
negative exponential (see Materials and Methods), such that 1 denotes high similarity for all 106 
the metrics (Supplementary Figure 1a (i)). We use the transformed distance-based metrics 107 
in all subsequent analyses unless otherwise stated. 108 

For interpreting the values of a metric, it is helpful to know its chance level, i.e., the metric’s 109 
expected value for random data. For example, suppose a metric’s observed value for a given 110 
dataset is high relative to its chance level. In that case, one can reasonably infer that the 111 
vectors in the dataset have a high similarity: the more the difference, the higher the similarity. 112 
It is further desirable that the chance level remains unchanged with the size of the dataset (the 113 
number of classes in the dataset) so that values obtained from different datasets, regardless of 114 
their size, can be directly compared. To test each metric’s chance level, we simulated two 115 
different random datasets, one with 2 and the other with 5 classes.  Each dataset included 10 116 
vectors (with length equal to the number of classes) sampled from a uniform distribution 117 
between 0 and 1, ensuring no inherent similarity between vectors and difference between 118 
classes (see Materials and Methods for details). Expectedly, the observed chance level of 119 
PRED, PC, and COS was nearly 0 for both the 2-class and 5-class datasets; it was greater 120 
than 0 for MAN, EUC, and CHEB for both types of datasets (Figure 1b). Moreover, MAN, 121 
EUC, and CHEB’s chance levels were different for the datasets with different numbers of 122 
classes (Figure 1b). This difference occurs because the distances between vectors depend on 123 
the vectors’ sizes; we can more directly observe this change in chance levels with 124 
untransformed MAN, EUC, and CHEB metrics, all of which showed larger values with more 125 
classes (Supplementary Figure 1b). We tried to normalize these metrics according to the 126 
number of classes – for example, by dividing MAN by the number of classes or dividing 127 
EUC values by the square root of the number of classes. Although these normalizations 128 
reduced the overall differences between the chance levels for different numbers of classes, 129 
the differences remained significant (Supplementary Figure 1c). Thus, distance-based 130 
metrics do not provide a stable chance level.  131 
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Another important consideration for assessing a metric’s utility is its ability to report the level 132 
of similarity for a dataset, and its modifications, in a way that matches intuition. We had 133 
previously reported PRED’s advantages over PC in calculating stereotypy (Mittal et al., 134 
2020). Here, we extend this analysis to include the other metrics. If the responses in a vector 135 
are the same for both classes, PRED reports a value of 0; however, PC is undefined, and COS 136 
reports a high value (Supplementary Figure 1a (ii)). If the two vectors exhibit opposite 137 
patterns across the classes (Supplementary Figure 1a (iii)), PRED and PC appropriately 138 
quantify the similarity as -1. COS, however, still reports a value close to 1, which does not 139 
match the intuitive difference between the two vectors. The distance-based metrics also fail to 140 
capture this difference: they report the same values of similarity in Supplementary Figure 141 
1a (iii) and (iv), even though in one case the vectors exhibit opposite patterns and in the other 142 
case they exhibit similar patterns across the two classes. If we linearly transform all the 143 
values in a dataset in the same manner, intuitively, the similarity between them should not 144 
change. Except for COS, all metrics are stable to global translational change, i.e., the addition 145 
of a constant to all the values in the dataset (Supplementary Figure 1a (v) compared to (iv)). 146 
Similarly, all metrics, except MAN, EUC, and CHEB, are stable to scaling modifications, i.e., 147 
multiplication of the entire dataset by a constant value (Supplementary Figure 1a (vi) 148 
compared to (iv)). 149 

Overall, PRED behaved intuitively for various modifications within the datasets, while each 150 
of the other metrics deviates from the intuition in one or more cases (summarized in Table 151 
1). As the distance-based metrics (MAN, EUC, and CHEB) lack a stable chance level, are not 152 
sensitive to patterns in the dataset, and are not robust to simple scaling transformations, we 153 
exclude them from further consideration as metrics of similarity. 154 

Experimental datasets are often noisy. With any metric, we expect the similarity between two 155 
vectors to decrease as the noise level in the dataset increases, eventually reaching the chance 156 
level for extreme levels of noise. We studied how PRED, PC, and COS behaved for different 157 
noise levels using two parameters: dynamic range and variability. Here, dynamic range 158 
denotes the range of noise levels within which a metric exhibits unsaturated values and thus 159 
remains useful. Variability represents the sensitivity of a metric to noisy data: we consider a 160 
metric to have high variability if it shows very different values for different samples of the 161 
data at a given noise level. We quantified variability as the percent standard deviation over 162 
repeated simulations with noise at the mid-point of the dynamic range (see Materials and 163 
Methods). A useful metric should have a high dynamic range and low variability. We 164 
measured both these parameters for PRED, PC, and COS in a simulated dataset (see 165 
Materials and Methods) with increasing noise levels (Figures 1c—e). We found that PRED 166 
exhibited the highest dynamic range and lowest variability among all the metrics (Figure 1f). 167 
Even for simulated datasets with different base means, PRED was consistently more robust 168 
than the other metrics (Supplementary Figures 1d, e). Thus, PRED remains informative 169 
across a relatively large range of noise levels in the dataset and provides a relatively stable 170 
estimate of similarity. 171 
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PRED for behavioral similarity assessment 172 

We previously applied PRED to comparing the similarity of neural response patterns to an 173 
odor set across individuals (Mittal et al., 2020). However, in principle, it can be applied to 174 
any dataset where the data are arranged as vectors (each vector’s length equals the number of 175 
classes). Many behavioral studies examine if the behavioral outcomes of multiple individuals 176 
are similar over different time points. Here, one could consider the individuals as classes and 177 
each time point as a vector. Honegger et al. (Honegger et al., 2020) measured the preference 178 
indices of 141 Drosophila flies in a two-choice assay between two odors (3-octanol versus 4-179 
methylcyclohexanol) over two different time points 24-hours apart (Figure 2a). They used 180 
PC to compare the similarity of preference index vectors across the two time points and 181 
found a moderate positive value of 0.35 (Honegger et al., 2020). Using PRED on the same 182 
data, we observed a value of 0.19, indicating a moderate similarity between behavioral 183 
preferences across the two time points. 184 

Our results above (Figure 1f) have indicated that PRED is more stable than PC for noisy 185 
data. Therefore, we reasoned that it would also be more robust when working with 186 
incomplete datasets. The 141-fly behavioral dataset provided a suitable test case for this idea. 187 
We randomly selected 70 flies from the dataset and calculated the similarity of the preference 188 
index vectors at the two time points using PRED and PC. This random sampling was repeated 189 
20 times, each resulting in a different value of PRED and PC. Even with incomplete datasets, 190 
both metrics reported significant similarity: 0.20 ± 0.04 (P = 8.9 × 10−15, n = 20; one sample 191 
t-test compared to 0) for PRED; and 0.37 ± 0.10 (P = 6.8 × 10−13, n = 20) for PC. Note that 192 
the PRED values were less variable (smaller s.d.) over the repeated samplings. Even the 193 
coefficient of variation, defined as 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑠𝑠.𝑑𝑑.

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
, over these 20 samplings was smaller for 194 

PRED (0.21) than PC (0.27) (Figure 2b). Since these observed values of the COV may 195 
depend on the specific 20 samplings that occurred, we repeated the whole process of 20 196 
samplings a total of 50 times and each time calculated the COVs for both metrics. This 197 
analysis confirmed that the COV was consistently lower for PRED (P = 2.8 × 10−15, n = 50, 198 
two-sample paired t-test; Figure 2c). Thus, PRED provides a relatively stable estimate of 199 
similarity for partial samplings of the dataset. 200 

 201 

Similarity in multi-dimensional data 202 

So far, we have calculated similarity between two vectors where each vector contains a set of 203 
values corresponding to the set of classes—for example, comparing the response of a neuron 204 
to 2 stimuli (classes) in 2 individuals (vectors). This formatting is feasible for datasets where 205 
the response is a single number, such as the total number of spikes (or the net firing rate) 206 
evoked by a stimulus within a pre-defined time window. However, one may want to look at 207 
the response in finer detail, for example, by considering the temporal pattern of spikes evoked 208 
by the stimulus. We can represent the temporal pattern as a set of numbers by dividing the 209 
time window into, say, 10 bins and then counting the spikes in each bin. Thus, the response to 210 
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a stimulus is now itself a 10-element vector rather than a single number (Figure 3a). In this 211 
case, if we want to compare the responses to a set of stimuli in two individuals, we need to 212 
compare two vectors of vectors rather than two vectors of numbers (Figure 3a).  213 

Although correlation is frequently used to quantify the similarity between vectors, it is not 214 
equipped to handle vectors of vectors. A common modification to use correlation in such 215 
cases is concatenating the internal vectors within the outer vector to result in a single (and 216 
long) vector. In the example discussed earlier, it would mean combining the two 10-element 217 
vectors corresponding to the two stimuli to obtain a 20-element vector for each individual and 218 
then calculating the correlation between the 20-element vectors of the two individuals 219 
(Figure 3a). On the other hand, PRED is natively equipped to handle vectors of vectors and 220 
does not require concatenation: it involves calculating Euclidean distances between the 221 
values, which we can do irrespective of whether the values are single numbers or vectors. In 222 
the example discussed above, we can calculate 𝐷𝐷1 and 𝐷𝐷2 for PRED based on the 10-223 
dimensional Euclidean distances between the binned responses and then PRED using the 224 
regular formula,  𝐷𝐷2−𝐷𝐷1

𝐷𝐷2+𝐷𝐷1
 (Figure 3a). 225 

We used both PRED and PC to compare the firing rates or the 10-bin temporal patterns 226 
evoked by odors in different individuals (see Materials and Methods). We performed this 227 
analysis in two different datasets: the olfactory response of mushroom body output neuron, 228 
bLN1, in locusts (Gupta and Stopfer, 2014) and four different projection neurons in 229 
Drosophila (Shimizu and Stopfer, 2017). We used a 2-second window after odor-onset to 230 
calculate the responses; in these datasets, the responses typically returned to baseline within 2 231 
seconds in response to the 1-s odor pulse. Therefore, we can consider any spikes observed 232 
after this window as a part of the background spiking. For the temporal response, we divided 233 
this response into ten bins, each of length 200-ms (Figure 3a). Both PRED and PC revealed 234 
significant similarities between individuals and showed that the similarity was slightly lower 235 
when considering the temporal patterns instead of only the firing rates (Figure 3b and 236 
Supplementary Figures 2a—d). 237 

Although PRED and PC behaved similarly in this analysis, PC can run into problems because 238 
of the concatenation step. Concatenation removes the distinction between the values 239 
belonging to different bins within the same class and the values belonging to different 240 
classes. For example, after concatenation, analyzing the 10-element temporal responses to 2 241 
stimuli becomes identical to analyzing the firing rate responses to 20 independent stimuli, 242 
with each element contributing equally to the correlation. To illustrate why this can be 243 
problematic, we consider the case when the temporal response includes bins beyond the 244 
stimulus-evoked response; these bins would be mostly empty except for some noise. Since 245 
empty bins are similar by nature, including such bins in the response vectors and effectively 246 
treating them as independent stimuli after concatenation would spuriously increase the 247 
observed correlation. 248 

In contrast, the calculation of Euclidean distances in PRED would be minimally affected by 249 
the empty bins: the distances would only become slightly noisier by the noise in the empty 250 
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bins. Thus, PRED would report slightly lower similarity, which is a more intuitive outcome 251 
given the inclusion of irrelevant bins. To test these predictions in the actual datasets analyzed 252 
here, we included extra bins after the initial 10 bins of 200 ms duration. For example, in an 253 
11-bin response, the first 10 bins would contain the first 2-s response after odor onset, while 254 
the last bin would contain an extra 200-ms response from 2 to 2.2-s after odor onset. Since 255 
the stimulus-evoked response typically lasted for less than 2 s, the extra bins included after 256 
the 2-s response are usually empty except for some noise. We found that, as predicted, the PC 257 
values increased as we added more and more extra bins in the response, whereas the PRED 258 
values decreased (Figure 3c and Supplementary Figures 2f—i). We further simulated a 259 
dataset containing two odors and ten individuals. The first 10 bins contained a simulated 260 
temporal response, and the subsequent bins contained random noise (see Materials and 261 
Methods). There was a noticeable increase in the PC values in these simulations with an 262 
increasing number of extra bins (Figure 3d). The effect became more pronounced when we 263 
added empty bins (i.e., bins with a value of 0) instead of bins with normally distributed noise. 264 
In this case, PRED values were constant as the empty bins did not affect the distances in 265 
PRED calculations (Supplementary Figure 2e). These results illustrate the pitfalls in using 266 
concatenated vectors in PC and suggest that PRED is a better alternative when working with 267 
multi-dimensional data. 268 

Another type of multi-dimensional data is population-level data, i.e., the response of, say, 6 269 
neurons from the same neural layer from two individuals responding to two stimuli. To 270 
analyze such a case, we can either calculate the similarity separately for each neuron and then 271 
take the average or directly consider the 6-element population response vector for each 272 
individual and odor. We used PRED to compare these two approaches, using a published 273 
dataset of calcium imaging responses of 37 antennal lobe glomeruli responding to 36 pure 274 
odors in 61 individuals (Badel et al., 2016). The similarity observed between individuals 275 
using the population vectors was significantly more than the average similarity of neurons 276 
considered separately (0.37 compared to 0.25 ± 0.10, P = 1.7 × 10−10, n = 37; one-sample t-277 
test; Figure 3e). These results suggest that the combined cell population preserves more 278 
similarity within the system than individual cells, echoing previous studies’ results (Mittal et 279 
al., 2020). The results also illustrate the usefulness of PRED in analyzing population-level 280 
data. 281 

 282 

Class separability 283 

The datasets we have considered so far had a class-vector structure (as shown in Figure 1a): 284 
multiple vectors (rows), each containing values for multiple classes (columns). The value of 285 
PRED for such a dataset depends on, and thus tells us about, both the similarity between the 286 
vectors and the separability of the classes. (Contrast this with Euclidean distance, which tells 287 
us only about the similarity between the vectors but is a poor indicator of class separability, 288 
as can be seen by comparing Supplementary Figure 1a (iii) and (vi)). In these datasets, 289 
there is a correspondence between the 𝑖𝑖𝑡𝑡ℎ value in class 1 and the 𝑖𝑖𝑡𝑡ℎ value in class 2, as they 290 
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both belong to the same vector in row 𝑖𝑖 (which could be an individual, a time-point, or any 291 
other variable depending on the experimental context). However, many datasets do not have 292 
this correspondence (i.e., there are no row-vectors) — for example, in neuroscience, one 293 
often measures the responses of a neuron or a brain region to different stimuli (classes) and 294 
takes multiple measurements (called trials or samples) for each stimulus. In such cases we are 295 
left with only classes (columns), with each class containing multiple values (as shown in 296 
Figure 4a). This formatting is commonly used in datasets with repeat measurements over 297 
multiple classes. Here, the numbers of samples for different classes do not have to be 298 
identical. Each sample value within a class may be a single number (e.g., the firing rate of a 299 
neuron or the preference index of an animal) or a set of numbers (e.g., a binned temporal 300 
response or a population response). Assuming that the samples within a class are generated 301 
under identical experimental conditions and that the samples in different classes are generated 302 
independently, there is no logical correspondence between the 𝑖𝑖𝑡𝑡ℎ sample in class 1 and the 303 
𝑖𝑖𝑡𝑡ℎ sample in class 2. We will refer to such datasets as class-sample datasets. In such datasets, 304 
one often wants to know about the separability of the classes. 305 

A similar requirement arises when evaluating the output of unsupervised clustering 306 
algorithms, which use statistical methods to divide a collection of values into different 307 
clusters. The resulting clusters are analogous to classes in the above formulation, and their 308 
assigned members are analogous to samples. Here also, one often wants to know how well 309 
separated the observed clusters are. For example, Karagiannis et al. classified neuropeptide 310 
Y-expressing neocortical interneurons into 3 different types based on their morphology using 311 
a K-means clustering algorithm (Karagiannis et al., 2009). They then used the Silhouette 312 
index (Rousseeuw, 1987) to evaluate the quality of the clustering obtained. Another study 313 
used the Silhouette index to assess the efficiency of single nucleotide polymorphism 314 
genotyping assays in dividing samples into 3 different groups: homozygous for the first 315 
allele, homozygous for the second allele, or heterozygous (Lovmar et al., 2005). Apart from 316 
the Silhouette index (Rousseeuw, 1987), an evaluation of a clustering technique’s efficacy 317 
can be made using other internal clustering validation indices like the Davies-Bouldin index 318 
(Davies and Bouldin, 1979) or the Dunn’s index (Dunn, 1974). Another method commonly 319 
used to measure class separability is Euclidean template matching (ETM), which involves 320 
classifying each value based on its Euclidean distance from class templates (constructed from 321 
the remaining data) and then calculating the average accuracy from these classifications 322 
(Stopfer et al., 2003). 323 

Since the PRED value for a class-vector dataset depends on class separability, we asked 324 
whether PRED can also be used as a measure of class separability in class-sample datasets 325 
(Figure 4a). We compared PRED to five commonly used metrics: Silhouette index (SIL), 326 
Davies-Bouldin index (DBI), Dunn’s index (DUNN), ETM, and Calinski-Harabasz index 327 
(CH) (see Materials and Methods for a description of each metric). As an initial test of 328 
PRED’s feasibility for this application, we used two different datasets containing repeated 329 
responses to different odors. We obtained one dataset from the identified bLN1 neuron in 330 
locusts (Gupta and Stopfer, 2014) and another from four identified projection neurons in 331 
Drosophila (Shimizu and Stopfer, 2017). Each dataset contains the response from multiple 332 
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individuals; we compared the odor separability calculated using PRED and the other metrics 333 
for each individual. We found that PRED values were somewhat correlated with the values 334 
from other metrics in both the datasets (Figures 4b—f and Supplementary Figures 3a—e). 335 
(Note that the correlation with DBI is negative because a lower DBI value indicates a higher 336 
separability, whereas the opposite is true for PRED and the other four metrics). These 337 
correlations with the established metrics suggested that PRED might also be useful as a 338 
metric of class separability. To explore this further, we compared PRED’s performance with 339 
the other metrics in various situations. 340 

As discussed in the analysis of class-vector datasets, a key feature of any metric is its chance 341 
level. For evaluating the chance level of separability metrics in class-sample datasets, we 342 
simulated datasets containing clusters (classes) of points with fixed radii on a 2-d plane and 343 
different levels of noise (Supplementary Figure 3f; see Materials and Methods for 344 
details). As we increase the noise in the simulated dataset, the classes lose their separability 345 
(Supplementary Figures 3f—h). We used datasets with extremely high noise levels to 346 
calculate the chance level of each of the six metrics. Further, we checked how the chance 347 
levels depend on the number of classes in the dataset. PRED showed a chance level close to 348 
0, regardless of the number of classes. CH showed a chance level greater than 0 that was not 349 
different for 2-class or 5-class datasets (Figures 4g, l). However, the chance levels of the 350 
other four metrics changed significantly with the number of classes (Figures 4h—k).  351 

Imagine a large dataset containing many classes where any two classes have the same level of 352 
separability, whose value is not known to us. Further, imagine that, for practical reasons, we 353 
have access to only a subset of the dataset covering some of the classes, and our task is to use 354 
different metrics to estimate the class separability. An ideal metric should estimate the same 355 
underlying class separability, regardless of the number of classes available in our subset. To 356 
check how the six metrics under consideration perform on this criterion, we simulated a 357 
dataset with a low level of noise (thus with reasonable class separability) and varied the 358 
number of classes. We found that the separability reported by all metrics except PRED varied 359 
with the number of classes (Figure 5a).  360 

CH values decreased with the number of classes when we had 2 samples per class but not 361 
when we had 10 samples per class (Figure 5a; Figure 4l also had 10 samples per class, 362 
which explains no change in the CH chance level). This result indicated that the number of 363 
samples could also bias the value of a metric. Ideally, the separability of the classes should 364 
not depend on how many samples are available for each class. For example, our estimate of 365 
how well a neuron can differentiate two sensory stimuli (a property of the neuron and the 366 
stimuli) should not be biased by the number of recording trials available (an experimental 367 
parameter). We performed another set of simulations with 2 classes and an increasing number 368 
of samples per class. We found that CH, ETM, and DUNN values varied significantly with 369 
the number of samples (Figure 5b), while PRED, SIL, and DBI were relatively stable. We 370 
conclude that PRED provides an unbiased estimate of class separability regardless of the 371 
number of classes or the number of samples per class. Therefore, we can reliably use it with 372 
datasets of all sizes. 373 
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We next studied the stability of each metric against noisy data by checking the dynamic range 374 
and the variability at the midpoint of the dynamic range. We simulated datasets with noise 375 
levels ranging from zero (highly separable classes) to very high (poorly separable classes). As 376 
before, we estimated the dynamic range as the range of noise levels for which a metric 377 
remained unsaturated and variability as the percent standard deviation over repeated 378 
simulations with noise at the mid-point of the dynamic range (Figures 6a—f). PRED and SIL 379 
showed the best combination of large dynamic range and small variability (Figure 6g). 380 
DUNN had the lowest dynamic range and high variability, while DBI exhibited a high 381 
dynamic range but also the highest variability (Figure 6g). We used the Drosophila and 382 
locust datasets to complement the simulation results. We added increasing amounts of noise 383 
to each value in the datasets and then compared the metrics (Supplementary Figure 4; see 384 
Materials and Methods). Again, PRED and SIL exhibited large dynamic ranges and small 385 
variabilities in all cases. DUNN and DBI showed a high dynamic range in some cases but 386 
were the worst performers in variability in most neurons. Overall, PRED and SIL appear to 387 
be the most robust metrics in handling noisy datasets. Considering that SIL values (including 388 
the chance level) depend on the number of classes, as discussed above, PRED appears to be 389 
the best among the considered metrics for quantifying class separability (summarized in 390 
Table 2). 391 

Class separability depends on how different the values are across the classes and how similar 392 
they are for different samples within each class. PRED, thus, may be a useful metric when 393 
both within-class similarity and across-class differences are analyzed simultaneously. 394 
Kermen et al. (Kermen et al., 2020) looked at zebrafish olfactory behaviors elicited by a set 395 
of 18 odors in different individuals while performing 4 repeated trials with each odor. They 396 
calculated the intra-individual similarity by correlating the behavioral responses across all 397 
pairs of trials for each individual and the inter-individual similarity by correlating the trial 398 
averaged response of all pairs of individuals. Then they looked at pairs of these two similarity 399 
values to examine how consistent the responses produced by each odor were within and 400 
across individuals. If one wants to know which odors produce relatively similar responses 401 
within individuals but different across individuals, PRED can provide the answer with a 402 
single number. We calculated PRED considering individuals as classes and trials as samples 403 
(Figure 7a; see Materials and Methods). We found that the behavioral responses were 404 
relatively different across individuals and consistent across trials for these odors: cadaverine 405 
(0.39±0.34, P = 1.8 × 10−6, n = 28), blood (0.39±0.35, P = 8.2 × 10−4, n = 15), skin 406 
(0.26±0.32, P = 0.007, n = 15), bile (0.17±0.26, P = 4.2 × 10−4, n = 36), sperm (0.15±0.35, P 407 
= 0.007, n = 45), cysteine (0.13±0.38, P = 0.05, n = 36), and arginine (0.12±0.26, P = 0.01, n 408 
= 36) (Figure 7b).  409 

 410 

Using PRED for assessing individuality 411 

Honegger et al. (Honegger et al., 2020) observed that odor preferences of Drosophila varied 412 
more across individuals than across trials within an individual. Consistent with this, they also 413 
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found that the odor responses of the projection neurons were also more variable across 414 
individuals than across trials, suggesting that this response individuality may underlie the 415 
behavioral individuality. The behavioral individuality depended on serotonin: it reduced 416 
when the flies were fed alpha-methyl tryptophan, a serotonin synthesis blocker. However, 417 
somewhat unexpectedly, they did not detect a reduction in the response individuality in the 418 
presence of the serotonin blocker. Their analysis used principal component analysis and 419 
Bayesian modeling to compute inter-fly and intra-fly distances. Since quantifying 420 
individuality requires an assessment of inter-individual differences relative to intra-individual 421 
differences, we reasoned that individuality could be aptly described by class separability, 422 
where the individuals are classes, and the trials are samples within each class. We reanalyzed 423 
their data using individual-trial (class-sample) PRED to quantify the individuality of the PN 424 
responses to different odors (Figure 7c; see Materials and Methods). In the wild-type flies, 425 
we observed that 50% (84 out of 168) of the PN-odor responses were significantly separable 426 
across individuals (Figure 7d), matching the conclusions of Honegger et al. However, in 427 
serotonin-blocked flies, this fraction reduced to only ~24% (40 out of 168; Figure 7e) even 428 
though the original analysis was not able to uncover this reduction. Thus, our reanalysis of 429 
response individuality shows that serotonin indeed affects the PN response individuality. By 430 
resolving the contradiction between the behavioral data and the PN response data in the 431 
presence of serotonin blockage, our analysis using PRED lends additional support to the idea 432 
of Honegger et al. (Honegger et al., 2020) that PN response individuality determines 433 
behavioral individuality.  434 

 435 

Using PRED for analyzing connectomic data 436 

Recent advances in high-throughput electron microscopy and image segmentation methods 437 
have made it possible to reconstruct neuronal morphologies and connections in large brain 438 
areas. For Drosophila, two public datasets, namely the full adult fly brain or FAFB (Zheng et 439 
al., 2018) and the Hemibrain (Scheffer et al., 2020), have recently become available. As these 440 
datasets are generated from two different individuals, they provide an opportunity for 441 
measuring stereotypy in the connectivity patterns of neurons across individuals. A recent 442 
study by Schlegel et al. (Schlegel et al., 2021) used these two datasets to measure stereotypy 443 
in the input connections received by the lateral horn neurons (LHNs) from the projection 444 
neurons (PNs). For each LHN, they calculated a vector of connectivity with different types of 445 
PNs and used the cosine metric (COS) to estimate the similarity between such vectors. They 446 
demonstrated stereotypy in the inputs of LHNs by a combination of two results: (i) when 447 
comparing LHNs belonging to the same cell type, the COS values for LHNs across the two 448 
datasets were high and similar to the COS values for LHNs within a dataset; and (ii) when 449 
comparing LHNs belonging to different cell-types, the COS values for LHNs across the two 450 
datasets were low and similar to the COS values for LHNs within a dataset.  451 

PRED allows one-shot quantification of stereotypy in this case with a single number. Based 452 
on their morphologies and connections to other neurons, the LHNs have been grouped into 453 
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‘connectivity types,’ which are further grouped into ‘regions,’ ‘tracts,’ and ‘cell types’ in the 454 
increasing order of hierarchy (see Materials and Methods). Although it has not been 455 
possible to match the neurons in the two datasets unambiguously, these higher-order 456 
groupings have been labeled in both datasets. We computed a 57-length glomerular input 457 
vector for each group by averaging the connectivity vectors of all LHNs belonging to the 458 
group (Figure 8a). To estimate stereotypy in the glomerular input vectors of groups at a 459 
particular hierarchy level, we calculated the group-dataset (class-vector) PRED (Figure 8a). 460 
At the level of ‘connectivity types,’ we found that the PRED value was 0.56±0.25 (P = 461 
4.4 × 10−193, n = 496), notably higher than the chance level of 0, suggesting that the 462 
averaged connectivity vectors were separable across connectivity types and similar across the 463 
two datasets. Similarly, high PRED values were also seen at other grouping levels (cell type: 464 
0.56±0.25, P = 1.4 × 10−147, n = 378; tract: 0.61±0.16, P = 1.4 × 10−40, n = 66; region: 465 
0.56±0.18, P = 5.5 × 10−4, n = 6), confirming the stereotypy in the connectivity patterns of 466 
LHNs groups across the two databases. 467 

The above analysis compared the averaged glomerular connectivity patterns of different 468 
groups. Next, we sought to assess whether the glomerular connectivity patterns of different 469 
neurons within a group were more consistent than the patterns of neurons across different 470 
groups at the same hierarchy level. This could be easily quantified as group-separability using 471 
group-neuron (class-sample) PRED. In both the datasets, we found that the ‘connectivity 472 
types’ were highly separable (FAFB: PRED = 0.47±0.21, P = 2.1 × 10−15, n = 36; 473 
Hemibrain: PRED = 0.50±0.25, P = 3.7 × 10−96, n = 276; Figure 8b). Similarly, the cell 474 
types were also highly separable (FAFB: PRED = 0.44±0.19, P = 8 × 10−10, n = 21; 475 
Hemibrain: PRED = 0.50±0.21, P = 6.5 × 10−88, n = 210). The separability reduced as we 476 
went to higher levels in the group hierarchy, namely the ‘tracts’ (FAFB: PRED = 0.11±0.15, 477 
P = 8.4 × 10−5, n = 36; Hemibrain: PRED = 0.18±0.14, P = 4.3 × 10−11, n = 45) and the 478 
‘regions’ (FAFB: PRED = 0.05±0.06, P = 0.081, n = 6; Hemibrain: PRED = 0.06±0.3, P = 479 
0.0049, n = 6). This reduction in class separability reflects the increasing diversity of neurons 480 
within the higher-level groups. Overall, these results demonstrate how class-sample PRED 481 
can be used as a sensitive and easy-to-use metric of class separability. 482 

 483 

Discussion 484 

Overall, we found that Pairwise Relative Distance (PRED) is a robust metric for quantifying 485 
vector similarity and class separability in class-vector datasets and offers several advantages 486 
over distance-based metrics, Pearson’s correlation, or cosine similarity. Importantly, PRED 487 
quantified the similarity in a consistent way close to our intuitive understanding of the data. 488 
Datasets in different studies often vary in terms of their size and the scale of the responses. If 489 
the similarity metric is affected by these parameters, it becomes difficult to compare the 490 
results obtained across studies. PRED, however, remained agnostic to the size of the dataset 491 
and was unchanged with global modifications of the data (Figure 1 and Supplementary 492 
Figure 1). We can, thus, directly compare PRED values obtained from different studies. 493 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.13.456194doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.13.456194
http://creativecommons.org/licenses/by/4.0/


 

 

14 

 

Experimental studies may be limited in the amount of data that they can collect; in terms of, 494 
for example, how many different stimuli one can present, or how many individuals can study, 495 
or how many trials one could perform, and so on. Also, experimental data is subject to noise 496 
from multiple sources. Thus, it is desirable to analyze datasets with a metric that is robust to 497 
noise. In our study, PRED exhibited the largest dynamic range and the lowest variability 498 
among the metrics tested. It also worked well with incomplete datasets (Figures 1, 2, and 499 
Supplementary Figure 1). 500 

Many metrics are available for calculating the similarity of vectors when each value within 501 
the vector is a scalar quantity (a number). However, we cannot directly use these metrics 502 
when each value within the vector is itself a vector (a set of numbers), as is the case with 503 
temporally patterned neural responses or population responses. One could forcibly convert 504 
the vector of vectors into a long vector of numbers through concatenation. However, 505 
concatenated vectors lose the distinction between classes and the elements of values within a 506 
class. As we showed by simulating increasingly longer temporal patterns, this can lead to an 507 
inaccurate estimation of similarity. On the other hand, PRED provides a more straightforward 508 
and intuitive method for analyzing multi-dimensional data while preserving the inherent 509 
relations between different dimensions (Figure 3 and Supplementary Figure 2). 510 

We found that PRED also works well for analyzing class separability in class-sample 511 
datasets, as the results with PRED were well correlated with those obtained from other 512 
commonly used metrics. PRED provided a stable chance level and was unaffected by the 513 
dataset’s size, whereas most of the other metrics that we tested varied with an increase in the 514 
number of classes or samples. We tested the robustness of several internal clustering 515 
validation metrics to noisy datasets. In these analyses using simulated and experimental data, 516 
PRED was consistently among the metrics with the highest dynamic range and the lowest 517 
variability. Thus, PRED presents a consistent and more reliable alternative for evaluating 518 
class separability in class-sample datasets (Figures 4 – 8 and Supplementary Figures 3—519 
5). 520 

When dealing with large datasets, one consideration in choosing a metric is its computational 521 
time complexity. Since PRED calculates the similarity iteratively for all combinations of 522 
pairs of classes and pairs of vectors, its time complexity is of the order of 𝐶𝐶 ��𝑚𝑚2� × �𝑚𝑚2�� =523 

 𝐶𝐶(𝑚𝑚2𝑛𝑛2), where 𝑚𝑚 and 𝑛𝑛 are the numbers of classes and vectors, respectively. Thus, the 524 
time required to compute PRED increases polynomially with an increase in the dataset’s size. 525 
Other class-vector metrics including Pearson’s correlation, cosine similarity, and distance-526 
based metrics have 𝐶𝐶(𝑚𝑚𝑛𝑛2) time complexity. However, datasets in many applications are 527 
small enough (𝑚𝑚,𝑛𝑛 ≤ 100) that the time complexity of PRED would not become a limiting 528 
consideration. 529 

We originally designed PRED for class-vector datasets, in which there is a correspondence 530 
between the 𝑖𝑖𝑡𝑡ℎ element in class 1 and the 𝑖𝑖𝑡𝑡ℎ element in class 2, as both elements belong to 531 
the same vector (row). PRED calculation makes use of this correspondence when making the 532 
2x2 matrices for a pair of classes: if a 2x2 matrix has the 𝑖𝑖𝑡𝑡ℎ and the 𝑗𝑗𝑡𝑡ℎ values from class 1, 533 
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it must have the 𝑖𝑖𝑡𝑡ℎ and the 𝑗𝑗𝑡𝑡ℎ values from class 2). In class-sample datasets, this 534 
correspondence across classes is absent, as there is no ordering among the class elements – all 535 
samples are random replicates. This lack of order poses a dilemma while calculating PRED: 536 
which pair of values in class 2 should we use for making the 2x2 matrix with a particular pair 537 
of values in class 1? We overcome this dilemma by considering all possible pairs from class 2 538 
iteratively for a given pair of values in class 1. This method (‘exhaustive PRED’) increases 539 

the time complexity from 𝐶𝐶 ��𝑚𝑚2� × �𝑚𝑚2�� to 𝐶𝐶 ��𝑚𝑚2� × �𝑚𝑚2�
2
� for class-sample datasets, 540 

assuming each of the 𝑚𝑚 classes has 𝐶𝐶(𝑛𝑛) elements (Supplementary Figure 5a). In practice, 541 
the extra time required for ‘exhaustive PRED’ would be noticeable only for large datasets 542 
with hundreds of classes and samples. The calculation can be made faster using an 543 
approximation (‘fast PRED’). In ‘fast PRED,’ we assign an arbitrary order to the elements in 544 
each class (e.g., the order in which the values were saved) and then create 2x2 matrices in the 545 
same way as is done in class-vector datasets: when we take the 𝑖𝑖𝑡𝑡ℎ and the 𝑗𝑗𝑡𝑡ℎ values from 546 
class 1, we also take the 𝑖𝑖𝑡𝑡ℎ and the 𝑗𝑗𝑡𝑡ℎ values from class 2. Using simulations (see Materials 547 
and Methods), we found that the difference between the ‘exhaustive PRED’ and the ‘fast 548 
PRED’ values was ~3% for datasets with more than 15 samples (Supplementary Figure 5b). 549 
Changing the ordering of elements within classes did not have a noticeable effect on the 550 
value of PRED. Thus, we can efficiently and reliably compute PRED for large class-sample 551 
datasets. 552 

Class-sample PRED essentially compares the within and across class variation of samples. As 553 
classification is a very commonly used operation, there has been a strong interest in 554 
comparing various metrics under different scenarios (Arbelaitz et al., 2013; Brun et al., 2007; 555 
Guerra et al., 2012; Gurrutxaga et al., 2011; Niemelä et al., 2018). Apart from the metrics that 556 
we have already compared with PRED, other metrics with similar approaches, like the t-557 
statistic or Fisher discriminant, can potentially be used for analyzing class-sample datasets. 558 
However, these metrics have their drawbacks. The calculation and the interpretation of the t-559 
statistic depend on the degree of freedom, which is a function of the number of samples 560 
observed. The discriminant analysis assumes a linear separation between the classes and thus 561 
might not be ideal for neural datasets. Another approach, formulated by Huerta et al. (Huerta 562 
et al., 2004), also quantifies intra-class and inter-class differences. They calculated average 563 
within-class (𝐷𝐷𝑖𝑖𝑚𝑚𝑡𝑡𝑖𝑖𝑚𝑚) and across-class (𝐷𝐷𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚𝑖𝑖) distances, similar to our 𝐷𝐷1 and 𝐷𝐷2  564 
calculations. They then quantified the similarity across classes by measuring 𝐷𝐷𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚𝑖𝑖 − 𝐷𝐷𝑖𝑖𝑚𝑚𝑡𝑡𝑖𝑖𝑚𝑚 565 
normalized by the maximum expected value of this difference. The normalization procedure 566 
is highly dependent on the type of system under consideration, and it might not be possible to 567 
calculate the denominator in many cases. PRED is self-normalizing and system agnostic, 568 
providing a consistent estimate of class separability for any dataset. 569 

So far, we have computed 𝐷𝐷1 and 𝐷𝐷2 as the Euclidean distances between within-class and 570 
across-class values. In principle, one can use any distance measure in place of Euclidean 571 
distances for calculating PRED. For example, one can use Mahalanobis distance to account 572 
for different variabilities of the various dimensions of a response or Hamming distance to 573 
compare datasets with binary or categorical values. For temporal data, instead of binning the 574 
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responses, one could use methods like the Victor-Purpura (Victor and Purpura, 1997, 1996) 575 
or the van Rossum (Rossum, 2001) distances to calculate the distance between spike trains. 576 
This flexibility in the choice of the distance metric may help in the future in optimizing 577 
PRED for different use cases. 578 

 579 

Materials and Methods 580 

Class-vector PRED 581 

We generalized the definition of PRED from our previous work (Mittal et al., 2020) to all 582 
class-vector datasets. We considered all possible combinations of pairs of vectors and pairs of 583 
classes to calculate the PRED value. For each 2 × 2 matrix thus obtained, we computed two 584 
distances (Figure 1a): 𝐷𝐷1 = (𝐴𝐴1 − 𝐵𝐵1)2 + (𝐴𝐴2 − 𝐵𝐵2)2 is the sum of the squared Euclidean 585 
distances between the values to the same classes in different vectors; 𝐷𝐷2 = (𝐴𝐴1 − 𝐵𝐵2)2 +586 
(𝐴𝐴2 − 𝐵𝐵1)2 is the sum of the squared distances between the values belonging to different 587 
classes in different vectors. We used the ratio 𝐷𝐷2−𝐷𝐷1

𝐷𝐷2+𝐷𝐷1
 to estimate the PRED value in each 2 × 2  588 

matrix. To obtain the final PRED value for a particular dataset, we first averaged the values 589 
over all class pairs before averaging over all vector pairs. Cases with missing data were 590 
ignored for the calculation of the mean. Note that in the calculations described here, the 591 
Euclidean distances can be easily calculated even if the values (𝐴𝐴1, 𝐵𝐵1, 𝐴𝐴2, 𝐵𝐵2) are not 592 
numbers but are equal-sized vectors (see Figure 3a for an example). PRED ranges between 1 593 
and -1, where 1 indicates that the vectors have identical values and patterns across classes, 0 594 
indicates that the vectors have no similarity and have random patterns across the classes, and 595 
-1 indicates that the vectors have exactly opposite patterns across the classes. 596 

Class-sample PRED 597 

We used a slightly modified method of calculating PRED (labeled ‘exhaustive PRED’) for 598 
class-sample datasets (Figure 4a). The calculation of 𝐷𝐷1 and 𝐷𝐷2 and the ratio 𝐷𝐷2−𝐷𝐷1

𝐷𝐷2+𝐷𝐷1
 remained 599 

unchanged. The difference here lay in the creation of 2 × 2 matrices: for each pair of classes, 600 
any two samples (say, 1A and 1B) in class 𝑖𝑖 could be combined with any two samples (say, 601 

2A and 2B) in class 𝑗𝑗, to create two possible matrices, �1𝐴𝐴 2𝐴𝐴
1𝐵𝐵 2𝐵𝐵� or �1𝐴𝐴 2𝐵𝐵

1𝐵𝐵 2𝐴𝐴�. This results 602 

in a total of �𝑛𝑛𝑖𝑖2 � ⋅ �
𝑛𝑛𝑗𝑗
2 � ⋅ 2 matrices for classes 𝑖𝑖 and 𝑗𝑗, where 𝑛𝑛𝑖𝑖 = number of samples in class 603 

𝑖𝑖 and 𝑛𝑛𝑗𝑗 = number of samples in class 𝑗𝑗 (see Supplementary Figure 5a for an example). We 604 
averaged the PRED values over all these matrices for each pair of classes and then computed 605 
the final PRED value by averaging over all class pairs. 606 

 607 
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Other metrics for vector similarity in class-vector data 608 

PRED was compared to 5 other metrics of vector similarity: Pearson’s correlation (PC), 609 
Cosine similarity (COS), Manhattan distance (MAN), Euclidean distance (EUC), and 610 
Chebyshev’s distance (CHEB). If the dataset included more than two vectors, each of the 611 
metrics was calculated over all possible pairs of vectors and then averaged. PC was computed 612 
using the corr function in MATLAB; while analyzing experimental datasets, any rows with 613 
incomplete data were removed. COS was as 1– cosine distance using the cosine option of 614 
the pdist function in MATLAB. The distance-based metrics MAN, EUC, and CHEB were 615 
calculated using the pdist function with the options cityblock, euclidean, and chebychev, 616 
respectively. Since the range of the distance-based metrics (MAN, EUC, and CHEB) was 617 
between 0 and ∞, we transformed these metrics using the negative exponential function 618 
𝑓𝑓(𝑥𝑥) = 𝑒𝑒−𝑥𝑥 which mapped the range to be between 1 and 0 such that a value close to 1 619 
indicated a small distance (high similarity) between the vectors.  620 

 621 

Other metrics for class separability in class-sample data 622 

PRED was compared to 5 other metrics of class separability: Euclidean template matching 623 
(ETM), Silhouette index (SIL), Davies-Bouldin index (DBI), Dunn’s index (DUNN), and 624 
Calinski-Harabasz index (CH). ETM is based on a simple algorithm for calculating 625 
classification accuracy (Stopfer et al., 2003). Briefly, a template was created for each class by 626 
averaging the values within the class, excluding the test sample. Next, for each sample in the 627 
dataset, the Euclidean distances between the sample and all the templates were calculated. If 628 
the smallest distance belongs to the template of the actual class of the sample, the sample was 629 
correctly classified and scored as 1 (if templates of n classes, including the actual class of the 630 
sample, had the same smallest distance, the score was set to 1

𝑚𝑚
 ). Otherwise, the score was set 631 

to 0. The average of the scores from all the samples was reported as the final value of ETM. 632 
ETM ranges between 0 and 1, where 1 denotes the highest level of class separability (every 633 
sample is correctly classified). We used a custom function written in MATLAB for 634 
calculating the ETM values. The Silhouette index compares the pairwise intra-class and inter-635 
class distances (Rousseeuw, 1987). It ranges between 1 and -1, where 1 indicates high 636 
separability. DBI is calculated as the ratio of within-class and between-class distances 637 
(Davies and Bouldin, 1979). It ranges from 0 to ∞, where 0 indicates high separability. CH 638 
measures the ratio of the average intra-class and inter-class variances (Caliński and Harabasz, 639 
1974). It ranges between 0 and ∞, where a higher value indicates higher separability. SIL, 640 
DBI, and CH were calculated using the evalclusters function in MATLAB, with the options 641 
Silhouette, DaviesBouldin, and CalinskiHarabasz, respectively. DUNN calculates the ratio 642 
of the minimum inter-cluster distance to the maximum intra-cluster distance (Dunn, 1974). It 643 
ranges between 0 and ∞, where a higher value indicates high separability. We calculated the 644 
DUNN value using the indexDN function written by Julian Ramos for MATLAB. 645 

 646 
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Simulations with clusters of points  647 

To simulate a class-sample dataset, we first selected the class means uniformly distributed 648 
within an n-dimensional space [−1, 1]𝑚𝑚 . The samples were then drawn from a uniform 649 
distribution around the class mean such that the Euclidean distance between the sample and 650 
the class mean was ≤ 𝑟𝑟, where 𝑟𝑟 denotes the cluster radius. Next, a random noise n-651 
dimensional vector, drawn from [𝒩𝒩(0,𝜎𝜎)]1×𝑚𝑚, was added to each sample (see 652 
Supplementary Figure 3f—h for examples). Note that after the addition of noise, the 653 
samples no longer lay within [−1, 1]𝑚𝑚 but, instead, within [−∞,∞]𝑚𝑚. 654 

 655 

Chance level 656 

The chance level for each metric was calculated using datasets with no inherent similarity or 657 
separability. For the class-vector metrics, we simulated a dataset of 10 vectors and either 2 or 658 
5 classes. Each value within the dataset was randomly drawn from a uniform distribution 659 
between -1 and 1, ensuring no structure within the classes or the vectors. The whole 660 
simulation was repeated 1000 times, and the vector similarity metrics were reported. For the 661 
class-sample metrics, we simulated a 2-dimensional clustered dataset with 10 samples and 662 
either 2 or 5 classes. The cluster radius was set to 0.05 for all the classes, and a big noise term 663 
randomly drawn from [𝒩𝒩(0, 50)]1×2 was added to simulate inseparable clusters. The whole 664 
simulation was repeated 1000 times, and the class separability metrics were reported. 665 

 666 

Dynamic range and variability 667 

The dynamic range was defined as the range of noise levels in which a metric remains 668 
informative (i.e., does not saturate near the maximum or the minimum level). We simulated a 669 
dataset with increasing levels of noise (on a log scale). We measured the average value 670 
reported by the metric at the 5 lowest noise levels (as 𝜇𝜇(𝜈𝜈𝑙𝑙)) and at the 5 highest noise levels 671 
(as 𝜇𝜇(𝜈𝜈ℎ)) simulated. The absolute difference between these two values, |𝜇𝜇(𝜈𝜈𝑙𝑙) − 𝜇𝜇(𝜈𝜈ℎ)|, 672 
was called the vertical range of the metric. For a metric whose value decreased with 673 
increasing noise, the left boundary of the dynamic range was taken as the lowest noise level 674 
at which the average value of the metric was lower than the value at the lowest noise level by 675 
at least 1% of the vertical range, i.e., 𝐷𝐷𝐷𝐷𝑙𝑙 = min(𝑥𝑥) : 𝜇𝜇(𝑥𝑥) < 𝜇𝜇(𝜈𝜈𝑙𝑙) − 0.01 × |𝜇𝜇(𝜈𝜈𝑙𝑙) −676 
𝜇𝜇(𝜈𝜈ℎ)|. The right boundary of the dynamic range was taken as the highest noise level at 677 
which the average metric value was greater than the value at the highest noise level tested 678 
plus 1% of the vertical range, i.e., 𝐷𝐷𝐷𝐷ℎ = max(𝑥𝑥) : 𝜇𝜇(𝑥𝑥) > 𝜇𝜇(𝜈𝜈ℎ) + 0.01 × |𝜇𝜇(𝜈𝜈𝑙𝑙) − 𝜇𝜇(𝜈𝜈ℎ)|. 679 
The dynamic range was calculated as |𝐷𝐷𝐷𝐷ℎ − 𝐷𝐷𝐷𝐷𝑙𝑙|.  680 

The variability of the metric was defined as the standard deviation of the metric at the mid-681 
point of the dynamic range divided by its vertical range, i.e., 682 
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Variability =
𝜎𝜎 �|𝐷𝐷𝐷𝐷ℎ  +  𝐷𝐷𝐷𝐷𝑙𝑙|

2 �

|𝜇𝜇(𝜈𝜈𝑙𝑙) − 𝜇𝜇(𝜈𝜈ℎ)|
 683 

where 𝜎𝜎(𝑥𝑥) represents the standard deviation in the metric values at the noise level x. For the 684 
class-vector metrics, we simulated a dataset with 10 vectors and 2 classes. The mean response 685 
of each class was set to 2 and 4, respectively. The value for a class was randomly drawn from 686 
𝒩𝒩(𝜇𝜇,𝜎𝜎), where 𝜇𝜇 is the class mean, 𝜎𝜎 = 10𝜈𝜈 and 𝜈𝜈 ∈ [−2,−1.9,−1.8, … , 3] to simulate 687 
increasing noise levels on a log scale, covering 5 orders of magnitude. Each simulation was 688 
repeated 1000 times, and the resultant similarity was measured using each metric. We 689 
repeated the entire experiment with increasing base means, i.e., we added an integer value to 690 
the mean response of the classes. For example, adding 1 to the class means changed them 691 
from [2 4] to [3 5]. We simulated 11 such datasets by adding each of the integers in the range 692 
[0 10]. 693 

For class-sample datasets, we simulated a dataset with 2 classes, each with 10 samples. The 694 
response was set as a 2-dimensional vector. The class means were drawn from the 2-D space 695 
[−1 1]2 with a cluster radius of 0.05. The noise was drawn randomly from 𝒩𝒩(0,𝜎𝜎), where 696 
𝜎𝜎 = 10𝜈𝜈 and 𝜈𝜈 ∈ [−3,−2.9,−2.8, … , 3] to simulate increasing noise levels (on a log scale) 697 
within the dataset. Each simulation was repeated 1000 times. 698 

In the analysis where we added noise to the experimental data, we first calculated the mean 699 
response over all the different trials and odors (𝑚𝑚). The noise (𝜈𝜈) was then added to each 700 
value of the data matrix as a percentage of this mean response with the values drawn from 701 
𝒩𝒩(0,𝜎𝜎), where 𝜎𝜎 = 10𝜈𝜈 × 𝑚𝑚 × 0.01, 𝑚𝑚 is the mean response, and 𝜈𝜈 ∈702 
[−1,−0.9,−0.8, … , 4] is the noise level on a log scale. 703 

 704 

Drosophila olfactory behavior 705 

We used a published dataset containing the behavioral preferences of 141 wild-type 706 
Drosophila for 3-octanol (OCT) versus 4-methylcyclohexanol (MCH) (Honegger et al., 707 
2020). The behavior was quantified as a preference index obtained from a two-choice assay 708 
where the odors were presented, one on each port. A value above 0.5 indicated preference 709 
towards MCH while a value between 0 and 0.5 indicated preference towards OCT. The 710 
preferences were calculated for all the flies at two different time points, 24-hrs apart. We first 711 
calculated the individual-time (class-vector) PRED and Pearson’s correlation (PC) values 712 
over the entire dataset (Figure 2a). To compare the stability of the two metrics for 713 
incomplete data, we randomly sampled 70 out of 141 individuals from the dataset. We 714 
calculated the PRED and PC value for this subset, repeating the random sampling 20 times. 715 
We then calculated the coefficient of variation of each metric over these 20 random 716 
samplings. To check the validity of our results, we repeated this entire process 50 times and 717 
compared the coefficient of variation obtained from the two metrics. 718 

 719 
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Drosophila population responses 720 

To analyze the population level similarity in responses, we used a published dataset of 721 
calcium imaging responses of 37 glomeruli responding to 36 monomolecular odors (Badel et 722 
al., 2016). The glomeruli measured within the dataset were DM6, DM5, DM2, DM1, DM4, 723 
VM2, VM7d, VM7v, DA4L, DA2, DL1, DL5, D, DM3, DC2, VA6, DC3, DL4, DA3, DL3, 724 
DA1, VA1d, VA1v, VL2a, VL2p, VA5, VM4, VA7L, VA3, VA4, VA7m, VC2, VC1, VM3, 725 
VA2, VM1, and Dp1m. The odors used in the dataset were apple cider vinegar, mango 726 
mimic, broth, benzaldehyde, 2-methyl phenol, butanol, g-butyrolactone, methanoic acid, 727 
hexanoic acid, 1-octanol, acetophenone, vinegar mimic, 2,3-butanedione, pentanoic acid, 3-728 
methylthio-1-propanol, 3-octanol, ethyl butyrate, 4-methylcyclohexanol, acetaldehyde, 2-729 
pentanone, 2-oxopentanoic acid, hexyl acetate, isopentyl acetate, phenylethylamine, 730 
propionic acid, geosmin, ethyl acetate, 𝛽𝛽-citronellol, benzyl alcohol, linalool, 1-octen-3-ol, 731 
methyl salicylate, pentyl acetate, banana essence, 2-butanone, and 1-butanol. The dataset 732 
included the responses for 61 individuals (although not all individuals were measured for all 733 
odors) with around 4 trials each. For calculating the similarity within the individuals, we first 734 
averaged the responses over the trials. We then calculated the odor-individual (class-vector) 735 
PRED for each of the 37 different glomeruli separately (Figure 3e). Alternatively, we used 736 
the 37-length vectors as the values in the 61 (odor) × 36 (individual) matrix and calculated a 737 
single odor-individual (class-vector) PRED for these ‘population’ responses. 738 

 739 

Zebrafish olfactory behavior 740 

We extracted the published data of seven behavioral responses of 10 wild-type Zebrafish in 741 
response to 18 different odors over 4 different trials from the raw data files provided by the 742 
authors (Kermen et al., 2020). The odors for which the response of the zebrafish was tested 743 
were food extract (food), histidine (his), nucleotides (nucl), methionine (met), phenylalanine 744 
(phe), cysteine (cys), arginine (arg), bile acids (bile), prostaglandin 2α (pgf2a), urea, 745 
ammonium (amo), putrescine (put), spermine (sperm), cadaverine (cad), chondroitin sulfate 746 
(cs), zebrafish blood (blood), zebrafish skin extract (skin), and artificial fish water (afw). The 747 
behaviors extracted were fish velocity, freezing behavior, vertical position in the arena, 748 
percentage of burst swimming, number of abrupt turns, number of horizontal swimming 749 
events, and number of vertical swimming events. We used custom scripts and MATLAB 750 
functions provided through personal correspondence by Dr. Florence Kermen to extract the 751 
data using the protocol described in the original paper (Kermen et al., 2020). 752 

To characterize the individual-to-individual separability, we calculated the individual-time 753 
(class-sample) PRED value separately for each of the 18 odors. For each odor, the dataset 754 
included 10 classes (individuals) with 4 samples (trials) per class. The value of each sample 755 
was a 7-dimensional vector, representing the 7 behaviors (Figure 7a). 756 

 757 
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Drosophila projection neuron responses with and without serotonin 758 
blockage 759 

We obtained the published calcium imaging responses of 14 different projection neurons 760 
(PNs) from 18 different GCaMP6m wild-type flies and 7 𝛼𝛼-methyl tryptophan (a-mw) fed 761 
flies to 12 different monomolecular odors (Honegger et al., 2020). The PNs in this dataset 762 
innervated DA1, DL3, DL1, DL5, DM3, DM6, DA2, DA4l, D, DM5, DM2, DM1, DM4, and 763 
DL4 glomeruli. The odors within the dataset were 3-octanol, 1-hexanol, ethyl-lactate, 764 
citronella, 2-heptanone, 1-pentanol, ethanol, geranyl-acetate, hexyl-acetate, 4-765 
methylcyclohexanol, pentyl-acetate, 1-butanol. Each response was measured over 2 trials. We 766 
calculated individual-trial (class-sample) PRED separately for each PN-odor combination 767 
(Figure 7c). 768 

 769 

Locust and Drosophila electrophysiological recordings 770 

We used published recordings of the response of bLN1 mushroom body output neurons in 6 771 
different locusts responding to 6 different odors (Gupta and Stopfer, 2014). These 772 
electrophysiological responses were measured in awake locusts exposed to cyclohexanone, 773 
octanol, and hexanol in concentrations of 0.1% and 10% each. Each response consisted of 6-774 
10 trials.  775 

We also used the published responses of Drosophila PNs innervating 4 different glomeruli 776 
(VC4, DL2v, VM5v, VC3) to a set of 5 odors – benzaldehyde, 2-octanone, pentyl acetate, 777 
ethyl acetate, and ethyl butyrate (Shimizu and Stopfer, 2017) – although not all PNs were 778 
measured for all the odors. The response of each PN was measured in 2-6 individuals with 779 
approximately 6-10 trials per response. 780 

For analyzing the odor-individual (class-vector) PRED with temporal responses, we extracted 781 
both the firing rate and the temporal response of the neurons for a period of 2-s after odor 782 
onset. The firing rate was calculated as the total number of spikes within the 2 second period 783 
from 2 to 4 seconds in the response minus the number of spikes in the 2 second period before 784 
odor onset, from 0 to 2 seconds in the response. The temporal response was similarly 785 
calculated in the 2 second period after odor onset divided into 10-bins of 200 ms each minus 786 
one-tenth the total number of spikes in the background response from 0 to 2 seconds. For 787 
calculating PRED and PC, we first averaged the responses over all the trials for each cell in 788 
the dataset (1 cell in the locust dataset and 4 cells in the Drosophila dataset). We then 789 
calculated the odor-individual (class-vector) PRED using both the firing rate (magnitude) and 790 
the temporal responses. PRED values were averaged over all pairs of odors for every pair of 791 
individuals. 792 

In the experiments where we added noisy bins to the experimental datasets, we used the 793 
initial 10-bin vector of responses as the base dataset. For adding one noisy bin to the base 794 
dataset, we used the number of spikes obtained from 4 to 4.2 seconds minus the background 795 
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response as the eleventh bin. Similarly, any extra noise bin extended the response period by 796 
200 ms to a maximum of 4 seconds when 10 extra noise bins were added. 797 

In the experiment, where we investigated the applicability of PRED to class-sample datasets, 798 
we used both the locust and the fly databases to calculate odor-trial (class-sample) PRED and 799 
compared it to the odor separability obtained from the other metrics. For each individual and 800 
cell in the dataset, we used the 2-bin (each bin of length 1 second) response vector to 801 
calculate the separability.  802 

 803 

Temporal response simulations 804 

To simulate the temporal responses, we created a dataset with 2 classes and 10 vectors, where 805 
each response was a 10-bin vector. The base mean of each response bin within a class was 806 
randomly drawn from a uniform distribution in the range [1 3]. A random noise drawn from 807 
𝒩𝒩(0,1) was added to each bin. A particular number of extra bins were appended to the 808 
vectors, with each new bin containing a value with a base mean of 0 and a noise drawn from 809 
𝒩𝒩(0, 1).  We compared the PRED and PC values with the number of extra bins ranging from 810 
0 to 10. The entire simulation was repeated 100 times. To further emphasize the difference 811 
between the behaviors of PRED and PC, we repeated this entire simulation by generating 812 
extra bins that were exactly 0 (without any noise). 813 

 814 

Simulations with increasing numbers of classes or samples 815 

We generated 2-dimensional clustered data with cluster means drawn from [−1 1]1×2 and 816 
cluster radius of 0.05. A small amount of noise drawn from 𝒩𝒩(0, 0.4)1×2 was added to each 817 
response in the dataset. For the simulations with increasing numbers of classes, we simulated 818 
two different datasets – one with 2 samples and the other with 10 samples. The number of 819 
classes ranged from 2 to 10. For the simulations with increasing numbers of samples, we used 820 
2 classes. The number of samples was taken from [2, 4, …, 20]. Each simulation was 821 
repeated 100 times. 822 

For comparing ‘fast PRED’ with ‘exhaustive PRED’, we used the same dataset of 2 classes as 823 
described above but varied the number of samples from [2, 3, …, 25]. Each simulation was 824 
repeated 1000 times. The average value of PRED over all simulations was ~0.5. For each 825 
simulation and number of samples, we calculated the absolute difference between ‘fast 826 
PRED’ and ‘exhaustive PRED’ values. Finally, we reported the average difference over 827 
simulations divided by the average ‘exhaustive PRED’ value for the specified number of 828 
samples. 829 

 830 
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Drosophila connectome data 831 

We obtained the connectivity vectors of identified local horn neurons (LHNs) from Schlegel 832 
et al. (Schlegel et al., 2021) for 87 identified neurons in the FAFB and the Hemibrain 833 
databases. The dataset we used included 47 neurons from FAFB and 85 neurons from 834 
Hemibrain along with their connectivity to 57 unique antennal lobe glomeruli (D, DA1, DA2, 835 
DA3, DA4l, DA4m, DC1, DC2, DC3, DC4, DL1, DL2d, DL2v, DL3, DL4, DL5, DM1, 836 
DM2, DM3, DM4, DM5, DM6, DP1l, DP1m, V, VA1d, VA1v, VA2, VA3, VA4, VA5, 837 
VA6, VA7l, VA7m, VC1, VC2, VC3, VC4, VC5, VL1, VL2a, VL2p, VM1, VM2, VM3, 838 
VM4, VM5d, VM5v, VM6, VM7d, VM7v, VP1d, VP1l, VP1m, VP2, VP3, VP5). The LHNs 839 
were grouped into 49 ‘connectivity types,’ which were further grouped into 36 ‘cell types’, 840 
then 13 ‘tracts’, and finally 4 ‘regions’, based on their morphologies within the lateral horn 841 
(Frechter et al., 2019; Schlegel et al., 2021).  842 

The full dataset consisted of unique connectivity types as classes and the two databases as 843 
vectors. The connectivity vector of each neuron within a connectivity type was averaged. 844 
Each cell within this matrix was a 57-length vector of averaged and normalized connectivity 845 
weights of the corresponding LHN to each glomerulus. We first calculated the connectivity 846 
type-database (class-vector) PRED value over this matrix to characterize the similarity of 847 
connections across databases. Next, we grouped this matrix based on each of the different 848 
hierarchy levels. We averaged the connectivity vectors over all connectivity types belonging 849 
to a group within a particular hierarchy to get a matrix with groups as columns and the 850 
databases as rows (Figure 8a). We then calculated the group-database (class-vector) PRED 851 
values for each hierarchy level based on cell type, tract, or region. 852 

In the experiment where we characterized the separability of neurons across groups based on 853 
their connectivity to antennal lobe glomeruli, we constructed 4 different matrices with 854 
individual neurons (not averaged over connectivity types) as samples and the relevant group 855 
types as classes for the two databases separately (Figure 8b). We then calculated the group-856 
neuron (class-sample) PRED for each matrix to characterize the separability of neural 857 
connectivity vectors across groups for each hierarchy level. 858 

 859 

Statistics 860 

To compare a set of PRED values with the baseline (0) or a specific mean, we used a one-861 
sample double-sided t-test. To compare the chance level of the metrics across classes, we 862 
used two-sample double-sided unpaired t-tests. For comparing the coefficient of variation 863 
obtained for PRED with those for PC, we used a two-sample double-sided paired t-test. 864 

 865 
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Code availability 866 

All the simulations and analyses were done using custom scripts coded in MATLAB (version 867 
r2020a). A modified version of the 𝑔𝑔𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚 plotting package (Morel, 2018) was used for all 868 
the figure plots. The source code for the simulations and analysis can be found at 869 
https://github.com/neuralsystems/PRED_analysis. The standalone versions of PRED function 870 
written in Python and MATLAB can be found at https://github.com/neuralsystems/PRED 871 
(the MATLAB version is also available on the MATLAB File Exchange).  872 
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Figure 1 1019 

 1020 

Figure 1: PRED is a robust metric for the assessment of similarity across vectors 1021 
a Schematic representation of Pairwise Relative Distance’s (PRED) calculation for a class-1022 
vector dataset. b Violin plots showing the chance level of each metric with simulated datasets 1023 
containing 2 (darker colors) or 5 (lighter colors) classes. Each point within a violin represents 1024 
the metric’s value for a different random seed (n = 1000 simulations for each number of 1025 
classes). Note the change in the chance level of MAN, EUC, and CHEB metrics with the 1026 
number of classes. PRED: Pairwise relative distance, PC: Pearson’s correlation, COS: Cosine 1027 
similarity, MAN: Manhattan distance, EUC: Euclidean distance, CHEB: Chebyshev’s 1028 
distance. Black horizontal line represents the mean. Error bars represent s.e.m. c—e Change 1029 
in the value of PRED (c), PC (d), and COS (e) with increasing noise level (shown on a log 1030 
scale) in a simulated dataset with 2 classes and 10 individuals. The dark line shows the mean 1031 
value over all simulations at the specified noise level (n = 1000 simulations per noise level). 1032 
The shaded area represents 1 standard deviation around the mean. The two dashed vertical 1033 
lines represent the boundaries of the dynamic range. Each point represents a different random 1034 
simulation at the noise level corresponding to the mid-point of the dynamic range. f The 1035 
dynamic range and the variability at the mid-point of the dynamic range are shown for each 1036 
metric. PRED showed the highest dynamic range and the lowest variability. 1037 

  1038 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.13.456194doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.13.456194
http://creativecommons.org/licenses/by/4.0/


 

 

29 

 

Figure 2 1039 

 1040 

Figure 2: PRED is a suitable metric for measuring behavioral similarity 1041 
a Illustration of an individual-time dataset where each value represents the preference index 1042 
of an individual animalat the specified time. b Across-time similarity in the MCH-OCT 1043 
preference index of Drosophila measured with 70 individuals and 2 time-points. The 70 1044 
individuals were randomly sampled from a dataset with 141 individuals. The coefficient of 1045 
variation (COV) is also displayed. Each point within a violin represents the mean similarity 1046 
for a new randomly sampled dataset (n = 20 samplings). Black horizontal line represents the 1047 
mean. c Coefficient of variations of 100 different repetitions of the analysis performed in (b). 1048 
Horizontal lines represent the mean COV over all repetitions (n = 50 repetitions). Lines 1049 
connect the PRED and PC values from the same repetition. 1050 
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Figure 3 1052 

 1053 

Figure 3: PRED natively supports multi-dimensional data 1054 

a Illustrations showing the unbinned and the 10-bin temporal vectors used for calculating the 1055 
response similarity between individuals. For calculating PRED, the Euclidean distance 1056 
between the 10-bin vectors across individuals is calculated. However, for calculating PC, the 1057 
responses for both odors are first concatenated into a single 20-bin vector and then correlated 1058 
across individuals. b Across-individual similarity when the neural response is quantified as a 1059 
single unbinned number (darker colors) or as a 10-bin temporal vector (lighter colors). The 1060 
data is taken from locust bLN1 neural responses (Gupta et al. 2014). Each point within the 1061 
violin represents the similarity for a pair of individuals (n = 15). Black horizontal lines 1062 
represent the mean, and error bars represent s.e.m. in all panels. c Across-individual 1063 
similarity as a function of the number of extra bins (containing mostly noise) added to the 1064 
original 10-bin vector for the same dataset as in (b). Note that the similarity value reported by 1065 
PC increases with the increasing number of bins. d Across-individual similarity as a function 1066 
of the number of extra bins (containing noise) added to a 10-bin vector for simulated data 1067 
with 2 odors and 10 individuals. The value in each extra bin is taken from a normal 1068 
distribution with 0 mean and 1 s.d. Open circles denote the mean over 100 different random 1069 
simulations. The similarity gradually reduces with the increasing number of noisy bins for 1070 
PRED but increases for PC. e Illustration of the odor-individual dataset used for comparing 1071 
the population response across individuals. Each bin represents the response of a glomerulus 1072 
(Glom) in an individual for the odor tested. Violin plot shows the across-individual similarity 1073 
measured by odor-individual (class-vector) PRED in a database with a population of 37 1074 
neurons, either considered separately (violin plot, where each point represents the PRED 1075 
value for a neuron, n = 37) or considered together as a population vector (red dashed line).   1076 
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Figure 4 1077 

 1078 

Figure 4: PRED is suitable for assessing class separability in class-sample datasets 1079 

a Schematic representation of Pairwise Relative Distance (PRED) calculation for a class-1080 
sample dataset. b—f Odor separability measured using PRED compared to that measured 1081 
using other commonly used metrics. Each point corresponds to one individual in the dataset 1082 
taken from locust bLN1 neural responses (Gupta and Stopfer, 2014) (n = 6 individuals). Note 1083 
that PRED values were positively correlated with the values obtained from other metrics 1084 
(DBI expectedly showed a negative correlation as DBI’s polarity is inverted). ETM: 1085 
Euclidean template matching, SIL: Silhouette index, DUNN: Dunn’s index, DBI: Davies-1086 
Bouldin index, CH: Calinski-Harabasz index. g—l Violin plots showing the chance level of 1087 
each metric with simulated datasets containing 2 (darker colors) or 5 (lighter colors) classes. 1088 
Each point within a violin represents the metric’s value for a different random seed (n = 1000 1089 
simulations for each number of classes). Note the change in the chance level of all metrics 1090 
except PRED and CH with the number of classes. Black horizontal line represents the mean. 1091 
Error bars represent s.e.m. 1092 
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Figure 5 1094 

 1095 

Figure 5: Unlike PRED, most other metrics vary with an increasing number of classes or 1096 
samples 1097 
a Class separability as a function of the number of classes using simulated data with 2 1098 
samples (left) or 10 samples (right). Each metric was normalized by its maximum value 1099 
observed among the mean values for different numbers of classes. Note that all metrics 1100 
except PRED and SIL show change with the increasing number of classes. Open circles 1101 
denote the mean value over 100 different random simulations for the specified numbers of 1102 
classes, and error bars denote s.e.m. b Similar plot as in (a) but with 2 classes and an 1103 
increasing number of samples (n = 100 simulations for each number of samples). Note the 1104 
change in the value of ETM, DUNN, and CH with an increase in the number of samples. 1105 
Also, in all plots, DBI values show an opposite trend as compared with the other metrics 1106 
because DBI is higher for less separable classes. 1107 
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Figure 6 1109 

 1110 

Figure 6: Comparison of dynamic range and variability of class-sample metrics 1111 
a—f Change in the value of PRED (a), DUNN (b), DBI (c), ETM (d), SIL (e), and CH (f) 1112 
with increasing level of noise (shown on a log scale) in a simulated dataset with 3 classes and 1113 
10 samples. The solid trace shows the mean values over all simulations for each noise level 1114 
(n = 1000 simulations per noise level). The shaded area represents 1 s.d. around the mean. 1115 
The dashed vertical lines represent the boundaries of the dynamic range. Each point 1116 
represents a different random simulation at the noise level corresponding to the mid-point of 1117 
the dynamic range. g The dynamic range and the variability at the mid-point of the dynamic 1118 
range are shown for each metric. PRED showed a reasonably large dynamic range and low 1119 
variability. 1120 
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Figure 7 1122 

 1123 

Figure 7: Using PRED to measure individuality of neural responses 1124 
a Illustrations of an individual-trial dataset where values in each column represent the 1125 
repeated behavioral responses of an individual (to a particular odor). Each behavioral 1126 
response is a 7-length vector, with each bin in this vector representing a specific physical 1127 
behavior (Beh). b Individual-trial (class-sample) PRED for zebrafish behavioral data 1128 
calculated separately for each odor. The odors are sorted from left to right in decreasing order 1129 
of PRED value. Each point in the violin represents an individual pair (cad: n = 28, blood: n = 1130 
15, skin: n = 15, bile: n = 36, sperm: n = 45, cys: n = 36, arg: n = 36, food: n = 36, nucl: n = 1131 
28, his: n = 36, put: n = 21, afw: n = 45, pgf2a: n = 36, phe: n = 36, met: n = 28, amo: n = 28, 1132 
cs: n = 28, urea: n = 28). Black horizontal line represents the mean. Error bars represent 1133 
s.e.m. n.s. means not significant. c Illustration of an individual-trial dataset where values in 1134 
each column represent the repeated responses of an individual (in a particular glomerulus and 1135 
to a particular odor). d, e Individual-trial (class-sample) PRED for different PN-odor 1136 
responses in control (d) and serotonin-blocked (e) Drosophila. Green color indicates PRED 1137 
values significantly greater than 0, indicating good separability across individuals. Note the 1138 
fewer number of green values after serotonin-blockage. Significance was measured using 1139 
one-sample t-test. 1140 
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Figure 8 1142 

 1143 

Figure 8: Using PRED as a measure of similarity and separability for connectomic data 1144 
a Illustration of the group-database (class-vector) structure used for comparing the two 1145 
datasets, FAFB and Hemibrain. Each bin represents the average strength of connections 1146 
between the LHNs belonging to the group and a single glomerulus (Glom). High value of 1147 
group-database PRED confirms stereotypy between FAFB and Hemibrain datasets for all 4 1148 
levels of groupings of lateral horn neurons (LHNs). Each value in the violin represents a pair 1149 
of groups within the specified hierarchy level (connectivity type: n = 496 pairs of 1150 
connectivity types, cell type: n = 378 pairs of cell types, tract: n = 66 pairs of tracts, region: n 1151 
= 6 pairs of regions). The calculations were performed over the antennal lobe glomerulus to 1152 
LHN connectivity data. The connectivity values were averaged over all all neurons within the 1153 
specified groups. b Illustration of the group-neuron (class-sample) dataset for calculating the 1154 
across-group separability of neuron connectivity patterns. Each column contains the 1155 
connectivity vectors of all LHNs belonging to a group. Each bin represents the strength of 1156 
connections between an LHN and a single glomerulus. Group-neuron PRED for the dataset 1157 
with individual neurons grouped into connectivity types (FAFB: n = 36 pairs of connectivity 1158 
types, Hemibrain: n = 276), cell types (FAFB: n = 21 pairs of cell types, Hemibrain: n = 210), 1159 
tracts (FAFB: n = 36 pairs of regions, Hemibrain: n = 45) or regions (FAFB: n = 6 pairs of 1160 
tracts, Hemibrain: n = 6) for each of the two datasets, FAFB and Hemibrain. Black horizontal 1161 
line represents the mean, and error bars represent s.e.m. 1162 
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Table 1 1164 

Metric Range Chance 
Level Discreteness Consistency with 

global scaling 
Consistency with 
global translation 

PRED [-1 1] 0 Continuous Constant Constant 

PC [-1 1] 0 Discrete for 2 
classes Constant Constant 

COS [-1 1] 0 Continuous Constant Changes 

MAN [0 1] > 0a Continuous Changes Constant 

CHEB [0 1] > 0a Continuous Changes Constant 

EUC [0 1] > 0a Continuous Changes Constant 

Table 1: Summary of the properties of class-vector metrics 1165 

Values in red represent less desirable behavior compared with PRED. 1166 
a Chance level of these metrics varies with the number of classes. 1167 
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Table 2 1169 

 1170 

Metric Range Chance 
Levela Discreteness 

Consistency 
with 

number of 
classes 

Consistency 
with 

number of 
samples 

Dynamic 
rangeb Variabilityb 

PRED [-1 1] 0 Continuous Constant Constant - - 

ETM [0 1] 0.5c Discrete Changes Changes Smaller Higher 

SIL [-1 1] 0c Continuous Changes Constant Similar Similar 

DBI [Inf 0] >0c Continuous Changes Constant Smaller Higher 

DUNN [0 Inf] >0c Continuous Changes Changes Smaller Higher 

CH [0 Inf] >0c Continuous Changes Changes Smaller Higher 

Table 2: Summary of the properties of class-sample metrics 1171 

Values in red represent less desirable behavior compared with PRED. 1172 
a reported for a dataset with 2 classes 1173 
b as compared to PRED 1174 
c Chance level of these metrics varies with the number of classes. 1175 
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