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Abstract 16 
g-Tubulin complex acts as the predominant microtubule (MT) nucleator that initiates MT 17 
formation and is therefore an essential factor for cell proliferation. Nonetheless, cellular 18 
MTs are formed after experimental depletion of the g-tubulin complex, suggesting that 19 
cells possess other factors that drive MT nucleation. Here, by combining gene knockout, 20 
auxin-inducible degron, RNA interference, MT depolymerisation/regrowth assay, and 21 
live microscopy, we identified four microtubule-associated proteins (MAPs), ch-TOG, 22 
CLASP1, CAMSAPs, and TPX2, which are involved in g-tubulin-independent MT 23 
generation in human colon cancer cells. In the mitotic MT regrowth assay, nucleated MTs 24 
organised non-centriolar MT organising centres (ncMTOCs) in the absence of g-tubulin. 25 
Depletion of CLASP1 or TPX2 substantially delayed ncMTOC formation, suggesting that 26 
they promote MT nucleation in the absence of g-tubulin. In contrast, depletion of 27 
CAMSAPs or ch-TOG did not affect the timing of ncMTOC appearance. CLASP1 also 28 
accelerates g-tubulin-independent MT regrowth during interphase. Thus, MT generation 29 
can be promoted by MAPs without the g-tubulin template.  30 
 31 
Introduction 32 
Microtubules (MTs) are cytoskeletal filaments essential for various cellular activities, 33 
such as chromosome segregation, cell division, cell polarisation, and organelle transport. 34 
MTs are formed via the polymerisation of a- and b-tubulin heterodimers. MT formation 35 
begins with MT nucleation, where tubulin dimers assemble into oligomers and form a 36 
‘critical nucleus’ (Roostalu and Surrey, 2017). The MT nucleus then recruits more tubulin 37 
dimers, leading to persistent MT polymerisation or growth, until the MTs pause or start 38 
depolymerisation. This entire reaction can take place solely with a high concentration of 39 
pure tubulin with GTP in the test tube. However, the initial nucleation step is assumed to 40 
be a challenging process in vivo, where the tubulin amount is limited and some factors 41 
destabilise MTs. The discovery of another class of tubulin, g-tubulin, and its associated 42 
subunits called GCPs, provided key insights into how eukaryotic cells efficiently nucleate 43 
MTs (Liu et al., 2021; Oakley and Oakley, 1989; Tovey and Conduit, 2018). The ring-44 
shaped g-tubulin complex (g-TuRC) serves as the structural template for the initial tubulin 45 
assembly, thereby accelerating the initial lag phase (Zheng et al., 1995). However, the g-46 
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TuRC alone is not an efficient MT nucleator, and efficient nucleation requires association 47 
with other proteins, such as CDK5RAP2, XMAP215/ch-TOG, TPX2, and augmin 48 
(Alfaro-Aco et al., 2020; Choi et al., 2010; Consolati et al., 2020; Flor-Parra et al., 2018; 49 
Tariq et al., 2020; Thawani et al., 2018). Some of these activators likely alter the 50 
conformation of g-TuRC to better fit the ends of MT protofilaments (Consolati et al., 51 
2020; Liu et al., 2020; Wieczorek et al., 2020), whereas others cooperate with g-TuRC 52 
(Consolati et al., 2020; Flor-Parra et al., 2018; King et al., 2020; Thawani et al., 2018). It 53 
is now well established that g-TuRC, with its activators, is the dominant MT nucleator in 54 
most eukaryotic cell types. However, there remains another enigma regarding g-TuRC: 55 
cellular MTs are still present after g-TuRC depletion or perturbation in every system 56 
examined to date, including inhibitor treatment and RNA interference (RNAi) in animals 57 
and plants (Chinen et al., 2015; Hannak et al., 2002; Nakaoka et al., 2015; Rogers et al., 58 
2008; Sallee et al., 2018; Wang et al., 2015). For instance, RNAi or tissue-specific 59 
degradation system reportedly depleted >90% of g-TuRC from C. elegans cells, yet MTs 60 
were still nucleated from the centrosome in the early emrbyo (Hannak et al., 2002) or 61 
acentrosomal MTOCs in intestinal epithelial cells (Sallee et al., 2018). 62 

This phenomenon is possibly due to the sufficient amount of residual g-TuRC for a 63 
certain degree of MT nucleation. This is not an ignorable caveat. Recent reconstitution 64 
studies indicate that a partial complex with eight g-tubulin subunits is as potent as the full 65 
complex of 14 g-tubulin in facilitating MT nucleation (Wieczorek et al., 2021). To 66 
establish the dispensability of g-tubulin, the best approach is to genetically delete g-67 
tubulin. However, because g-tubulin is an essential gene for mitosis in every cell type, it 68 
has been impossible to establish a stable cell line in which γ-tubulin genes are deleted. In 69 
one study, CRISPR-based genome editing transiently created γ-tubulin gene-deleted cells, 70 
which failed to assemble functional spindles (McKinley and Cheeseman, 2017); however, 71 
the amount of residual γ-tubulin proteins in each cell was unclear. Another possible 72 
explanation for the remaining MTs after γ-tubulin depletion or inhibition is that cells have 73 
other factors that can nucleate MTs independent of γ-tubulin. Indeed, several MT-74 
associated proteins (MAPs), whose major activity may not be considered MT nucleation, 75 
can promote MT nucleation in vitro when mixed with tubulin (Brunet et al., 2004; Imasaki 76 
et al., 2021; King et al., 2020; Roostalu et al., 2015; Slep and Vale, 2007). They are 77 
candidates for γ-tubulin-independent nucleators in cells.  78 

The aim of this study was to identify the proteins required for g-tubulin-independent 79 
MT nucleation in a single cell type in humans. We first verified that MTs can be nucleated 80 
in cells with undetectable levels of g-tubulin and then searched for the MAPs required for 81 
MT generation under these conditions. Our study suggests that multiple factors, including 82 
CLASP1 and TPX2, are cellular MT nucleators that are normally masked by the dominant 83 
g-TuRC machinery. 84 
 85 
Results 86 
 87 
MT formation with undetectable levels of g-tubulin  88 

Most previous studies utilised population assays to assess the contribution of g-89 
tubulin to MT nucleation, which did not correlate the reduction level of g-tubulin with 90 
MT nucleation potential at the single-cell level. In this study, one of the two g-tubulin 91 
genes in humans (TUBG2) was knocked out, and the other TubG1 protein was tagged 92 
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biallelically with mini-auxin-inducible degron (mAID)-mClover (Fig. 1A, S1A, B). 93 
mClover intensity indicated the total g-tubulin protein level in the cell, whereas mAID 94 
allowed acute degradation of the tagged protein via the proteasome. We selected the 95 
human HCT116 cell line for this study, which is a stable diploid line derived from colon 96 
cancer (Brattain et al., 1981). This cell line is amenable to CRISPR/Cas9-based genome 97 
editing and RNAi, and its mitosis has been studied in our laboratory (Okumura et al., 98 
2018; Tsuchiya et al., 2021; Tungadi et al., 2017). 99 

Prior to studying MT nucleation, we performed a basic characterisation of this cell 100 
line. First, TubG1-mAID-mClover was localised to the centrosome and spindle MTs, 101 
consistent with immunostaining in various human cell lines (Luders et al., 2006) (Fig. 1D, 102 
Movie 1). Second, the mitotic progression (31 ± 8 min [±SD], n = 49; Fig. 1E) was 103 
comparable to that in the control cell line (34 ± 8 min; Tsuchiya et al., 2021). Finally, we 104 
performed sucrose gradient centrifugation, followed by immunoblotting (Fig. 1B, C). The 105 
results indicated that TubG1-mAID-mClover was assembled into the large g-TuRC 106 
complex. Given the addition of 14 copies of mAID-mClover tag (each ~30 kD), it was 107 
reasonable that the peak of the tagged protein was shifted by one lane to a larger fraction 108 
than endogenous TubG1. A slightly smaller complex was also detected for tagged TubG1 109 
(lane 10 in Fig. 1C); this may be because the tag partially prevents incorporation into the 110 
complete g-TuRC. Nevertheless, the result is consistent with the observation that 111 
endogenous TubG1 can be completely replaced with TubG1-mAID-mClover in this 112 
human cell line. 113 

Upon indole acetic acid (IAA) treatment, cells showed different levels of mClover 114 
signals (as observed using a spinning-disc confocal microscope) owing to varying 115 
degradation levels in interphase and mitosis (Fig. 2A–C). This was confirmed by the 116 
quantification of the mClover signal intensity (Fig. 2D, E). The cells in which we could 117 
not detect residual γ-tubulin signals by manual inspection always returned low signal 118 
values after quantification (coloured pink in the graph). However, the opposite was not 119 
true; the cells with very low signals in quantification did not always represent γ-tubulin-120 
null based on manual inspection; they included cells with faint punctate mClover signals 121 
at the centrosome, which did not contribute markedly to the total intensity. Therefore, in 122 
the subsequent analysis, we manually inspected the acquired images and selected 123 
“mClover signals undetectable” cells; these cells were closest to g-tubulin null. The 124 
neighbouring cells with mClover signals served as internal controls. Regardless of the 125 
presence or absence of mClover signals, MTs visualised with SiR-tubulin were present 126 
in every cell during interphase (Fig. 2A). Furthermore, the cells assembled tiny spindles 127 
in mitosis and could not enter anaphase (Fig. 1D, E, Movie 2). These results support the 128 
presence of γ-tubulin–independent MT nucleation during interphase and mitosis. 129 
 130 
MT nucleation in the absence of g-tubulin 131 

To assess MT generation ability without g-tubulin in living cells, we performed an 132 
MT depolymerisation/regrowth assay, in which MTs were first depolymerised with the 133 
MT drug nocodazole, followed by drug washout (Fig. 3A, Movie 3). The experiments 134 
were mostly performed at 25 °C, as MTs reappeared too quickly after drug washout at 135 
37 °C; MT nucleation took place prior to image acquisition. For normal HCT116 cells, 136 
25 °C is a challenging temperature, as evidenced by the fact that bipolar spindle formation 137 
requires > 30 min (Fig. S2A, B). However, this was compensated for in the regrowth 138 
assay, as the initial tubulin concentration was higher than that in normal cycling cells due 139 
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to complete MT depolymerisation beforehand. In cells that retained TubG1-mClover 140 
signals (circled yellow), cytoplasmic MTs were observed 10 min after drug washout, with 141 
the centrosome being the most prominent MT organising centre (MTOC) (43 out of 45 142 
cells showed cytoplasmic MT network at 10 min) (Fig. 3B). In contrast, cytoplasmic MTs 143 
were hardly detected until 20–30 min in the absence of g-tubulin, with no clear MTOCs 144 
(circled red; 33 out of 42 cells showed no cytoplasmic MT networks at 10 min).  145 

To further demonstrate that MT nucleation occurs in the absence of g-TuRC as the 146 
nucleator, we observed the cells undergoing MT regrowth using oblique illumination 147 
fluorescence microscopy, which is sensitive enough to detect a single g-tubulin complex 148 
containing >10 fluorescent mClover molecules and an occasional MT nucleation event 149 
(Nakaoka et al., 2015). We observed many punctate signals in control cells, each likely 150 
representing a cytoplasmic g-TuRC near the cell cortex (Fig. 4A, yellow circle). We could 151 
not identify a MT nucleating event from the observed g-TuRC spots; MT emergence 152 
under these conditions represented MT plus ends grown from the other focal plane. This 153 
was because MT nucleation predominantly occurred at the centrosome, which could not 154 
be localised to the focal plane in this microscopy. In contrast, after degron treatment, 155 
some cells hardly showed punctate signals of mClover, despite the presence of MTs (Fig. 156 
4B, red circle). MTs were generated in the absence of g-tubulin (i.e. undetectable levels 157 
of mClover signals), albeit more slowly (Fig. 4C). Under these conditions, we 158 
occasionally identified MT nucleating events, in which MT punctae diffused in 2D, which 159 
is an indicator of nucleation rather than plus-end growth from the off-focal plane (Fig. 160 
4D, arrows). Furthermore, we observed at higher frequency the MT loop formation in 161 
which both ends were clearly in the focal plane (Fig. 4B, right, Fig. 4D, bottom right, 162 
Movie 4); the diameter of the loop was 0.85 ± 0.26 µm (±SD, n = 29), which resembles 163 
what has been observed in an in vitro MT gliding assay (Liu et al., 2011).  164 

To determine whether there is a possible artifactual effect of SiR-tubulin dye on MT 165 
nucleation and growth ability, we compared the timing of MT appearance and MT growth 166 
rate in the presence or absence of SiR-tubulin. To visualise MTs without SiR-tubulin, we 167 
selected and used a cell line in which endogenous ch-TOG was tagged with mCherry (Fig. 168 
S1C, S2C, Movie 1). The data indicate that the effect of SiR-tubulin on MT nucleation 169 
and growth is mild (Fig. S2D, E).  170 

Taken together, we concluded that g-TuRC constitutes the dominant, but not essential, 171 
mechanism of MT nucleation in the interphase cytoplasm.   172 
 173 
ch-TOG, CLASP1, and CAMSAPs are critical for interphase MT generation in the 174 
absence of g-tubulin 175 

To identify the factors responsible for γ-tubulin-independent nucleation, we 176 
conducted an RNAi screen of 11 candidate genes (or gene family) using the g-tubulin 177 
degron line (Fig. 5A). The MT regrowth assay was carried out, and the cells that retained 178 
or lacked γ-tubulin-mClover signals were analysed. In the screening, we identified “MT 179 
regrowth” when one or more MTs were detected within 30 min under a spinning-disc 180 
confocal microscope. When g-tubulin was present, MTs were observed normally in all 181 
RNAi samples. In contrast, we observed that more than half of the γ-tubulin-degraded 182 
cells failed to regrow MTs in 30 min when ch-TOG, CLASP1, or CAMSAP1/2/3 were 183 
depleted by RNAi (Fig. 5B–E). In contrast, depletion of CDK5RAP2 or PCNT had no 184 
effect on γ-tubulin-independent MT generation, although it has been shown to promote 185 
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cytoplasmic nucleation in the presence of g-tubulin in other cell types (Choi et al., 2010; 186 
Gavilan et al., 2018; Wu et al., 2016). 187 

To confirm and specify the responsible genes, we performed loss-of-function 188 
analyses after generating new cell lines (Fig. 6A–C, Movie 3). The critical contribution 189 
of ch-TOG (Xenopus XMAP215 orthologue), best known as MT polymerase (Brouhard 190 
et al., 2008), was confirmed by degron treatment of the line expressing TubG1-mAID-191 
mClover and ch-TOG-mAID-mCherry (Fig. S1C). When neither signal was observed, 192 
MT regrowth was undetectable for 30 min in >70% of the cells (Fig. 6A, D). The 193 
requirement of AKAP450 (Gavilan et al., 2018; Rivero et al., 2009; Wu et al., 2016) was 194 
excluded from the observation of MT regrowth in their verified knockout (KO) lines (Fig. 195 
6D, S1F, S3A). CLASP proteins are best known as MT stabilisers (Al-Bassam et al., 196 
2010; Moriwaki and Goshima, 2016; Yu et al., 2016) and are also required for Golgi- and 197 
g-tubulin-dependent MT nucleation in RPE1 cells (Efimov et al., 2007). CLASP1 was 198 
crucial for MT regrowth, as revealed by the generation of a CLASP1-mAID-mCherry 199 
degron line in the background of g-tubulin degron (Fig. 6B, D, S1D). CAMSAP family 200 
members have been characterised as minus-end stabilisers (Goodwin and Vale, 2010; 201 
Jiang et al., 2014), in which the CAMSAP3 KO line showed normal regrowth of MTs 202 
(Fig. S1G, S3B, C). However, when CAMSAP1 or CAMSAP2 was depleted by RNAi in 203 
the CAMSAP3 KO line, MT regrowth was not observed in >25% of the cells (Fig. 6C, 204 
D, S3D–G). Quantification of MT intensity at 30 min supported these findings (Fig. 6E). 205 
These results indicate that ch-TOG, CLASP1, and CAMSAPs are involved in MT 206 
generation during the interphase of γ-tubulin-depleted cells. 207 

An identical assay was performed at 37 °C (Fig. 6F). Even under this more favourable 208 
condition for MT nucleation and growth, we observed a significant delay in MT 209 
nucleation in the absence of g-tubulin. Unlike at 25 °C, MTs were observed within 30 min 210 
in the majority of cells after co-depletion with ch-TOG or CLASP1. Interestingly, 211 
however, the first appearance of MT was delayed when CLASP1, but not ch-TOG, was 212 
co-depleted with g-tubulin (Fig. 6F). These results suggest that CLASP1 is involved in 213 
the early stage of MT formation, possibly in the nucleation step, in the absence of g-214 
tubulin during interphase.  215 

 216 
No accumulation of ch-TOG and CLASP1 at the g-tubulin-independent nucleation 217 
site 218 

We investigated the possibility that ch-TOG or CLASP first forms an assembly or 219 
seed, from which MT nucleates and regrows in the absence of g-tubulin in cells. To this 220 
end, the ch-TOG-mCherry or CLASP1-mCherry constructs, which did not have the AID 221 
tag, were integrated into the TubG1-mClover-mAID/TubG2-KO line, and oblique 222 
illumination fluorescence microscopy was performed after g-tubulin degradation. We 223 
observed MT nucleation and growth after the drug washout. However, ch-TOG or 224 
CLASP1 was undetectable at the emergence of MTs; they were later visible near the other 225 
end of MTs (Fig. S4). Considering that the SiR-Tubulin dye stains the MT lattice with a 226 
~10 s delay after actual MT formation (David et al., 2019), it is unlikely that ch-TOG or 227 
CLASP1 was abundantly present at the nucleation site. We concluded that a detectable 228 
level of assembly of ch-TOG or CLASP1 at MT minus ends was not involved in γ-229 
tubulin-independent MT regrowth.  230 
 231 
g-Tubulin-independent MT nucleation and MTOC formation during prometaphase 232 
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Next, we tested the involvement of g-tubulin in mitotic MT nucleation through MT 233 
depolymerisation and regrowth assay in prometaphase (Movie 5). MTs were 234 
depolymerised by 24 h nocodazole treatment and 4 h incubation on ice (Fig. 7A). In 235 
control cells with g-tubulin, MTs were undetectable, except for one or two spots (Fig. 7B, 236 
0 min). These most likely reflected centriole-dependent MTs, as MT foci were co-237 
localised with centrin-2 signals in immunostaining images (Fig. S5A), and the punctate 238 
signal was not observed when centriole was depleted by a total of 12 days of incubation 239 
with centrinone, a chemical inhibitor of the centriole duplication factor Plk4 (Wong et al., 240 
2015) (Fig. S5B). Upon nocodazole washout and returning the cells to 25 °C, MTs were 241 
immediately and predominantly nucleated from the centrosomes (Fig. 7B). In the cells in 242 
which g-tubulin was undetectable, MTs similarly disappeared from the mitotic cytoplasm, 243 
retaining one or two punctate signals at the centriole (Fig. 7C, 0 min). Upon nocodazole 244 
washout, MT regrowth was observed, albeit more slowly, in the absence of g-tubulin 245 
signals (Fig. 7C, 20–30 min). Impaired regrowth was consistent with the results of a 246 
previous study in which a g-TuRC component was depleted in HeLa cells (Luders et al., 247 
2006).  Interestingly, in addition to centriolar MTOCs (blue arrow at 6 m 30 s), non-248 
centriolar MTOCs (ncMTOCs) appeared in HCT116 cells, from which MTs later 249 
emanated radially (Fig. 7C, right, green arrows). These MTOCs did not have detectable 250 
g-tubulin signals, indicating that MTs are nucleated independent of g-tubulin or pre-251 
existing MTs. We confirmed that SiR-tubulin staining had negligible impact, as 252 
ncMTOCs (visualised by TPX2-mCherry) appeared at similar times and numbers with or 253 
without SiR-tubulin staining (Fig. S5C–E). Thus, g-tubulin is not essential for MT 254 
nucleation in prometaphase.  255 
 256 
TPX2 and CLASP1 promote mitotic MTOC formation, whereas ch-TOG is critical 257 
for mitotic MT growth, in the absence of g-tubulin 258 

ncMTOC is formed through MT nucleation, initial growth, stabilisation, and 259 
clustering. We investigated the impact of ch-TOG, CAMSAPs, or CLASP1 depletion on 260 
ncMTOC formation in the absence of g-tubulin.  261 

First, in the absence of ch-TOG alone, ncMTOCs that were clearly separated from 262 
centrioles were observed in ~50% of the cells, probably because centrosomal MT growth 263 
was suppressed and tubulins were available for other MTOC formation (Fig. S5F, I). 264 
ncMTOC was also observed in CLASP1 knockdown; however, centrosomal MTOCs 265 
were dominant over ncMTOCs in this case (Fig. S5G, I). In both cases, MT regrowth 266 
from MTOCs was not suppressed (Fig. S5J). 267 

Next, we conducted a regrowth assay after co-depletion with g-tubulin. MT 268 
depolymerisation removed most MTs, except one or two punctate centriolar signals, 269 
similar to control or single γ-tubulin-depleted cells (Fig. 7D, E, 0 min). In C. elegans, co-270 
depletion of g-tubulin and the ch-TOG orthologue does not result in additional loss of MT 271 
regrowth in mitotic cells (Hannak et al., 2002). However, when γ-tubulin and ch-TOG 272 
were co-depleted, mitotic MT formation was severely suppressed, consistent with the 273 
results of the interphase (Fig. 7D). Interestingly, the initial ncMTOC formation was not 274 
substantially affected, indicating that MT nucleation occurred, but the subsequent growth 275 
was impaired (Fig. 7D, green arrows, 7G). Similarly, depletion of CAMSAPs did not 276 
affect the timing of ncMTOC formation (Fig. 7G).  In contrast, after depletion of CLASP1, 277 
the appearance of ncMTOCs was dramatically delayed (Fig. 7E, G). These results suggest 278 
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that ch-TOG is essential for MT growth, but not the initial nucleation step, whereas 279 
CLASP1 contributes to ncMTOC formation in the absence of g-tubulin. 280 

TPX2 plays a role in non-centrosomal MT formation during mitosis in multiple cell 281 
lines (Gruss et al., 2002). In the MT regrowth assay using LLC-PK1 and HeLa cells, 282 
TPX2 was found to be responsible for non-centriolar MT formation in the presence of g-283 
tubulin (Cavazza et al., 2016; Katayama et al., 2008; Tulu et al., 2006). We reasoned that 284 
this protein might also contribute to ncMTOC formation in the absence of γ-tubulin. We 285 
first selected the degron line (Fig. S1E) and performed the mitotic MT 286 
depolymerisation/regrowth assay in the presence of γ-tubulin. Similar to the ch-TOG 287 
degron, ncMTOCs were observed in ~50% of the cells and MTs regrew from the MTOCs 288 
(Fig. S5H–J). This is somewhat different from what has been observed in other studies 289 
using different cell lines; in our HCT116 cells, TPX2 was dispensable for ncMTOC 290 
formation. To test the contribution of TPX2 in the absence of γ-tubulin, we selected a 291 
double-degron line of TPX2 and γ-tubulin, and furthermore, combined TPX2 RNAi with 292 
γ-tubulin single or CLASP1/γ-tubulin double degrons. We observed a delay in the 293 
appearance of ncMTOCs in either case, indicating that TPX2 promotes ncMTOC 294 
formation (Fig. 7F, G). However, ncMTOCs were eventually formed in >50% of the cells 295 
in either sample, suggesting that other unknown factors might also nucleate MTs in the 296 
absence of γ-tubulin during mitosis.  297 

 298 
Roles of Aurora and Plk1 kinases 299 

Three mitotic kinases have been implicated in mitotic MT generation in previous 300 
studies: Plk1/Polo (Cavazza et al., 2016) and Aurora A at the centrosome (Katayama et 301 
al., 2008; Magnaghi-Jaulin et al., 2019), and Aurora B in chromosome-proximal regions 302 
independent of the centrosome (Carmena et al., 2012). In C. elegans, centrosomal MT 303 
generation was additively suppressed by depleting γ-tubulin and Aurora A (Motegi et al., 304 
2006). We tested the contribution of these kinases to γ-tubulin-independent MT regrowth 305 
in prometaphase by preventing their kinase activity with specific inhibitors in γ-tubulin-306 
depleted cells (Fig. 8A).  307 

When the Plk1 inhibitor BI2536 was supplied, ncMTOC formed at normal timing, 308 
similar to the control γ-tubulin single-depleted cells (Fig. 8B, C, F). In contrast, the 309 
inhibition of Aurora B inhibitor by ZM447439 or Aurora A kinase by alisertib delayed 310 
ncMTOC formation in the absence of γ-tubulin (Fig. 8D–F). The effect of Aurora B was 311 
reproduced by RNAi knockdown of Aurora B. Aurora A and B may be partly involved 312 
in non-centriolar MT nucleation in the absence of γ-tubulin.  313 
 314 
Discussion 315 
 316 
MT nucleation in the absence of γ-tubulin 317 

The γ-TuRC is the dominant and arguably the only established cellular MT nucleator 318 
in a wide variety of cells. However, experimental perturbation of γ-TuRC in various cell 319 
types has never led to a complete loss of cellular MTs. Using a single cell-based assay 320 
that monitors both MTs and endogenous γ-tubulin, we unambiguously demonstrated that 321 
MTs could be nucleated in the absence of γ-TuRC in human colon cancer cells.  322 

Our functional analysis suggested a possible involvement of MAPs in nucleation. 323 
The mitotic MT regrowth assay provided valuable information about non-γ-tubulin MT 324 
nucleators, as ncMTOC was visible in almost all cells when γ-tubulin was depleted. The 325 
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data indicated that TPX2 and CLASP1 contribute to MTOC formation. In Xenopus egg 326 
extracts and by sophisticated in vitro reconstitution, TPX2 was shown to activate augmin- 327 
and γ-tubulin-dependent branching nucleation (Alfaro-Aco et al., 2020) and promote 328 
template-based nucleation (Wieczorek et al., 2015). Our data suggest that TPX2 not only 329 
stimulates the γ-tubulin-dependent process but also potentiates template-free MT 330 
nucleation independent of γ-tubulin in the cell. This is consistent with the finding that 331 
recombinant TPX2 can promote MT nucleation in vitro (Brunet et al., 2004; Gruss et al., 332 
2002; Roostalu et al., 2015). From in vitro studies, CLASP1 is best known as a MT 333 
stabiliser acting on the MT plus ends and the lattice; it inhibits MT catastrophe and 334 
promotes rescue and pausing (Al-Bassam et al., 2010; Moriwaki and Goshima, 2016; Yu 335 
et al., 2016). In mitosis, the kinetochore function of CLASP1 has been extensively 336 
analysed; however, to our knowledge, the MT nucleation functions have not been 337 
extensively discussed (Logarinho et al., 2012; Maffini et al., 2009). CLASPs are known 338 
to promote Golgi-mediated MT nucleation during the interphase (Efimov et al., 2007). 339 
This function involves AKAP450 and γ-tubulin and is therefore considered to promote γ-340 
tubulin-dependent nucleation (Efimov et al., 2007; Gavilan et al., 2018; Rivero et al., 341 
2009; Wu et al., 2016). It is possible that CLASP1 binds to tubulins and MTs, contributing 342 
to the formation of the critical nucleus independent of γ-tubulin. However, because 343 
MTOC formation requires not only MT nucleation but also initial growth, stabilisation, 344 
and clustering, it cannot be ruled out that TPX2 and CLASP1 regulate the latter three 345 
processes.  346 

γ-Tubulin-independent ncMTOC formation was observed in the absence of ch-TOG 347 
or CAMSAPs during prometaphase, suggesting that they are not essential for mitotic MT 348 
nucleation. MT growth from these ncMTOCs was also observed frequently in the absence 349 
of CAMSAPs. In contrast, MT growth from both centriolar and ncMTOCs was inhibited 350 
in the absence of ch-TOG and γ-tubulin. We interpret that ch-TOG is dispensable for 351 
ncMT nucleation, at least in the presence of CLASP1 and TPX2, but is critical for MT 352 
polymerisation, which is consistent with the established role of ch-TOG as the MT 353 
polymerase. Regarding centriolar MTOCs, an intriguing possibility is that ch-TOG 354 
catalyses centriole-based MT nucleation, independent of γ-tubulin. This is consistent with 355 
the proposal on C. elegans centrosomes, where the ch-TOG homologue is recruited and 356 
concentrates tubulin for nucleation (Woodruff et al., 2017). However, we cannot exclude 357 
the possibility that ch-TOG catalyses plus-end polymerisation from nocodazole-resistant 358 
MTs at the centriole.  359 

ch-TOG, CAMSAPs, and CLASP1 were important during γ-tubulin-independent MT 360 
generation in the interphase. Interestingly, the assay conducted at 37 °C distinguished the 361 
phenotype of ch-TOG and CLASP1, which is a favourable condition for tubulin to 362 
nucleate and polymerise MTs; MT appearance was delayed specifically in the absence of 363 
CLASP1, consistent with the mitosis results. Thus, CLASP1 might be considered 364 
involved in the nucleation step, whereas ch-TOG is more critical in MT polymerisation 365 
in this cell line. The specific role of CAMSAPs remains unclear, as it is required for MT 366 
minus-end stabilisation (Jiang et al., 2014) and might also drive nucleation (Imasaki et 367 
al., 2021). In C. elegans, the CAMSAP homolog promotes the assembly of non-368 
centrosomal MT arrays in parallel with γ-tubulin (Wang et al., 2015). 369 

Are there other factors redundant with CLASP1 and TPX2 for nucleation? Our 370 
protein-depletion experiments did not provide all-or-none results. Most notably, we still 371 
observed ncMTOCs in ~30% of the cells after the depletion of γ-tubulin, CLASP1, and 372 
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TPX2. This might reflect the incomplete depletion of target proteins by AID and RNAi. 373 
Alternatively, other MT nucleation factors may also exist. In any case, our data indicate 374 
that MT nucleation can be promoted by multiple MAPs in human cells: CLASP1 and 375 
TPX2 at the minimum and possibly more. 376 

The mechanism by which CLASP1 or TPX2 promotes nucleation at the molecular 377 
level remains unclear. Our imaging suggests that CLASP1 does not form clusters large 378 
enough to be visualised by oblique illumination fluorescence microscopy. Thus, the 379 
mechanism would be fundamentally different from γ-tubulin-mediated nucleation, where 380 
the ring arrangement of 13 γ-tubulin molecules drives nucleation. These MAPs may 381 
enhance the longitudinal and lateral contact between tubulins (Roostalu and Surrey, 2017). 382 
Regarding TPX2, phase-separated condensates might act as the tubulin concentrator and 383 
thereby the MT nucleator (King and Petry, 2020). Furthermore, an interesting in vitro 384 
study has been published recently, in which the critical nucleus was visualised by electron 385 
microscopy (Ayukawa et al., 2021). In their model, the nucleus was characterised by 386 
straight tubulin oligomers, which are different from curved tubulin dimers in solution. 387 
Provided that this model is correct, TPX2 and CLASP might be considered to convert the 388 
curved structure to straight via binding. This is a testable hypothesis in vitro.  389 

 390 
Does γ-tubulin-independent nucleation take place in the presence of γ-tubulin? 391 
γ-Tubulin-dependent nucleation at the centrosome is predominant in the HCT116 cell line, 392 
and therefore, this study could not determine whether γ-tubulin-independent nucleation 393 
occurs in normal HCT116 cells. However, a few reports, besides that of a simple mutant 394 
analysis, show that the γ-tubulin-independent mechanism is operating and perhaps 395 
important in MT generation in other cell types (Roostalu and Surrey, 2017). One system 396 
is the protonemal tissue of the moss Physcomitrium patens in which oblique illumination 397 
fluorescence microscopy was applied, and the γ-tubulin complex and MTs could be 398 
simultaneously observed (Nakaoka et al., 2015). While 90% of the nucleating MTs had 399 
γ-tubulin signals at the minus ends, no signals were identified in the other 10% of wild-400 
type cells. The stability of these MTs was explained by the identification of the plant-401 
specific minus-end binding and stabilising protein Spiral2 (Leong et al., 2018). Another 402 
notable system is the non-centrosomal fat body cell in Drosophila, where γ-tubulin is 403 
dispensable for perinuclear MTOC formation, despite being localised at the perinuclear 404 
region with the activators (Zheng et al., 2020). In these cells, MTs are generated by 405 
CAMSAP and ninein, which recruit ch-TOG. These MTs play critical roles in nuclear 406 
positioning. However, single MT or minus ends cannot be specifically visualised in live 407 
in this system; it is possible that γ-tubulin also contributes to MT nucleation under normal 408 
conditions. Finally, in the electron tomography of the metaphase spindle, MT ends 409 
associated with γ-TuRC (ends are closed) and without γ-TuRC (ends are open) were 410 
detected (Kamasaki et al., 2013; O'Toole et al., 2003). The open ends represent either plus 411 
ends of MTs or the minus ends of MTs nucleated independent of γ-tubulin. Taken together, 412 
it can be assumed that the γ-tubulin-independent mechanism operates and plays a role in 413 
the activity of at least certain animal and plant cell types. 414 
 415 
Materials and methods   416 
 417 
Plasmid, cell culture, and cell line selection 418 
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Plasmids for CRISPR/Cas9-mediated genome editing and auxin-inducible degron were 419 
constructed using standard protocols (Natsume et al., 2016; Okumura et al., 2018). The 420 
plasmids and sgRNA sequences used in this study are listed in Tables S1 and S2, 421 
respectively. In the normal passage, the HCT116 cell line possessing DOX-inducible tet-422 
OsTIR1 was cultured at 37°C with McCoy’s 5A medium (Gibco) supplemented with 10% 423 
serum and 1% antibiotics (Natsume et al., 2016). Knock-in and knockout lines were 424 
generated by CRISPR/Cas9 genome editing essentially as previously described 425 
(Okumura et al., 2018). CRISPR/Cas9 and donor plasmids were co-transfected into the 426 
cell lines using Effectene (Qiagen, Venlo, Netherlands). For drug selection, 1 μg/mL 427 
puromycin (Wako Pure Chemical Industries, Osaka, Japan), 800 μg/mL G418 (Roche, 428 
Basel, Switzerland), 200 μg/mL hygromycin B (Wako Pure Chemical Industries), and 8 429 
μg/mL blasticidin S hydrochloride (Funakoshi Biotech, Tokyo, Japan) were used. 430 
Selection medium was replaced with fresh selection medium 4–5 d after starting selection. 431 
After 10–14 d, colonies grown on a 10 cm culture dish were washed once with PBS, 432 
picked up with a pipette tip under a microscope (EVOS XL, Thermo Fisher Scientific, 433 
Waltham, MA) located on a clean bench, and subsequently transferred to a 96-well plate 434 
containing 50 μL of trypsin-EDTA. After a few minutes, the trypsinized cells were 435 
transferred to a 24-well plate containing 500 μL of the selection medium, and then further 436 
transferred to a 96-well plate (200 μL per well) for the preparation of genomic DNA. For 437 
the preparation of genomic DNA, cells in the 96-well plate were washed once with PBS 438 
and lysed by 90 µL of 50 mM NaOH. After boiling for 10 min, the solution was 439 
equilibrated by 10 µL of 100 mM Tris-HCl (pH 9.0). To confirm the genomic insertion, 440 
PCR was performed using 1–2 μL of the genomic DNA solution and Tks Gflex DNA 441 
polymerase (Takara Bio). The primers are listed in Table S3. For the TubG1-KO/TubG2-442 
mClover-mAID line, γ-tubulin and a-tubulin were immunoblotted with monoclonal 443 
antibodies GTU88 (Sigma, 1:10,000) and DM1A (Sigma, 1:2,000), respectively, and the 444 
lack of untagged γ-tubulin protein was confirmed. Proper tagging to ch-TOG, CLASP1 445 
and TPX2, and biallelic deletion of CAMSAP3 and AKAP450 were confirmed by 446 
immunoblotting with specific antibodies as follows: ch-TOG (QED Bioscience, 1:1,000), 447 
CLASP1 (Abcam, 1:1,000), TPX2 (anti-rabbit, 1:200, a gift of Dr. Isabelle Vernos (Gruss 448 
et al., 2002)), CAMSAP3 (anti-rabbit, 1:200, gift of Dr. Masatoshi Takeichi (Tanaka et 449 
al., 2012)) and AKAP450 (anti-rabbit, 1:1,000, gift of Dr. Yoshitaka Ono (Takahashi et 450 
al., 1999)). All tagged lines grew in a manner that was indistinguishable from the parental 451 
line, indicating that the tag did not substantially affect protein function. To activate auxin-452 
inducible degradation, cells were treated with 2 µg/mL Dox for 20–24 h and 500 µM IAA 453 
for the duration indicated in each figure. RNAi was performed using Lipofectamine 454 
RNAiMAX (Invitrogen), following manufacturer’s instruction. 455 
 456 
Biochemistry 457 
Immunoblotting was performed using a standard protocol with SDS sample buffer, except 458 
for ch-TOG detection, which might be prone to degradation during this procedure. For 459 
ch-TOG, cells were treated with 4M urea-containing sample buffer for 10 min at room 460 
temperature (Ito and Goshima, 2015). Sucrose gradient centrifugation was performed 461 
according to previously reported methods (Choi et al., 2010; Teixido-Travesa et al., 2010). 462 
Confluent cells on three 10-cm culture dishes were lysed with 800 µL lysis buffer (50 463 
mM HEPES-KOH pH 7.6, 150 mM NaCl, 1 mM EGTA, 1 mM MgCl2, 1 mM DTT, 464 
0.5% NP-40, 100 µM GTP, and protease inhibitors), followed by 27 G needle passages. 465 
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After two rounds of centrifugation (13,000 rpm, 15 min in a tabletop centrifuge and 466 
50,000 rpm, 15 min in TLA100.3 rotor [Beckmann]), 500 µL supernatant was loaded 467 
onto a 10%–40% sucrose gradient in a SETON tube (#7022), which was prepared using 468 
Gradient Station (BIOCOMP), and centrifuged in an MLS-50 rotor (Beckmann) at 50,000 469 
rpm for 3 h 45 min at 4 °C. Fractionation was performed with Gradient Station attached 470 
to MicroCollector (AC-5700P, ATTO). Aldolase (7.4S) and thyroglobulin (19S) were 471 
used as size markers.  472 

 473 
Microscopy 474 
Imaging was mostly performed using spinning-disc confocal microscopy with a 60× 1.40 475 
NA lens (Nikon). A CSU-X1 confocal unit (Yokogawa Electric Corporation) and an 476 
EMCCD camera ImagEM (Hamamatsu Photonics) were attached to a Ti-E inverted 477 
microscope (Nikon) with a perfect focus system. Several DIC images were acquired with 478 
another spinning-disc confocal microscope, in which CSU-W1 and ORCA-Flash4.0 479 
digital CMOS camera (Hamamatsu Photonics) were attached to Ti-E (courtesy of Dr. 480 
Tomomi Kiyomitsu). Oblique illumination fluorescence microscopy was performed 481 
following the method used for plant cell imaging (Nakaoka et al., 2015). Briefly, the 482 
cortical region of interphase cells on the glass-bottom dish was imaged every 2 s with a 483 
Nikon Ti-E microscope equipped with an EMCCD camera Evolve (Roper) and the total 484 
internal reflection fluorescence unit and a 100 × 1.49 NA lens (Nikon). A fragment of 485 
broken glass was placed on the sample to flatten the cells. Imaging for regrowth assay 486 
was performed mostly at 25–26 °C and sometimes at 37°C as indicated in the figure. 487 
Time-lapse imaging of regular mitosis and the degron efficiency analysis were performed 488 
at 37°C. The microscopes were controlled using NIS-Elements software (Nikon). 489 
Centrin-2 immunostaining was performed with a specific antibody (SantaCruz, rabbit, 490 
1:500) after methanol fixation. All image analyses of live spinning-discs were based on 491 
maximum projection images, whereas a single focal plane was shown for the 492 
immunofluorescence image and measurement of SiR-tubulin signals. To optimise the 493 
image brightness, the same linear adjustments were applied using Fiji. MT growth in 494 
prometaphase was determined at 30 min; the appearance of filamentous signals 495 
emanating from MTOCs were the indicator of MT regrowth.  496 
 497 
MT regrowth assay 498 
The flowcharts are shown in the figures. In one mitosis experiment, typically 3–4 499 
analysable cells were obtained; to obtain N ≥ 10, at least three independent experiments 500 
were performed. Cells were cultured in 4-well glass-bottomed dishes (CELLview™, 501 
#627870; Greiner Bio-One, Kremsmünster, Austria) and maintained in a stage-top 502 
incubator (Tokai Hit, Fujinomiya, Japan). 5% CO2 was supplied. The heater was not 503 
turned on, and the experiment was performed at room temperature (~25°C). MTs were 504 
stained with 50 nM SiR-tubulin (Spirochrome) for >1 h prior to image acquisition 505 
(Lukinavicius et al., 2014; Okumura et al., 2018). Cells in a 4-well glass-bottom dish were 506 
treated with 40 ng/mL nocodazole on ice for 4 h (interphase) or at 37°C for 20–24 h 507 
(prometaphase), followed by drug washout by medium exchange twice (1 min each, 700–508 
800 µL, room temperature). This incubation time on ice was set as residual MTs or dead 509 
cells were detected by shorter or longer incubation, respectively. The specimen was 510 
immediately set under a microscope, and images were acquired. In most experiments, the 511 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.13.456214doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.13.456214
http://creativecommons.org/licenses/by-nc/4.0/


 12 

cells were kept at room temperature (~25°C) to prevent MT nucleation before sample 512 
setup and slow down the nucleation step. For regrowth assay at 37°C, cells were washed 513 
by 37°C warmed medium and the temperature was contoroled by stage top incubator. 514 
Images were acquired every 30 s for 30 min with spinning-disc microscopy equipped with 515 
a piezo stage (1 µm × 3 or 5 z-sections). The maximum projection images are displayed 516 
in the figures. Cells were treated with mitotic kinase inhibitors for 2 h prior to imaging, 517 
and imaging was performed in the presence of drug treatments (BI2336, 10 µM; 518 
ZM447439, 10 µM; and Alisertib, 0.5 µM). BI2536 was effective at this concentration in 519 
the HCT116-TubG1 degron line, as 16 out of 17 cells showed monopolar spindles at only 520 
30 nM. ZM447439 was shown to be effective in HCT116 cells at concentrations of 2 µM 521 
or higher (Dreier et al., 2009; Li et al., 2010). Moreover, we reproduced the phenotype 522 
using RNAi. The reported IC50 value of alisertib in HCT116 was 0.032 µM (Manfredi et 523 
al., 2011) and 0.04 µM (Davis et al., 2015), which is much lower than our applied 524 
concentration (0.5 µM). Other studies have shown that p53 is fully activated at 0.4 µM or 525 
above (Marxer et al., 2014) or that apoptosis is observed similarly at 0.1 µM and 1 µM 526 
(Pitts et al., 2016).   527 
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Movie 1. Mitotic localisation of tagged proteins  761 
mClover-tagged TubG1 and mCherry-tagged ch-TOG, CLASP1, and TPX2 were imaged 762 
with MTs (visualised with SiR-tubulin) using spinning-disc confocal microscopy. Time 763 
indicates hours and minutes. Bar, 10 µm.  764 
 765 
Movie 2. Spindle phenotype after γ-tubulin depletion 766 
Mitotic progression after γ-tubulin depletion. MTs (green) were visualised using SiR-767 
tubulin and imaging was performed using spinning-disc confocal microscopy. Magenta; 768 
TubG1-mClover. Time is shown in hours and minutes. 769 
 770 
Movie 3. MT regrowth after depolymerisation in interphase 771 
Indicated proteins were depleted by AID in cells marked in white circles. MTs were 772 
visualised by SiR-tubulin and imaged using spinning-disc confocal microscopy. Time 773 
indicates minutes and seconds.  774 
 775 
Movie 4. MT regrowth after depolymerisation in interphase-oblique illumination 776 
MT regrowth in a g-tubulin-depleted cell was observed using oblique illumination 777 
fluorescence microscopy. The region near the cell cortex was visualised using microscopy. 778 
Ring-shaped MTs are indicated by arrows. Time indicates minutes and seconds.  779 
 780 
Movie 5. MT regrowth after depolymerisation in mitosis 781 
The indicated proteins were depleted by AID in the white-circled cells. MTs were 782 
visualised by SiR-tubulin and imaged using spinning-disc confocal microscopy. Multiple 783 
ncMTOCs were detected in the g-tubulin single-depleted cells. Time indicates minutes 784 
and seconds.  785 
 786 
Table S1. Plasmids for homologous recombination 787 
Name Purpose Homology arm Selection 

N term C term 

pKT1 TubG1-mClover-mAID integration 248 bp 202 bp G418 

pKT11 TubG2 knock out 642 bp 526 bp blasticidin 

pKT35 ch-TOG-mAID-mCherry integration 600 bp 669 bp hygromycin 

pKT52 ch-TOG-mCherry integration 600 bp 669 bp hygromycin 

pKT90 CLASP1-mAID-mCherry integration 574 bp 632 bp hygromycin 

pKT43 TPX2-mAID-mCherry integration 201 bp 254 bp hygromycin 

pKT53 TPX2-mCherry integration 201 bp 254 bp hygromycin 

pKT55 AKAP450 knock out 598 bp 601 bp hygromycin 

pKT58 CAMSAP3 knock out 834 bp 585 bp hygromycin 
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 789 
Table S2. sgRNA sequences for CRISPR/Cas9-mediated genome editing 790 

Gene sgRNA (5'-3') PAM plasmid 

TubG1 AGTCTGGCCGTGTGGCCGCA TGG pTK611 

TubG2 
(N-terminus) TGCAGGGTGATGATCTCCCG GGG pKT13 

TubG2 
(C-terminus) CTAGAAGGAGAAGGAGTAGT GGG pKT14 

ch-TOG CTGCAGGGTGCCGGGGGAGT GGG pKT36 

CLASP1 CCTGGGCTGATACGCACACC TGG pKT76 

TPX2 GAAATCCGAGGGGGCATCAT AGG pTK526 

AKAP450 
(N-terminus) GCTGGAGGCCGGCAAAGCCA AGG pKT7 

AKAP450 
(C-terminus) GAGCTGTGGGTCTCGCACTG TGG pKT8 

CAMSAP3 
(N-terminus) TGGACCAGTACGATTTCTCG CGG pKT56 

CAMSAP3 
(C-terminus) GGTGAAGGCATCGACGCTCA TGG pKT57 

 791 

 792 
Table S3. PCR primers to confirm gene editing 793 

Gene Primer sequences (5'-3')  
TubG1 
(C-terminus) 

CCAAGCTCTTCGAGAGAAC oTK848 
GTGTTTGCAGGCCAACAG oTK849 

TubG1 
(exon2,3) 

GTCCTTTCCTCAGACACGGG oKT107 
ACGTCATAGAGCCTGTCCCT oKT108 

TubG2 
(5’ upstream) 

GCCAAGGCAGGAGGATTGAT oKT33 
TTTTCTCCCTCAGCAGTCGC oKT97 

TubG2 
(exon1) 

ACACGGTGAGATCCCCATCT oKT38 
CATGGAAGGGAAAGGGGGAC oKT34 

TubG2 
(exon2-4) 

CAGTTGGGTTCGAGTTCTGGA oKT98 
CCCCCACTCCATAACTTCACC oKT99 

TubG2 
(exon5,6) 

GTTGTGAGAGTGTGGCAGGA oKT147 
TTCTGCGTCAGCCTCTTGAG oKT101 

TubG2 TTCTCTCCACCCTCCCTCTG oKT150 
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(exon7-11) GAGCTCCTGAACAACCTCCC oKT105 
TubG2 
(3’UTR) 

TTCCATTGGCATCCCTCACC oKT151 
GGGAAGTCTGGACACCACAG oKT152 

ch-TOG 
(C-terminus) 

TCAGCCCTGGGATTACTGGA oKT117 
CTTGTGTGCCTTTGGTCAGC oKT118 

CLASP1 
(C-terminus) 

CTTGGCGAGGGAGTTTCACT oKT304 
CCCACTTGCCAATTCCTCCT oKT305 

TPX2 
(N-terminus) 

CCACTGCTCCTGGCCTAAAA oKT196 
TGTGGCTGCCATCACTACAG oKT172 

AKAP450 
(N-terminus) 

GAGGGAGGGACTTTTCAGGC oKT27 
CACCCTGGAAAGCACAATGC oKT286 

AKAP450 
(Full length) 

CAGGTAGGCTCAGGGAGGAT oKT285 
CCCCCAAGGTGGAGTGTTAC oKT287 

CAMSAP3 
(N-terminus) 

ACTCCTGCATTGACAGAGGC oKT219 
AATCGTACTGGTCCAGCGAC oKT258 

CAMSAP3 
(C-terminus) 

AGGTCCACGGCTGTACAAAG oKT288 
GACTTTGCAGGGAGGTGACA oKT222 

 794 

 795 
Table S4. Primers for RNAi  796 

siRNA Sequences (5'-3') Note 
Luciferase CGUACGCGGAAUACUUCGATT Goshima et al., 2008 
CDK5RAP2 UGGAAGAUCUCCUAACUAATT Fong et al, 2008 
pericentrin GCAGCUGAGCUGAAGGAGATT Dammermann and Merdes, 

2002 
AKAP450 AACUUUGAAGUUAACUAUCAA Wang et al., 2010 
NEDD1 GCAGACAUGUGUCAAUUUATT Lüders et al., 2006 
HAUS6 CAGUUAAGCAGGUACGAAATT Goshima et al., 2008 
HSET UCAGAAGCAGCCCUGUCAATT Cai et al., 2009 
NuSAP GGUGCAAGACUGUCCGUGUTT Sironi et al., 2011 
ch-TOG GAGCCCAGAGUGGUCCAAA Cassimeris and Morabito, 

2004 
CLASP1 GGAUGAUUUACAAGACUGGTT Kiyosue et al., 2005 
CLASP2 GACAUACAUGGGUCUUAGATT Kiyosue et al., 2005 
CAMSAP1 CAUCGAGAAGCUUAACGAATT Wei et al., 2017 

CAMSAP2 UUGCAUGUGCUCAACAGUTT Yau et al., 2014 
CAMSAP3 CAGCAGCCACCAACUCCGAGGUGAAT Meng et al., 2008 
DHC GCCAAAAGUUACAGACUUUTT Splinter et al., 2008 
TPX2 GGGCAAAACUCCUUUGAGATT Bird and Hyman 2008 
Aurora B GUCCCAGAUAGAGAAGGAGTT Yüce et al., 2005 
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(A) Immunoblotting of γ-tubulin and α-tubulin for TubG1-mAID-mClover lines (TubG2 intact and KO
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Figure 1. Basic characterisation of TubG1 mAID-mClover cell line
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Figure 2. Quantitative assessment of γ-tubulin depletion by AID
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Figure 3. MT nucleation without γ-tubulin
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(A, B) MT nucleation in the presence (A) or absence (B) of γ-tubulin. Images were acquired every 2 s
with oblique illumination fluorescence microscopy, which allows the detection of individual γ-tubulin
complex. (C) Time of first MT appearance after drug washout in the presence (1.4 ± 1.5 min [SD]) or
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Figure 4. Visualisation of γ-tubulin-independent MT nucleation
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Figure 5. ch-TOG, CLASP1, and CAMSAP1/2 are critical for γ-tubulin-independent MT
generation in interphase
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(A-C) Suppression of MT regrowth by double depletion of γ-tubulin and ch-TOG (A), CLASP1 (B), or
CAMSAP1/2 (C, CAMSAP3 KO background) at 25°C. Depleted cells are marked in red circles,
whereas the surrounding cells with γ-tubulin and MAPs acted as the internal controls. Bars, 10 µm. (D,
E) Frequency of MT appearance (D) and MT intensity (E) in the indicated lines (25°C, 30 min after
nocodazole washout). p = 0.0009, 0.0313, <0.0001 (one-way ANOVA, Tukey’s multiple comparisons).
(F) Time of MT apperance after nocodazole washout at 37°C in the indicated lines.

Figure 6. CLASP1 promotes γ-tubulin-independent MT generation
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(A) Flowchart of MT regrowth assay in mitosis. (B–F) MT regrowth after drug washout in the
indicated cell lines. The cells with undetectable levels of γ-tubulin and MAPs are marked in red
circles, whereas the control cells are marked in yellow. Blue arrows on the right panel indicate the
centriole, which retains MTs even after cold/drug treatment, whereas green arrows indicate ncMTOCs.
Bars, 10 µm. (G) Timing of ncMTOC formation after nocodazole washout in the indicated cell lines.

Figure 7. CLASP1 and TPX2 promote γ-tubulin-independent MTOC formation in mitosis
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(A) Flowchart of MT depolymerisation-regrowth assay in prometaphase combined with auxin-induced
degron and drug treatment. (B–E) MT regrowth after drug washout in the indicated cell lines and
treatment. The cells with undetectable levels of γ-tubulin are marked in red circles. Blue arrows on the
right panel indicate the centriole, which retains MTs even after cold/drug treatment, whereas green
arrows indicate non-centriolar MTOCs. Bars, 10 µm. (F) Timing of ncMTOC formation after
nocodazole washout in the indicated cell treatment.

Figure 8. Aurora kinases contribute to γ-tubulin-independent MTOC formation in mitosis
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Gene targeting strategy, PCR strategy, PCR results, and immunoblotting results are shown for the cell
lines used in this study. ‘P’ marks at the top of the panels represent parental lines, whereas the numbers
(e.g. ‘4’, ‘16’) indicate the line identification numbers. Asterisks indicate non-specific bands. (A)
mAID-mClover (‘mAC’) tagging to TubG1. PCR amplified a 3.7-kb fragment in the tagged line.
Immunoblotting results are shown in Fig. 1A. (B) Confirmation of TubG2 KO by PCR The lack of
bands derived from exons was confirmed in the KO line. The TubG1 exon and TubG2 UTR regions
were amplified as positive controls. (C) mAID-mCherry (‘mACh’) or mCherry (‘mCh’) tagging to ch-
TOG. PCR amplified a 5.2-kb fragment in the tagged line. Immunoblotting results are shown on the
right; the band is shifted upwards with the tag. (D) mAID-mCherry (‘mACh’) tagging to CLASP1.
PCR amplified a 5.3-kb fragment in the tagged line. Immunoblotting results are shown on the right; the
band is shifted upwards with the tag. (E) mAID-mCherry (‘mACh’) or mCherry (‘mCh’) tagging to
TPX2. PCR amplified a 3.0-kb fragment in the tagged line. Immunoblotting results are shown on the
right; the band is shifted upwards with the tag. (F) PCR and immunoblotting confirmation of
AKAP450 KO cells. DNA amplification was not observed when a primer targeting an exon was used
for the KO line, whereas the hygromycin cassette was amplified with the primers designed at UTRs
(this primer set did not amplify very long AKAP450 genes in the parental line). Immunoblotting
showed a specific >250 kD band only in the parental line. (G) PCR and immunoblotting confirmation
of CAMSAP3 KO. DNA amplification was not observed when a primer targeting an exon was used for
the KO line. Immunoblotting showed a specific ~150 kD band only in the parental line.

Figure S1. Construction and confirmation of the cell lines used in this study
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(A) Mitosis of HCT116 cell line at 25 °C. Time 0 corresponds to NEBD. (B) Mitotic duration at 25 °C
(NEBD to anaphase onset). (C) MT nucleation in the absence of γ-tubulin, without SiR-tubulin
staining, in interphase. The cells with undetectable levels of γ-tubulin are marked in red circles. MTs
were visualised using ch-TOG-mCherry (arrows). (D, E) MT dynamics of γ-tubulin-depleted cells
based on ch-TOG-mCherry signals with or without SiR-tubulin staining. MT growth rate was
determined based on kymographs of ch-TOG-mCherry. Statistical evaluation was performed using
unpaired t-test with Welch’s correction (p = 0.3644, 0.1315).

Figure S2. Validation of MT regrowth assay
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(A–B, D–F) MT regrowth in various lines. The cells marked in red circles show no detectable γ-
tubulin signals. (C, G) Frequency of MT regrowth. MT appearance was assessed 30 min after
nocodazole washout. The TubG1 degron data in (C) are the duplicates of Fig. 6D.

Figure S3. Additional data on MT regrowth ability in interphase cells
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Oblique illumination fluorescence microscopy of TubG1-mAID-mClover, ch-TOG-mCherry (or
CLASP1-mCherry), and SiR-tubulin. Three-colour images were acquired to show γ-tubulin depletion
in the first frame (A, C), followed by two-colour imaging every 2 s (B, D). A part of the cytoplasm
(boxed in A, C) is magnified to show a nucleation event (B, D). Cells marked in red circles showed no
detectable γ-tubulin signals.

Figure S4. ch-TOG and CLASP1 localisation during γ-tubulin-independent MT nucleation in the
interphase cytoplasm
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(A, B) Centriolar MTs remain even after rigorous MT depolymerisation with nocodazole (arrows). (C)
MTOC formation in the absence of γ-tubulin, with or without SiR-tubulin in mitosis. The cells with
undetectable levels of γ-tubulin are marked in red circles. Green arrows indicate non-centriolar
MTOCs. TPX2-mCherry was used to visualise MTs. (D) The time of new MTOC appearance after
nocodazole washout in the absence of γ-tubulin with or without SiR-tubulin staining (18 ± 6 min, 16 ±
5 min, p = 0.483 (unpaired t-test with Welch’s correction)). (E) Total MTOC numbers did not change
with or without SiR-tubulin staining. (F–H) MT regrowth after ch-TOG, CLASP1, or TPX2 degron
treatment. Red circles indicate the cells with undetectable levels of proteins. Note that γ-tubulin is
intact in these lines. Bars, 10 µm. (I, J) Total MTOC numbers per cell and the frequency of cells with
MTs at 30 min after nocodazole washout.

Figure S5. Additional data on MTOC formation and MT regrowth in mitosis
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