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Abstract: 

Optimal control simulations have shown that both musculoskeletal dynamics and physiological noise 

are important determinants of movement. However, due to the limited efficiency of available 

computational tools, deterministic simulations of movement focus on accurately modelling the 

musculoskeletal system while neglecting physiological noise, and stochastic simulations account for 

noise while simplifying the dynamics. We took advantage of recent approaches where stochastic optimal 

control problems are approximated using deterministic optimal control problems, which can be solved 

efficiently using direct collocation. We were thus able to extend predictions of stochastic optimal control 

as a theory of motor coordination to include muscle coordination and movement patterns emerging from 

non-linear musculoskeletal dynamics. In stochastic optimal control simulations of human standing 

balance, we demonstrated that the inclusion of muscle dynamics can predict muscle co-contraction as 

minimal effort strategy that complements sensorimotor feedback control in the presence of sensory 

noise. In simulations of reaching, we demonstrated that nonlinear multi-segment musculoskeletal 

dynamics enables complex perturbed and unperturbed reach trajectories under a variety of task 

conditions to be predicted. In both behaviors, we demonstrated how interactions between task constraint, 

sensory noise, and the intrinsic properties of muscle influence optimal muscle coordination patterns, 

including muscle co-contraction, and the resulting movement trajectories. Our approach enables a true 

minimum effort solution to be identified as task constraints, such as movement accuracy, can be 

explicitly imposed, rather than being approximated using penalty terms in the cost function. Our 

approximate stochastic optimal control framework predicts complex features, not captured by previous 

simulation approaches, providing a generalizable and valuable tool to study how musculoskeletal 

dynamics and physiological noise may alter neural control of movement in both healthy and pathological 

movements. 
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Introduction 
Predictive simulations are powerful tools to study neuromechanics of movement [1], [2]. Such 

simulations are typically based on optimal control as a theory of motor coordination to solve the 

redundancy problem [3]. Current approaches focus either on detailed representations of musculoskeletal 

dynamics while neglecting physiological noise [2], [4], [5] or on simulating the effects of physiological 

noise while simplifying musculoskeletal dynamics [6]–[8]. On the one hand, deterministic simulations 

based on complex models have advanced our understanding of how musculoskeletal dynamics shapes 

movement. On the other hand, stochastic simulations based on simple models have shown that noise 

shapes movement kinematics and variability as well as underlying control mechanisms, including 

modulation of feedback. Accounting for the interaction between musculoskeletal dynamics and 

physiological noise might therefore be important to predict physiologically-realistic control strategies 

and movements. However, limited efficiency of available computational tools to simulate motor 

behavior in the presence of noise has hampered the use of more accurate models of musculoskeletal 

dynamics in stochastic simulations of movement [9]. Here, we present and test a generalizable 

computational framework to simulate the effect of sensorimotor noise on motor control and movement 

in nonlinear musculoskeletal systems.  

Accounting for sensorimotor noise in movement simulations is crucial to capture movement variability 

and sensorimotor feedback modulation. In 1998, Harris and Wolpert minimized endpoint variability in 

the presence of signal-dependent motor noise to simulate open-loop controlled reaching and saccadic 

eye movements [10]. Including signal-dependent motor noise led to physiologically realistic bell-shaped 

velocity profiles and the experimentally observed trade-off between reaching time and reaching 

accuracy, i.e., Fitt’s law. Although Harris and Wolpert clearly demonstrated the importance of 

accounting for noise, their stochastic simulations did not include feedback control. In general, feedback 

control improves performance over open-loop control in the presence of sensorimotor noise [11]. 

Therefore, Todorov and Jordan introduced feedback control in stochastic simulations of movement and 

tested optimal feedback control (OFC) as a theory of motor coordination [3], [12]. The most important 

prediction of optimal feedback control is arguably the minimum intervention principle: “deviations from 

the average trajectory are only corrected when they interfere with the task goal” [12]. Optimal feedback 

control has since explained many kinematic and control features of reaching and standing balance [13]–

[16]. However, these studies mostly used linearized models that do not account for critical nonlinearities 

in movement. Further, most approaches for stochastic optimal control require the control law to be time-

varying, require a quadratic cost function, and require specifying movement accuracy by a penalty term 

in the cost function [17], [18]. As a result, the weights in the cost function need to be hand-tuned to 

achieve realistic results and an obligatory tradeoff between accuracy and effort that may not necessarily 

be physiological emerges. 

Recent computational advances have drastically improved the efficiency of deterministic movement 

simulations enabling the use of complex and nonlinear musculoskeletal models [2], [19] but have not 

been leveraged to stochastic movement simulations. In deterministic simulations, optimal control can 

be described by open-loop control trajectories. Therefore, these simulations can be formulated as 

trajectory optimization problems [20]. The introduction of direct collocation approaches to solve 

trajectory optimization problems improved computational efficiency compared to shooting methods by 

decreasing the sensitivity of the optimization objective to the decision variables [5]. Simulations based 

on complex models have long been solved using shooting methods that have poor convergence and long 

computation times when the dynamics are stiff, as in many biological movements, due to the use of 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.13.456221doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.13.456221
http://creativecommons.org/licenses/by/4.0/


time-marching integration. In contrast to direct shooting, direct collocation eliminates the need for time-

marching integration by adding the parameterized states to the decision variables and by adding the 

discretized dynamic equations as constraints to the optimization [21]. Computational efficiency has 

further been improved by implicit formulations of the system dynamics to improve the numerical 

condition of the optimization problem [22] and the use of automatic differentiation to compute derivative 

information needed by gradient-based solvers [19]. These methodological advances have enabled rapid 

predictive simulations based on  complex musculoskeletal models [2], [4], which have been applied to 

test optimality principles underlying human movement [23] and to study the effect of changes in the 

musculoskeletal system on movement [4], [24]. However, we still lack methods to take advantage of 

these computational tools in stochastic simulations of movement that take into account sensorimotor 

noise. 

Here, we apply an approach to reformulate stochastic simulations as approximate deterministic 

simulations, originally developed for control applications in robotics and engineering [25], to neuro-

musculoskeletal simulations of movement to leverage computational advances that have been successful 

in improving the efficiency of deterministic simulations. The resulting framework is applicable to a 

broad range of movements, described by nonlinear dynamics, corrupted by additive and/or signal-

dependent Gaussian noise, and controlled by time-varying feedback laws with any temporal and 

structural design. The method, developed by Houska et al. [26]–[29], relies on a transformation of the 

stochastic optimal control problem into an approximate augmented deterministic optimal control 

problem by approximating the generally non-Gaussian state trajectory distribution by a Gaussian state 

trajectory that can be described by the mean state trajectory and the state covariance trajectory. The 

propagation of the covariance matrix is described by Lyaponuv differential equations, which assume 

local invariance of the system dynamics around the mean trajectory similar to the Extended Kalman 

Filter [30]. The main advantage of this approach is that the resulting approximate deterministic optimal 

control problem can be solved with direct collocation. 

We first show how our stochastic optimal control framework enables the prediction of interactions 

between muscle co-contraction and sensorimotor feedback, using human standing balance control as an 

example. While OFC has been used to predict sensorimotor feedback control of balance, individual 

muscles and muscle dynamics have not been modeled and it is therefore unclear whether OFC also 

predicts muscle co-contraction as a complementary feedforward control strategy. Specifically, OFC 

simulations based on joint torque-driven mechanical models capture modulation of feedback control 

with changes in sensory acuity [13], [31], i.e. sensory reweighting, yet it is likely that modeling 

activation-dependent mechanical properties of muscles will affect these predictions [32]–[34]. We 

simulated perturbed (platform rotations and translations) standing balance based on a multi-sensory, 

muscle-driven model with both feedforward and feedback control in the presence of sensory and motor 

noise. We demonstrate that our stochastic optimal control framework predicts contributions of both 

feedforward, i.e. muscle co-contraction, and feedback control during standing balance that depend on 

movement task, sensory acuity and muscle properties. 

We next demonstrate that the stochastic optimal control framework can predict perturbed reach 

trajectories when nonlinear musculoskeletal dynamics are considered. Prior OFC simulations based on 

a point-mass model capture changes in nominal reach trajectories and feedback control depending on 

target shape and the presence of obstacles (i.e. task goal) [8]. However, perturbed reach trajectories 

deviated considerably from experimental observations, and may require more accurate representations 

of nonlinear multi-joint and muscle mechanics. Here, we demonstrate that our stochastic optimal control 

framework using a muscle-driven arm model results in improved predictions of reach kinematics in 
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perturbed conditions as well as detailed predictions of sensorimotor feedback and muscle level control 

when target shape and stability of the environment (i.e. divergent force-field) are altered [35], [36]. In 

addition, our model predicted muscle activity in response to perturbations, which was not possible with 

previous simulation models, in agreement with experimental data [8].  

RESULTS 

Approximate stochastic optimal control framework  

We simulated movement trajectories and movement variability based on nonlinear musculoskeletal 

dynamics driven by optimal feedforward and feedback control policies in the presence of sensory and 

motor noise. For each specified task, optimal control policies were computed by minimizing the 

expected effort in the presence of noise. Effort was defined as the time integral of the sum of muscle 

excitations squared [37], leading to the following general stochastic optimal control problem: 

min
𝒆𝒇𝒇(𝑡),𝑲(𝑡) 

∶      𝐽 = 𝐸[∫𝒆𝑇(𝑡)𝒆(𝑡)𝑑𝑡] 

subject to:   𝒙̇(𝑡) = 𝒇(𝒙(𝑡), 𝒆(𝑡), 𝒘𝑚), 

𝒈(𝒙(𝑡), 𝒆(𝑡)) ≥ 0 

𝒆(𝑡) = 𝒆𝒇𝒇(𝑡) + 𝑲(𝑡) ∙ 𝒚𝑓𝑏(𝒙(𝑡),𝒘𝑠)  

with 𝐸[] the expected value function, 𝒙(𝑡) the stochastic state trajectory, including joint kinematics and 

muscle activations, 𝒆(𝑡) the stochastic muscle excitation trajectories, 𝒘𝑚 a set of zero-mean Gaussian 

motor noise sources. The musculoskeletal dynamics 𝒇(𝒙(𝑡), 𝒆(𝑡), 𝒘𝑚) were stochastic and nonlinear. 

To specify different task goals, we imposed task-dependent path constraints and bounds 𝒈(𝒙(𝑡), 𝒆(𝑡)). 

Muscle excitations 𝒆(𝑡) consisted of time varying deterministic feedforward muscle excitations, 𝒆𝒇𝒇(𝑡), 

as well as feedback muscle excitations derived from a linear feedback law with deterministic time-

varying feedback gains 𝑲(𝑡) and task-dependent feedback error signals 𝒚𝑓𝑏(𝒙(𝑡),𝒘𝑠). Zero-mean 

Gaussian sensory noise 𝒘𝑠 was added to the feedback error signal 𝒚𝑓𝑏. These stochastic optimal control 

problems were approximated by deterministic optimal control problems and then solved using direct 

collocation (for details, see Methods). The deterministic approximation was based on the assumption 

that the stochastic state trajectories could be modelled by a Gaussian distribution and could thus be 

described by their expected value (mean trajectory) and variance (state covariance matrix).  

Contributions of muscle co-contraction and feedback control in perturbed standing 

balance depend on movement task, sensory acuity and muscle properties  

We first demonstrate that stochastic optimal control can simultaneously predict muscle co-contraction 

and sensorimotor feedback contributions to motor coordination, using perturbed standing balance as an 

example. Although OFC can capture experimentally-identified modulations of feedback contributions 

that depend on sensory acuity and perturbation type [13], [38]–[40], it is unclear whether OFC predicts 

experimentally-observed muscle co-contraction complementing feedback during perturbed standing 

balance. To address limitations of prior models, we simulated standing balance using an inverted 

pendulum model of the body that was driven by a pair of antagonistic ankle muscles that have activation-

dependent impedance (Figure 1 - A). We further investigated how the predicted muscle co-contraction 

depends on the model of muscle mechanical impedance, performing simulations using both a Hill-type 
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muscle model that accounts for the force-length and force-velocity properties of muscles [5], and an 

augmented Hill-type muscle that also accounts for muscle short-range stiffness that was proportional to 

muscle activation [32], [41]. To model background muscle activity during quiet standing, feedforward 

muscle activations were modeled as constants. As in prior studies using torque-driven models of 

perturbed standing balance [14], [31], [42], feedback contributions were modelled as a linear 

combination of delayed proprioceptive and vestibular cues, which encode the angle and angular velocity 

between the body and the platform, and gravity, respectively (Figure 1 - A). Gaussian sensory and motor 

noise was additive to feedback signals and muscle excitations respectively. In accordance with the 

literature, vestibular inputs were more noisy than proprioceptive inputs [43]. We specified the task of 

upright standing by imposing a constant mean upright posture and a postural sway within limits of 

stability. To elicit a range of feedforward and feedback control policies, we simulated both random 

sagittal platform rotation (Figure 1 - A) and translation (Figure 1 - B) perturbations of different 

magnitudes. Comparing solutions for platform rotations and translations allows sensory feedback and 

muscle co-contraction contributions to balance control to be differentiated as rotation and translation 

perturbations require different ankle muscle coordination to maintain equilibrium [44] (Figure 1 – A & 

B).  

For platform rotations, stochastic optimal control predicted differences in postural sway and sensory 

reweighting as previously observed in experiments with healthy individuals and vestibular loss subjects 

(Figure 1– A – simulations & experiments) [31], [45], [46]. In agreement with experimental findings by 

Peterka for healthy adults [31] (Figure 1– A – experiments, healthy) and prior OFC results, body sway 

in our simulations increased quasi linearly with increasing amplitude of platform rotations and saturated 

at larger amplitudes where the body moved in anti-phase with the platform [47] (Figure 1– A – 

simulations, healthy). The simulations predicted sensory reweighting similar to that observed 

experimentally [14], [31], [45], [48] (Figure 1– A – experiments, healthy), with increased reliance on 

vestibular feedback at higher rotation magnitudes (Figure 1– A – simulations, healthy). Because 

proprioceptive information was modelled to be more accurate than vestibular information [43], there 

was a higher reliance on proprioception and the body moved in-phase with the platform at low rotation 

magnitudes. When removing vestibular sensory information to simulate vestibular loss subjects, the 

simulation predicted a quasi linear increase in sway with platform rotation amplitude (Figure 1– A – 

simulations, vestibular loss) consistent with experimental observations [47] (Figure 1– A – experiments, 

vestibular loss). In contrast to sway for healthy subjects, sway for vestibular loss subjects was predicted 

to follow the platform motion, as proprioception is the only source of sensory information [49]. The 

model predicted higher total effort in vestibular loss subjects compared to healthy subjects (not shown 

in figure) and loss of balance when simulated sway amplitudes became unrealistic (RMS sway values 

larger than 5°).  

During platform rotations, moderate levels of co-contraction were predicted for vestibular loss subjects 

[50], but not for healthy controls (Figure 1– A – simulations, CCI in healthy-SRS and VL-SRS). In 

rotations, increased joint impedance due to co-contraction opposes the anti-phase movement of the ankle 

joint that is optimal for upright balance with minimal effort. However, co-contraction contributes to the 

strategy of maintaining a constant joint angle with respect to the platform, the strategy predicted when 

the reference to gravity is absent, as  in vestibular loss subjects [31], [45], [51]. Our simulations predicted 

co-contraction to increase above a certain perturbation magnitude in the absence of vestibular sensory 

information (Figure 1– A – simulations, CCI in VL-SRS). Since all simulated strategies minimize effort, 

our simulations predict muscles co-contraction to reduce effort with respect to using feedback only at 

high perturbation magnitudes in vestibular loss subjects. However, as feedback control also increases in 

the absence of vestibular information, the proportion of effort due to feedback control is nevertheless 

higher in vestibular loss than in healthy subjects (Figure 1– A – simulations, effort in VL-SRS).  
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In contrast to rotations, stochastic optimal control in platform translations predicted similar increases in 

postural sway with increasing perturbation magnitude in healthy and vestibular loss simulations, also 

found experimentally [52]  (Figure 1 – B - simulations). As perturbation magnitude increased, the 

proportion of proprioceptive feedback used in balance control decreased, but in contrast to rotations, 

shifted toward an equal contribution of proprioceptive and vestibular feedback. As, in translations¸ both 

sensory signals encode the same information but with different uncertainty levels, this shift may be 

understood as the sensory uncertainty becoming increasingly negligible compared to the larger expected 

position and velocity deviations from vertical as perturbation magnitude increases. To minimize 

expected effort it is therefore optimal to extract feedback information from the two modalities more and 

more equally as the contribution of sensory noise becomes more and more negligible compared to the 

kinematic deviations.  

In contrast to rotations, and consistent with experimental findings [53], much larger contributions of 

muscle co-contraction were predicted with increasing translation perturbation magnitude in both healthy 

and vestibular loss subjects (Figure 1– A vs B – simulations, CCI). In translations, increased joint 

impedance due to co-contraction reduced body sway, which in turn reduced the relative effort of 

feedback corrections as perturbation magnitude increased (Figure 1–B – simulations, effort).  

Taken together, stochastic optimal control predicted muscle co-contraction as a complementary strategy 

to sensorimotor feedback depending on the mechanical properties of the muscle, perturbation type and 

magnitude, and sensory acuity. Muscle co-contraction was only predicted in the simulations where the 

Hill-type muscle model was augmented with short-range-stiffness [32]. Although some amount of 

muscle co-contraction was predicted in both rotation and translation perturbations, muscle co-

contraction only considerably decreased the proportion of muscle effort due to feedback control in high-

amplitude translation perturbations, where muscle co-contraction helps to maintain upright posture.  
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Figure 1 – A: ROTATIONS. Musculoskeletal and control model. The proprioceptive (relative angle between the body and 

platform: 𝑞𝑝, 𝑞̇𝑝) and vestibular (absolute body angle: 𝑞𝑣, 𝑞̇𝑣) cues encode different information that is corrupted by 

proprioceptive and vestibular noise. The platform rotations are modeled by Gaussian noise of the platform position (𝑞𝑆𝑆), 

velocity (𝑞̇𝑆𝑆) and acceleration (𝑞̈𝑆𝑆). 𝑎𝑚𝑢𝑠𝑐𝑙𝑒  are muscle activations; 𝑎𝑚𝑢𝑠𝑐𝑙𝑒,𝑏𝑎𝑠𝑒 are muscle baseline activations; 𝐾𝑝
2𝑥2 are 

proprioceptive feedback gains and 𝐾𝑣
2𝑥2 are vestibular feedback gains. Experimental data and simulation results. RMS body 

sway, relative proprioceptive feedback gains 
‖𝐾𝑝𝑟𝑜𝑝𝑟𝑖𝑜‖

‖𝐾𝑝𝑟𝑜𝑝𝑟𝑖𝑜‖+‖𝐾𝑣𝑒𝑠𝑡‖
, co-contraction index (CCI) and contribution of expected effort 

from feedback to the total expected effort: 
𝑒𝑓𝑓𝑜𝑟𝑡𝐹𝐵

𝑒𝑓𝑓𝑜𝑟𝑡𝐹𝐵+𝑒𝑓𝑓𝑜𝑟𝑡𝐹𝐹
 for healthy and vestibular loss (VL) subjects with and without 

short-range-stiffness (SRS) modeled. TRANSLATIONS. Musculoskeletal and control model. The control model is identical to 

the model used to simulate the response to rotation perturbations, but in the case of translation perturbations the relative 

and absolute body angles are identical and vestibular and proprioceptive cues encode the same information. Platform 

translations are modeled by Gaussian noise of the linear platform acceleration (𝑥̈𝑆𝑆). Simulation results. The same outcome 

variables than for the rotation perturbations are shown. 

Stochastic optimal control of goal-directed reaching predicts experimental kinematics, 

movement variability and feedback modulation across different reaching tasks  

In a second set of simulations, we demonstrate that stochastic optimal control using a nonlinear arm 

model can predict how nominal as well as perturbed reaching trajectories change as a function of task 

goals and environmental dynamics. We simulated the three point-to-point reaching tasks (Figure 2 – A) 

described in Nashed et al. [8]: reaching to a circular target (circle), reaching to a horizontal bar (bar), 
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and reaching to a circular target in the presence of a narrow obstacle (obstacle) (Figure 2 – A). Previously 

these reaching tasks were simulated using a point-mass model of the arm assuming OFC. To capture 

nonlinear inter-segment  dynamics, we modeled the arm as a planar two-segment kinematic chain. To 

enable muscle activity predictions, the shoulder and elbow joints were each actuated by an agonist-

antagonist pair of Hill-type muscles with rigid tendons. Net muscle excitations were a sum of time-

varying feedforward excitations and delayed time-varying linear feedback of the end-effector (hand) 

kinematic error [8], [54]. Gaussian sensory noise and motor noise were added to the feedback signals 

and joint torques, respectively. The three different tasks were modeled by constraining the end-effector 

position variability to achieve the task requirements. Optimal feedforward controls, feedback gains and 

reference end-effector trajectories were computed by minimizing expected effort during unperturbed 

reaching, and the resulting optimal control policies were then used to generate stochastic forward 

simulations of both unperturbed and perturbed reaching. 

In contrast to prior studies using a point mass model of the arm, our simulations predicted both 

unperturbed and perturbed reaching trajectories that were more similar to experimental findings [8]. All 

our optimal control policies met the required reaching end-point accuracy, for both perturbed and 

unperturbed reaching, as imposed for the different tasks in the stochastic optimal control problem 

formulations and in accordance with experimental data [8] (Figure 2 – B, end-point accuracy ellipses).  

In unperturbed reaches, kinematic trajectories were similar for our model, the point-mass model and the 

experimental data (Figure 2 – B, compare colored with black and grey trajectories). Like predictions 

based on the point-mass model, predictions based on our muscle-driven, multi-segment arm model were 

in line with the minimum intervention principle [3], [55] where kinematic deviations are only corrected 

when they interfere with the task goal: horizontal deviations are left uncorrected in the bar condition.  

However, perturbed reach trajectories using our multi-segment, muscle-driven arm model were more 

similar to experimental trajectories, capturing  asymmetry in perturbed reach trajectories [8] (Figure 2 

– B, colored and black lines) that was not predicted based on point mass models (Figure 2 – B gray 

lines). In agreement with experiments, our model predicted corrections in the kinematic trajectory that 

occur late in the reaching movement for the ‘circle’ and ‘obstacle’ conditions (Figure 2 – B colored 

lines). Especially for the ‘bar’ condition our model predicted an overshoot of the hand in the vertical 

direction that was in strong agreement with experiments (Figure 2 – B perturbed trajectories, red and 

black lines). The vertical overshoot during perturbed reaching to a circular target predicted by our 

simulations was not present in the experimental data. In contrast, point-mass simulations predict earlier, 

symmetric, trajectory corrections without overshoot, likely due to the decoupled control of the vertical 

and horizontal degree of freedom. When reaching with a multi-segment arm, uni-directional 

perturbations cause multi-directional deviations in hand position and corrections in two dimensions need 

to be coordinated. Given the similarity in the underlying control hypothesis between our simulations 

and the point-mass simulations of Nashed et al. [8], this indicates the importance of accounting for 

nonlinear dynamics when predicting reaching movements [56], [57].  

A novel aspect of our model is that muscle activations in response to perturbations could also be 

predicted and compared to available EMG recordings. Simulated corrective muscle activations were 

similar to recordings in the anterior deltoid and biceps, with larger corrections in the ‘circle’ than in the 

‘bar’ condition (Figure 2 – C, blue vs red). Simulated corrective muscle activations in the ‘obstacle’ 

(Figure 2 – C, green) condition showed larger, rapid corrections that peaked earlier than in the circle 

and bar conditions. As EMG data was only available for the anterior deltoid and biceps in the circle and 

bar conditions, our simulated muscle activity of the antagonistic muscles and in the bar condition 

remains to be validated experimentally.   
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We found only limited co-contraction in our simulations that was similar across task conditions (Figure 

2– D). As such, our simulations did not predict the small but significant increase in muscle co-

contraction observed experimentally in the ‘obstacle’ compared to the ‘circle’ condition [8]. Note that 

we did not include short-range stiffness in our muscle model, which was necessary in the balance 

simulations to predict co-contraction, since short-range-stiffness contributions are negligible during 

movements over large ranges of motion [41].  

 

 

Figure 2 – A: Schematic representation of the three reaching tasks and the musculoskeletal and control model. We simulated 

three different reaching tasks: (1) reaching towards a small circular target (blue), (2) reaching towards a horizontal bar (red), 

and (3) reaching towards a circular target in the presence of an obstacle (green). In all simulations, muscle excitations consist 

of feedforward and feedback contributions. The feedback controller is driven by the error between the end-effector kinematics 

(𝑬𝑬, 𝑬𝑬̇) and the nominal end-effector kinematics (𝑬𝑬𝑟𝑒𝑓 , 𝑬𝑬̇𝑟𝑒𝑓) and is corrupted by sensory noise.  Muscle forces are 

proportional to muscle activations 𝒂𝑚𝑢𝑠𝑐𝑙𝑒, which are time-delayed muscle activations, and resulting joint torques are 

corrupted by motor noise. B: Unperturbed and perturbed reaching trajectories predicted by our model (colored), predicted 

with a point-mass model (grey) and measured (black). End-point accuracy simulated with our model for the three different 

reaching tasks. Ellipses denote 95% confidence regions. C: Simulated muscle-level corrective actions that result from optimal 
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feedback in response to unexpected extension perturbations. For elbow and shoulder flexor muscles (anterior deltoid, biceps) 

we show experimental EMG data from Nashed et al. [8]. D: Average simulated muscle co-contraction level for the shoulder 

and elbow joints for the three reaching tasks.  

Stiffness is modulated during goal-directed reaching in a divergent force field through 

changes in feedback but not feedforward control  

To explore how the dynamics of the environment influences predicted contributions of muscle co-

contraction and feedback control, we simulated reaching to a circular target in the presence of a divergent 

force field (Figure 3 – A).  Although co-contraction has been observed during reaching in a force field, 

the relative contribution of muscle co-contraction and sensorimotor feedback control to increased 

endpoint stiffness [36], [56], [58], [59],  is not known. We  computed end-point stiffness as is done 

experimentally [60], i.e., by perturbing the hand in a specific direction in simulation and by dividing the 

resulting change in endpoint force by endpoint displacement over a short-time interval (150ms).  

Similar to the experiments performed by Burdet et al. [35], [56] and Franklin et al. [36] our stochastic 

optimal control model predicted increased stiffness in the horizontal direction in the presence of a 

horizontal divergent force field of 200 N/m (Figure 3 – B). Our multi-segment muscle driven model 

predicted coupled changes in horizontal and vertical endpoint stiffness (Figure 3 – B) when reaching in 

an unstable force field, which would not be apparent from simple point-mass models as the vertical and 

horizontal degree of freedom are decoupled for such models.  

In our model, the optimal strategy to increase stiffness in the presence of a divergent force field was to 

upregulate feedback control to all muscles without increasing co-contraction, while in experiments co-

contraction increased significantly [36], [56], [58], [59] (Figure 3 – C and D). The small increase in 

simulated co-contraction around the elbow in the divergent force field (Figure 3 - D) likely resulted from 

small changes in the mean kinematic trajectory and hence feedforward excitations when the force field 

was applied.  

Our simulations generated predictions on corrective muscle activity and perturbed reaching trajectories 

that remain to be validated in future experiments. The simulated corrective activity of all muscles in 

response to perturbations was higher when reaching in a divergent force field than in a stable 

environment (Figure 3 – C).  Our simulations predict that perturbed reaching trajectories in the presence 

of a force field will not exhibit the overshoot in the vertical direction that was found in the absence of 

the force field.   
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Figure 3 – A: Unperturbed and perturbed reaching trajectories predicted in the presence (‘force field’) and absence (‘circle’) of 

a 200N/m divergent force field. Simulated end-point accuracy ellipses denote 95% confidence regions. B: Horizontal and 

vertical end-effector stiffness throughout the reaching movement for the optimal controllers in the absence and presence of 

the divergent force field. C: Simulated muscle-level corrective actions that result from optimal feedback in response to 

unexpected extension perturbations. D: Average muscle co-contraction level for the shoulder and elbow joint for the three 

reaching tasks.  

 

Discussion 
Our major contribution was to apply a recently developed efficient approximate stochastic optimal 

control framework to simulations of motion enabling us to predict, for the first time, realistic movement 

trajectories and muscle coordination patterns emerging from nonlinear musculoskeletal dynamics, 

feedforward, and feedback neural control in the presence of noise. We used a generally applicable 

method to approximate the true stochastic optimal control problems by deterministic optimal control 

problems, which could be solved efficiently. The use of direct collocation and gradient-based 

optimization to solve the approximate deterministic problems facilitated the use of constraints, allowing 

us to distinguish effort optimization and task-level goals, such as accuracy, rather than to trade them of 

in the cost function.  The framework allowed us to considerably extend the predictions of stochastic 

optimal control as a theory of motor coordination to the joint and muscle level, which enabled detailed 

comparison to experimental kinematic and EMG data. In particular, the addition of muscle models in 

stochastic optimal control simulations, demonstrated that muscle co-contraction can - in the presence of 

uncertainty in sensory information - minimize muscle effort required for a task. In balance control 

simulations, we demonstrated that benefits of increased impedance from muscle co-contraction depend 

on the intrinsic properties of the muscle and the interaction with delayed sensorimotor feedback 

mechanisms. Similarly, in reaching simulations, we demonstrated that multi-segment musculoskeletal 

dynamics are key to predicting complex perturbed and unperturbed reach trajectories under different 

task conditions, resulting from interactions between feedforward and feedback sensorimotor control 

mechanisms. Taken together, our results showed that complex features of motor control and movement 
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that were not captured by previous optimal control simulations can emerge from nonlinear stochastic 

optimal control processes. As such, our approximate stochastic optimal control framework provides a 

valuable tool to providing insight in neuromechanics of normal and possibly impaired movement that 

incorporates the complexities of the neuromusculoskeletal system and the effects of physiological noise.  

Implementing a direct collocation approach to the solution of nonlinear stochastic optimal control 

problems increased computational efficiency and modelling flexibility, allowing neuro-musculoskeletal 

model complexity, and thereby fidelity, to be increased. Most prior methods have only allowed efficient 

solutions of linear, but not nonlinear, stochastic optimal control problems [6]–[8], [61], so that they were 

not capable of predicting many important variables causing movement. Stochastic optimal control 

simulations based on nonlinear dynamics have previously been performed using iterative Linear-

Quadratic-Gaussian (iLQG) methods for reaching tasks [18]. However, such methods require a time-

marching integration of the system dynamics under the current guess of the control law at each iteration 

to evaluate the nominal controls and state trajectories. Such shooting methods might be less suitable 

than collocation methods for movement tasks with less stable system dynamics, such as standing or 

walking. Besides, the LQG approach assumes a quadratic cost function and a linear and continuously 

time-varying feedback control law, which might not always represent the biological system. Finally 

LQG methods require achieving constraints on the mean state and state covariance (e.g. limiting the 

standard deviation of the end-point position of the hand in a reaching task) through penalty terms in the 

cost function, whose weights require tedious tuning. In contrast, our approach based on collocation and 

gradient-based optimization allows imposing such constraints in a direct and intuitive manner. A few 

previous studies [62], [63] have relied on direct collocation methods to solve stochastic optimal control 

problems but they evaluated the stochastic cost function and path constraints based on the simulation of 

a limited number of noisy episodes rather than describing the state distribution. For nonlinear systems 

with a limited number of degrees of freedom, such a sampling based approach appears tractable. 

However, with increasing degrees of freedom, the number of noisy episodes that is required to capture 

the underlying stochastic dynamics might become computationally intractable. Simulations based on 

too few episodes might result in problematic unstable and sub-optimal solutions. We overcame the 

limitations of prior methods by applying a recently proposed method to approximate stochastic optimal 

control problems by deterministic optimal control problems, developed for control engineering 

applications, to simulations of movement [26], [27]. The proposed approach is based on the assumption 

that the state distribution can be approximated by a Gaussian distribution and that the propagation of the 

state covariance can be described by the Lyapunov equation [28]. As such our framework allows optimal 

control problem formulations with any cost function design while feedback laws with any temporal and 

structural design are possible. Next, the possibility to impose path constraints on both the mean state 

and state covariance trajectories allows for an intuitive formulation of task requirements such as the 

desired accuracy. 

Our novel framework allows task-goals to be specified as constraints allowing us to evaluate the minimal 

effort solution for a given task. It is still debated to what extent optimality assumptions capture human 

movement and what the optimality criteria underlying human movement are [11]. Previous stochastic 

optimal control simulations have typically been based on a multi-objective cost function reflecting a 

trade off in effort and accuracy [3], [7], [12], [17], [56], [64], [65]. In such simulations, the weights in 

the cost function must be tuned to produce simulations that match the desired accuracy. By using 

constraints to impose accuracy requirements and other task goals, task requirements can be separated 

from optimality principles that govern task execution within these requirements. We reproduced key 

features of movement kinematics and control by using expected effort as the sole performance criterion. 

Not only does the approximate stochastic optimal control framework remove the need of building multi-
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objective cost functions, which might require considerable user intuition, minimizing effort within the 

solution space allowed by the task requirements might also be more representative of how humans 

approach a task. Rather than minimizing variability, humans might pick a control strategy that is ‘good 

enough’ [66]. For example, in standing a ‘good enough’ control strategy prevents a fall and for reaching 

a ‘good enough’ control strategy brings the hand in the target. The framework, based on direct 

collocation, can efficiently handle constraints offering flexibility in formulating the optimal control 

problem by for example imposing control bounds and constraining kinematic variability in agreement 

with task requirements. Our approach thus allowed us to further test effort minimization as the optimality 

criterion underlying human movement. 

Our simulations suggest that muscle co-contraction might be a minimal effort strategy to achieve 

movement goals whereas it has often been seen as an energetically costly strategy to maximize accuracy. 

Here, we found that optimal contributions of muscle co-contraction varied as a function of the task, 

mechanical properties of the muscles, and sensory acuity. Our stochastic optimal control framework 

predicted co-contraction as a minimal effort strategy during perturbed standing balance, suggesting that 

a combination of co-contraction and feedback corrections is energetically more efficient than feedback 

corrections only. Prior models also predicted feedback modulation with changing sensory acuity, but 

did not include muscles that allowed for co-contraction as a complementary strategy [14], [42]. 

Conversely, the effect of muscle co-contraction on joint impedance has been shown with linearized 

muscle models, but did not consider contributions of feedback control [67]. Co-contraction reduces 

effort when task performance benefits from increased joint impedance and activation-dependent muscle 

properties allow to increase intrinsic mechanical impedance at reasonable costs. This seems to be the 

case in healthy subjects for translational but not rotational perturbations and in vestibular loss subjects 

for both translational and rotational perturbations but only when muscle short-range stiffness was taken 

into account.  

Muscle co-contraction has been observed experimentally during reaching [68], especially in a divergent 

force field [56], [58], [59], but was not predicted by our stochastic optimal control simulations. This 

discrepancy might result from our framework not allowing predictions of the agonist-antagonist dual 

control strategy [60] enabled by muscle co-contraction. By co-contracting antagonistic muscles, it is 

possible to increase agonist activity and decrease antagonist activity simultaneously yielding a more 

efficient response to a perturbation. Although our approach to stochastic optimal control accounts for 

nonlinear state dynamics, it was still based on a linear approximation around the mean state trajectory 

to propagate the state covariance matrix. An important nonlinearity arises from muscle activity being 

bound between zero and one and hence, reductions in muscle activity are only possible when muscle 

activity is larger than zero. Yet this nonlinearity is not reflected in our approximation of the state 

covariance dynamics, which results in predicted reductions in muscle excitations if warranted for a 

perturbation, even when this would result in muscle excitations becoming smaller than zero. Hence, 

there is no need to increase baseline activity in our simulations to exploit the agonist-antagonist dual 

control strategy, which likely resulted in overly large predicted contributions of this strategy as they 

came at no cost. To further improve the realism of our simulations, we need to more accurately describe 

the nonlinearities in the dynamics of the state covariance. Other modelling assumptions might have 

influenced our estimates of muscle co-contraction to a smaller extent. On the one hand, we used an all 

or nothing approach to model short-range-stiffness whereas short-range-stiffness disappears when 

muscle stretch exceeds a certain threshold [41]. Therefore, short-range-stiffness might only contribute 

during low amplitude sway up to 3° [34], [41], and we might have overestimated its contribution when 

platform perturbations were high enough to induce large sway. On the other hand, we did not model that 
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co-contraction increases short-latency reflexes through gain scaling [69], [70], thereby underestimating 

the contribution of co-contraction to stabilizing reflexes during both standing and reaching.  

A major contribution of our work was to create a framework for predicting how stochastic optimal 

control principles apply at the level of individual joints and muscles, which is difficult to impossible 

with currently available tools. Generating simulations that predict execution-level physiological 

variables that can be compared to experimental measures requires the subsystems, i.e. joints and 

muscles, from which those measures are obtained to be modeled. While it is known that using different 

levels of detail to represent the musculoskeletal dynamics lead to different simulated responses to 

perturbations if motor commands remained unchanged [71], optimal control predictions inform how the 

nervous system can exploit the nonlinear dynamics of the musculoskeletal system. As such the ability 

of stochastic optimal control to predict movement cannot be accurately validated using simple models. 

For example, our two-segment arm model yielded more realistic reach trajectories when reaching to 

different targets, especially in the presence of perturbations, when compared to prior predictions based 

on a point mass [8].  Similarly, simulations of endpoint stiffness in an unstable force field show, similar 

to experimental observations [36], [56], [58], [72], that the modulation of vertical stiffness is adapted 

together with horizontal stiffness because muscle activation affects both horizontal and vertical endpoint 

stiffness. These examples demonstrate how stochastic optimal control applied to muscle-driven models 

can be used to interpret complex motor coordination at the muscle level and to study control of redundant 

sets of muscles in the presence of noise. 

Our novel computational framework leverages computational advances from deterministic movement 

simulations to enable predictions for stochastic movement simulations that may yield much insight into 

both normal and pathological movement control, as well as human-robot interactions. Under the 

assumption of stochastic optimal control, our movement predictions became more realistic when 

modelling neuro-musculoskeletal dynamics in more detail. Moving beyond deterministic simulations 

may enable coupled changes in complex, whole body movement and its neural control to be studied in 

both healthy and impaired movement. The interactions of feedforward and feedback neural control 

mechanisms with musculoskeletal mechanics is critical to consider in a highly redundant space of 

feasible neuromusculoskeletal solutions for movement, particularly in the presence of noise. Optimal 

control processes may also explain compensatory changes in neural control of movement in impaired 

motor control [73]. Moreover, the role of nonlinear musculoskeletal dynamics has been recently 

demonstrated to play a significant role in impaired motor control such as in spasticity [4]. Further, 

movement variability might complicate the control and design of exoskeletons and other assistive 

devices. Incorporating uncertainty and movement variability in simulations, that are often used to 

generate and test ideas before implementing these in reality, could facilitate the design process of  

assistive devices.  

METHODS 
Approximating the stochastic optimal control problem by a deterministic optimal 

control problem 

We formulate simulations of movement in the presence of noise as stochastic optimal control problems. 

Due to the presence of noise, the system dynamics are stochastic: 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑤); with 𝑥 the 

stochastic state trajectories, 𝑢 the deterministic control trajectories and 𝑤 a set of disturbances with a 

zero-mean Gaussian distribution (noise). To solve the stochastic optimal control problems, we 

approximate the stochastic state trajectories, which are in general non-normally distributed, by normally 
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distributed trajectories. As a result, we can describe the stochastic state trajectory by the mean state 

trajectory 𝑥𝑚𝑒𝑎𝑛(𝑡) and state covariance trajectory 𝑃(𝑡). The dynamics of the mean state can be 

described by a deterministic approximation of the stochastic dynamics obtained by setting the 

disturbances to zero: 

 𝑥̇𝑚𝑒𝑎𝑛(𝑡) = 𝑓(𝑥𝑚𝑒𝑎𝑛(𝑡), 𝑢(𝑡), 𝑤 = 0)  ( ) 

The dynamics of the state covariance can be described by the continuous Lyapunov differential 

equations based on a local first-order approximation of the nonlinear system dynamics around the mean 

state, corresponding to the propagation rules of an extended Kalman Filter ([30], [74]):  

 𝑃̇(𝑡) = 𝐴(𝑡)𝑃(𝑡) + 𝑃(𝑡)𝐴(𝑡)𝑇 + 𝐶(𝑡)𝛴𝑤
′ 𝐶(𝑡)𝑇 

 

( ) 

 
𝐴(𝑡) = (

𝜕𝑓

𝜕𝑥
(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑤))

𝑥(𝑡)= 𝑥𝑚𝑒𝑎𝑛(𝑡)

 
(3) 

 
𝐶(𝑡) = (

𝜕𝑓

𝜕𝑤
(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑤))

𝑥(𝑡)= 𝑥𝑚𝑒𝑎𝑛(𝑡)

 
(4) 

Equations ( -4) form a deterministic approximation of the stochastic dynamics. Similarly, we can 

approximate the stochastic constraint functions 𝑔(𝑥(𝑡)) by a normal distribution with mean 𝜇𝑔(𝑥) =

𝑔(𝑥𝑚𝑒𝑎𝑛), and standard deviation 𝜎𝑔(𝑥) = √𝜕𝑔

𝜕𝑥
𝑃(𝑡)

𝜕𝑔

𝜕𝑥

𝑇
. Using this approach, we can transform the 

stochastic optimal control problem into an approximate deterministic optimal control problem: 

min
𝑢(𝑡)

   𝐸[∫ 𝐽(𝑥𝑚𝑒𝑎𝑛(𝑡), 𝑢(𝑡), 𝑃(𝑡))𝑑𝑡] 
expected cost (5) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥̇𝑚𝑒𝑎𝑛(𝑡) = 𝑓(𝑥𝑚𝑒𝑎𝑛(𝑡), 𝑢(𝑡), 𝑤 = 0) 

𝑃̇(𝑡) = 𝐴(𝑡)𝑃(𝑡) + 𝑃(𝑡)𝐴(𝑡)𝑇 + 𝐶(𝑡)𝛴𝑤
′ 𝐶(𝑡)𝑇 

𝑔𝑖(𝑥𝑚𝑒𝑎𝑛(𝑡), 𝑢(𝑡)) + 𝛾𝑖√
𝜕𝑔𝑖

𝜕𝑥
𝑃(𝑡)

𝜕𝑔𝑖

𝜕𝑥

𝑇
≥ 0    𝑖 =  ,…𝑛𝑔     

 

 mean state dynamics (6) 

covariance dynamics (7) 

 

path constraints (8) 

with 𝛾𝑖 a parameter determining the probability that the state trajectory fulfills the constraint and 𝑛𝑔 the 

number of path constraints. Given the Gaussian approximation of the state distribution, 𝛾𝑖 would need 

to be infinitely large to impose the constraint over the whole distribution. In practice, we choose finite 

values for 𝛾𝑖, where the chance of fulfilling the constraints is 95% when 𝛾𝑖 = 2, and 99.7% when 𝛾𝑖 = 3.  

We solve the approximate deterministic optimal control problems using direct collocation with a 

trapezoidal integration scheme and mesh intervals of 10ms and solve the resulting large, but sparse 

nonlinear programming problems (NLP) with IPOPT [75]. We formulate all dynamics implicitly (details 

in the Supplementary Material) to improve the numerical condition of the NLP [4], [22], [76]. We use 

CasADi [77] to perform automatic differentiation, which improves the accuracy of the derivative 

computations and might reduce the number of operations through use of its reverse mode [19]. For 

details on the numerical implementation of the optimal control problems, we refer to the Supplementary 

Material. 

Stochastic optimal control simulations of movement  

We applied our stochastic optimal control framework to two fundamental movements that have been 

studied extensively: standing balance and goal-directed reaching. An overview of the musculoskeletal 

and motor control models is provided in Figure 1 and Figure 2. In general, we optimized both 

feedforward (i.e., open-loop) and feedback components (i.e. feedback gains) of the control law to 
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perform the prescribed movement task robustly with minimal expected effort. For standing balance, we 

imposed task robustness by requiring the solution to be asymptotically stable, i.e. the state covariance 

was constant. For reaching, we imposed the required accuracy of the reaching movement depending on 

the target shape.  

Standing balance 

We first give a general description of the optimal control problem, simulations and outcome measures. 

Dynamic equations and model parameters are described in more detail below.  

 

General description of standing balance simulations and outcome measures 

We modeled standing in the presence of platform perturbations based on an inverted pendulum (IP) 

model (mass: 70kg, length: 1m) linked to a rotatable and translational platform (Figure 1). Two 

antagonistic Hill-type muscles with rigid tendons actuated the ankle joint, i.e., the joint connecting the 

pendulum to the platform. The muscle properties (maximal isometric force 𝐹𝐼𝑆𝑂, tendon slack length 𝑙𝑇
𝑠 , 

optimal fiber length 𝑙𝑀
𝑜 , optimal pennation angle α, damping coefficient β; described in table 1) were 

taken from the soleus and tibialis anterior muscle of the OpenSim3.3 gait10dof18musc model [78]. Input 

to the Hill-type muscles were muscle activations, which were a sum of constant baseline activations 

(𝑎𝑆𝑂𝐿,𝑏𝑎𝑠𝑒 , 𝑎𝑇𝐴,𝑏𝑎𝑠𝑒) and feedback activations (𝑎𝑆𝑂𝐿,𝑓𝑏 , 𝑎𝑇𝐴,𝑓𝑏). Feedback excitations (𝑒𝑆𝑂𝐿,𝑓𝑏 , 𝑒𝑇𝐴,𝑓𝑏) 

were a linear combination of the angle and angular velocity of the inverted pendulum with respect to the 

gravitational field, representing vestibular information, and of the angle and angular velocity of the 

inverted pendulum with respect to the platform, representing proprioceptive information. All feedback 

gains were constant in time. Feedback activations resulted from feedback excitations through first-order 

dynamics with a time constant (𝜏) of 150ms lumping together sensory and motor delays [79]. Gaussian 

vestibular (𝑤𝑣,𝑞 , 𝑤𝑣,𝑞̇) and proprioceptive noise (𝑤𝑝,𝑞 , 𝑤𝑝,𝑞̇) with respective variance 𝜎𝑣,𝑞
2 , 𝜎𝑣,𝑞̇

2  and 𝜎𝑝,𝑞
2 , 𝜎𝑝,𝑞̇

2  

was added to both the vestibular and proprioceptive cues, additive motor noise (𝑤𝑆𝑂𝐿 , 𝑤𝑇𝐴) with variance 

(𝜎𝑆𝑂𝐿
2 , 𝜎𝑇𝐴

2 ) corrupted the muscle activations. All sensory and motor noise sources were independent.  

To simulate random rotation perturbations, the platform angular position, velocity and acceleration were 

modeled as zero mean Gaussian noise (𝑤𝑆𝑆,𝑞, 𝑤𝑆𝑆,𝑞̇, 𝑤𝑆𝑆,𝑞̈) with constant variance (𝜎𝑆𝑆,𝑞
2 , 𝜎𝑆𝑆,𝑞̇

2 , 𝜎𝑆𝑆,𝑞̈
2 ). We 

introduce the subscript ‘ss’ to indicate the variables related to the platform or support-surface and to 

avoid confusion with subscript ‘p’ for proprioception. To simulate random translation perturbations, we 

only needed to describe the platform translational acceleration as zero mean Gaussian noise (𝑤𝑆𝑆,𝑡𝑟𝑎𝑛𝑠 ) 

with variance (𝜎𝑆𝑆,𝑡𝑟𝑎𝑛𝑠
2 ). We could ignore the random translational position and velocity of the platform 

as these affect neither the dynamics of the pendulum nor the proprioceptive and vestibular information 

(relative and absolute pendulum angles).  

The task-goal during standing was to maintain a stable upright posture (asymptotic stability). Postural 

asymptotic stability, in the presence of noise, was modeled by constraining the mean angle of the 

pendulum to be upright with zero angular velocity, the mean state derivatives to be zero (mean pendulum 

position and velocity and muscle activations are constant in time), and the state covariance derivatives 

to be zero: 𝑃̇ = 0 (state covariance matrix was constant in time).  

We solved for the muscle baseline activities and feedback gains given the described constraints while 

minimizing expected effort. Expected effort was modeled as the expected value of the sum of muscle 

excitations and muscle baseline activations squared:  

 
𝐸 [∫[𝑎𝑆𝑂𝐿,𝑏𝑎𝑠𝑒

2 + 𝑎𝑇𝐴,𝑏𝑎𝑠𝑒
2 + 𝑒𝑆𝑂𝐿,𝑓𝑏(𝑡)

2 + 𝑒𝑆𝑂𝐿,𝑓𝑏(𝑡)
2]𝑑𝑡] (9) 

We performed simulations based on four different models. We performed simulations with the full 

feedback model, representing healthy subjects, and simulations with only proprioceptive feedback, 
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representing vestibular loss subjects. We performed these simulations based on two muscle models, a 

Hill-type muscle model described and a Hill-type model that was extended with short-range-stiffness 

(SRS).  SRS was modeled by adding a spring with activation dependent stiffness in parallel to the 

contractile element producing a force 

 
𝐹𝑆𝑅𝑆 = 𝑘𝑆𝑅𝑆 ∙ 𝐹𝑖𝑠𝑜,𝑚𝑎𝑥 ∙ 𝑎𝑏𝑎𝑠𝑒 ∙ (

𝑙𝑚 − 𝑙𝑚,𝑢𝑝𝑟𝑖𝑔ℎ𝑡

𝑙𝑚,𝑜𝑝𝑡

), (10) 

with 𝑎𝑏𝑎𝑠𝑒the muscle baseline activation, 𝑙𝑚 the muscle fiber length, 𝑙𝑚,𝑢𝑝𝑟𝑖𝑔ℎ𝑡 the muscle fiber length 

in upright position, 𝑙𝑚,𝑜𝑝𝑡 the optimal muscle fiber length and 𝑘𝑆𝑅𝑆 the short-range-stiffness scaling 

factor, which was set to 1 [80]. We thus have four models: healthy (‘healthy’), healthy with muscles 

including short-range-stiffness (‘healthy - SRS’), vestibular loss (‘VL’), vestibular loss with muscles 

including short-range-stiffness (‘VL - SRS’). 

 

Our outcome measures were (1) body sway – described by the standard deviation of the normally 

distributed pendulum angle, (2) the relative contribution of proprioceptive feedback, 
‖𝐾𝑝𝑟𝑜𝑝𝑟𝑖𝑜‖

‖𝐾𝑝𝑟𝑜𝑝𝑟𝑖𝑜‖+‖𝐾𝑣𝑒𝑠𝑡‖
, 

(3) the co-contraction index (CCI), given by baseline activity of the strongest muscle (soleus), and (4) 

the contribution of expected effort from feedback to the total expected effort: 
𝑒𝑓𝑓𝑜𝑟𝑡𝐹𝐵

𝑒𝑓𝑓𝑜𝑟𝑡𝐹𝐵+𝑒𝑓𝑓𝑜𝑟𝑡𝐹𝐹
.  

Stochastic dynamics and model parameters  

We indicated variables that are modeled as Gaussian noise in red. The state consisted of the ankle angle 

and angular velocity, 𝑞𝐴, 𝑞̇𝐴 and the activation of soleus and tibialis anterior, 𝑎𝑆𝑂𝐿 and 𝑎𝑇𝐴: 

 

 𝒙 =  [𝑞𝐴 𝑞̇𝐴 𝑎𝑆𝑂𝐿 𝑎𝑇𝐴]. (11) 

 

The control law was parametrized by the baseline muscle activations, 𝒂𝑏𝑎𝑠𝑒, and the constant feedback 

gains, 𝑲: 

 
𝒂𝑏𝑎𝑠𝑒 = [𝑎𝑆𝑂𝐿,𝑏𝑎𝑠𝑒 𝑎𝑇𝐴,𝑏𝑎𝑠𝑒];  𝑲 =  [

𝐾𝑞,𝑝𝑟𝑜𝑝
𝑆𝑂𝐿 𝐾𝑞̇,𝑝𝑟𝑜𝑝

𝑆𝑂𝐿 𝐾𝑞,𝑣𝑒𝑠𝑡
𝑆𝑂𝐿 𝐾𝑞̇,𝑣𝑒𝑠𝑡

𝑆𝑂𝐿

𝐾𝑞,𝑝𝑟𝑜𝑝
𝑇𝐴 𝐾𝑞̇,𝑝𝑟𝑜𝑝

𝑇𝐴 𝐾𝑞,𝑣𝑒𝑠𝑡
𝑇𝐴 𝐾𝑞̇,𝑣𝑒𝑠𝑡

𝑇𝐴 ], (12) 

where SOL refers to the soleus and TA refers to the tibialis anterior. The dynamics were described by 

the equations of motion of the pendulum and the first order delay between excitation and activation. The 

equations of motion were expressed in a non-inertial reference frame by introducing fictitious forces 

due to the angular and translational platform acceleration: 

 

[
 
 
 
 
 
 

𝑑𝑞𝐴

𝑑𝑡
𝑑𝑞̇𝐴

𝑑𝑡
𝑑𝑎𝑆𝑂𝐿,𝑓𝑏

𝑑𝑡
𝑑𝑎𝑇𝐴,𝑓𝑏

𝑑𝑡 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑞̇𝐴

𝑚𝑔𝑙∙𝑠𝑖𝑛(𝑞𝐴+𝑤𝑆𝑆,𝑞)+𝑇𝑆𝑂𝐿+𝑇𝐴

𝑚𝑙2+𝐼
+

𝑚𝑙∙𝑠𝑖𝑛(𝑞𝐴)

𝑚𝑙2+𝐼
𝑤𝑆𝑆,𝑡𝑟𝑎𝑛𝑠 + 𝑤𝑆𝑆,𝑞̈ 

(𝑒𝑆𝑂𝐿,𝑓𝑏 − 𝑎𝑆𝑂𝐿,𝑓𝑏)/𝜏

(𝑒𝑇𝐴,𝑓𝑏 − 𝑎𝑇𝐴,𝑓𝑏)/𝜏 ]
 
 
 
 
 
 

, 

 

(13) 

with 𝑚 the pendulum mass, 𝑙 the pendulum length, 𝑔 the gravity constant, 𝐼 the pendulum inertia,  

𝑇𝑆𝑂𝐿+𝑇𝐴 the torque generated by the soleus and tibialis anterior, and where feedback muscle 

excitations (𝑒𝑆𝑂𝐿,𝑓𝑏 , 𝑒𝑇𝐴,𝑓𝑏) resulted from linear feedback of the feedback signal 𝒚𝑓𝑏: 
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𝒚𝑓𝑏 =

[
 
 
 

𝑞𝐴 + 𝑤𝑝,𝑞

𝑞̇𝐴 + 𝑤𝑝,𝑞̇

𝑞𝐴 + 𝑤𝑆𝑆,𝑞 + 𝑤𝑣,𝑞

𝑞̇𝐴 + 𝑤𝑆𝑆,𝑞̇ + 𝑤𝑣,𝑞̇]
 
 
 

; [
𝑒𝑆𝑂𝐿,𝑓𝑏

𝑒𝑇𝐴,𝑓𝑏
] = 𝑲 ∙ 𝒚𝑓𝑏 (14) 

Note that we assumed here that the platform’s mean linear and angular position, velocity and 

acceleration were constant in time with constant variance. This differs from driving the platform with a 

zero-mean Gaussian input signal, which would lead to a monotonic increase of the variance in time. 

Instead, we implicitly assumed that a more clever platform controller was used. 

The torque generated by the soleus and tibialis anterior muscles is a function of their forces and 

moment arms: 

 𝑇𝑆𝑂𝐿+𝑇𝐴 = 𝐹𝑆𝑂𝐿 ∙ 𝑑𝑆𝑂𝐿(𝑞𝐴) + 𝐹𝑇𝐴 ∙ 𝑑𝑇𝐴(𝑞𝐴). (15) 

with 𝑑𝑆𝑂𝐿(𝑞𝐴), 𝑑𝑇𝐴(𝑞𝐴) the soleus and tibialis anterior moment arms, which depend on the ankle angle 

𝑞𝐴. Muscle forces depend on muscle activation and through the force-length-velocity properties of the 

muscle also on the muscle length (𝑙𝑆𝑂𝐿 , 𝑙𝑇𝐴) and velocity (𝑙𝑆̇𝑂𝐿 , 𝑙𝑇̇𝐴), which in turn are a function of the 

ankle angular position and velocity 𝑞𝐴, 𝑞̇𝐴: 

 
 [
𝐹𝑆𝑂𝐿

𝐹𝑇𝐴
] = [

𝐹𝐼𝑆𝑂,𝑆𝑂𝐿 ∙ [(𝑎𝑆𝑂𝐿,𝑓𝑏 + 𝑎𝑆𝑂𝐿,𝑏𝑎𝑠𝑒 + 𝑤𝑆𝑂𝐿) ∙ 𝑓𝑙(𝑙𝑆𝑂𝐿) ∙ 𝑓𝑣(𝑙𝑆𝑂𝐿, 𝑙̇𝑆𝑂𝐿) + 𝑓𝑝,𝑆𝑂𝐿(𝑙𝑆𝑂𝐿)]

𝐹𝐼𝑆𝑂,𝑇𝐴 ∙ [(𝑎𝑇𝐴,𝑓𝑏 + 𝑎𝑇𝐴,𝑏𝑎𝑠𝑒 + 𝑤𝑇𝐴) ∙ 𝑓𝑙(𝑙𝑇𝐴) ∙ 𝑓𝑣(𝑙𝑇𝐴, 𝑙̇𝑇𝐴) + 𝑓𝑝,𝑇𝐴(𝑙𝑇𝐴)]
] (16) 

with 𝑓𝑙 the active muscle force-length relationship, 𝑓𝑣 the muscle force-velocity relationship, and 𝑓𝑝 the 

passive muscle force-length relationship. The active force-length, force-velocity, and passive force-

length relationships are described in [5].  

Muscle-tendon lengths were approximated by the sum of a linear function, a sine, and a constant offset 

(𝑙𝑀𝑇 = 𝑎 ∙ 𝑞 + 𝑏 ∙ sin(𝑐 ∙ 𝑞) + 𝑑) with a, b, c and d estimated by minimizing the least square error 

between this approximation and the muscle lengths obtained from the OpenSim gait10dof18musc model 

[81]. The moment-arms are computed as the derivatives of the muscle-lengths with respect to the angle: 

𝑑𝑚𝑢𝑠𝑐𝑙𝑒 =  + 𝑏 ∙ 𝑐 ∙ cos(𝑐 ∙ 𝑞) [78].  

Noise characteristics (summarized in Table 4) were based on preliminary simulations and experimental 

data [31]. Motor noise, added to muscle activations, had a standard deviation of 1% of the maximal 

signal based on force fluctuation measurements in different isometric tasks [82], [83], where a 

coefficient of variation between 1-5% was found. These measurements quantify motor noise indirectly 

as force-tracking errors might have other origins as well and we therefore selected the lower end of the 

measured variability to model motor noise. The relative values of proprioceptive and vestibular noise 

were selected such that the relative contribution of proprioceptive feedback, 
‖𝐾𝑝𝑟𝑜𝑝‖

‖𝐾𝑝𝑟𝑜𝑝‖+‖𝐾𝑣𝑒𝑠𝑡‖
, was 

between 0.7-0.8 during optimal unperturbed standing in agreement with values identified from 

experiments by Peterka et al. [31]. The absolute values for sensory noise were selected such that during 

optimal unperturbed standing body sway, defined as the standard deviation of the pendulum angle, was 

~0.3°, a typical value found in experiments of quiet standing in healthy subjects [84]. The values that 

determine the platform rotations, 𝜎𝑆𝑆,𝑞
2 , 𝜎𝑆𝑆,𝑞̇

2 , 𝜎𝑆𝑆,𝑞̈
2 ,  were selected to mimic the rotational perturbations 

applied in [31]. In these experiments, the platform angular position, velocity and acceleration were not 

Gaussian. Here, we approximated the non-Gaussian experimental platform movements by zero-mean 

Gaussian platform movements with a standard deviation of half the amplitude of the experimental 

perturbations. The variance of the translational accelerations 𝜎𝑆𝑆,𝑡𝑟𝑎𝑛𝑠
2  were determined such that the 

healthy model for the maximal accelerations, under optimal control, reached a standard deviation of the 

ankle angle of 4°, a value that is typically not exceeded in continuous translation perturbation 

experiments [85], [86].  
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Table 1 - Muscle properties of model for perturbed standing simulations 

Muscle properties 

soleus; tibialis anterior 

𝐹𝐼𝑆𝑂[𝑁] 5137; 3000 

𝑙𝑇
𝑠 [𝑚] 0.2514;0.2228 

𝑙𝑀
𝑜 [𝑚] 0.0528; 0.1028 

α [rad] 0.4364; 0.0873 

β  0.01; 0.01 

 

Table 2 - Noise characteristics for perturbed standing balance simulations.  

Sensory noise Motor noise 𝜎𝑆𝑆,𝑞̇
2 [(°/𝑠)2 𝑠] 0.001²; 0.3²; 0.6²; 1.2²; 2.4²; 4.8²; 

9.6² 

𝜎𝑝,𝑞
2 [(°)2 𝑠] 0.1² 𝜎𝑆𝑂𝐿

2 [(−)2 𝑠] 0.01² 𝜎𝑆𝑆,𝑞̈
2 [(°/𝑠²)2 𝑠] 0.001²; 1²; 2²; 2²; 2²; 2²; 2² 

𝜎𝑝,𝑞̇
2 [(°

/𝑠)2 𝑠] 

0.2² 𝜎𝑇𝐴
2 [(−)2 𝑠] 0.01² Platform translations 

𝜎𝑣,𝑞
2 [(°)2 𝑠] 0.3² Platform rotations 𝜎𝑆𝑆,𝑡𝑟𝑎𝑛𝑠

2 [(𝑚

/𝑠²)2 𝑠] 

0.001²; 0.0175²; 0.035²; 0.07²; 

0.14²; 0.28²; 0.56² 

𝜎𝑣,𝑞̇
2 [(°

/𝑠)2 𝑠] 

0.6² 𝜎𝑆𝑆,𝑞
2 [(°)2 𝑠] 0.001²; 0.125²; 0.25²; 

0.5²; 1²; 2²; 4² 

Note on the units of the noise variances. The time unit appears in the noise variance ([.s]) because we describe continuous-

time Gaussian noise. If we perform a numerical integration and thus move to a discrete-time description of continuous noise 

the unit of time disappears by dividing the variance by the integration interval length (expressed in seconds). This makes sense 

if we reflect about a forward integration of a 1D point mass where the velocity has a continuous variance of e.g. 2 (m/s)².s. If 

we perform the numerical integration over an interval of 1s the discrete variance (Σ) is 2 (m/s)², we find that the variance of 

the position after 1s is equal to 2m²: 𝑃𝑘+1 = 𝑃𝑘 + 𝑑𝑡 ∗ 𝛴 ∗ 𝑑𝑡’  → 𝑃𝑘+1 = 0 +   [𝑠] ∗  [(𝑚/𝑠)²] ∗  [𝑠] =   𝑚²  . If we 

perform the numerical integration over 1s using a time step of 0.1s the discrete variance is 20 (m/s)². We obtain 𝑃0 1𝑠  =  0 +

 0  [𝑠] ∗  0[(𝑚/𝑠)²] ∗ 0  [𝑠]  =  0  𝑚²  We obtain for 𝑃0 2𝑠  =  0  [𝑚2] +  0  [𝑠] ∗  0[(𝑚/𝑠)²] ∗ 0  [𝑠] =  0 4𝑚². Finally, 

𝑃1𝑠  =   𝑚²  

 

Goal-directed reaching 

General description of reach simulations and outcome measures 

We modeled four reaching tasks based on a two-segment model, where the segments represent the upper 

and lower arm and are connected by hinge joints (Figure 2). An agonist-antagonist couple of Hill-type 

muscles with rigid tendons actuated each joint. The muscle properties (maximal isometric force 𝐹𝐼𝑆𝑂, 

tendon slack length 𝑙𝑇
𝑠 , optimal fiber length 𝑙𝑀

𝑜 , optimal pennation angle α, damping coefficient β; 

described in table 3) were based on the biceps brachialis, triceps, anterior deltoid and posterior deltoid 

of a full-body musculoskeletal OpenSim model [87], [88]. We adapted some muscle parameters to 

compensate for the absence of other (bi-articular) muscles by changing the relation between joint angles 

moment-arms and by adapting the force-length relation such that the muscles could generate force 

throughout the full range of the reaching movement. The muscles were stimulated by muscle excitations 

(𝑒𝐴𝑁𝑇𝐷𝐸𝐿, 𝑒𝑃𝑂𝑆𝑇𝐷𝐸𝐿, 𝑒𝐵𝐼𝐶 , 𝑒𝑇𝑅𝐼) that were a sum of feedforward and feedback excitations. Feedback 

excitations consisted of linear time-varying feedback of the end-effector (hand) position and velocity 

with respect to the nominal end-effector kinematics. The nominal end-effector kinematics was the end-

effector kinematics due to the feedforward excitations in the absence of sensory and motor noise. 

Activations were related to excitations through first-order dynamics with a time constant (𝜏) of 150ms 

lumping together sensorimotor delays. Sensory noise was modeled by additive Gaussian noise on the 
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end-effector position (𝑤𝐸𝐸𝑥
, 𝑤𝐸𝐸𝑦

) and velocity (𝑤𝐸𝐸̇𝑥
, 𝑤𝐸𝐸̇𝑦

) with respective variance 

(𝜎𝐸𝐸,𝑥
2 , 𝜎𝐸𝐸,𝑦

2 , 𝜎𝐸𝐸,𝑥̇
2 , 𝜎𝐸𝐸,𝑦̇

2 ). The noisy end-effector positions and velocities were input to the feedback law. 

Motor noise was modeled by Gaussian motor noise added to each joint torque (𝑤𝑠, 𝑤𝑒) with variance 

(𝜎𝑠
2, 𝜎𝑒

2). 

The task-goal was to perform a point-to-point reaching movement over a distance of 25cm in 0.5s with 

a pre-defined chance of the end effector ending up within the target, Reaching accuracy was imposed 

by limiting the variance of the horizontal and vertical end-effector position depending on the task 

requirements.  

(1) Reaching towards a small circular target (circle) was modeled by constraining the standard deviation 

of the end-effector end-point horizontal and vertical positions to be smaller than 0.4cm. 

(2) Reaching towards a horizontal bar (bar) was modeled by constraining the standard deviation of the 

end-effector end-point vertical position to be smaller than 0.4cm 

(3) Reaching towards a circular target in presence of an obstacle was modeled by imposing the standard 

deviation of the end-effector end-point horizontal and vertical positions to be smaller than 0.4cm and 

the standard deviation of end-effector horizontal position during the second part (>0.25s) of the reaching 

trajectory to be smaller than 0.4cm 

(4) Reaching towards a circular target in presence of a divergent force field of 200N/m was modeled by 

constraining the standard deviation of the end-effector end-point horizontal and vertical positions to be 

smaller than 0.4cm. 

We solved for optimal control policies that minimized expected effort, 

 
𝐸 [∫[𝑒𝐴𝑁𝑇𝐷𝐸𝐿(𝑡)

2 + 𝑒𝑃𝑂𝑆𝑇𝐷𝐸𝐿(𝑡)
2 + 𝑒𝐵𝐼𝐶(𝑡)2 + 𝑒𝑇𝑅𝐼(𝑡)

2]𝑑𝑡], (17) 

while fulfilling the task requirements for each of the specific tasks. We then used these optimal control 

policies to perform 100 forward simulations of unperturbed and perturbed reaching. The simulated 

extension perturbations matched the perturbations in the experiments described by Nashed et al. [8]. 

We computed the accuracy for the different optimal control policies in perturbed and unperturbed 

reaching by computing the 95% confidence ellipses of the end-point positions of the end-effector for the 

100 simulations. We computed the corrective muscle activations for perturbed reaching by subtracting 

the mean muscle activations during unperturbed reaching from the muscle activations for each of the 

100 perturbed reaching simulations. We computed the mean and standard deviation of these corrective 

muscle activations to analyze corrective behavior at the muscle level. We computed the co-contraction 

index throughout the reaching movement for each of the joints by averaging the joint-specific CCI over 

time. In this case, we computed the CCI as in [89]: 
𝑚𝑖𝑛(𝑎𝑓𝑙𝑒𝑥(𝑡),𝑎𝑒𝑥𝑡(𝑡))

max(𝑎𝑓𝑙𝑒𝑥(𝑡),𝑎𝑒𝑥𝑡(𝑡))
∗ (𝑎𝑓𝑙𝑒𝑥(𝑡) + 𝑎𝑒𝑥𝑡(𝑡)) where 

𝑎𝑓𝑙𝑒𝑥 and 𝑎𝑒𝑥𝑡 are the activations of the flexor and extensor muscles at the joint.  

Stochastic dynamics and model parameters  

We indicated variables that are modeled as Gaussian noise in red. The state consisted of the ankle angle 

and angular velocity, 𝑞𝐴, 𝑞̇𝐴 and the activation of soleus and tibialis anterior, 𝑎𝑆𝑂𝐿 and 𝑎𝑇𝐴: 

 

We indicated variables that are described as constant zero-mean Gaussian noise in red.  The state 

consisted of the joint angle angular positions (𝑞𝑠, 𝑞𝑒) and velocities (𝑞̇𝑠, 𝑞̇𝑒), and the activations of the 
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anterior deltoid, the posterior deltoid, the biceps and the triceps muscles 

(𝑎𝐴𝑁𝑇𝐷𝐸𝐿, 𝑎𝑃𝑂𝑆𝑇𝐷𝐸𝐿, 𝑎𝐵𝐼𝐶 , 𝑎𝑇𝑅𝐼). 

 

 𝒙 =  [𝑞𝑠 𝑞𝑒 𝑞̇𝑠 𝑞̇𝑒 𝑎𝐴𝑁𝑇𝐷𝐸𝐿 𝑎𝑃𝑂𝑆𝑇𝐷𝐸𝐿 𝑎𝐵𝐼𝐶 𝑎𝑇𝑅𝐼]. (18) 

The control law was parametrized by the feedforward muscle excitation trajectories 𝒆𝑓𝑓(𝑡) and the time-

varying feedback gains, 𝑲(𝑡): 

 

𝒆𝑓𝑓(𝑡) =

[
 
 
 
 
𝑒𝑓𝑓,𝐴𝑁𝑇𝐷𝐸𝐿(𝑡)

𝑒𝑓𝑓,𝑃𝑂𝑆𝑇𝐷𝐸𝐿(𝑡)

𝑒𝑓𝑓,𝐵𝐼𝐶(𝑡)

𝑒𝑓𝑓,𝑇𝑅𝐼(𝑡) ]
 
 
 
 

;  𝑲(𝑡) =  

[
 
 
 
 
𝐾𝑞𝑠

𝐴𝑁𝑇𝐷𝐸𝐿(𝑡) 𝐾𝑞𝑒
𝐴𝑁𝑇𝐷𝐸𝐿(𝑡) 𝐾𝑞̇𝑠

𝐴𝑁𝑇𝐷𝐸𝐿(𝑡) 𝐾𝑞̇𝑒

𝐴𝑁𝑇𝐷𝐸𝐿(𝑡)

𝐾𝑞𝑠
𝑃𝑂𝑆𝑇𝐷𝐸𝐿(𝑡) 𝐾𝑞𝑒

𝑃𝑂𝑆𝑇𝐷𝐸𝐿(𝑡) 𝐾𝑞̇𝑠

𝑃𝑂𝑆𝑇𝐷𝐸𝐿(𝑡) 𝐾𝑞̇𝑒

𝑃𝑂𝑆𝑇𝐷𝐸𝐿(𝑡)

𝐾𝑞𝑠
𝐵𝐼𝐶(𝑡) 𝐾𝑞𝑒

𝐵𝐼𝐶(𝑡) 𝐾𝑞̇𝑠

𝐵𝐼𝐶(𝑡) 𝐾𝑞̇𝑒

𝐵𝐼𝐶(𝑡)

𝐾𝑞𝑠
𝑇𝑅𝐼(𝑡) 𝐾𝑞𝑒

𝑇𝑅𝐼(𝑡) 𝐾𝑞̇𝑠

𝑇𝑅𝐼(𝑡) 𝐾𝑞̇𝑒

𝑇𝑅𝐼(𝑡) ]
 
 
 
 

 (19) 

 

The dynamics were described by the equations of motion and the first order delay between excitations 

and activations: 

 

[
 
 
 
 
 
𝑑𝒒

𝑑𝑡
𝑑𝒒̇

𝑑𝑡
𝑑𝒂

𝑑𝑡 ]
 
 
 
 
 

=

[
 
 
 
 

𝑀(𝒒)−1

𝒒̇

(𝐶(𝒒, 𝒒̇) + 𝑻𝑀 + 𝑻𝑚𝑜𝑡𝑜𝑟 + [
𝑤𝑠

𝑤𝑒
]) 

(𝒆 − 𝒂)/𝜏 ]
 
 
 
 

 (20) 

with 𝑀(𝒒) the mass-matrix of the arm model, 𝐶(𝒒, 𝒒̇) the term describing the Corriolis forces, 𝑻𝑀 the 

shoulder and elbow joint torques generated by the muscles and 𝑻𝑚𝑜𝑡𝑜𝑟 the stochastic torque acting at 

shoulder and elbow resulting from motor noise 𝑤𝑠, 𝑤𝑒. The total muscle excitations were the result of 

feedforward and feedback control: 

 

𝒚𝑓𝑏 =

[
 
 
 
 
𝐸𝐸𝑥 + 𝑤𝐸𝐸𝑥

𝐸𝐸𝑦 + 𝑤𝐸𝐸𝑦

𝐸𝐸̇𝑥 + 𝑤𝐸𝐸̇𝑥

𝐸𝐸̇𝑦 + 𝑤𝐸𝐸̇𝑦]
 
 
 
 

− 𝐸𝐸𝑟𝑒𝑓; 𝒆 = 𝒆𝑓𝑓 + 𝑲 ∙ 𝒚𝑓𝑏 (21) 

where the end effector positions (𝐸𝐸𝑥 , 𝐸𝐸𝑦) and velocities (𝐸𝐸̇𝑥 , 𝐸𝐸̇𝑦) can be computed from the joint 

positions and velocities:    

 

[
 
 
 
 
𝐸𝐸𝑥

𝐸𝐸𝑦

𝐸𝐸̇𝑥

𝐸𝐸̇𝑦]
 
 
 
 

= 𝑓𝑘𝑖𝑛(𝒒, 𝒒̇) (22) 

The reference end-effector trajectory is the end-effector trajectory in the absence of noise, which can 

thus be computed from the mean joint trajectories.  

The shoulder and elbow torques generated by the different muscles depends on muscle forces and 

moment arms, which in turn depend on the shoulder and elbow joint angles: 

 
𝑇𝑀 = [

𝐹𝐴𝑁𝑇𝐷𝐸𝐿 ∙ 𝑑𝐴𝑁𝑇𝐷𝐸𝐿(𝑞𝑠) + 𝐹𝑃𝑂𝑆𝑇𝐷𝐸𝐿 ∙ 𝑑𝑃𝑂𝑆𝑇𝐷𝐸𝐿(𝑞𝑠)

𝐹𝐵𝐼𝐶 ∙ 𝑑𝐵𝐼𝐶(𝑞𝑒) + 𝐹𝑇𝑅𝐼𝐶 ∙ 𝑑𝑇𝑅𝐼𝐶(𝑞𝑒)
] ;  

 

(23) 

with 𝑑𝐴𝑁𝑇𝐷𝐸𝐿(𝑞𝑠), 𝑑𝑃𝑂𝑆𝑇𝐷𝐸𝐿(𝑞𝑠), 𝑑𝐵𝐼𝐶(𝑞𝑒), 𝑑𝑇𝑅𝐼𝐶(𝑞𝑒) the muscle moment arms depending on the 

articulated joint angles. Muscle forces depend on muscle activation and through the force-length-

velocity properties of the muscle also on the muscle length (𝑙𝐴𝑁𝑇𝐷𝐸𝐿, 𝑙𝑃𝑂𝑆𝑇𝐷𝐸𝐿, 𝑙𝐵𝐼𝐶 , 𝑙𝑇𝑅𝐼𝐶) and velocity 
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(𝑙𝐴̇𝑁𝑇𝐷𝐸𝐿, 𝑙𝑃̇𝑂𝑆𝑇𝐷𝐸𝐿, 𝑙𝐵̇𝐼𝐶 , 𝑙𝑇̇𝑅𝐼𝐶), which in turn were a function of skeleton positions and velocities 

(𝑞𝑠, 𝑞𝑒 , 𝑞̇𝑠, 𝑞̇𝑒): 

[

𝐹𝐴𝑁𝑇𝐷𝐸𝐿

𝐹𝑃𝑂𝑆𝑇𝐷𝐸𝐿

𝐹𝐵𝐼𝐶

𝐹𝑇𝑅𝐼𝐶

] =

[
 
 
 
 

𝑎𝐴𝑁𝑇𝐷𝐸𝐿 ∙ [𝐹𝐼𝑆𝑂,𝐴𝑁𝑇𝐷𝐸𝐿 ∙ 𝑓𝑙(𝑙𝐴𝑁𝑇𝐷𝐸𝐿) ∙ 𝑓𝑣(𝑙𝐴𝑁𝑇𝐷𝐸𝐿 , 𝑙𝐴̇𝑁𝑇𝐷𝐸𝐿) + 𝑓𝑝(𝑙𝐴𝑁𝑇𝐷𝐸𝐿)]

𝑎𝑃𝑂𝑆𝑇𝐷𝐸𝐿 ∙ [𝐹𝐼𝑆𝑂,𝑃𝑂𝑆𝑇𝐷𝐸𝐿 ∙ 𝑓𝑙(𝑙𝑃𝑂𝑆𝑇𝐷𝐸𝐿) ∙ 𝑓𝑣(𝑙𝑃𝑂𝑆𝑇𝐷𝐸𝐿, 𝑙𝑃̇𝑂𝑆𝑇𝐷𝐸𝐿) + 𝑓𝑝(𝑙𝑃𝑂𝑆𝑇𝐷𝐸𝐿)]

𝑎𝐵𝐼𝐶 ∙ [𝐹𝐼𝑆𝑂,𝐵𝐼𝐶 ∙ 𝑓𝑙(𝑙𝐵𝐼𝐶) ∙ 𝑓𝑣(𝑙𝐵𝐼𝐶 , 𝑙𝐵̇𝐼𝐶) + 𝑓𝑝(𝑙𝐵𝐼𝐶)]

𝑎𝑇𝑅𝐼𝐶 ∙ [𝐹𝐼𝑆𝑂,𝑇𝑅𝐼𝐶 ∙ 𝑓𝑙(𝑙𝑇𝑅𝐼𝐶) ∙ 𝑓𝑣(𝑙𝑇𝑅𝐼𝐶 , 𝑙 ̇𝑇𝑅𝐼𝐶) + 𝑓𝑝(𝑙𝑇𝑅𝐼𝐶)] ]
 
 
 
 

 

 

(24) 

with 𝑓𝑙 the active muscle force-length relationship, 𝑓𝑣 the muscle force-velocity relationship, and 𝑓𝑝 the 

passive muscle force-length relationship. The active force-length, force-velocity, and passive force-

length relationships are described in [5].  

Muscle-tendon lengths were approximated by the sum of a linear function, a sine, and a constant offset 

(𝑙𝑀𝑇 = 𝑎 ∙ 𝑞 + 𝑏 ∙ sin(𝑐 ∙ 𝑞) + 𝑑) with a, b, c and d estimated by minimizing the least square error 

between this approximation and the muscle lengths obtained from the upper-arm in a previously 

developed OpenSim model [88]. The moment-arms are computed as the derivatives of the muscle-

lengths with respect to the angle: 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 =  + 𝑏 ∙ 𝑐 ∙ cos(𝑐 ∙ 𝑞) [78].  

We computed the variance of the end-effector position and velocity in the horizontal and vertical 

directions, used to define the constraints, based on the following equations: 

 
𝑉𝑎𝑟(𝐸𝐸𝑥(𝑡), 𝐸𝐸𝑦(𝑡), 𝐸𝐸̇𝑥(𝑡), 𝐸𝐸̇𝑦(𝑡)) = 𝑡𝑟𝑎𝑐𝑒((

𝜕𝑓𝑘𝑖𝑛(𝒒(𝑡), 𝒒(𝑡)̇ )

𝜕𝒙
)𝑷(𝑡) (

𝜕𝑓𝑘𝑖𝑛(𝒒(𝑡), 𝒒̇(𝑡))

𝜕𝒙
)
′

) (2526) 

with 𝑷(𝑡) the covariance matrix used to approximate the stochastic state.  

Noise characteristics summarized in table 4 are based on preliminary simulations and experimental data. 

Similarly as in our standing balance simulations, we defined motor noise based on measures of force 

fluctuations to have a standard deviation of 1% of the maximal activation generated during a typical 

reaching movement [90]. The absolute values for sensory noise were selected such that during optimal 

unperturbed reaching to the circle target an end-point accuracy of 0.4cm was achievable but an accuracy 

of 0.2cm was not [8].  

Table 3 - Musculoskeletal properties of model for goal-directed reaching 

Skeletal properties 

upper arm; forearm 

Muscle properties 

ANTDEL; POSTDEL; BIC; TRIC 

𝑚 [kg] 1.4;1.0 𝐹𝐼𝑆𝑂[𝑁] 1142.6; 259.88; 717.5; 525.1 

𝑙 [m] 0.3; 0.33 𝑙𝑇𝑠[𝑚] 0.093; 0.038; 0.098; 0.2 

𝐼[kg.m²] 0.0105; 0.0091 𝑙𝑀𝑜𝑝𝑡[𝑚] 0.0976; 0.1367; 0.1138; 0.1157 

  α [rad] 0.3834; 0.3142; 0.1571; 0 

  β  0.01; 0.01; 0.01; 0.01 

 

Table 4 - Noise characteristics for goal-directed reaching simulations 

Sensory noise Motor noise 

𝜎𝐸𝐸,𝑥
2 [(𝑚𝑚)2 𝑠] 0.6² 𝜎𝑆𝐻

2 [(𝑁𝑚)2 𝑠] 0.1² 

𝜎𝐸𝐸,𝑦
2 [(𝑚𝑚)2 𝑠] 0.6² 𝜎𝐸𝐿

2 [(𝑁𝑚)2 𝑠] 0.1² 

𝜎𝐸𝐸,𝑥̇
2 [(𝑚𝑚/𝑠)2 𝑠] 4.8² 

𝜎𝐸𝐸,𝑦̇
2 [(𝑚𝑚/𝑠)2 𝑠] 4.8² 
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