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Abstract 

For close to a century, Lotka-Volterra (LV) models have been used to investigate 
interactions among populations of different species. For a few species, these 
investigations are straightforward. However, with the arrival of large and complex 
microbiomes, unprecedently rich data have become available and await analysis. In 
particular, these data require us to ask which microbial populations of a mixed 
community affect other populations, whether these influences are activating or inhibiting 
and how the interactions change over time. Here we present two new inference 
strategies for interaction parameters that are based on a new algebraic LV inference 
(ALVI) method. One strategy uses different survivor profiles of communities grown 
under similar conditions, while the other pertains to time series data. In addition, we 
address the question of whether observation data are compliant with the LV structure or 
require a richer modeling format. 

 

The code and data used in this manuscript are available at "https://github.com/LBSA-
VoitLab/Inference_and_Validation_of_the_Structure_of_Lotka_Volterra_Models". 

 

Introduction 

Recent years have richly documented the enormous importance of microbiomes for 
human health and the well-being of the environment. In many cases, vast species 
diversity has been identified as a sign of normal operation, and substantial reductions in 
diversity have been associated with dysfunction or disease (e.g., [1, 2]). The 
compositions and specific roles of microbiomes are often difficult to comprehend, 
because the species within these communities tend to interact in complex ways, and the 
structure of the networks of interactions often changes over time. Addressing these 
challenges mandates computational approaches for inferring, characterizing, analyzing, 
and interpreting natural microbiomes and their responses to perturbations.  

The default for characterizing a community of interacting microbial populations is a 
static network, which has the advantage of relatively straightforward graph-based 
analysis even if the number of species is large [3-8]. However, static networks have 
critical limitations, because their interactions are by default “symmetric” and time-
invariant, which is often at odds with reality, where the effect of species A on species B 
is different than the effect of B on A, with the simple predator-prey system being an 
intuitive example [9, 10]. Also, the existence and strengths of interactions often change 
over time, as environmental systems, for instance, operate in seasonal cycles.   

Addressing these issues requires dynamic mathematical representations, such as 
Lotka-Volterra (LV) systems [9-22] or discrete recursive Multi-Autoregressive (MAR) 
models [23-27]. Here, we focus on the former. 
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For n species, LV systems consist of n ordinary differential equations (ODEs) in the 
specific format  

�̇�𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖  (𝑎𝑎𝑖𝑖 +   ∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖).𝑛𝑛
𝑖𝑖=1    (1) 

LV models have been employed to study macroscopic population interactions for almost 
one hundred years, and two-variable predator-prey models have traditionally been 
serving as examples and general motivation in introductory mathematical modeling 
classes for a long time. One reason is that it is straightforward to construct LV models 
from scratch, as the format for each population consists of one growth term (ai), one 
intraspecies interacting term (bii) that is related to the “carrying capacity” ai/bii, which 
limits the growth of this population as it becomes large, and one term each capturing a 
direct interaction of this population with possibly every other population in the system 
(bij, j≠i). Of course, many of these direct interaction terms might be zero, but this 
information is typically not available at the beginning of a study.  

One notes that these equations may be divided by Xi, as long as these variables are not 
zero, which yields 

�̇�𝑋
𝑋𝑋𝑖𝑖

= 𝑎𝑎𝑖𝑖 + ∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖      𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖 ≠ 0.   (2) 

The left-hand side corresponds to the derivative of the logarithm of Xi, demonstrating 
that changes in the logarithmic variables are defined by a linear system. 

Although LV models have a long tradition of being considered appropriate default tools [28, 
29] their format is sometimes criticized for being overly simplistic. This critique is often 
based on perception or bias, rather than proof or fact. In truth, simple models are often 
sufficiently accurate (although not 100% perfect), and they are typically much more robust 
than detailed mechanistic models, especially with respect to overfitting [30]. Examples of 
simple yet successful models in other contexts are growth laws, such as the Gompertz 
function that is heavily used in actuarial sciences [31], and statistical distributions, such as 
the normal, even though many actual data cannot be negative. In comparison, LV models 
are incomparably more flexible, and it was proved with mathematical rigor that they can 
have arbitrarily complicated dynamics, which is evident from the fact that any differentiable 
nonlinearities can be equivalently represented in this format if it includes auxiliary variables 
that are modeled in the same format [29, 32-34]. 

A different line of support comes from LV generalizations [35] in the format  

�̇�𝑋𝑖𝑖 =  𝑋𝑋𝑖𝑖 ∙ 𝑖𝑖𝑖𝑖(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) (3) 

where the functions fi are continuously differentiable. For many analyses of this format, 
one studies the (linearized) Jacobian of the system [35], which demonstrates that the 
traditional LV structure is, at least approximately, a reasonable representation for a 
much larger domain of functional forms.  
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This article describes four advances in the application of LV models to mixed 
community data. First, we introduce an algebraic LV inference (ALVI) method that can 
be used to infer interaction parameters from data on survivors of community 
experiments. Specifically, we address communities that are observed under similar 
environmental or experimental conditions but ultimately exhibit different survivor 
profiles. An example for the divergence is the observation that the same initial 
microbiome, under the exact same conditions—such as exposure to an antibiotic—may 
trend toward distinctly different end states; in other words, replicate experiments 
demonstrate that one or more different species are driven to extinction [36]. In fact, an 
LV model with ten species possesses over 1,000 (210) possible steady states, which 
corresponds to the eventual coexistence of a subset of species that, in turn, directly 
corresponds to different survivor profiles. Another reason for differences in survivorship 
might stem from slightly different initial compositions of the community and, in particular, 
cases where one or more species are initially present with very low abundance—or 
even missing—within a set of experiments. In an experimental setting, it is furthermore 
possible to generate different outcomes by “spiking” a microbiome with an inoculum of 
some additional species, which subsequently might lead to different elimination 
scenarios [37-39]. Finally, one may create a series of survival experiments in which 
initially one or more microbial species are missing in order to discover new steady-state 
profiles.  

In the second section of this paper, we slightly retool ALVI for a quantification of 
parameter values from time-series data that consist of species abundances throughout 
the history of a microbial community. The novel aspect of this estimation technique is 
that ALVI executes the inference with algebraic means. 

The third advance described here is the use of ALVI as a diagnostic tool for assessing a 
priori to what degree the LV model structure adequately represents time series data. 
While the structure of any model is somewhat dictated by the data [40], it is quite rare 
that a modeler is able to confirm or refute the adequacy of a mathematical modeling 
format directly from observation data, but we show that such a validation assessment is 
indeed possible with ALVI.  

Both the ALVI inferences from time series data and the LV-compliance analysis greatly 
benefit from the prior smoothing of the experimentally determined time course data. To 
this end, we introduce a strategy for determining effective settings for denoising raw 
time series data. We use for this purpose smoothing splines that subsequently replace 
the raw time series data and make ALVI faster and improve its results.  

An important aspect of ALVI is its scalability. Most parameter estimation methods, such 
as gradient methods, scale rather poorly, even if many data are available, with some 
suffering severely from combinatorial explosion. By contrast, ALVI is based on 
decoupled systems that focus on one variable at a time and on methods of matrix 
algebra, which are known to scale very well in comparison to search algorithms. 
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Methods 

1. Algebraic parameter inference from survivor profiles 

Most traditional estimation techniques for dynamical systems depend on time series 
measurements of population abundances within a community. If these are not available, 
it is presently difficult to assess the interaction structure of the community. The 
proposed algebraic LV inference (ALVI) offers a method for this situation. Specifically, it 
uses different steady-state species compositions of a community in response to natural 
variability or slightly different treatments. The concepts of this approach are as follows. 

These interaction parameters bij (i, j = 1, …, n) of an LV model form a square matrix B. 
If the rank of B is full, the LV system has 2n steady states. One of these corresponds to 
the only internal steady state, where all variables are non-zero, whereas all others 
contain at least one zero-valued variable. If the rank of the matrix of interaction 
parameters bij is not full, the steady-state profiles form a hyperspace or only allow an 
averaged solution obtained by regression. 

In the context of bacterial microbiomes, the unique non-trivial steady state of total 
coexistence, if stable, may be interesting biologically, but it is less interesting 
mathematically because it attracts all trajectories that start from states without zeros, 
due to global stability. By contrast, a non-stable internal steady state has with a 
separatrix structure that subdivides the space into various basins of attraction. 

The parameters ai in Eq. (1) represent the intrinsic growth rates of the various species. 
For ease of discussion, we suppose that all ai ≠ 0. Under opportune conditions, they 
may be inferred directly from independent monoculture experiments. Focusing 
exclusively on steady states, we may use these measured values or initially set all ai = 1 
and subsequently rescale all bij by the corresponding intrinsic growth rates, which yields 
the rescaled linear system  

  0 =  1 +   ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1     for i=1, …, n;    𝛽𝛽𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖𝑖𝑖

𝑎𝑎𝑖𝑖
.  (4) 

For ease of discussion, we consider a microbial community consisting of four species; 
much larger communities are addressed in exactly the same manner. Suppose for now 
that results are available from five survival experiments. We will later discuss cases with 
more or fewer experimental datasets. The differences in survivor profiles may be due to 
an unstable internal steady state and a separatix structure within the community that 
defines different basins of attraction. Alternately, different survivor profiles may be the 
consequence of including experiments where one or more species were missing from 
the beginning.  

Among the five independent different steady states, one possibly, but not necessarily, 
consists of the only internal steady state, while in the other four cases at least one 
population is extinct. One could also have m (<5) profiles including one zero and 5-m 
profiles with two or more zeros. We call these observed steady-state survivor vectors 
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(𝑆𝑆𝑖𝑖1, … , 𝑆𝑆𝑖𝑖5)𝑡𝑡𝑡𝑡 and sort them such that Sii = 0 for i = 1, …,4. In the fifth vector, all, some or 
none of the states are non-zero.  

Consider the case of X2 = 0 at the steady state. To reflect a steady state of the dynamic 
LV model, the second equation in Eq. (4) is already satisfied, because the steady-state 
condition �̇�𝑋2 =  0 is achieved due to the fact that X2 = 0. However, the remaining three 
equations must be satisfied for each of the solution vectors. Formally: 

 �
−1
−1
−1

� =  �
𝛽𝛽11  
𝛽𝛽31  
𝛽𝛽41  

𝛽𝛽12  
𝛽𝛽32  
𝛽𝛽42  

𝛽𝛽13  
𝛽𝛽33  
𝛽𝛽43  

𝛽𝛽14
𝛽𝛽34
𝛽𝛽44

��

𝑆𝑆𝑖𝑖1
𝑆𝑆𝑖𝑖2
𝑆𝑆𝑖𝑖3
𝑆𝑆𝑖𝑖4

�  (5) 

for i = 1, 3, 4, 5 and where Sii = 0. Similar arguments hold if any of the other variables is 
zero. Thus, for each i in this example, we have three equations, yielding a total of twelve 
equations, and this number is equal to the number of unknown 𝛽𝛽𝑖𝑖𝑖𝑖. 

The next task is expressing the interaction parameters 𝛽𝛽ij as functions of the survivor 
vectors or, taken these together, of the survivor matrices. The task is accomplished by 
resorting all matrix equations as in (Eq. 5) for any Xi = 0. For instance, for X1 = 0 and X2 
= 0, we obtain, respectively  

 �
−1
−1
−1
−1

� =  �

𝑆𝑆21 0
𝑆𝑆31 𝑆𝑆32

𝑆𝑆23  𝑆𝑆24
0 𝑆𝑆34

𝑆𝑆41 𝑆𝑆42 
𝑆𝑆51 𝑆𝑆52

𝑆𝑆43 0
𝑆𝑆53 𝑆𝑆54

��

𝛽𝛽11
𝛽𝛽12
𝛽𝛽13
𝛽𝛽14

�      (6) 

and   

�
−1
−1
−1
−1

� =  �

0 𝑆𝑆12
𝑆𝑆31 𝑆𝑆32

𝑆𝑆13  𝑆𝑆14
0 𝑆𝑆34

𝑆𝑆41 𝑆𝑆42 
𝑆𝑆51 𝑆𝑆52

𝑆𝑆43 0
𝑆𝑆53 𝑆𝑆54

��

𝛽𝛽21
𝛽𝛽22
𝛽𝛽23
𝛽𝛽24

�       (7) 

If the survivor matrices S have full rank, the solutions in terms of each vector of 𝛽𝛽ij are 
obtained by simple matrix inversion. All 𝛽𝛽ij parameter values are obtained in this 
manner, and rescaling retrieves the original 𝑏𝑏𝑖𝑖𝑖𝑖 in Eq. (1) if intrinsic growth rates are 
known. If they are not known, the interaction parameters are inferred except for one 
common scaling factor for each equation.  

The types of solutions for the algebraic method depend on the number of survivor 
profiles. For a community of exactly n species and n+1 linearly independent profiles, 
matrix inversion yields a unique solution. If more than n+1 survivor vectors are 
available, two options are available. One may use some or all subsets of n+1 survivor 
profiles and use the collective results to form a model ensemble and study variability 
within this ensemble. Second, the overdetermined system may be solved in its entirety 
by means of a Moore-Penrose pseudo-inverse (left-inverse), which corresponds to the 
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least-squares solution [41, 42]. Probably more pertinent is the situation of fewer 
datasets than variables are available, in which case the matrices, as in Eq. (6), are wide 
and cannot be inverted. One strategy is again the computation of a Moore-Penrose 
pseudo-inverse. The particular pseudo-inverse itself is not a good solution, because it 
minimizes the distance from the origin and therefore contains negative values. 
However, the total solution spans a space in which the optimal solution is located. 
Supplement Section 2 presents an example. 

ALVI supposes that the survivor profiles constitute steady states, which has an 
important consequence. Namely, steady-state analyses by themselves do not allow 
assessments of the appropriate time scale. However, the most important inference from 
an LV model is usually the interaction structure within the community of populations, 
which is given by the interaction rates bij in Eq. (1) and 𝛽𝛽𝑖𝑖𝑖𝑖 in Eq. (4), which ALVI is 
designed to infer. 

 

2. Algebraic parameter inference from time series data 

Generic nonlinear parameter estimation methods for LV and other dynamic systems 
have been described in the literature many times and are therefore not discussed here 
(e.g., see reviews [43-45]). Instead, ALVI offers a novel, genuinely different method of 
parameter values from time series that is purely algebraic. 

 

2.1. Mathematical approach 

The starting point of ALVI is Eq. (1). In a preliminary step (Methods Section 4), we use 
smoothing to reduce noise in the data, while retaining important features in the data. 
The smoothing splines we use for this purpose not only interpolate the data and 
address noise, but also permit us to compute slopes at as many timepoints as we wish, 
because the splines are explicit functions. Introducing abbreviations for the estimated 
slopes and for products of observed population abundances as  𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ≈ �̇�𝑋𝑖𝑖𝑖𝑖  and 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 =
 𝑋𝑋𝑖𝑖𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖𝑖𝑖 for species i, j = 1, …, n and timepoints k = 1, …, K, Eq. (1) becomes 

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ≈  𝑎𝑎𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + ∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖,  (8) 

which is linear in the unknown parameters ai and bij (j = 1, …, n). These approximate 
equations constitute a linear algebraic system of n blocks, where each block contains K 
equations, namely one per chosen timepoint.  

The ALVI analysis may proceed in two ways. The first is straightforward linear 
regression with Eq. (8), which is further simplified by the fact that this regression can be 
executed for each block separately [46]. The second, novel option is matrix inversion. 
Specifically, for n dependent variables, we use n+1 readings of the dependent variables 
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and the corresponding slopes to set up n2+n equations for calculating values of the n2+n 
unknown parameters. A simple example illustrates the approach.  

 

Table 1: Population sizes and slopes of a hypothetical dataset at different time points 

t=1 𝑋𝑋11 = 10 𝑠𝑠𝑠𝑠11 = 1.6 
 𝑋𝑋21 = 11 𝑠𝑠𝑠𝑠21 = 1.4 
t=2 𝑋𝑋12 = 12 𝑠𝑠𝑠𝑠12 = 1.2 
 𝑋𝑋22 = 13 𝑠𝑠𝑠𝑠22 = 1.0 
t=3 𝑋𝑋13 = 14 𝑠𝑠𝑠𝑠13 = 0.8 
 𝑋𝑋23 = 15 𝑠𝑠𝑠𝑠23 = 0.6 

 

Consider a hypothetical two-variable system, for which the population sizes and slopes 
in Table 1 had been obtained. Entering these values into Eq. (8) yields six equations in 
six unknowns: 

1.6 = 10 ∗ 𝑎𝑎1 + 𝑏𝑏11 ∗ 10 ∗ 10 + 𝑏𝑏12 ∗ 10 ∗ 11 

1.4 = 11 ∗ 𝑎𝑎2 + 𝑏𝑏21 ∗ 11 ∗ 10 + 𝑏𝑏22 ∗ 11 ∗ 11 

1.2 = 12 ∗ 𝑎𝑎1 + 𝑏𝑏11 ∗ 12 ∗ 12 + 𝑏𝑏12 ∗ 12 ∗ 13 

1.0 = 13 ∗ 𝑎𝑎2 + 𝑏𝑏21 ∗ 13 ∗ 12 + 𝑏𝑏22 ∗ 13 ∗ 13 

0.8 = 14 ∗ 𝑎𝑎1 + 𝑏𝑏11 ∗ 14 ∗ 14 + 𝑏𝑏12 ∗ 14 ∗ 15 

0.6 = 15 ∗ 𝑎𝑎2 + 𝑏𝑏21 ∗ 15 ∗ 14 + 𝑏𝑏22 ∗ 15 ∗ 15 

Barring linear dependence, the system can be solved by straightforward matrix 
inversion. 

A potential issue, which arises once in a while, is that this approach does not use the 
temporal structure of the data [47]. In other words, solving the linear system, ALVI 
provides estimates for the parameters of any LV system that reflects the observed 
values of variables and the corresponding slope values, independent of the specific 
timepoints where the system exhibits these values. For instance, in the above example, 
ALVI “does not know” that population sizes 10 and 11, along with slope values 1.6 and 
1.4, were observed for t=1, and that population sizes 14 and 15 with slope values 0.8 
and 0.6, were observed for t=3. As far as ALVI is concerned, these observations could 
have occurred in opposite order or at any other timepoints. Expressed in generic terms, 
ALVI does not account for the relative order of the sample points and the solution is 
therefore theoretically not unique. Also, if the chosen sample of points does not include 
the initial conditions, the estimated parameter set could therefore correspond to a 
system that does not pass through the observed initial points.     

To counteract these issues, we introduce a preliminary step to choose appropriate sets 
of timepoints. This step is not mandatory and can be computationally intensive but finds 
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the point sample that presents the best solution. First, we calculate a large number of 
combinations of timepoints to be used in ALVI. For an LV system with n dependent 
variables, we need (n+1) timepoints at which the n variables are observed. We could 
theoretically choose any values of variables and slopes from the smoothing splines, but 
as these have infinitely many points, this otherwise convenient feature here leads to a 
combinatorial explosion of choices. Instead, we use only those values of the smoothing 
function that have time coordinates coinciding with the raw data. This restricted choice 
usually leads to a reasonable number of combinations and can also serve as a reality 
check later. If there are not enough informative data points, the point set may be 
augmented with additional values from the splines. This situation could arise, e.g., if 
most of the data are steady-state measurements, where repeated observations are non-
informative. 

In the next step, an automated algorithm scans the chosen combinations of points, 
systematically feeding one point combination after another into ALVI. Using the 
parameter estimates from the ALVI solution with initial values from the smoothing 
function, we solve the Lotka-Volterra system numerically and calculate the SSE of the 
current estimate relative to the original data and to the smoothing function. We iterate 
these steps for every combination of points and at the end identify two parameter 
profiles that present the smallest SSEs, one pertaining to the original data and the other 
to the corresponding values of the smoothing function. These two sets are usually, but 
not always, the same. 

For today’s typical data, it is unlikely that scanning through all combinations poses a 
computational challenge because inverting a matrix and solving the ODE system are 
both fast. Nonetheless, future microbiome techniques may generate much more 
comprehensive time-series data, in which case one might devise a customized some 
sampling scheme rather than addressing all combinations.  

Two comments are worth adding: First, ALVI is based on matrix operations, which 
generally possess superb features of scalability, especially in contrast to gradient 
descent or evolutionary search algorithms, which typically slow down tremendously with 
increases in problem size. Obviously, ALVI is also immune to other issues of search 
algorithms, such as local minima. Second, this algebraic approach for time series 
directly permits inferences of growth and interaction parameters one equation at a time. 
This system decoupling amounts to an immense advantage for larger systems and adds 
to the favorable scalability of ALVI for time series data. It also suggests direct parallel 
execution.  

 

2.2. Real-world data used for time series inferences 

To illustrate ALVI for time series data, we analyze data from a recent study of four 
bacterial species [48], namely (with abbreviations we use) Agrobacterium tumefaciens 
(At), Comamonas testosteroni (Ct), Microbacterium saperdae (Ms), and Ochrobactrum 
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anthropi (Oa). Biological details of the study are summarized in Supplement Section 3. 
As the specific dataset for our analysis, we use the community of all four species under 
the study’s control conditions. As Figure S8 of  [48] indicates, all populations initially 
grow, but two populations begin to decline about six days into the experiments, 
presumably due to the depletion of nutrients.  

We begin our analysis by smoothing the time course for each species and each 
replicate, as well as the average time course for each species. Because the absolute 
numbers of bacteria are quite large, we rescale the abundance data to units of 
1,000,000 (see Results Section, Figs. 3 and 4). 

 

3. A diagnostic tool for assessing the adequacy of the LV format 

The ALVI approach in Section 1 offers an a priori validation method for assessing to 
what degree a given dataset is adequately captured by an LV model. The method is 
described and illustrated below for synthetic data that are LV-compliant and those that 
are not; an application to actual data is presented in the Results section. 

To convey the overall concept, consider as a thought experiment the idealistic case that 
the data are noise-free and perfectly described by an LV system with n variables. Then, 
linearly independent blocks of values of the variables at any n+1 timepoints are 
sufficient to estimate all parameter values with perfect results. In fact, any such block 
will yield exactly the same parameter values. Turning the argument around renders it 
evident that the entire dataset is not well captured by a single LV model if different 
blocks of values at any n+1 timepoints yield substantially different parameter values. 
The method permits many variations in details.  

Suppose a dataset consists of measurements over the time horizon t ∈ [tinitial, tfinal]. It is 
again beneficial to subject the data to spline smoothing. Next, the portion of the 
dynamics is identified where the dependent variables have reached—or are very close 
to—the steady state. These data are removed, because sampling several points very 
close to the steady state is non-informative and tends to produce singular matrices, 
causing the system not to have a single, well-defined solution. Moreover, values close 
to the steady state pose a different challenge: due to their nature of polynomials, splines 
typically oscillate slightly near and at a steady state. These oscillations, even if small in 
magnitude, can introduce undue variations in the parameter estimates that mask the 
true signal distinguishing LV-compliant from non-LV-compliant datasets. It is therefore 
advisable to remove consecutive points of essentially the same value. A reasonable 
criterion might be the exclusion of values of the variables if they exhibit a slope and 
second derivative lower than a preset threshold, such as 10-3 in absolute value. There is 
no problem if some scattered points in the sample have low derivatives, for instance, at 
the peak of an overshoot, but points with low derivatives should not be consecutive with 
the steady-state block of points, which is typically reached at the end of the dataset. The 
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result of this trimming step is often a reduced time horizon of t ∈ [tinitial, td], td < tfinal, 
where td is the last timepoint preceding the steady-state block at the end of the dataset.  

Depending on the density of measurements, one chooses several intervals, which may 
or may not be overlapping. To avoid linear dependencies in the ALVI matrix, it is ill-
advised to choose n+1 consecutive points for the subsample, if these are dense in time. 
Instead, after starting a subsample at point k, one might use every fifth, tenth or so 
consecutive point, such as k, k+5, k+10, k+15, …. Obviously, the details should be 
tuned to the data. Barring numerical exceptions due to unsuitable point choices, this 
subset of data immediately generates parameter inferences per matrix inversion. Now 
we slide a window throughout the interval [tinitial, td], at each step selecting n+1 
timepoints and computing parameter values. As an alternative to moving a window 
throughout the useable time range, one may choose independent subsets of points and 
compare the inference results. 

In either case, all inferences will yield essentially the same parameter values if the data 
conform to the LV property. Slight variations, not necessarily normally distributed, are to 
be expected, due to small differences between the spline and the true model, and to 
numerical inaccuracies incurred during the matrix inversion. By contrast, if the data 
cannot be modeled with the same LV system in a satisfactory manner, the inferred 
parameter values must be expected to change substantially for different subsets of 
points. Plotted against the order in which the different parameters were estimated, the 
values may even exhibit trends that are clearly distinct from the small variations 
exhibited if the data that are LV-compliant. If so, the trends might be used to assess the 
“distance from the LV format.” If this distance is substantial, the LV format is inadequate 
and should be generalized for a more adequate data fit. This generalization may be 
imposed on the entire system or on only one or a few equations (see Discussion). At 
any rate, given the variation in parameter estimates for datasets not well modeled by a 
single LV model, it is reasonable to assume that a comparison of the degree of 
variability in the parameter estimates can serve as a convenient tool for distinguishing 
between LV-compliant and non-LV-compliant datasets.  

As an illustration, consider a synthetic system composed of six state variables. The first 
two (X1 and X2) are governed by LV equations and unaffected by the rest of the system. 
The third and fourth (X3 and X4) are also defined in LV format but influenced by all other 
variables, including those not in LV format, while the fifth and sixth variables (X5 and X6) 
have equations in generalized mass action (power-law) or Michaelis-Menten format, 
respectively, and are influenced by variables X1 and X2. Details of the model are shown 
in the Supplements. Using this mixed set of equations, we created 100 data points and, 
for clarity of the illustration, did not add noise.  

Figure 1 displays the data superimposed with model trajectories produced with the 
parameter estimates obtained from different windows in the LV-compliance test. As 
expected, X1 and X2 have trajectories that in almost all cases are very close to the data 
that had been generated with LV equations; slight deviations are due to numerical 
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inaccuracies incurred by matrix inversions. By contrast, the other variables show 
substantial deviations in fits, which reflect the influence of the non-LV components.  

A semi-quantitative measure for LV-compliance is the analysis of variations in 
parameter values for different windows: If essentially the same LV model is inferred for 
every window, all variances are close to zero. In line with the visual results, the sets of 
estimates associated with each position of the sliding window are unchanging for X1 and 
X2, whereas they often exhibit substantial variations for X3 through X6 (Fig. 2).  

 
Figure 1: Results of an LV-compliance test with synthetic data. Data (dots) and trajectories (lines) 
were produced with sets of parameter estimates inferred for different positions of the sliding window in the 
LV-compliance test. 
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Figure 2: Variation in parameter values as indication of LV-compliance or non-compliance. 
Estimates and variations of parameters obtained in the LV-compliance test for different positions of the 
sliding window. The estimates associated with variables X1 and X2 display very little variation, in stark 
contrast to estimates associated with the other variables. For some parameters (e.g., a3 and b31), very 
large variations are obtained (see Fig. S2). 

 

The result of the LV-compliance test is somewhat influenced by the degrees of freedom 
chosen for the smoothing splines. Given actual data, initial smoothing is always 
recommended to remove noise. For this illustration, we used 100 degrees of freedom, 
equal to the number of data points, although we typically recommend using the lowest 
degrees of freedom that return an adequate spline. This parsimony tends to prevent the 
emergence of undesirable artifacts.  

 

4. Data smoothing 

The earlier sections on algebraic parameter inferences from time series data require the 
estimation of slopes of the data trajectories at various timepoints. The latter task, in 
particular, is known to be strongly affected by noise. It is therefore useful to smooth the 
original raw data, while retaining important features in their time trends. This smoothing 
is not entirely trivial and unbiased, as the true nature of the data is seldom known and 
variations from a global trend line may be due to a true signal, noise, or a combination 
of the two. One could study the signal-to-noise-ratios throughout the experimental time 
period or apply outlier statistics in extreme cases, but a true distinction is impossible to 
state without bias, unless biological rationale suggests monotonicity or makes over- and 
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undershoots unlikely, or if replicate data are available that exhibit over- and undershoot 
always at the same timepoints within the experimental time period. 

Generically, data smoothing removes random variations in trends by decreasing the 
values of points that are higher than their closest neighbors and increasing them in the 
inverse situation [49]. Smoothing can be performed with a variety of methods [49-52]. 
Good general guidance for practical applications is provided in [49, 53]. Bin smoothers 
divide the data sample into bins and average the data in each bin. Moving average 
methods average the data in the form of a moving bin with a fixed number of data points 
instead of several static bins. If one applies a more complicated function to the moving 
bin, like a weighted moving average, one essentially uses a kernel density method. 
“Local regression” (LOESS) fundamentally is a weighted linear regression applied to the 
moving bin [51, 52]. 

We have had excellent success with splines [27]. In their original use, they are 
piecewise polynomial functions that pass through all sample points, are continuous, and 
have first and second derivatives, which are continuous at junction points between 
adjacent intervals. Here we are interested in smoothing splines, for which the first 
condition is substituted by a least-squares fit and balanced with an additional criterion 
that penalizes splines with high second derivative values that are indicative of local 
roughness [51, 52, 54]. The splines do not only address noise, they also permit the 
computation of slopes and the interpolation of the trends in dependent variables at as 
many timepoints as is desired. 

Here, we mainly use splines, but alternative smoothing techniques could be employed. 
The only requirement is an effective estimation of the smoothed data points for the 
dependent variables, as well as their slopes. This output is then passed to the ALVI 
parameter estimator.   

The first step for the use of a smoothing spline is the choice of its degrees of freedom, 
which dictate the level of smoothness of the spline. A natural default is a function that 
passes through every data point. Typically, this function is rather rugged but has a sum-
of-squared-errors (SSE) value of 0. It is necessary to balance this perfect, rugged fit 
with a penalty for high values of second derivatives along each time course. It is 
possible to automate this balancing task, by calculating the trace of the smoothing 
matrix [55], a strategy that was automated, for instance, in the R package mgcv.  
However, idiosyncrasies of the datasets usually yield results that are not as satisfactory 
as those chosen by a knowledgeable human who is familiar with the characteristics of 
the data and has rationale to discern potential signal in the data from noise or 
observation error. Here, we determined a suitable degree of freedom manually, using as 
quality criterion a pleasing representation of the data. 

If we opt to use LOESS, we are able to control the roughness in the smoothed time 
trends of the different variables. The R package fANCOVA, for example, facilitates this 
task, as it allows optimal control of the smoothing process. The user chooses the 
degree of the smoothing polynomial and selects an automatic smoothing parameter 
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based on either a bias-corrected Akaike information criterion (AICC) or generalized 
cross-validation (GCV).  

Once suitable smoothing is achieved that minimizes noise without compromising the 
true signal, the resulting smoothing function allows interpolation and the calculation of 
derivatives, which are passed to the ALVI parameter estimator.  

 

Results 

1. Algebraic parameter inference from survivor profiles 

For an illustration of the survivor-based variant of ALVI, suppose the system under 
investigation consists of four populations of different species. Thus, our starting point is 
the model equation 

�̇�𝑋𝑖𝑖 =  𝑋𝑋𝑖𝑖 (𝑎𝑎𝑖𝑖 +   ∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖),       𝑖𝑖 = 1, … , 4.4
𝑖𝑖=1     (9) 

Suppose the matrix B of bij’s of the system has full rank. The system then has a total of 
16 steady states. One of these states represents full coexistence, where the value of 
each dependent variable is strictly positive, whereas at least one variable has a value of 
0 in the remaining 15 steady states.  

Because this method focuses on interaction parameters and because steady-state 
analyses do not allow assessments of the time scale of a system, we define the growth 
parameters ai as 1 and rescale the results later, if time-scale information becomes 
available. For simplicity of notation, we rename 𝛽𝛽𝑖𝑖𝑖𝑖 =  𝑏𝑏𝑖𝑖𝑖𝑖/𝑎𝑎𝑖𝑖 for all i and j and obtain the 
steady-state equation 

0 =  𝑋𝑋𝑖𝑖 (1 +  ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖).4
𝑖𝑖=1    (10) 

For a given i, Eq. (10) can be satisfied for two reasons: Either Xi is zero or the term in 
parentheses is zero. Importantly, if Xi =0, the term in parentheses does not have to 
equal zero for the system to be in a steady state.  

We begin with the ideal case that the experiments had generated five independent 
survivor profiles; the method for fewer profiles is discussed in Supplement Section 2. 

Suppose that the survivor vectors Sk, k = 1, …, 5 represent independent, different 
steady states. As a numerical illustration, consider 
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To begin the demonstration, we focus on X1 and use survivor vectors S2 to S5 to infer 
the interaction parameters β11, …, β 14, which represent the effects of the populations 1, 
2, 3, and 4 on population 1, respectively. Rearranging the equations in Eq. (10), as 
discussed in the Methods Section, we obtain 

�
−1
−1
−1
−1

� =  �
20 0
0 40

70 10
0 60

30 40
42 0

30 0
65 0

�

⎝

⎛

𝛽𝛽11
𝛽𝛽12
𝛽𝛽13
𝛽𝛽14⎠

⎞.  (11) 

Inversion of the matrix and left-multiplication to the left-hand and right-hand sides 
directly yields  

⎝

⎛

𝛽𝛽11
𝛽𝛽12
𝛽𝛽13
𝛽𝛽14⎠

⎞ =  �
−0.006557377
−0.011721311
−0.011147541
−0.008852459

�  

Similarly, we obtain the interaction parameters for populations 2, 3 and 4 as 

⎝

⎛

𝛽𝛽21
𝛽𝛽22
𝛽𝛽23
𝛽𝛽24⎠

⎞ =  �
−0.00833333
−0.01125
−0.01

−0.00916667

�,   

⎝

⎛

𝛽𝛽31
𝛽𝛽32
𝛽𝛽33
𝛽𝛽34⎠

⎞ =  �
−0.00505051
−0.01212121
−0.01212121
−0.00505051

�,   

⎝

⎛

𝛽𝛽41
𝛽𝛽42
𝛽𝛽43
𝛽𝛽44⎠

⎞ =  �
−0.00833333

−0.005
−0.01

−0.01333333

� 

Entering these parameter values into an ODE solver demonstrates that all observed 
survivor profiles are steady states, with �̇�𝑋𝑖𝑖 = 0 for all i.  

 

2. Algebraic parameter inference from time series data 

We apply the algebraic LV inference (ALVI) method to a community of four bacterial 
species, abbreviated as At, Ct, Ms, and Oa (for details, see the original article [48], 
Methods and Supplement Section 3). Three replicates are available for each population. 
To reduce numerical inaccuracies during the inference process, we scale all population 
sizes by 1/1,000,000. As a preliminary step, we submit each replicate for each species 
to denoising with smoothing splines (see Methods), and also compute splines for the 
means of the replicates. The computed splines are shown in Fig. S4. The degrees of 
freedom, along with subsamples for the replicates and means are presented in Table 
S2. 

Using ALVI, we infer the intrinsic growth parameter for each species together with the 
interaction parameters from the smoothed time series data, using Eq. (1). The LV fits for 
all scenarios are shown in Fig. 3. Given the variability among the replicates, the data fits 
to the means can be considered adequate. The parameter values associated with each 
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replicate and with their averages display consistency in signs in most, but not all cases 
(Table S3). 

 
Fig. 3: Data fits for all replicates and their means. The data were modeled with four-variable LV 
models, which were inferred from the splines in Fig. S4. Dots: raw data in units of 1 Million CFU/mL;       
●: replicates; ✳: means of three replicates;  light curves: fits of individual replicates; dark curves: fits of 
replicate means. Species abbreviations: Agrobacterium tumefaciens (At), Comamonas testosteroni (Ct), 
Microbacterium saperdae (Ms), and Ochrobactrum anthropi (Oa). 

 

3. Diagnostics of the appropriateness of the LV format 

A difficult question for every modeling effort is whether the mathematical format of the 
chosen model is adequate for the data of interest. Here we analyze this question by re-
analyzing the bacterial community data from Results Section 2, using the averages of 
three replicates. The argument is as follows: If the LV format is representative for these 
data, then fitting any parts of the dataset should result in dynamic trends, as well as 
growth and interaction parameters that are very similar to those in fits of all data or of 
data in any other parts of the dataset.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.14.456346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.14.456346
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

As a coarse preliminary assessment of LV-compliance, we compare the quality of fit 
(SSE) for the first half of the data (t ∈ [0, 144]) with the fit to all data (t ∈ [0, 288]), in 
both cases using the means of replicates, but computed only for the data points from 
first half of the experiment (t ∈ [0, 144]). As before, we compute splines (results not 
shown) and then infer LV models from these splines. The results are shown in Fig. 4 
and in Table 2. The fits for population At are almost indistinguishable, while the other 
three are somewhat different. Table 2 indicates that the SSE of the fit obtained for the 
entire experiment, but evaluated only for t ∈ [0, 144], is larger for replicates 1 and 3 as 
for the fit computed only for t ∈ [0, 144]. For the means and replicate 2 the SSEs are 
similar.  In order to judge the significance of the difference between the two results, we 
compare the SSEs of means with those of the individual replicates, which demonstrates 
that the SSEs of the two means are actually more similar than those for the individual 
replicates. Thus, the data are not entirely LV-compliant, but the LV format does capture 
the dynamics of the four species to a reasonable degree. The parameter estimates 
inferred for the two cases are presented in Table S4. 

 
 

Figure 4: Alternative fits to bacterial community data. Means of the observed replicates of the dataset 
analyzed in Results Section 1 (Fig. 3) are fitted for the reduced time period of t ∈ [0, 144] (dashed lines) 
and compared to the earlier fits for t ∈ [0, 288] (solid lines). The fits are quite similar, although not 
identical. Dots: raw data in units of 1 Million CFU/mL;●: replicates; ✳: means of three replicates. 
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Table 2: Residual errors (SSEs) for data fits using all data or only the first half of the data. SSEs 
are presented for individual replicates and their means 

 
SSE of data fit for t ∈ [0, 144]  
 

SSE of data fit for t ∈ [0, 288], but 
computed for time interval [0, 144]  

Replicate 1  162,537 230,819 
Replicate 2  136,289 124,107 
Replicate 3  14,867 143,070 
Means of Replicates 62,513  57,214 

 

 
Figure 5: Ensemble of the 21 fits produced by parameter sets estimated from applying ALVI to all 
point sample combinations associated with timepoints 0, …, 144. Dots: raw data in units of 1 Million 
CFU/mL; ●: replicates; ✳: means of three replicates; light curves: fits with different parameter estimates; 
dark curves: best solution. 
 

For a more formal LV-compliance test, we use ALVI with matrix inversion, as introduced 
in the Methods section. Because the data are only available at nine time points, we use 
all possible combinations of n+1 = 5 points up to timepoint t=144, rather than a sliding 
window, thereby creating an ensemble of models. If the data were truly LV-compliant, all 
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samples would yield the same parameter estimates and data fits. Fig. 5 and Table S4 
indicate that this is not the case, although the variation among models is much less than 
in the illustration of the Methods section. In particular, the trajectories for At and Ms are 
rather closely clustered, and differences could be due to numerical issues, as we found 
them in Fig. 1 for X1 and X2. There is less consistency for Ct and Oa, but by far not as 
much as for X3, …, X6 in Fig. 1. Overall, these findings reflect the result of the coarse 
preliminary analysis. Selecting the best solutions (with the lowest SSEs) among the 
sample of 21 fits creates a reasonable ensemble of models capturing the dynamics of 
the bacterial community. 

 

Discussion 

Lotka-Volterra models have been used for a long time. They are very easy to set up and 
interpret, and many model analyses are greatly facilitated by the fact that the equations, 
while nonlinear, have an almost linear character. In particular, the computation of steady 
states consists of simply solving a set of linear algebraic equations. In comparison to 
other nonlinear models, even the estimation of parameter values is relatively simple, if 
high-quality time series data are available. Nonetheless, tradition and expedience 
should not be the governing reasons to perpetuate the use of these models, and the 
nagging question remains: Are simple LV models rich enough to capture the 
complications of real-world population systems?  

In a strict sense, the first answer must of course be ‘no,’ as LV models ignore many 
aspects of the complexity of life and are entirely deterministic. A better question, in line 
with George Box’s adage [56] that “all models are wrong but some are useful,” is 
whether LV models are useful, in particular for the new complex world of microbiomes, 
even if they are not 100% correct. In a generic sense, smaller, simpler models are often 
more robust to natural noise, variability, and perturbations, and they are most certainly 
less prone to overfitting [30]. At the same time, they may provide coarse-grained 
answers that might or might not be numerically optimal, but provide at least a qualitative 
or semi-quantitative impression of the interaction structure, which may actually be all 
that is of interest. 

Here, we discuss two aspects of LV models. First, we address arguably the most 
important practical use of LV modeling, namely the inference of signs and magnitudes 
of interactions among coexisting populations. We demonstrate this aspect for two very 
different data types. Second, we propose a novel validation method for assessing to 
what degree the LV format is adequate or needs to be supplanted with a richer model 
structure.  

The algebraic inference of LV parameters can be based on time series data or steady 
state survivor data and offers intriguing alternatives to existing methods. Concerning 
time series data, numerous methods have been proposed, including an efficient 
technique based on the estimation of slopes from data, which reduces the parameter 
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inference to a straightforward method of linear regression [46]. The proposed ALVI 
method is rather similar in this respect, but permits inferences via matrix inversions, 
which are computationally very efficient and can naturally be used to create ensembles 
of well-fitting models if the data are at least approximately LV-compliant. 

We have not encountered parameter inference approaches based on survivor profiles, 
even though somewhat similar thoughts were expressed in [35]. In addition to offering a 
novel approach to structure inference, the new availability of this very effective and 
readily scalable survivor-based method might trigger corresponding experimental 
designs for microbiome studies. For instance, it is often experimentally feasible in vitro 
to run a series of bacterial co-culture studies, where at first all species are included and 
then one species at a time is left out right from the beginning of the experiment. These 
experiments lead to a variety of survivor profiles, which form an excellent basis for the 
proposed ALVI method. It is at first surprising that interaction parameters can be 
inferred from steady-state data, and indeed ALVI generates results only up to a time-
scaling factor. Specifically, the resulting parameters are in truth parameters scaled by 
the corresponding growth rates. Nonetheless, the most important information is gained 
anyway: because the growth rates are positive, the signs of interactions are retained, as 
are the relative magnitudes of the impacts of all species on the species in question. 

For applications of ALVI to real data, it is highly recommended to use smoothing to 
reduce the effects of noise, before slope values are estimated from the data. Also, to be 
effective, ALVI requires data at more than n+1 timepoints, with n being the number of 
state variables. If so, an ensemble of models can be established by choosing different 
combinations of data points. Nonetheless, if fewer data are available, it is still possible 
to substitute or complement the set with points taken from the corresponding smoothing 
splines.  

Because ALVI uses matrix inversion, the sample data points used to create the matrix 
must be linearly independent, which immediately indicates caution when using 
dependent variables close to a steady state. 

The proposed diagnostic test of LV-compliance is a substantial and unusual advance, 
because it is rare that the appropriateness of a biomathematical model can be assessed 
without requiring numerous biological assumptions regarding the true mechanisms 
operating in vivo. Using an example from biochemistry, how can we objectively judge 
whether the ubiquitous Michaelis-Menten rate law is a “true” representation of an 
enzyme-catalyzed reaction in vivo [57, 58]? Similarly, an example from statistics is the 
frequent use of normal distributions even if the true variables are strictly positive. 

To some degree, the interpretation of a LV-compliance test is a matter of judgment, as a 
decision must be felled regarding what is “close enough.” The results in Fig. 1 were 
clear-cut and consistent with the creation of the dataset used for the analysis. The 
decision for the real bacterial community data was less crisp. 
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The results of the LV-compliance test are affected by noise in the data, which permits 
choices in the level of smoothing. Although methods have been proposed to balance 
the goodness of fit with the smoothness of the time trends [55], as was pointed out in 
the Methods section, sound human judgement often achieves better results.   

If the diagnostic test reveals that the data are indeed compatible with the LV format, the 
inferred parameter values are easily interpreted. Even in this case it is of course likely 
that other model formats could capture the same data with satisfactory accuracy [27]. 
Such alternative models can almost never be excluded. By contrast, if the diagnostic 
test reveals that the data are not compatible with the LV format, uncounted extensions 
are possible. A straightforward extension is the definition of environmental factors, 
whose effects on the system variables adhere to the format of LV equations. This type 
of generalization has been applied successfully to complex ecological systems [9, 10, 
17]. 

The most natural generalization beyond this straightforward extension is the 
replacement of the simple multiplicative interaction terms with power-law terms 
containing either the two interacting species only, or these two species plus one or more 
additional modulating species. For example, the term 𝑏𝑏𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖 in Eq. (1) could be 

replaced with the power-law term  𝛾𝛾𝑖𝑖𝑋𝑋𝑖𝑖
𝑓𝑓𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖

𝑓𝑓𝑖𝑖𝑖𝑖, which allows greater flexibility modeling 

the particular effect of Xj on Xi. An alternative is the term 𝛾𝛾𝑖𝑖𝑋𝑋𝑖𝑖
𝑓𝑓𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖

𝑓𝑓𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖−0.5, where the 
additional variable Xk has an inhibitory effect on the impact of Xj on Xi, as is indicated by 
the negative power -0.5. In fact, it has been observed that a third species may alter the 
interaction structure among the two interacting species in a positive or negative fashion 
[36]. In this extended format, every variable of the system can potentially affect another 
variable simultaneously in multiple ways.   

The generalization toward power-law functions directly leads to the Generalized Mass 
Action (GMA) format  

�̇�𝑋𝑖𝑖 =  ∑ ±𝛾𝛾𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖
𝑖𝑖=1 ∏ 𝑋𝑋𝑖𝑖

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1         𝑖𝑖 = 1, … ,𝑛𝑛     (12) 

[59, 60], which has been used widely in biochemical and metabolic pathway studies and 
encompasses the LV format as a special case. In Eq. (12), Xi is affected by pi 
interaction processes. Each contributing process has a rate constant (γik), which is 
multiplied to a product of variables directly influencing this process, and the strength of 
each influence is given by an exponent fikj. 

In cases where the diagnostic reveals that only some equations are not compatible with 
the LV format, the generalization toward GMA systems might be taken one term or one 
equation at a time, which retains the advantages of ALVI at least for compatible 
equations. 
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This GMA format is incomparably richer but loses many of the genuine advantages of 
the LV system. To some degree, the linearity of the process structure may be exploited 
for estimation purposes [61], but nothing comparable to the ALVI method is available. 
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