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Abstract 

Detection of somatic point mutations using patients sequencing data has many clinical 

applications, including the identification of cancer driver genes, detection of mutational signatures, 

and estimation of tumor mutational burden (TMB). In a recent work we developed a tool for 

detection of somatic mutations using tumor RNA and matched-normal DNA. Here, we further 

extend it to detect somatic mutations from RNA sequencing data without a matched-normal 

sample. This is accomplished via a machine learning approach that classifies mutations as either 

somatic or germline based on various features. When applied to RNA-sequencing of >450 

melanoma samples high precision and recall are achieved, and both mutational signatures and 

driver genes are correctly identified. Finally, we show that RNA-based TMB is significantly 

associated with patient survival, with similar or superior performance to DNA-based TMB. Our 

pipeline can be utilized in many future applications, analyzing novel and existing datasets where 

only RNA is available. 

 

 

Introduction 

Somatic point mutations accumulate in the DNA of all dividing cells, both normal and neoplastic, 

and are the most common mechanism for altering gene function [1]–[4]. Their detection in tumor 

samples is of high clinical value; first, when accumulated in specific genes termed "drivers", they 

may lead to the development of cancer. Identifying these mutations is therefore crucial for 

matching existing targeted therapies and for developing novel ones [5]–[8]. In addition, somatic 

mutations are used to determine intra-tumor heterogeneity which is a major mechanism of 

therapeutic resistance [9], and for identifying mutational signatures that have proven as clinically 

useful biomarkers [10], [11]. More recently, the set of somatic mutations in a tumor has been used 

to estimate the tumor mutational burden (TMB), an emerging proxy for neoantigen load. TMB is 

defined as the number of non-silent mutations found in a tumor DNA, and was found to be an 

independent marker of patient response to immune checkpoint inhibitor therapy (ICI), and for 

predicting patient survival, both in treated and treatment-naive patients [12]–[18]. 

 

Traditionally, detection of somatic point mutations is done using whole exome or genome 

sequencing  of tumor and matched-normal DNA [19]–[23]. The latter is required for distinguishing 

between somatic mutations found exclusively in the tumor sample, and germline variants shared 

by all cells of an individual. Recently, several studies have developed a 'tumor-only' pipeline that 

uses DNA sequencing to detect somatic mutations without the matched-normal sample, at the cost 

of lower precision and recall [24]–[26]. An additional extension to these pipelines includes the 

detection of somatic mutations from RNA sequencing and a matched-normal DNA sample. In a 

recent publication we have introduced such a pipeline termed RNA-MuTect, and showed that most 

of the mutations detected only in the RNA are filtered out by our pipeline, achieving an overall 
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high precision. In addition, high sensitivity for mutations with sufficient detection power was 

observed, enabling the detection of most driver genes and mutational signatures [27]. 

 

In this study we took our RNA-based approach one step further and developed a pipeline for 

detecting somatic point mutations from RNA sequencing without a matched-normal sample, 

named RNA-MuTect-WMN (WMN; without-matched-normal). This is accomplished via a 

machine learning framework which utilizes a few dozens of features to classify single nucleotide 

variants as either somatic or germline. Our pipeline is trained and tested on the TCGA melanoma 

dataset where it achieves high precision and recall. In addition, it enables a reliable identification 

of both driver genes and mutational signatures. When applied to estimate the TMB from RNA 

samples alone, we find that its performance is either equivalent or superior to TMB estimated 

based on DNA with a matched-normal sample.  The ability to estimate the TMB using a single 

RNA sample further emphasizes the potential clinical utility of our pipeline.  

 

Results 

 

Identifying somatic mutations from RNA-seq data without a matched normal sample 

To develop a pipeline for detection of somatic point mutations from RNA-seq without a matched-

normal sample, we leveraged RNA-seq and matched-normal DNA of 462 melanoma samples from 

The Cancer Genome Atlas (TCGA) [28]. To obtain the ground truth of somatic and germline 

variants in these samples, we ran RNA-MuTect [27]; in short, RNA-MuTect works by first running 

MuTect [29] on tumor RNA and matched-normal DNA, to identify the set of tumor somatic 

mutations and the set of potential germline variants (Methods). Since this set includes multiple 

noisy sites unique to RNA, a series of filtering steps is then applied to yield the final set of true 

somatic mutations (Figure 1A). To examine the accuracy of RNA-MuTect on this set of samples, 

we compared the list of somatic mutations to that obtained using tumor and matched-normal DNA. 

As originally reported [27], focusing on the RNA mutations with sufficient detection power in the 

DNA, 90% were indeed found in the DNA, with a median of only 3 detected mutations per sample 

found in the RNA alone (Methods).  

 

To classify point mutations as either somatic or germline, we collected for each variant a set of 

genomic features (Methods). This list includes the number of reference and alternate reads, variant 

classification type and MuTect likelihood score. In addition, we collected data on germline variants 

from dbSNP [30], gnomAD [31], 1000 genomes [32] and the Exome Sequencing project [33]. 

Finally, we utilized both DNA and RNA panel of normal (PoN) which are based on ~8000 TCGA 

and ~6500 Genotype-Tissue Expression (GTEx) normal samples (Methods) [34].  These PoNs 

encode the distribution of alternate read counts across the entire sets of normal samples [35].  

To test how well our features separate between somatic and germline variants, we performed a 

Wilcoxon rank sum test for each feature, and found that all features show a significant difference 

between these two types of variants (FDR corrected p-values <= 0.0111, Supplementary Figure 

1). However, when searching across a range of thresholds in each feature, we found that the 

Precision-Recall Area Under the Curve (PR-AUC) is very low (<0.08, Supplementary Figure 2), 

as well as the F1 score (<0.16, Supplementary Figure 3). This finding is a result of the substantial 

overlap between features' values in these two variant types, demonstrating the need for a more 

complex model. 
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To this end we developed a machine learning framework named RNA-MuTect-WMN that gets as 

input a list of variants with their associated features, and classifies them as either somatic or 

germline variants as follows: first, our data is randomly split into training (n=100) and test sets 

(n=362). In the training set, each sample contains a list of single nucleotide variants with their 

genomic features (Methods), and a somatic\germline label based on the RNA-MuTect pipeline, as 

described above (Figure 1a). Next, a set of random forest classifiers is trained [36] in a 5-fold cross 

validation manner, such that in each iteration 80 samples are used for training and 20 samples are 

used for validation. The median precision and recall achieved by our model when computed on 

each sample in the validation set are 0.82 and 0.83, respectively (Figure 1b). To test our model 

performance we used our test set of 362 samples and applied the following three steps: (1) we ran 

MuTect with tumor RNA-seq and without a matched-normal sample. In this step both somatic and 

germline variants are marked as true somatic mutations, and a subset of sites are removed based 

on MuTect filtering scheme; (2) we then applied the 5 models built in the training step, and 

classified each variant as either somatic or germline based on the majority vote; (3) finally, to 

remove any remaining RNA-specific noise, we applied the RNA-MuTect filtering steps and 

achieved the final set of predicted somatic mutations. We have decided to run RNA-MuTect 

filtering steps on the narrowed list achieved after step 2 instead of upfront at step 1, due to a couple 

of time consuming steps implemented in the pipeline that could have significantly slow down the 

process. The final set of somatic and germline variants was then used to estimate the pipeline's 

performance, showing a sample-level median precision and recall of 0.85 and 0.83, respectively 

(Figure 1b).  

Further investigating our results, we observed that a few samples achieved a relatively low 

precision (41 out of 46 samples with precision < 0.6 had mutation count < 50, Figure 1c). We 

found that this performance is due to the overall low number of somatic mutations in these samples, 

and that the median precision on the remaining samples is 0.89. In addition, to circumvent the 

possibility that the high performance obtained by our model is a result of low purity levels which 

will in turn result with substantially different allele fractions for somatic and germline variants, we 

examined the correlation between tumor purity and the obtained precision and recall levels. 

Encouragingly, we found this correlation to be insignificant (Spearman R = -0.0040, -0.0874, P-

value = 0.93, 0.09, for precision and recall, respectively).  

To better characterize our model we next examined which features are the most important in 

distinguishing between somatic and germline variants, using the feature importance score 

(Methods). We found that a few of the PoN features as well as the gnomAD feature are the most 

influential in our model (Supplementary Table 1). Finally, we computed the Spearman correlation 

between the number of predicted somatic mutations and the number achieved by the DNA or RNA 

with a matched-normal DNA sample. In both cases, we found it to be highly significant (R=0.92, 

P-value = 4.15-151 for DNA and R = 0.98, P-value < 8.7*10-286 for RNA, Figure 1d-e, respectively). 
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Figure 1: (a) An overview of the RNA-MuTect-WMN pipeline: In the training set (n=100, green 

arrows), RNA-MuTect is applied on tumor RNA and matched-normal DNA to obtain a list of 

variants labeled as somatic or germline. A random forest classifier is then trained with the collected 

set of features for each variant in a 5-fold cross validation manner. In the test set (n=362, orange 

arrows), (1) MuTect is applied with tumor RNA and without a matched-normal sample, to yield a 

list of mixed somatic and germline variants. (2) The five trained models are then applied to this 

set of variants and classifies them as either somatic or germline in a majority vote manner. (3) 

Finally, the predicted set of variants is further filtered by the RNA-MuTect filtering steps. (b) 

Precision and recall on validation (left) and test (right) sets computed for each sample. Box plots 

show median, 25th, and 75th percentiles. The whiskers extend to the most extreme data points not 

considered outliers, and the outliers are represented as dots. (c) Precision as the function of the 

number of true somatic mutations per sample. (d) Correlation between the number of predicted 

somatic mutations and the number of somatic mutations as determined by DNA with matched-

normal DNA sample. (e) Correlation between the number of predicted somatic mutations and the 

number of somatic mutations as determined by RNA with a matched-normal DNA sample.  

Detecting mutational signatures and significantly mutated genes without a matched-normal 

sample 

The overall high performance of RNA-MuTect-WMN enabled us to apply our standard analysis 

pipelines for identifying mutational signatures and significantly mutated genes. To this end we 

applied SignatureAnalyzer [37], [38] using the set of predicted somatic mutations, and identified 

4 signatures (Figure 2a):  UV signature (COSMIC SBS7b, cosine similarity = 0.95) which is 

common in melanoma [39], [40], signature 5 (COSMIC SBS5, cosine similarity = 0.87) which is 

common in various cancer types, including melanoma, and a signature enriched with C>A 

mutations that was previously found in ultraviolet light associated melanomas (SBS38, cosine 

similarity = 0.78). Importantly, the same three signatures were identified in the DNA 
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(Supplementary Table 2 and Supplementary Figure 4). In addition, a signature enriched with T>G 

mutations was detected. This signature was not detected in the DNA but was detected in the RNA 

when somatic mutations were identified with a matched-normal DNA sample (Supplementary 

Figure 4). Indeed, we found that out of 552 mutations that are associated with this signature, 489 

were detected only in the RNA. While it is hard to conclude whether this signature is a true RNA 

signature or a result of RNA-specific noise, it is important to note that its detection is not specific 

to our pipeline in which a matched-normal sample is not used.   

  

Next, we identified significantly mutated genes by applying MutSig2CV [41] on the set of 

predicted somatic mutations. Out of 24 identified genes, 22 were found to be significantly mutated 

also when the matched-normal sample is taken into account (Figure 2b), and only 2 were missed 

by our pipeline (Supplementary Table 3). Importantly, 15 out of the 24 genes were also identified 

as significantly mutated based on a DNA analysis, a rate that is similar to our previous report [27]. 

Finally, we examined our pipeline's performance in identifying a set of 55 known melanoma 

somatic driver genes found in the COSMIC database [42] (Supplementary Table 4). We found that 

on the set of 43 genes that carried at least one true somatic mutation in our dataset, our pipeline 

achieves an even higher precision and recall, with median values of 1 and 0.95, respectively, 

further demonstrating its high value. 

 

  
 

Figure 2: (a) Mutational signatures identified by SignatureAnalyzer [37], [38] on the basis of 

predicted somatic mutations; (b) Co-mutation plot based on predicted somatic mutations in our 

test set. Overall frequencies, allele fractions, and significance levels of candidate cancer genes (Q 

< 0.05) identified by MutSig2C [41] are shown. Genes marked with a red arrow were also 

identified as significantly mutated based on the set of somatic mutations detected using RNA and 

a matched-normal DNA. (c) Precision and recall on the set of know melanoma drivers. Box plots 
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show median, 25th, and 75th percentiles. The whiskers extend to the most extreme data points not 

considered outliers, and the outliers are represented as dots. 

 

TMB predicted by RNA-MuTect-WMN is associated with patient survival 

The development of checkpoint blockade (CPB) therapy such as anti-PD1 and anti-CTLA4 has 

revolutionized cancer therapy and resulted in long-lasting tumor responses in patients with a 

variety of cancers [43]. As a result, these drugs have been FDA-approved for many cancer types, 

including melanoma, non-small cell lung cancer, Urothelial carcinoma, Head and Neck squamous 

cell carcinoma and more [44]. Recently, an accelerated approval for anti-PD1 for the treatment of 

adult and pediatric with tumor mutational burden-high (TMB-H, ≥10 mut/Mb) has been granted, 

making it a critical metric in the clinical decision process. Indeed, the TMB which is traditionally 

estimated via DNA sequencing, has been found to be associated with patient survival to different 

extents, depending on cancer type [45], prior and current treatment [46]–[48]. 

Here, based on the set of predicted somatic mutations from RNA sequencing alone, we estimated 

the TMB as the number of non-silent somatic mutation in each sample. We then divided the 

patients into two groups with high- and low-TMB levels, using the median TMB as the cutoff 

value. We found that patients with high-TMB had a mild but significant increase in survival time 

as compared to those with low-TMB (log-rank P-value = 0.02, Figure 3a). Of note, performing the 

same analysis using the set of somatic mutations detected based on tumor and matched-normal 

DNA, similar results are obtained (logrank P-value = 0.01, Figure 3b), further demonstrating the 

utility of our pipeline.  

Performing a multivariate Cox proportional hazards regression analysis with patient age, tumor 

stage and our RNA-based TMB estimates as the covariates, we found that TMB is the prognostic 

factor most associated with increased survival (HR = 0.59, 95% CI=0.36-0.96, P-value < 0.03, 

Figure 3e). 

 

The extent of association between TMB and patient survival vary widely between the different 

datasets according to cancer type and prior therapy. A recent publication by Valero et al. showed 

that among patients that were not treated with CPB, a very high TMB at the top percentiles is 

associated with poor survival [49]. Given that most of the patients in the TCGA cohort were not 

treated with CPB, we set to examine this observation in our data as well. Indeed, when we divide 

the patients into three groups with very high-, high- and low- TMB levels, using the top 10th 

percentile for the very high group, and median for the remaining samples, we find that those with 

the highest TMB values have a poor survival (logrank P-value = 0.04 between high- and very high-

TMB), and those with median high TMB have an improved survival as compared to those with 

low TMB (logrank p-value = 5.8*10-4, Figure 3c). This result is robust to the selection of threshold 

for the very-high TMB group (top percentile between 10th -15th). Importantly, performing the same 

analysis based on DNA revealed the same trends, though with an inferior significance level 

(logrank P-value = 0.01, 0.04, respectively, Figure 3d). Repeating the Cox regression analysis 

while removing the top 10th percentile, the association of TMB with survival became more 

significant (HR = 0.31, 95% CI=0.17-0.58, P-value < 2*10-4, Figure 3e).   

Overall, these results demonstrate that estimating TMB based on RNA alone is feasible and of a 

high predictive power. 
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feature 

 
Figure 3: (a-b) Kaplan–Meier survival curves for patients with high vs. low TMB estimated on the 

basis of predicted somatic mutations from RNA alone (a); or on the basis of DNA with a matched-

normal sample (b). The median TMB value is used to define the ‘low TMB’ and ‘high TMB’ 

subgroups. The P-value is computed using a log-rank test. (c-d) Kaplan–Meier survival curves as 

in (a) and (b), respectively, with patients divided into three groups with very-high vs. high vs. low 

TMB. Subgroups were split by using the top 10th percentile for the very high group, and median 

for the remaining samples. (e) Hazard Ratio vs. –log10(p-value), obtained by a multivariate Cox 

proportional hazards regression analysis. Red dots represent the values obtained when all samples 

are used and blue dots represent the values obtained after excluding the top 10% of samples (very 

high TMB). 

 

An improved RNA-based TMB estimation in patients treated with CPB 

We next examined the prediction power of our model on an additional set of patients that were 

treated with nivolumab (anti-PD1), some were treatment naive and some had previously 

progressed on ipilimumab (anti-CTLA4) [50]. Raw RNA-sequencing data from 50 pre-therapy 

biopsies were obtained and aligned to the reference genome (Methods). Then, RNA-MuTect-

WMN was applied to identify and classify the set of somatic mutations in each sample. To validate 

our calls, we first applied SignatureAnalyzer and identified the set of mutational signatures that 

are active in these samples. Encouragingly, we found the UV signature (SBS7b), along with the 

TMZ signature (SBS11) and SBS5 that were also found by the authors based on DNA (cosine 

similarity = 0.86, 0.95 and 0.78, respectively, Figure 4a). In addition, when applying MutSig2CV 

to identify significantly mutated genes, both NRAS and BRAF, known melanoma drivers, were 

found to be significantly mutated (Figure 4b).   

 

Finally, we estimated the TMB based on the set of predicted somatic mutation. Interestingly, when 

considering the set of treatment naive patients for which both DNA and RNA are available, no 

significant association between TMB and patient survival is found, based on neither DNA nor 

RNA. However, when considering the set of patients that were previously progressed on 
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ipilimumab, a significant association between high TMB and poor survival is found (logrank P-

value = 0.01, Figure 4c). This is in similar to the trend reported by the authors using DNA (Figure 

4d), which was insignificant. Overall, in this independent dataset as well we find that estimating 

the TMB from tumor RNA alone is feasible and results with similar trends to those obtained with 

tumor and matched-normal DNA.  

 

 

Figure 4: (a) Mutational signatures identified based on the set of predicted somatic mutations 

using the RNA-seq data of 50 pre-therapy biopsies from the Riaz et al. [47] dataset. (b) Co-

mutation plot based on predicted set of somatic mutations. Overall frequencies, allele fractions, 

and significance levels of candidate cancer genes  identified by MutSig2CV [41] are shown. (c-d) 

Kaplan–Meier survival curves for patients that have previously progressed on ipilimumab. TMB 

is estimated based on predicted somatic mutations from RNA  and based on the list of somatic 

mutations detected by the authors using tumor and matched-normal DNA (d). The patients are split 

to two groups of ‘low TMB’ and ‘high TMB’ using the median TMB value as the cutoff.  

 

Discussion 

In this study we introduce RNA-MuTect-WMN, the first computational method that identifies 

somatic mutations from RNA-seq data without a matched-normal sample. Our pipeline is based 

on the RNA-MuTect method [27] which is designed to detect somatic mutations from tumor RNA-

seq and matched-normal DNA.  To extend it to a 'tumor-only' mode we built a random forest 

classification model that distinguishes between somatic and germline variants using various 

features, including both mutation specific ones and those derived from large panels and databases 

of normal individuals. Our model was trained on a subset of the TCGA melanoma dataset, and 

achieved high precision and recall (85% and 83%, respectively) when applied to an independent 

test set of additional >350 melanoma samples. Importantly, we find that when using the set of 

predicted somatic mutations which are derived from RNA-seq samples alone, all mutational 
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signature and >90% of the driver genes are correctly identified, as compared to RNA-MuTect, 

where a matched-normal sample is used.  

 

When calling somatic mutations directly from RNA-seq we are clearly limited to the set of 

mutations that are sufficiently expressed. While this reduces sensitivity for certain downstream 

analyses, it may increase it in others. Specifically, we hypothesized that estimating the tumor 

mutational burden from RNA rather than from DNA would improve prediction power, as only 

expressed mutations can become neoantigens and elicit an immune response. Indeed, we first show 

that estimating TMB from tumor RNA-seq without a matched-normal sample is feasible, and that 

the exact same trends as those estimated using tumor DNA with a matched-normal sample are 

observed. Moreover, the prediction power of RNA-based TMB is either equivalent or superior to 

that estimated by DNA. As previously shown, we find that in melanoma patients that were not 

treated with CPB, very high TMB is associated with poor survival [49], while median high is 

associated with improved survival as compared to patients with low TMB.   In addition, in treated 

patients that were previously progressed on anti-CTLA4, we find that high TMB is significantly 

associated with poor survival compared to low TMB. These results are in concordance with the 

original findings [15]. 

 

Importantly, the model built in this study is based on melanoma samples, and preliminary results 

show that a different model is required in order to achieve a high performance in other cancer types 

(data not shown). However, the RNA-MuTect-WMN approach is generic and can be easily applied 

for any cancer type, given a sufficient number of samples with RNA-seq of the tumor, along with 

tumor and matched normal DNA for validation. Moreover, melanoma is a highly mutated cancer 

with a sufficient number of somatic mutations that can be used for model training, and where the 

fraction of germline contamination predicted by our model is negligible. Hence, the performance 

of our approach should be further tested on lowly mutated cancers where significantly less somatic 

mutations are available for training, and where the fraction of germline contamination can become 

substantial. These limitations can be potentially addressed by down-sampling of the germline 

group, or by combining multiple datasets together. 

 

Overall, we believe that the motivation for using RNA-MuTect-WMN is three-fold: first, for future 

studies, it diminishes the need for collecting and sequencing matched-normal samples, thus 

significantly reducing sequencing cost, especially for large cohort analysis. Second, it enables the 

analysis of RNA-seq data in retrospective studies where RNA was originally sequenced for 

expression-based analyses. Third, it enables a combined analysis where both genetic and 

phenotypic data can be inferred from the exact same sample. This is especially crucial in cancer 

where different regions of a tumor from which DNA and RNA are extracted may be significantly 

different due to tumor heterogeneity. These applications can significantly increase the number of 

samples analyzed and thus aid biomarker and drug target discovery.  

 

Methods 

DNA Mutation calling pipeline 

TCGA DNA BAM files aligned to the NCBI Human Reference Genome Build GRCh37 (hg19). 

Sample contamination by DNA originating from a different individual was assessed using ContEst 

[51]. Somatic single nucleotide variations (sSNVs) were then detected using MuTect [52]. 
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Following this standard procedure, we filtered sSNVs by: (1) removing potential DNA oxidation 

artifacts [53]; (2) realigning identified sSNVs with NovoAlign (www.novocraft.com) and 

performing an additional iteration of MuTect with the newly aligned BAM files; and (3) removing 

technology- and site-specific artifacts using a panel of ~8000 TCGA normal samples (PoN 

filtering, see [54]). Finally, sSNVs were annotated using Oncotator [55].  

 

RNA mutation calling pipeline (RNA-MuTect) 

RNA FASTQ files were downloaded from the Genomic Data Commons database aligned to the 

NCBI Human Reference Genome Build GRCh37 (hg19) using STAR [56]. The RNA-MuTect 

pipeline was then applied as previously described [27]. In short, MuTect is first applied using the 

ALLOW_N_CIGAR_READS flag, with a STAR-aligned RNA-seq BAM and a matched-normal 

DNA-seq BAM. The first set of somatic mutations is then filtered with a DNA PoN as described 

in the 'DNA Mutation calling pipeline' section. A series of filtering steps is then applied, including 

a realignment step with HiSat2, a RNA PoN based on GTEx samples, removal of RNA editing 

sites and more, as previously described in detail [27].  

 

Power analysis 

Given a mutation with an alternate allele count of 𝑥 and a reference allele count of 𝑦 in the RNA, 

we computed the power to detect it given a coverage 𝑁 in the DNA. This was done by applying a 

beta-binomial model for observing at least 𝑘 reads: 𝑃(𝑘|𝑥, 𝑦, 𝑁) = (
𝑁
𝑘
)
𝐵(𝑘+𝑥+1,𝑁−𝑘+𝑦+1)

𝐵(𝑥+1,𝑦+1)
 where 

𝐵 is the Beta function. To determine the minimal number of reads 𝑘, we first computed the error 

rate at the variant site, 𝑟, using the matched normal sample by taking the maximal allele fraction 

of the three possible alternate alleles and applying the Laplace correction with α=1. We then 

identified 𝑘 as the number of alternate reads that have a probability <1% to be generated by the 

noise. Eventually, powered mutations were considered as those with power > 0.95 and alternate 

read count >=4. 

 

The RNA-MuTect-WMN pipeline 

Data preprocessing - For the training set where a matched-normal sample is used, we labeled the 

set of variants that passed our entire calling pipeline as described in the 'RNA Mutation calling 

pipeline' section as somatic. Germline variants were determined based on MuTect annotation as 

‘normal_lod’, ‘germline_risk’ or ‘alt_allele_in_normal’. The analysis is focused only on 

chromosome 1-22, X and Y. 

Feature collection - the following features were used in our pipeline: 

1. T_ref_count - number of tumor reads supporting the reference allele 

2. T_alt_count - number of tumor reads supporting the alternate allele 

3. T_lod_fstar – The LOD score computed by MuTect 

4. Tumor_f – tumor allele fraction 

5-12.  For each of the germline variants database (dbSNP, gnomAD, 1000Genome, ESP) two 

vectors were created: (a) A Boolean indicating whether the variant is present (1) or not (0) in each 

database; (b) variant allele fraction (AF), when available, and a mean AF value over all variants 

in the database when this data is missing. 

13.  Variant_classification - if the variant classification as defined by Oncotator [57] was either 

IGR, Intron, RNA, lincRNA this feature was set to be (1) and (0) otherwise. We included this 
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feature following an analysis showing that almost no somatic mutations were annotated with this 

variant classification. 

14-32.   DNA and RNA Panel of Normals –each genomic position in each PoN is binned into one  

of eight bins using its allele fraction as previously described [35]: 

1 : total counts < 8 (insufficient coverage) 

2 : total counts >= 8 (and no alternate reads above subsequent thresholds) 

3 : alt count >= 1 and alt fraction >= 0.1% 

4 : alt count >= 2 and alt fraction >= 0.3% 

5 : alt count >= 3 and alt fraction >= 1% 

6 : alt count >= 3 and alt fraction >= 3% 

7 : alt count >= 3 and alt fraction > 20% 

8 : alt count >= 10 and alt fraction >= 20% 

The 9th feature for each PoN is then the log likelihood score computed as in [35].  

Model training – 100 samples were randomly selected and defined as the training set. These 

samples were then divided to 5 pairs of training and validation sets with 80 and 20 samples in each 

group, respectively. A random forest classifier was applied on each of the training sets, using the 

somatic and germline labels. Each resulting model was then tested on the corresponding validation 

set, and the precision and recall were calculated to evaluate the performance of all models.  

Model testing – To test the models generated in the previous step we first applied MuTect on our 

test set composed of the remaining 362 samples, using tumor RNA-seq and without the matched 

normal sample. As a result, we obtained a list of variants containing both somatic, germline and 

RNA-specific noise. For each of these variants we collected the set of features described above 

and applied the 5 trained models. Each variant was then assigned a somatic or germline label based 

on a majority vote of the 5 models. Finally, the predicted group of somatic mutations was further 

filtered using RNA-MuTect filtering steps, as described in [27]. 

 

Signature analysis 

To identify mutational signatures, we used the SignatureAnalyzer tool: 

https://github.com/broadinstitute/getzlab-SignatureAnalyzer [38]. A cosine similarity score was 

used as a measure of closeness to known signatures. This score ranges between zero and one, 

where a similarity of one represents identical signatures and a similarity of zero completely 

different mutational signatures. The similarity was measured against the latest version (V3.2) of 

SBS signatures in COSMIC. 

 

MutSig2CV for RNA-seq data 

To apply MutSig2CV [41] for RNA-seq data, we utilized gene-level coverage model that reflected 

which bases were typically sufficiently covered in each gene using GTEx RNA-seq data, as 

previously done [27]. We considered genes as significantly mutated if they had an FDR-corrected 

Q value < 0.05.  

 

Riaz data analysis 

Raw RNA sequencing data for 50 available pre-treatment samples was aligned to the NCBI Human 

Reference Genome Build GRCh37 (hg19) using STAR [58]. As described in the main text (Figure 

1a), we then ran the three steps of our pipeline: (1) running MuTect with tumor RNA alone; (2) 

applying the 5 models trained on TCGA data to get an initial list of predicted somatic mutations; 
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(3) applying RNA-MuTect filtering steps. The final list of somatic variants was used for 

identifying significantly mutated genes, mutational signatures and for estimating the TMB. 

 

Tumor Mutational Burden Analysis 

To compute tumor mutation burden (TMB), we counted the number of non-silent somatic SNVs 

per sample. For the survival analysis, the absolute TMB value was used for determining the median 

TMB and the top 10-15 percentile values. For the continuous Cox regression models we used 

log10(TMB) together with patient age and tumor stage. A logrank test was used to estimate the 

significance level of the survival analysis.  

 

Feature Importance 

To calculate the feature importance we used the built-in feature importance scores of scikit-learn, 

also known as GINI importance (or- mean decreased impurity). We obtained the feature 

importance scores for each of the 5 trained models, and computed the final importance score for 

each feature based on the average score across all 5 models. 

 

Estimating precision/recall level for single features 

For each feature, we computed the difference between germline and somatic variants using the 

Wilcoxon rank-sum test. 

To calculate the best precision and recall that can be achieved, we computed the F-score across a 

range of thresholds and report the maximal one. The precision-recall AUC was computed in a 

standard way across a range of thresholds.  

 

Data availability 

Access to TCGA raw DNA and RNA sequencing data (phs000178) was obtained via dbGap 

authorization. The Riaz [47] bulk RNA dataset used in this study is available under BioProject 

accession number PRJNA356761 or SRA SRP094781. 
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