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Abstract 24 
 25 
 Experimental work across a variety of species has demonstrated that spontaneously generated behaviors 26 
are robustly coupled to variation in neural activity within the cerebral cortex (1-10).  Indeed, functional magnetic 27 
resonance imaging (fMRI) data suggest that functional connectivity in cortical networks varies across distinct 28 
behavioral states, providing for the dynamic reorganization of patterned activity (5, 7, 11, 12).  However, these 29 
studies generally lack the temporal resolution to establish links between cortical signals and the continuously 30 
varying fluctuations in spontaneous behavior typically observed in awake animals.  Here, we took advantage of 31 
recent developments in wide-field, mesoscopic calcium imaging (13) to monitor neural activity across the 32 
neocortex of awake mice. Applying a novel approach to quantifying rapidly time-varying functional connectivity, 33 
we developed a "graph of graphs" method to show that spontaneous behaviors are represented by fast changes 34 
in both the activity and correlational structure of cortical network activity. Both the approach and key results 35 
were generalizable to cellular-resolution data obtained via 2-photon imaging. Finally, dynamic functional 36 
connectivity of mesoscale signals revealed subnetworks that are not predicted by traditional anatomical atlas-37 
based parcellation of the cortex. These results provide new insight into how behavioral information is 38 
represented across the mammalian neocortex and demonstrate an analytical framework for investigating time-39 
varying functional connectivity in neural networks. 40 
 41 
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 Variations in spontaneous motor output, such as locomotion and facial movements, are thought to reflect 43 
shifts in behavioral state that are coupled to changes in perceptual ability (6, 14-18) and co-occur with 44 
fluctuations in neuronal activity across the neocortex (1-5). Work using either fluorescence imaging or fMRI to 45 
monitor cortical dynamics broadly across multiple regions also suggests that the spatiotemporal correlations 46 
between neural signals in large-scale networks vary with transitions between states (7-11, 19, 20). However, these 47 
analyses typically rely on averaging activity within identified epochs (e.g., sleep versus wakefulness or quiescence 48 
versus arousal), ignoring the potential for rapid, continuous variation in both behavioral state and neural 49 
dynamics. Recent efforts using linear modeling suggested that uninstructed movements are represented in the 50 
activity recorded in mouse cortex (2, 3). Here, we sought to establish the ability of patterned cortical activity to 51 
accurately encode rapid, spontaneous changes in behavioral state. 52 
 53 
 Beginning with the assumption that behavior can be represented as some function of multi-dimensional 54 
neural activity, we explored how this function could be estimated using a standard multivariate Taylor expansion 55 
(see Methods). We considered a model of behavior, b(t), derived from the first two terms of the Taylor expansion: 56 
 57 

𝑏(𝑡) ≈ 𝛽! + 𝜷"#𝒙$ + ∑ ∑ 𝛽%(𝑖, 𝑗)𝐶/$(𝑖, 𝑗)&' + 𝜖                         (1) 58 
 59 
Here, the first-order term 𝒙$ is an 𝑁-dimensional vector corresponding to the time-varying neural activity across 60 
𝑁 cortical parcels at time 𝑡. Indeed, representing behavior as a linear combination of time-varying neural signals 61 
is a common approach (14, 21-24). The second-order term 𝐶/$(𝑖, 𝑗)	corresponds to the time-varying pairwise 62 
correlations between parcels 𝑖 and 𝑗, reflecting the rapid dynamics of functional connectivity across cortical 63 
networks. We hypothesized that modelling behavior by combining both a linear term in activity 𝒙$ and 64 
correlations 𝐶/$, which are a nonlinear second-order function of 𝒙$, would provide significantly improve decoding 65 
accuracy, suggesting distinct roles for variations in both signal activity and functional connectivity in cortical 66 
function. 67 
 68 
 To address this question, we carried out widefield, mesoscopic calcium imaging (13) in awake, head-fixed 69 
mice expressing the red fluorescent indicator jRCaMP1b (25) (Figure 1a). Indicator expression was mediated by 70 
neonatal injection of wild-type mice with AAV9-Syn-jRCaMP1b (see Methods) (26, 27). We simultaneously 71 
monitored cortical activity and spontaneous behavioral metrics including pupil diameter, facial movements, and 72 
locomotion (Figure 1b-f, see Methods) (3, 4). Previous studies have often relied on categorical definitions of 73 
behavioral state, averaging within epochs according to thresholding of motor signals (4, 14). However, analysis 74 
of our data indicates that, rather than falling into discrete clusters, these metrics are continuously distributed 75 
across a range of rapidly varying values (Calinski-Harabasz Index values vs. # of clusters for K-means clustering 76 
using 2-6 clusters, p=0.99, ANOVA, Figure 1b-c). We also find that these signals are only modestly correlated 77 
with each other (Figure 1d, Supplemental Figure S1), suggesting that they represent underlying latent variables 78 
corresponding to distinct behavioral dynamics and states. 79 
     80 

After normalization and hemodynamic correction of imaging data (see Methods) (1, 28), we segmented 81 
the cortex into functional parcels using a graph theory-based approach that relies on spatiotemporal co-activity 82 
between pixels (LSSC, Figure 1e-h, Supplemental Figure S1)(29). This approach yields significantly smaller 83 
reconstruction errors for a similar number of parcels in comparison to the Allen Institute CCFv3 anatomy-based 84 
atlas (30) (Supplemental Figure S1). Moreover, LSSC performs similarly to principal component analysis but 85 
with the distinct advantage of generating discrete, disjointed parcels that can provide straightforward links 86 
between function and structure (Supplemental Figure S1). We next extracted 𝒙$ ,	the time-varying fluctuations in 87 
the fluorescence signal associated with each parcel (Figure 1e, see Methods), corresponding to the first-order 88 
terms in the Taylor polynomial approximation of behavior (eq. 1). As expected, variation in activity appeared to 89 
be coupled to changes in behavioral metrics over rapid (sub-second) time scales (Figure 1e-h). We then calculated 90 
the time-varying, pair-wise correlations 𝐶/$	between LSSC parcels using a sliding 3-second window (0.1 second 91 
step-size, Figure 1f-i, see Methods), corresponding to the second-order terms in the Taylor polynomial. On 92 
average, correlations across the cortex were high (r=0.6±0.03, n=6 mice), but their moment-to-moment values 93 
also appeared to co-vary with rapid behavioral changes (Figure 1f-i).  94 
 95 
Dynamic functional connectivity encodes spontaneous behavior 96 

Coordinated patterns of neural activity across the cortex are inherently high-dimensional but may 97 
represent low dimensional latent variables (31-33). To explore the relationship between behavior and dynamic 98 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2021.08.15.456390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.15.456390
http://creativecommons.org/licenses/by-nc-nd/4.0/


functional connectivity, we developed a novel strategy to calculate correlational dynamics with high temporal 99 
resolution and extract their low dimensional representation, 𝜙$. Fitting a linear regression model for behavioral 100 
dynamics whose predictors are time-varying cortical activity and functional connectivity, following the model in 101 
eq. (1), leads to poor predictive power (Supplemental Figure 2) due to over-fitting caused by the high-102 
dimensionality of pairwise correlations 𝐶/$ (~103 pairs per animal). Therefore, we developed a novel strategy to 103 
extract a lower dimensional representation, 𝜙$ , capturing the intrinsic dynamics of the correlational signals using 104 
Riemannian geometry and diffusion embedding (34). Each correlation matrix over a short temporal window 105 
(e.g., 3 seconds) can be viewed as a spatial graph whose 𝑁% nodes are cortical parcels connected by weighted 106 
edges equal to the instantaneous pairwise correlation coefficients between parcels. Sliding the window over time 107 
(Dt=0.1 seconds) produces a series of correlation matrices, which can also be viewed as a time-varying graph 108 
(Figure 2a). We then built a "graph of graphs", where each node is now a time-point represented by the 109 
correlation matrix at that time (see Methods). A distance measure between correlation matrices is necessary to 110 
set the edge weights of this temporal graph. Since correlation matrices lie on a non-Euclidean Riemannian 111 
manifold called the Semi-Positive Definite (SPD) cone, Euclidean distances do not properly represent similarity 112 
in this space (Figure 2b). Therefore, we used Riemannian geometry to calculate pairwise geodesic distances 113 
between correlation matrices. We applied diffusion embedding to the graph of graphs and extracted the low 114 
dimensional representation, 𝜙$ , of the temporal dynamics of functional connectivity (Figure 2c). 115 
 116 
 We constructed a cross-validated linear regression model combining the cortical activity for all parcels 117 
(𝒙$, ranging from 48-53 parcels per animal across 6 mice) and the first 20 leading components of the embedded 118 
correlations, denoted by 𝜙$

(%!) to predict the continuously varying behavioral signals for pupil diameter, facial 119 
movement, or locomotion (Figure 2d-e). We found that behavior can be robustly decoded by this joint model 120 
(Pupil: R2=0.52±0.04; Face: R2=0.59±0.04; Wheel: R2=0.45±0.06; n=6 mice, Figure 2e). These values were not 121 
significantly different from decoding using the windowed (smoothed) measure of activity (Figure S2). As 122 
expected, predictive accuracy was significantly impaired when using either raw correlations or Euclidean rather 123 
than Riemannian distances for the diffusion embedding (Supplemental Figure S2). Moreover, predictive 124 
performance was robust to changes in model parameters, did not improve with the inclusion of more than 20 125 
embedding components, and did not vary appreciably for window lengths of 3-10 seconds (Supplemental Figure 126 
S2).   127 
 128 
 To investigate the relative contributions of activity versus connectivity dynamics in modeling behavior, 129 
we recreated a joint model while temporally shuffling one of the two predictors. Shuffling either term 130 
significantly impaired prediction accuracy relative to the unshuffled full model (Pupil: R2=0.2±0.04, p=0.001 for 131 
shuffling 𝜙$

(%!),	R2=0.48±0.04, p=0.02 for shuffling 𝒙$; Face: R2=0.38±0.05, p=0.002 for shuffling 132 
𝜙$
(%!),	R2=0.49±0.06, p=0.006 for shuffling 𝒙$; Wheel: R2=0.31±0.07, p=0.01 for shuffling 𝜙$

(%!), R2=0.32±0.05, 133 
p=0.003 for shuffling 𝒙$; Paired t-test, Figure 2e). Surprisingly, models in which correlational data was preserved 134 
were similar or better at decoding behavior than activity-preserved models, reaching significance for variations 135 
in pupil diameter (Pupil: p=0.002; Face: p=0.06; Wheel: p=0.37; Paired t-test, Figure 2d-e). To further examine 136 
the ability of activity or connectivity signals to independently predict behavioral signals, we generated single 137 
predictor models which produced similar results, (Figure 2e). Finally, we note that, while the time-averaged 138 
activity and pairwise correlations significantly differ for high versus low behavioral state epochs (see Methods), 139 
the temporal dynamics of spatially averaged cortical activity and correlation signals are poorly predictive of the 140 
rapidly time-varying fluctuations in behavior (Supplemental Figure S2). Altogether, these findings indicate that 141 
inclusion of dynamic functional connectivity significantly improves decoding power for modeling of behavioral 142 
state, suggesting that cortical network function relies not only on the absolute amount of activity but also on the 143 
coordination of activity across widespread areas. 144 

 145 
Network connectivity does not encode sensory information 146 
 Spontaneous cortical activity likely reflects latent signals corresponding to internally generated brain 147 
processes.  Thus, we asked whether extrinsic sensory information was similarly represented by large-scale 148 
networks.  We presented the mouse with a series of visual stimuli (drifting sinusoidal gratings, see Methods) and 149 
quantified evoked activity using mesoscopic calcium imaging.  Contrast-dependent responses were largest in 150 
visual areas but were also observed broadly across other cortical regions. However, evoked responses had 151 
minimal impact on the correlational structure of activity across the cortex (Supplemental Figure S3).  Linear 152 
modeling showed that the stimulus could be robustly decoded using activity in visual cortex, with prediction 153 
accuracy exhibiting contrast-dependence.  However, correlational structure was only very weakly predictive of 154 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2021.08.15.456390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.15.456390
http://creativecommons.org/licenses/by-nc-nd/4.0/


the stimulus, differing significantly from the activity-based model (F= 57.1, p=5.5e-10, ANOVA for combined 155 
stimulus contrasts >50%, n=6 mice; Supplemental Figure S3).  These results suggest that brief sensory inputs 156 
drive large fluctuations in cortical activity without substantial alteration of functional network connectivity. 157 
 158 
Dynamic correlations of cellular networks also predict behavior 159 
 To determine the generalizability of our approach and also examine encoding by neural correlations at a 160 
different spatial scale, we monitored local circuit activity using 2-photon calcium imaging of single GCaMP6s-161 
expressing neurons (35) in the primary visual cortex (see Methods) simultaneously with measurements of pupil 162 
diameter, facial movement, and locomotion (Figure 3a-f). As above, we looked at both time-varying activity and 163 
embedded pair-wise correlations for identified neurons. Unlike large-scale network signals, time-averaged 164 
correlations between neurons were broadly distributed around zero (R2=-0.001±0.006, n=6 mice). 165 
 166 
 We then generated a cross-validated linear model combining activity and embedded correlation 167 
dynamics across cells and attempted to predict rapid fluctuations in behavior. As with mesoscopic imaging, 168 
cellular data also robustly predicted behavior (Pupil: R2=0.59±0.04; Face: R2=0.44±0.08; Wheel: R2=0.39±0.1; 169 
n=6 mice, Figure 3). Again, modeling performance was poorer using raw correlations and Euclidean distances 170 
for embedding but was insensitive to using smoothed activity signals (Supplemental Figure S4). Furthermore, 171 
modeling was again robust to changes in the number of embedding components and window length 172 
(Supplemental Figure S4). 173 
 174 
 To calculate the relative contributions of activity versus correlations in the joint model, we similarly 175 
shuffled one of the two predictors. As above, shuffling either variable significantly impaired prediction accuracy 176 
relative to the unshuffled model (Pupil: R2=0.53±0.05, p=0.04 for shuffling 𝜙$

(%!), R2=0.42±0.05, p=0.0002 for 177 
𝒙$; Face: R2=0.39±0.09, p=0.004 for shuffling 𝜙$

(%!),	R2=0.32±0.05, p=0.03 for shuffling 𝒙$; Wheel: 178 
R2=0.32±0.1, p=0.04 for 𝜙$

(%!),	R2=0.26±0.07, p=0.02 for 𝒙$; Paired t-test, Figure 3g). Models preserving either 179 
the activity or correlational data gave similar accuracy, with activity-based analysis showing modestly better 180 
performance for pupil fluctuations (p=0.025 for Pupil, p=0.14 for Face, p=0.15 for Wheel, Paired t-test, Figure 181 
3g). Single-predictor models again produced similar results (Figure 3g). In summary, applying our novel 182 
approach for quantifying time-varying correlations in neural data to cellular resolution imaging, we again find 183 
that including dynamic functional connectivity significantly enhances prediction accuracy in models linking 184 
neural signals to fluctuations in behavioral state. 185 
 186 
Dynamic functional connectivity suggests distinct cortical subnetworks 187 
 The improved accuracy of behavioral prediction using embedding of mesoscopic correlation matrices 188 
suggests they may reflect underlying principles of structural organization in large-scale cortical networks. We 189 
therefore examined the spatial interpretation of 𝜙$	by asking how the time-varying correlation for each pair of 190 
parcels is represented by the overall embedding. This approach allows us to determine whether the embedding 191 
is primarily capturing spatially organized subsets of pairwise correlations while remaining agnostic to variation 192 
in behavioral state per se. We quantified the goodness-of-fit using 𝜙$

(%!) to model the correlation time series 193 
between a target parcel and each of the other parcels across the cortex (Figure 4a-b, see Methods). Averaging 194 
these goodness-of-fit matrices across all animals (n=6 mice) revealed substantial spatial heterogeneity that was 195 
conserved across different individuals. Embedding primarily represented correlations between each target parcel 196 
and one or both of a posterior and anterolateral subdivision of the cortex (Figure 4c, Supplemental Figure S5). 197 
This spatial pattern was clearly evident after making a grand average across all parcels and animals (Figure 4c).  198 
Intuitively, this result indicates that independent of behavior, dynamic large-scale correlations of cortical areas 199 
are dominated by the interrelationship of each cortical parcel with one or both of these two subnetworks.  200 
Surprisingly, this functional organization is highly distinct from regional boundaries defined by traditional, 201 
anatomy-based atlases such as the CCFv3 (Figure 4e). 202 
 203 
 To further examine whether coordinated activity across this anterolateral/posterior partition does 204 
correspond to spontaneous behavioral variation, we calculated a time-varying participation coefficient that 205 
measures the functional connectivity of parcels within versus between two groupings (36) defined by a line 206 
bisecting the cortex (Figure 4e, see Methods). We quantified the difference in average behavioral metrics for time 207 
points corresponding to the upper versus lower deciles of the participation coefficients and repeated this analysis 208 
for different angles of the bisecting line. Our results showed a significant variation across angles for all behaviors 209 
(F=9.5, p=1.6e-5 for pupil; F=5.9, p=0.0006 for Face; F=6.3, p=0.0004 for Wheel; ANOVA, n=6 mice, Figure 210 
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4f, Supplemental Figure S5) with the peak value corresponding to the observed boundary of anterolateral and 211 
posterior networks. This result supports the conclusion that these anatomical subdivisions reflect behaviorally 212 
relevant functional cortical architecture. 213 
 214 
 Finally, we examined whether embedding of correlations between single neurons also reflects underlying 215 
spatial organization in the local circuit. Similar to our analysis for mesoscopic data, we quantified the goodness-216 
of-fit using 𝜙$

(%!) to model the correlations for each pair of neurons in a field of view and plotted this value versus 217 
the inter-somatic distance (Figure 4g). These results revealed no appreciable relationship, indicating that 218 
behaviorally relevant coupling between cells is independent of their relative physical location within the local 219 
network. 220 
 221 
 Overall, we developed a novel strategy for analyzing the continuously time-varying functional 222 
connectivity in cortical networks, viewing them as a graph of graphs in a non-Euclidean space. Our method 223 
provides an analytical framework for extracting the intrinsic dynamics of short-term correlations and uses 224 
Riemannian geometry to correctly evaluate distances between correlation matrices extracted at different time 225 
points. These distances are then used to set the weights of a graph-of-graphs, allowing us to extract a low-226 
dimensional representation for the manifold of the correlations and capture their underlying dynamics. Using 227 
this approach and including both first-order (activity) and nonlinear second-order (embedded functional 228 
connectivity) terms for modeling behavior enabled us to significantly improve decoding power.  The trained 229 
models accurately predict rapid (sub-second) dynamics of pupil diameter, facial movement, and locomotion, 230 
metrics commonly used to assess variation in arousal state (1, 4, 6, 14). Our method was generalizable for two 231 
different data sets, mesoscopic and 2-photon imaging, and yielded the surprising finding that higher-order 232 
statistics (i.e., correlational signals) produce similar or better predictive accuracy than time-varying changes in 233 
activity. Since the activity and correlation elements in the model are linearly independent, our results indicate 234 
that dynamic functional connectivity between neural elements represents a unique aspect of the data that is 235 
coupled to the animal's behavior. 236 
 237 
 The representation of information by time-varying cortical signals has been a focus of recent studies using 238 
diverse approaches to monitor human brain activity (5, 7, 11, 37). For example, shifts in wakefulness correspond 239 
to changes in average resting state connectivity (38), resting state fluctuations predict somatosensory perception 240 
(15), and working memory-based task performance corresponds to spatially heterogeneous variation in 241 
timescales of patterned activity (39, 40). However, in part due to relatively low temporal resolution of fMRI, 242 
these efforts have relied on averaging activity within sustained, categorical behavioral states. In contrast, we find 243 
that variations in pupil diameter, facial movement, and locomotion do not appear to cluster into distinct regimes, 244 
a result more consistent with continuously and rapidly varying states. Indeed, these behavioral dynamics are 245 
matched by sub-second fluctuations in functional connectivity that are similar to synaptic integration windows 246 
for single cells. Indeed, recent studies have combined mesoscopic imaging with either fMRI (41) or single-cell 247 
monitoring (26, 42-44) finding dynamic connectivity across spatial scales that supports the hypothesis that 248 
neurons may be sensitive to convergent synaptic input driven by correlated large-scale activity. These multi-249 
modal approaches combined with novel analytical methods such as those presented here will likely drive rapid 250 
discoveries into the functional organization of brain networks in diverse systems. 251 
 252 
 With the rapidly expanding efforts to link large-scale cortical signals with sensory representations, 253 
movement, and task performance (2, 8, 9, 26, 43, 45), several distinct strategies have been developed to analyze 254 
the spatiotemporal organization of network activity, including singular value decomposition and non-negative 255 
matrix factorization (8, 46). Here, we show that functional parcellation of cortical regions (29) followed by 256 
embedding of time-varying correlations based on Riemannian geometry, provides a robust means to quantify 257 
dynamic functional connectivity that accurately decodes spontaneous fluctuations in behavior. With the 258 
increasing interest in analysis of neural manifolds, our results also highlight the necessity of considering the 259 
geometry of the manifold on which the data lie to accurately reveal their intrinsic representation.  Notably, we 260 
did not find similarly strong representation of sensory information in mesoscopic correlations, suggesting that 261 
external inputs modulate activity without altering functional connectivity.  However, this result may also reflect 262 
a lack of behavioral relevance for the stimuli as presented here.  We and others have shown that training can 263 
modify the sensory and motor representations by single cortical neurons (14, 47-49), and future studies must 264 
determine if development, experience, or learning produce functional reorganization of large-scale networks.  265 
 266 
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 Finally, our results suggest that the cortex can be spatially segmented into two broad subnetworks, an 267 
anterolateral and posterior division, a functional division that emerges from analysis of spontaneous activity but 268 
also reflects variation in behavioral state metrics. We previously suggested such a division based on correlations 269 
between single cell activity and mesoscopic cortical signals (26). Interestingly, this organization does not map 270 
readily onto standard anatomical segmentation of the cortex, such as the CCFv3 (30). We propose that the 271 
dynamic modulation and plasticity of synaptic strength may support the translation between such structural and 272 
functional views of connectivity in cortical networks, a hypothesis that awaits experimental validation. 273 
  274 
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Materials and Methods 303 
 304 
 All animal handling and experiments were performed according to the ethical guidelines of the 305 
Institutional Animal Care and Use Committee of the Yale University School of Medicine. Mesoscopic imaging 306 
data were collected as part of a previous study (1), with experimental details provided below for clarity. Analysis 307 
results presented here represent wholly new findings and have not appeared elsewhere. 308 
 309 
Animals 310 
 Male and female C57BL/6 mice were kept on a 12h light/dark cycle, provided with food and water ad 311 
libitum, and housed individually following headpost implants. Imaging experiments were performed during the 312 
light phase of the cycle. For mesoscopic imaging, brain-wide expression of jRCaMP1b (25) was achieved via 313 
postnatal sinus injection as described previously (26, 27). Briefly, P0-P1 litters were removed from their home 314 
cage and placed on a heating pad. Pups were kept on ice for 5 min to induce anesthesia via hypothermia and then 315 
maintained on a metal plate surrounded by ice for the duration of the injection. Pups were injected bilaterally 316 
with 4 ul of AAV9-hSyn-NES-jRCaMP1b (2.5x10^13 gc/ml, Addgene). Mice also received an injection of AAV9-317 
hSyn-GRABACh3.0 to express the genetically encoded cholinergic sensor GRABACh3.0 (50), although these data were 318 
not used in the present study. Once the entire litter was injected, pups were returned to their home cage. For 319 
two-photon imaging experiments, a similar procedure was used to drive cortex-wide expression of GCaMP6s 320 
(35). 321 
 322 
Surgical procedures 323 
 All surgical implant procedures were performed on adult mice (>P50). Mice were anesthetized using 1-324 
2% isoflurane and maintained at 37ºC for the duration of the surgery. For mesoscopic imaging, the skin and 325 
fascia above the skull were removed from the nasal bone to the posterior of the intraparietal bone and laterally 326 
between the temporal muscles. The surface of the skull was thoroughly cleaned with saline and the edges of the 327 
incision secured to the skull with Vetbond. A custom titanium headpost was secured to the posterior of the nasal 328 
bone with transparent dental cement (Metabond, Parkell), and a thin layer of dental cement was applied to the 329 
entire dorsal surface of the skull. Next, a layer of cyanoacrylate (Maxi-Cure, Bob Smith Industries) was used to 330 
cover the skull and left to cure ~30 min at room temperature to provide a smooth surface for transcranial 331 
imaging. A similar procedure was used to prepare mice for two-photon imaging, with the addition of a dual-layer 332 
glass window implanted into a small (~4 mm square) craniotomy placed over the left primary visual cortex. The 333 
edges of the window were then sealed to the skull with dental cement. 334 
 335 
Mesoscopic imaging  336 
 Widefield mesoscopic calcium imaging was performed using a Zeiss Axiozoom with a 1x, 0.25 NA 337 
objective with a 56 mm working distance (Zeiss). Epifluorescent excitation was provided by an LED bank 338 
(Spectra X Light Engine, Lumencor) using two output wavelengths: 395/25 (isosbestic for GRABACh3.0) and 339 
575/25 nm (jRCaMP1b). Emitted light passed through a dual camera image splitter (TwinCam, Cairn Research) 340 
then through either a 525/50 (GRABACh3.0) or 630/75 (jRCaMP1b) emission filter (Chroma) before it reached two 341 
sCMOS cameras (Orca-Flash V3, Hamamatsu). Images were acquired at 512x512 resolution after 4x pixel 342 
binning, and each channel was acquired at 10 Hz with 20 ms exposure using HCImage software (Hamamatsu). 343 
 344 
Two-photon imaging 345 
 Two-photon imaging was performed using a MOM microscope (Sutter Instruments) coupled to a 16x, 0.8 346 
NA objective (Nikon). Excitation was driven by a Titanium-Sappire Laser (Mai-Tai eHP, DeepSee, Spectra-347 
Physics) tuned to 920 nm. Emitted light was collected through a 525/50 filter and a gallium arsenide phosphide 348 
photomultiplier tube (Hamamatsu). Images were acquired at 512x512 resolution at 30 Hz using a galvo-resonant 349 
scan system controlled by ScanImage software (Vidrio). 350 
 351 
Behavioral monitoring 352 
 All imaging was performed in awake, behaving mice that were head-fixed so that they could freely run on 353 
a cylindrical wheel. A magnetic angle sensor (Digikey) attached to the wheel continuously monitored wheel 354 
motion. Mice received at least three wheel-training habituation sessions before imaging to ensure consistent 355 
running bouts. During widefield imaging sessions, the face (including the pupil and whiskers) was illuminated 356 
with an IR LED bank and imaged with a miniature CMOS camera (Blackfly s-USB3, Flir) with a frame rate of 10 357 
Hz using FlyCam2 software (Flir). 358 
 359 
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Visual stimulation 360 
 For visual stimulation experiments, sinusoidal drifting gratings (2 Hz, 0.04 cycles/degree) with varied 361 
contrast were generated using custom-written functions based on Psychtoolbox in Matlab and presented on an 362 
LCD monitor at a distance of 20 cm from the right eye. Stimuli were presented for 2 seconds with a 5 second 363 
inter-stimulus interval. 364 
 365 
Data Analysis 366 
 All analyses were conducted using custom-written scripts in MATLAB (Mathworks). SVM classifiers were 367 
trained using publicly available software (51). 368 
 369 
Preprocessing of behavior data 370 
 Pupil diameter and facial movements were extracted from face videography using FaceMap (3). For 371 
subsequent analysis, facial movement is defined as the the first component of FaceMap-based decomposition.  372 
Singular value decomposition (SVD) was applied to the face movie to extract the principal components (PCs) 373 
explaining the distinct movements apparent on the mouse's face. Wheel position was obtained from a linear 374 
angle detector attached to the wheel axle by unwrapping the temporal phase and then computing the traveled 375 
distance (cm). Locomotion speed was computed as the differential of the smoothed distance (cm/sec) using a 376 
0.5 second window. Epochs of sustained locomotion and quiescence were extracted using change-point detection 377 
as described (1). High/low Pupil and Face epochs were extracted from within quiescence segments where z-score 378 
normalized values exceeded high/low thresholds of 60%/40% quantiles.      379 
 380 
Preprocessing of mesoscopic imaging data  381 
 Imaging frames for green and red collection paths were grouped and down-sampled from 512X512 to 382 
256X256 followed by an automatic ‘rigid’ transformation (imregtform, Matlab). In some cases, registration 383 
points were manually selected and a ‘similarity’ geometric transformation was applied. Detrending was applied 384 
using a low pass filter (𝑁 = 100, 𝑓*+,-.. = 0.001𝐻𝑧). Time traces were obtained using (∆𝐹/𝐹)' = >𝐹' − 𝐹',0@/𝐹',0 385 
where 𝐹' is the fluorescence of pixel 𝑖 and 𝐹',0 is the corresponding low-pass filtered signal.  386 
 387 
Hemodynamics correction  388 
 Hemodynamic artifacts were removed using a linear regression accounting for spatiotemporal 389 
dependencies between neighboring pixels (1). We used the isosbestic excitation of GRABACh3.0 (395 nm) co-390 
expressed in these mice as a means of measuring activity-independent fluctuations in fluorescence associated 391 
with hemodynamic signals. Briefly, given two 𝑝 × 1 random signals 𝑦" and 𝑦% corresponding to ∆𝐹/𝐹 of 𝑝 pixels 392 
for two excitation wavelengths “green” and "UV", we consider the following linear model: 393 
 394 

𝑦" = 𝑥 + 𝑧 + 𝜂, 395 
𝑦% = 𝐴𝑧 + 𝜉, 396 

 397 
where 𝑥 and 𝑧 are mutually uncorrelated 𝑝 × 1 random signals corresponding to 𝑝 pixels of the neuronal and 398 
hemodynamic signals, respectively. 𝜂 and 𝜉 are white Gaussian 𝑝 × 1 noise signals and 𝐴 is an unknown 𝑝 × 𝑝 399 
real invertible matrix. We estimate the neuronal signal as the optimal linear estimator for 𝑥 (in the sense of 400 
Minimum Mean Squared Error): 401 
 402 

𝑥H = 𝐻 I
𝑦"
𝑦%J ,				𝐻 = Σ12Σ23",	 403 

where 𝑦 = I
𝑦"
𝑦%J is given by stacking 𝑦"	on top of 𝑦%, Σ2 = 𝔼[𝑦𝑦#] is the autocorrelation matrix of 𝑦 and Σ12 =404 

𝔼[𝑥𝑦#] is the cross-correlation matrix between 𝑥 and 𝑦. The matrix Σ2 is estimated directly from the observations, 405 
and the matrix Σ12 is estimated by(1): 406 
 407 

Σ12 = IΣ2! − 𝜎4
%𝐼 − IΣ2!2">Σ2" − 𝜎5

%𝐼@
3"
Σ2"
3"Σ2!2"

# J
#

0J, 408 
 409 
where 𝜎4% and 𝜎5%	are the noise variances of 𝜂 and 𝜉, respectively, and 𝐼 is the 𝑝 × 𝑝 identity matrix. The noise 410 
variances 𝜎4% and 𝜎5%	are evaluated according to the median of the singular values of the corresponding correlation 411 
matrices Σ2!and Σ2"  (52). This analysis is usually performed in patches where the size of the patch, 𝑝, is 412 
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determined by the amount of time samples available and estimated parameters. In the present study, we used a 413 
patch size of 𝑝 = 9. The final activity traces were obtained by z-scoring the corrected ∆𝐹/𝐹 signals per pixel. 414 
 415 
Parcellation of mesoscopic data using LSSC  416 
 Functional parcellation of mesoscopic data was performed using Local Selective Spectral Clustering 417 
(LSSC)(29). Briefly, this method identifies areas of co-activity by building a graph where nodes are pixels and 418 
edge weights are determined by pairwise similarities between activity traces of pixels obtained by the following 419 
kernel: 420 
 421 

𝑲(𝑖, 𝑗) = exp V−W(∆𝐹/𝐹)' − (∆𝐹/𝐹)&W
%/𝜎%X                                   422 

 423 
where 𝜎 is a parameter expressing a similarity radius. A row-stochastic matrix 𝑷 is obtained by normalizing the 424 
rows such that 𝑷 = 𝑫3𝟏𝑲, where 𝑫(𝑖, 𝑖) = ∑ 𝑲(𝑖, 𝑗)& . The matrix 𝑷 can be viewed as a transition matrix of a 425 
Markov chain of the graph where 𝑷(𝑖, 𝑗) is the probability to jump from node (pixel) 𝑖 to node (pixel) 𝑗. We obtain 426 
a non-linear embedding of pixels by calculating the 𝑑 right eigenvectors with the largest eigenvalues of 𝑷: 427 

(∆𝐹/𝐹)' →𝜓(7)(𝑖) = ^
𝜓"(𝑖)
⋮

𝜓7(𝑖)
` 428 

 429 
Overall, by taking 𝑛 to be significantly smaller than the number of time samples, every pixel is represented by a 430 
lower dimensional embedding 𝜓(7).  431 
 432 
 We evaluate the embedded representation 𝜓(7)	and calculate the spectral embedding norm (53) of every 433 
pixel 𝑠' = W𝜓(7)(𝑖)W. LSSC uses an iterative approach for parcellating the brain where the inputs are the 434 
embedded representation of all pixels 𝜓(7)	and their corresponding norms, 𝑠' , 𝑖 = 1,… , 𝑝, and lastly, a list of all 435 
pixels sorted by decreasing order of the embedding norm denoted by 𝑙. On each iteration the following operations 436 
are performed until coverage of at least 𝜗 percent of the mask brain pixels is assigned to parcels: 437 
 438 

1. Select the first item on the list 𝑙 (the pixel having the maximal norm, noted by 𝑖*) 439 
2. Select the axes in which 𝑖* has the largest values, i.e., the subset: 𝐿'∗ = gℓ", ℓ%, … , ℓ9#i such that 440 

j𝜓ℓ!(𝑖)j ≥ j𝜓ℓ"(𝑖)j ≥ j𝜓ℓ$(𝑖)j ≥ ⋯ 441 
3. Obtain the pixels whose embeddings are closer to 𝜓(7)(𝑖) than to the origin based on the axes 𝐿'∗	and 442 

assign them to the cluster 𝑘, i.e.: 443 
𝐶; = {𝑗			|		‖𝜓<#(𝑖) − 𝜓<#(𝑗)‖% < ‖𝜓<#(𝑗)‖%} 444 

4. Remove the set 𝐶; from the list 𝑙: 𝑙 ← 𝑙 ∖ 𝐶; 445 
5. 𝑘 ← 𝑘 + 1 446 
6. If at least 𝜗 percent of the mask of the brain is assigned to a specific parcel, then break. 447 

 448 
 The output is therefore a set of clusters {𝐶;} where each clusters contains the pixels in that cluster. To 449 
increase robustness, we divided every session into 10 disjoint segments (folds), extracted the embedding on every 450 
fold and evaluated the embedding norm as the maximal value across all 10 folds. We refined the brain 451 
parcellation by merging parcels whose time traces are correlated more than a given threshold. Overlapping pixels 452 
were assigned to the parcel with closest centroid (in the embedding space). Additionally, unassigned isolated 453 
pixels (if any) were assigned to the (spatially) closest parcel. Isolated pixels within the borders of more than one 454 
parcel were assigned to the closest cluster (in the embedding space). Each animal and session was parcellated to 455 
reach a 95% coverage of the mask of the brain where clusters were merged based on a threshold of 0.99, resulting 456 
in ~45 parcels per hemisphere. Time series for parcels were extracted by averaging values for all pixels within 457 
the parcel (see preprocessing of mesoscopic data above). 458 
 459 
ROI extraction by LSSC 460 
 We also used LSSC to identify cell bodies from the two-photon imaging data. The overall approach is 461 
similar to the parcellation process except for the stopping condition, where iterations continue until a maximal 462 
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number of cells is reached. In the refinement stage, identified cells that smaller than 15 pixels were discarded 463 
and overlapping regions were resolved by de-mixing (29). 464 
 465 
Taylor expansion for estimating behavior as a function of neuronal activity 466 

We formulate the link between temporal dynamics of neuronal activity 𝒙$ ∈ ℝ= and an observed behavior 467 
𝑏$	as: 468 

𝑏$ = 𝑓(𝒙𝒕) 469 
 470 
where 𝑓 is an unknown function. Assuming that 𝑓(𝒙$) is 2 times differentiable, we can write its second-order 471 
Taylor’s expansion as: 472 
 473 

𝑏$ = 𝑓(𝒙$) ≈ 𝑓(𝒙x) +y
𝜕𝑓

𝜕𝑥$(𝑖)
{
𝒙@
>𝑥$(𝑖) − �̅�(𝑖)@

'

+
1
2
yy

𝜕%𝑓
𝜕𝑥$(𝑖)𝜕𝑥$(𝑗)

}
𝒙@
>𝑥$(𝑖) − �̅�(𝑖)@>𝑥$(𝑗) − �̅�(𝑗)@

&'

+ 𝜖 474 

 475 
where 𝒙x is the average neuronal activity (across time), and 𝜖 is the error of neglecting higher orders of 𝒙$. 476 
Simplifying this equation leads to:  477 
 478 

𝑏$ ≈ 𝛽! +y𝛽"(𝑖)𝑥$(𝑖)
'

+yy𝛽%(𝑖, 𝑗)𝐶$(𝑖, 𝑗)
&'

+ 𝜖																									(3) 479 

where 𝐶$(𝑖, 𝑗) = >𝑥$(𝑖) − �̅�(𝑖)@>𝑥$(𝑗) − �̅�(𝑗)@ is the time trace of the instantaneous interaction between brain 480 
region 𝑖 and brain region 𝑗 and 𝛽7, 𝑛 = 0,1,2 are the model parameters. Overall eq. (3) proposes a linear model 481 
for behavior based on two temporal signals - the activity 𝑥$(𝑖) and the pairwise interaction 𝐶$(𝑖, 𝑗), which is a 482 
nonlinear second-order function of elements of 𝒙$. Since the elements 𝑥$(𝑖) and 𝐶$(𝑖, 𝑗)	are linearly independent 483 
for all 𝑖, 𝑗 ∈ {1, 𝑁}, can measure the decoding power of each of these two components 𝒙$ and 𝑪$ independently.     484 
 485 

In eq. (3) the instantaneous interactions 𝐶$(𝑖, 𝑗) are evaluated based on a single time point. In practice, 486 
estimating all pairwise interactions at a single point is highly sensitive to noise. Thus, we evaluate the interactions 487 
over a short sliding time window to obtain the sample covariance 𝐶/$(𝑖, 𝑗) as a smoothed and more robust 488 
estimation for the temporal evolution of 𝐶$(𝑖, 𝑗): 489 

 490 

𝐶/$(𝑖, 𝑗) = 	
∑ B1%(')31&(')CB1%(&)31&(&)C
&'(&/"
%*&+(&/"

D∑ B1%(')31&(')C
"&'(&/"

%*&+(&/"
D∑ B1%(&)31&(&)C

"&'(&/"
%*&+(&/"

																										(4) 491 

 492 
where 𝑥$(𝑗)	is the smoothed averaged activity: 493 
 494 

𝑥$(𝑖) =
1
𝑁$
	 y 𝑥E(𝑖)
$F=&/%

EH$3=/%

 495 

 496 
Inserting 𝐶/$(𝑖, 𝑗) into (3) leads to eqn. (1). Overall, 𝑪�	is a three-dimensional tensor of parcels by parcels by time, 497 
where each element 𝐶/$(𝑖, 𝑗) is a time trace of the instantaneous correlation coefficient between parcel 𝑖 and parcel 498 
𝑗. For most analyses, Nt was 30 (corresponding to a 3 second moving window). In all cases, the time-step was set 499 
to be 1 frame (0.1 second). 500 
 501 
Riemannian projection of correlation matrices 502 
 Correlation matrices are Symmetric and Positive Definite (SPD, i.e., symmetric and full rank) and whose 503 
underlying geometry is a manifold shaped like a cone with a Riemannian metric (Supplemental Figure 2) (54).  504 
The distances between two correlation matrices on this cone is defined by the geodesic distance, the length of the 505 
arc connecting these matrices, whereas the Euclidean distance is not an accurate measure for this geodesic 506 
distance. To accurately capture distances between SPD matrices, Riemannian geometry is often used to project 507 
them onto a tangent Euclidean space where the geodesic length is approximated by the Euclidian distances 508 
between the corresponding projections. This evaluation becomes more accurate if the plane is tangent to the 509 
cone at a point that is relatively close to all relevant matrices, usually taken as their Riemannian mean.  510 
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 511 
 Briefly, let {𝑪;} be a set of 𝐾 SPD matrices. Denote 𝑪x as the Riemannian mean of the set and 𝑺x as its 512 
equivalent in the tangent plane. 𝑪x and 𝑺x are calculated using the following iterative equations:   513 
  514 

𝑺x7 =
1
𝐾
y𝑪x7

"/%log I𝑪x7
3"/%𝑪;𝑪x7

3"/%J𝑪x7
"/%

I

;H"

 515 

𝑪x7F" = 𝑪x7
"/%exp I𝑪x7

3"/%𝑺x7𝑪x7
3"/%J𝑪x7

"/% 516 
 517 
Where log	(∙) and exp	(∙) are the matrix logarithm and matrix exponential, respectively, and where the Euclidean 518 
mean is used to initialize: 𝑪x! =

"
I
∑ 𝑪;I
;H" . Convergence is obtained when the Frobenius norm of 𝑺x7 is smaller 519 

than a pre-set parameter 𝜀: |𝑺x7|J < 𝜀.  520 
 521 
 The projections of {𝑪;} onto the tangent plane to the cone at the Riemannian mean are given by: 522 
 523 

𝑺; = 𝑪x"/%log I𝑪x3"/%𝑪;𝑪x
3"/%J𝑪x"/%, 𝑘 = 1,… , 𝐾 524 

 525 
As presented previously (55), the pairwise distances, 𝑑K%(𝑪; , 𝑪L) on the cone between correlation matrices {𝑪;} 526 
can be approximated by the Euclidean distances between their corresponding projections {𝑺;}: 527 
 528 

𝑑K%(𝑪; , 𝑪L) ≅ W𝑺�; − 𝑺� LW
%, 529 

 530 
where 𝑺�𝒌 = 	log I𝑪x3"/%𝑪;𝑪x

3"/%J.	This method requires that all matrices {𝑪;}	would be full rank (56, 57). In 531 
practice this is not always the case if the number of time points for evaluation of the correlation matrices is 532 
smaller than 𝑝, i.e. 𝑁$ < 𝑝. Therefore, we add a regularization term, 𝜆𝑰, to each correlation matrix 𝑪; (31) where 533 
𝜆 is set to the median of the singular values of 𝒙$ (52). 534 
 535 
Dimensionality reduction by diffusion embedding 536 
 The series of matrices 𝑪$ are symmetrical and therefore the dimension of their projections, {𝑺$},	is equal 537 
to I𝑝2J resulting in a high dimensional signal. To analyze the dynamics of this signal, we used diffusion geometry 538 
to obtain a low dimensional representation, capturing the dynamical properties of the correlation traces. Unlike 539 
LSSC where we reduce the dimension across time samples, in this case we reduce the dimension of parcels; we 540 
evaluated the 𝑁$ × 𝑁$ kernel matrix of {𝑺$}: 541 
 542 

𝑨(𝑖, 𝑗) = exp V−W𝑺' − 𝑺&W
%/𝜎%X                              (3) 543 

 544 
where 𝜎, which is a scale parameter evaluated as the median of pairwise distances between each projected matrix 545 
and its 𝑘-nearest neighbors where 𝑘=20. Note that our results are highly robust to variation in this parameter 546 
(Supplemental Figure 2). We then normalized the kernel 𝑨 to be row-stochastic and obtained the low 547 
dimensional representation for the correlation traces as the right eigenvectors of the normalized kernel matrix: 548 
 549 

𝑺$ → f$
(7) = ^

f$
"

⋮
f$
7
` 550 

 551 
For comparison, we carried out similar diffusion embedding based on Euclidean distances (Supplemental Figure 552 
S2).  553 
 554 
Dimensionality reduction by principal component analysis 555 
 As a comparison to LSSC, we also used principal component analysis to reduce the dimensionality of 556 
widefield data (Supplemental Figure S2). Principal components were derived using the ‘pca’ function in Matlab. 557 
 558 
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Visual response analysis 559 
 Visual responses were evaluated, per parcel, as the difference between peak response during stimulus 560 
presentation and the average activity during the preceding two seconds.  The responses were averaged per 561 
contrast value and normalized by the response to 100% contrast.  To quantify the accuracy with which visual 562 
responses are encoded by visual activity, or embedded network activity/correlations, we trained a binary 563 
classifier (linear SVM, libsvm) to separate the visual response and the two seconds prior to stimulus onset. We 564 
used 10-fold cross validation to estimate the classification accuracy for every contrast value based on each 565 
predictor.  566 
 567 
Modeling Behavior 568 
 Behavioral variables (pupil, facial movements, running speed) were modeled using linear ridge 569 
regression with 10-fold cross validation. Each session was divided into 10-disjoint continuous segments, where 570 
on each fold one segment was set aside for testing and the other segments were used for training. We assessed 571 
the predictive power of neuronal activity using the following predictors: raw activity and smoothed activity (using 572 
a 3 second moving window). For pairwise correlations, we used: raw correlation traces, diffusion embedding of 573 
correlation traces using either Euclidean or Riemannian distances. To directly compare the predictive power of 574 
activity versus embedded correlations, we combined these predictors and evaluated the goodness of fit of the 575 
joint model. We then shuffled either activity or embedded correlations through time and trained the resulting 576 
model to assess 𝑅NO+..PQR	T*,UVU,W%  and 𝑅NO+..PQR	X&

% .  577 
 578 
Reconstruction Error 579 
 Reconstruction error of diffusion embedding of functional connectivity was evaluated by: 580 

𝜀% =
∑ ∑ >𝐶/$(𝑖, 𝑗) − 𝐶/$7(𝑖, 𝑗)@

%
$',&

∑ ∑ >𝐶/$(𝑖, 𝑗) − �̅�(𝑖, 𝑗)@
%

$',&

 581 

where 𝑪�(𝑡) is the pairwise functional connectivity of brain parcels, 𝑪x is the temporal average and where 𝑪�$7 is the 582 
reconstruction of 𝑪�$ based on n leading components of its embedded trace f$

(7): 583 
 584 

𝐶/$7(𝑖, 𝑗) =yIf$Y
' ∙ 𝐶/$(𝑖, 𝑗)J

7

'H"

φ$'  585 

where φ$'  are the left eigenvectors of the normalized kernel matrix. 586 
 587 
Modeling correlations data by embedding 588 
 To quantify the relationship between the embedding of functional connectivity across the cortex fZ  and 589 
the time-varying correlation between specific pairs of parcels, we used linear regression (10-fold cross validation) 590 
and obtained an R2 value for every pair-wise correlation trace. To match LSSC parcels across animals, we 591 
identified the LSSC parcels whose center of mass were closest to each Allen Atlas brain parcel (23 parcels overall 592 
in a single hemisphere) and extracted a 23 × 23 matrix of R2 values per session. We averaged these matrices 593 
across animals and extracted the rows corresponding to individual parcels. Each row was then represented as a 594 
separate brain map image, color-coded by the R2 value corresponding to the correlation between the target 595 
(specific to that image) and each of the other parcels. 596 
 597 
Evaluating Integrated Network Configuration 598 
 We evaluated a time trace of the average participation coefficient (across parcels), based on the 599 
correlation time traces (3 seconds) and an arbitrary partition of the brain using a line bisecting the neocortex. 600 
The participation coefficient is calculated per parcel in a given time window 𝑡 as: 601 

𝑃$(𝑖) = 1 −y�
𝜅$(𝑖, 𝑠)
𝑘$(𝑖)

�
%=,

[H"

 602 

 603 
where 𝜅$(𝑖, 𝑠) is the sum of the correlations (absolute values) between parcel i and all the parcels in sub-module 604 
s and 𝑘$(𝑖) is the sum of all correlations (absolute values) between parcel i and all other parcels. Therefore, a 605 
segregated network would be characterized by high connectivity between parcels related to the same module and 606 
low connectivity between sub-modules. In this case the average participation coefficient (across parcels) would 607 
approach zero. The opposite would happen in an integrated network where parcels communicate outside their 608 
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sub-modules just as much as they do within their sub-modules. In this case the average participation coefficient 609 
would approach 1. 610 
 611 
 We then evaluated the difference of the behavior variables (pupil size, facial movement, and locomotion 612 
speed) between time points where the network was in an extreme integrated state (top 10% participation 613 
coefficient) and extreme segregated state (bottom 10% participation coefficient) (36). By rotating the line in 30, 614 
60, 90, 120, 150 degrees we measured the delta of behavior variables on integrated and segregated configurations 615 
based on different ways for partition of the brain into sub-networks. 616 
 617 
 618 
  619 
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Figures and Figure Legends 734 
 735 
 736 
 737 

 738 
 739 
 740 
Figure 1.  Mesoscopic imaging of cortical activity and functional connectivity. 741 
a, Schematic illustrating the setup for simultaneous behavioral monitoring and mesoscopic calcium imaging. b, 742 
Scatter plot illustrating the distribution of Z-scored behavioral metric values (locomotion, facial movement, and 743 
pupil size) collapsed over time and across all subjects (n=6 mice).  c, Population data showing Calinski-Harabasz 744 
index values for K-means clustering of behavioral metrics for all subjects. d, Population data showing average 745 
(±SEM) Pearson's R2 values for the relationships between wheel (W), pupil (P), and facial movements (F) for all 746 
subjects. e, Example time series from one animal showing cortical activity across the cortex. Each trace 747 
corresponds to one LSSC-based parcel.  f, Heat map illustrating the time-series of pairwise correlations between 748 
each parcel from (D). Data are sorted by increasing standard deviation.  g, Time series of behavioral metrics 749 
corresponding to the data shown in (D) and (E). h, Example LSSC-based functional parcellation of the neocortex 750 
for the data shown above. Left and right images are for the timepoints indicated by vertical red lines. i, Example 751 
pairwise correlation matrices for the data in (E) at the time points indicated. 752 
 753 
 754 
 755 
 756 
 757 
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 759 
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 762 

 763 
 764 
Figure 2.  Dynamic functional connectivity encodes rapid behavioral variations. 765 
a, Example sequential pairwise, parcel-based correlation matrices, derived from a sliding window applied to 766 
neural activity across the cortex. b, Left, Schematic illustrating the cone-shaped Riemannian manifold (based on 767 
2 × 2 SPD matrices where 𝑥, 𝑧 > 0 and y2<xz, see Methods) used to calculate distances between correlation 768 
matrices. The Riemannian measurement reflects geodesic distance that is ignored when using Euclidean 769 
distance. Right, Illustration of a "graph of graphs", whose nodes are SPD matrices and edges are weighted by the 770 
length of the geodesic arc along the Riemannian cone, that is used to extract diffusion embedding (𝜙$) 771 
components. c, Example diffusion embedding components capturing dynamics of functional connectivity 𝜙$.  772 
Simultaneous time series for behavioral metrics are shown below in blue. d, Example behavioral data (black 773 
traces) showing fluctuations in pupil diameter, facial movement, and locomotion superimposed on predicted 774 
behavior estimated using a joint model in which either time-varying activity (red) or embedded correlations 775 
(yellow) have been shuffled for the region of data highlighted in (C). e, Population data showing average (±SEM) 776 
prediction accuracy (R2) for modeling behavior variables using a joint model of activity and embedded 777 
correlations (blue), joint model with shuffled 𝜙$ (yellow), joint model with shuffled activity (red), single predictor 778 
model using activity (pale yellow), and single predictor model using 𝜙$ (pale red). * indicates p<0.05 (see main 779 
text). 780 
 781 
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 801 
 802 

 803 
 804 
Figure 3.  Local circuit dynamics encode spontaneous behavioral variation. 805 
a, Schematic illustrating the setup for simultaneous behavioral monitoring and 2-photon calcium imaging. b, 806 
Example field of view showing individual GCaMP6s-expressing neurons in visual cortex. c, Example time series 807 
showing neuronal activity for all neurons in the field of view. d, Heat map illustrating the time-series of pairwise 808 
correlations between each neuron from (C). Data are sorted by increasing standard deviation. e, Example of the 809 
first six diffusion embedding components based on data in (D). f, Time-series for behavioral metrics 810 
corresponding to data in (C-E). g, Population data showing average (±SEM) prediction accuracy (R2) for 811 
modeling behavior variables using a joint model of activity and embedded correlations (blue), joint model with 812 
shuffled 𝜙$ (yellow), joint model with shuffled activity (red), single predictor model using activity (pale yellow), 813 
and single predictor model using 𝜙$ (pale red). * indicates p<0.05 (see main text). 814 
 815 
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 819 

 820 
 821 
 822 
Figure 4.  Dynamic functional connectivity reveals distinct cortical subnetworks. 823 
a, Left illustration of LSSC-based parcellation, highlighting two parcels corresponding approximately to 824 
supplemental motor cortex (MOs) and primary visual cortex (VISp) based on CCFv3. Right, example components 825 
of correlation embedding for one animal (black), pairwise time-varying correlation between VISp and MOs 826 
(blue), and the predicted VISp-MOs correlation based on embedding. b, Example matrix from one animal 827 
showing the goodness of fit (R2) for modeling the time-varying correlations between each pair of parcels using 828 
𝜙$
(%!). c, Average (n=6 mice) maps showing mean R2 values for modeling the pairwise correlations of each cortical 829 

parcel with the indicated target parcel (shown in white). d, Grand average map showing R2 values as in (C) 830 
collapsed across all animals (n=6) and all cortical parcels. e, Schematic illustrating anterolateral (red) and 831 
posterior (blue) subnetworks derived from (D), superimposed on the CCFv3 parcellation (black lines). f, 832 
Population data showing the average (±SEM) difference in pupil size for epochs corresponding to maximal and 833 
minimal network segregation versus a line angle bisecting LSSC parcels.  30o (red) corresponds to the division 834 
between anterolateral and posterior networks indicated in (E). * indicates p<0.05 (see main text). g, Goodness 835 
of fit (R2) for modeling dynamic pairwise correlations between single neurons versus their inter-somatic 836 
distance. 837 
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Supplemental Figures 840 
 841 
 842 
 843 

 844 
 845 
 846 
Supplemental Figure 1.  Comparison of parcellation methods and average neural signaling across 847 
behavioral state. 848 
a, Example scatter plots illustrating the relationship between Z-scored facial movement (Face), Pupil diameter 849 
(Pupil), and Locomotion (Wheel) for a representative subject. Pearson's correlation line and goodness of fit (R2) 850 
are shown in red. b, Example LSSC-based functional parcellation (left) and CCFv3-based anatomical parcellation 851 
(right) for the data in Figure 1.  Coloring indicates approximately matching areas (MOs purple, SSP blue, VISP 852 
red, RS orange). c, Reconstruction error for raw activity using either LSSC- or CCFv3-based parcellation or 853 
principal component analysis (PCA).   PCA indicates error versus number of components included in the model. 854 
LSSC and CCFv3 points indicate the number of parcels obtained for each method.  855 
 856 
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 864 
 865 

 866 
Supplemental Figure 2.  Comparison of behavioral prediction across different models. 867 
a, Widefield imaging population data of showing average (±SEM) prediction accuracy (R2) for modeling behavior 868 
variables using a joint model of activity and embedded correlations (replicated from Figure 2, blue), joint model 869 
with raw correlations (light gray), joint model with smoothed (windowed) activity (medium gray), and joint 870 
model using Euclidean embedding (dark gray). b, Population data showing average (± SEM) of cortical activity 871 
(left) and correlations (right) across all LSSC-based parcels, comparing low versus high divisions of the indicated 872 
behavioral state.  * indicates p<0.05 (see Main Text). c, Prediction accuracy for modeling behavioral variables 873 
using the average activity or correlations across all cortical parcels. d, Modeling reconstruction error of 874 
embedded correlations (black) or prediction error of behavioral metrics (shades of blue) versus the number of 875 
𝜙Z  components. Shaded areas indicate ±SEM. e, Prediction accuracy (R2) for behavioral metrics using	𝜙$

(%!) 876 
versus sliding temporal window size for calculating correlations. f, Prediction accuracy (R2) of behavioral metrics 877 
using	𝜙$

(%!) versus the number of neighbors used for evaluating the scale factor of the diffusion kernel.  * indicates 878 
p<0.05. 879 
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 882 

 883 
 884 
 885 
Supplementary Figure 3.  Network representation of visually-evoked activity. 886 
a, Example average (n=50 stimuli, one animal) mesoscopic imaging frames showing evoked visual responses 887 
(100% contrast) relative to stimulus onset.  b, Example average correlation matrices corresponding to data from 888 
(a) showing functional connectivity of parcels before (first panel) and after (second panel) visual stimulation 889 
(100% contrast).  The differences in correlation for each parcel (third panel) and the significant parcels (fourth 890 
panel) are shown.  All cells are gray, indicating no significant differences (p<0.05, permutation test, Benjamini-891 
Hotchberg multiple comparisons correction) for any parcel pair.  c, Prediction accuracy for detecting the 892 
presentation of a visual stimulus for varying contrasts using activity in visual cortex (yellow) or 𝜙$ (dark red).  893 
Shaded areas indicate SEM (n=6 mice).  d, Population averages (n=6 mice) showing prediction accuracy of visual 894 
responses (averaging across trials with ≥50% stimulus contrast) for visual cortex activity (yellow), 𝜙$ (red), and 895 
raw correlations (red). * indicates p<0.05 (ANOVA, Tukey’s post-hoc tests, see main text). 896 
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 901 
 902 
Supplemental Figure 4.  Diffusion embedding of cellular correlations is robust to choice of 903 
modeling parameters. 904 
a, Cellular imaging population data of showing average (±SEM) prediction accuracy (R2) for modeling behavior 905 
variables using a joint model of activity and embedded correlations (replicated from Figure 3, blue), joint model 906 
with raw correlations (light gray), joint model with smoothed (windowed) activity (medium gray), and joint 907 
model using Euclidean embedding (dark gray). b, Modeling reconstruction error of correlations (black) or 908 
prediction error of behavioral metrics (shades of blue) versus the number of 𝜙Z  components. Shaded areas 909 
indicate ±SEM. c, Prediction accuracy (R2) of behavioral metrics using 𝜙$

(%!) versus sliding temporal window size 910 
for calculating correlations.  911 
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 914 
 915 
 916 
Supplemental Figure 5.  Dynamic connectivity reveals consistent spatial organization of cortical 917 
subnetworks. 918 
a, Average (n=6 mice) maps showing mean R2 values for modeling the pairwise correlations of each cortical 919 
parcel with the indicated target parcel (showing in white). b, Population data showing the average (±SEM) 920 
difference in facial movement (top) and wheel speed (bottom) for epochs corresponding to maximal and minimal 921 
network segregation versus a line angle bisecting LSSC parcels (as in Figure 4). * indicates p<0.05 (ANOVA).  922 
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