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Abstract 

Multiple sclerosis (MS)  is a chronic autoimmune, inflammatory neurological disease that is 

widely associated with Grey and white matter degradation due to the demyelination of axons. 

Thus exposing the underlying causes of this condition can lead to a novel treatment approach 

for Multiple Sclerosis. The total RNA microarray processed data from GEO for Multiple 

sclerotic patients was comprehensively analyzed to find out underlying differences between 

Grey Matter lesions (GML), Normal appearing Grey Matter (NAGM), and Control Grey 

matter at the transcriptomics level. Thus, in the current study, we performed various 

bioinformatics analyses on transcriptional profiles of 184 samples including 105 NAGM, 37 

GML, and 42 Controls obtained from the NCBI-Bio project (PRJNA543111). First, 

exploratory data analysis based on gene expression data using principal component analysis 

(PCA) depicted distinct patterns between GML and CG samples. Subsequently, the Welch’s 

T-test differential gene expression analysis identified 1525 significantly differentially 

expressed genes (p.adj value <0.05, Fold change(>=+/-1.5) between these conditions. This 

study reveals the genes like CREB3L2, KIF5B, WIPI1, EP300, NDUFA1, ATG101, AND 

TAF4 as the key features that may substantially contribute to loss of cognitive functions in 

Multiple sclerosis and several other neurodegenerative disorders. Further, this study also 

proposes genes associated with Huntington’s disease in Multiple sclerotic patients. 

Eventually, the results presented here reveal new insights into MS and how it affects the 

development of male primary sexual characteristics. 

Keywords: Multiple sclerosis, Huntington’s disease, Myelinated Axons, Grey Matter, White 

Matter 

Introduction 
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As per the Multiple sclerosis association of America (MSAA), Multiple sclerosis(MS) is an 

auto-immune, demyelinating disease that mainly affects the central nervous system (1). The 

main symptom of MS is the demyelination of axons. MS is the most common cause of 

neurological disability in young children (2). It is a long-term disease that affects the brain, 

spinal cord, and optic nerves (3). There are 4 subtypes of MS which are categorized based on 

relapses, attacks, and exacerbations (1). The types of MS are namely: Clinically isolated 

syndrome (CIS), Relapsing-remitting MS (RRMS), Secondary-progressive MS (SPMS), and 

primary progressive MS (PPMS) (1). Among all these sub-types RRMS occurs in 80-85% of 

patients, which is the most common form and involves episodes of increasing symptoms 

followed by periods of remission (1). Over time then RRMS proliferates and progresses to 

SPMS and PPMS stages of MS (4). As per the National MS Society, there are now 2.8 

million people worldwide with reported cases of MS (5).  MS is expressed differently in 

different phenotypes. MS and its subtypes have a highly diverse biological and clinical 

background for each patient depending upon the stage of MS showcased. MS has been 

originally regarded as an auto-immune disease affecting white matter (6). Recently 

histopathological studies have shown that MS also heavily affects the Grey matter and its 

cortical regions (6). Damage to grey matter starts at the early onset of the MS disease which 

further affects the cognitive functions of the brain (6). The causes of grey matter damage are 

unclear, at the present. 

In 1962, Brown Wells and Hughes described Grey matter lesions(GML) as a symptom of MS 

in selected MS autopsy samples (7). The authors used conventional immunohistochemistry 

and detected a total of 1,595 lesions in 22 MS cases, of which 26% were located in the 

cortical GM or at the border of the WM and GM (8). Grey matter lesions are classified into 4 

subtypes (Type 1, 2, 3, and 4)based on the location they develop on (7). Among the type 4 

lesions occur in the cortex affecting all six layers (9, 10). Lesions affecting the cortical areas 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2021. ; https://doi.org/10.1101/2021.08.15.456398doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.15.456398


of the brain are designated as either Type III or Type IV lesions (11,12,13). Many of the 

recent post-mortem studies have shown that Grey matter lesions are found in the thalamus 

and Caudate nucleus (14). Other parts where GML occurs are namely putamen, pallidum, 

claustrum, amygdala, hypothalamus, and substantia nigra (14). Early involvement of GML is 

found in all MS phenotypes and all MS subtypes as well (15). Both GM lesions number and 

GML volume increase and progress over a given period (16). The number of GML in primary 

cortical areas of the brain directly affects the motor functions and causes motor dysfunction 

(17). Overall GML is associated with cognitive impairments and cognitive dysfunction (18). 

Whereas GML about specific areas like cortical or hippocampal is associated with impaired 

visuospatial memory and processing speed (19,20). 

The main goal of our study was to identify the underlying reasons at the transcriptomics level 

for Grey Matter degeneration in Multiple sclerosis which is originally a White matter 

degenerative disease. Our main concern was to investigate the affected biological pathways 

due to the formation of lesions in Grey Matter after diagnosis of Multiple sclerosis. We 

wanted to find out defects at the transcriptional level to better understand the proliferation, 

formation, and progression of lesions in the Grey Matter. As the GML expression is tissue-

specific depending upon the phenotypes in which they occur, finding the underlying genes 

that cause lesions, Cognitive function loss and inflammation in MS could be very helpful for 

future treatments. It is to be noted that, patients with MS lesions showed larger cognitive 

disabilities than normal MS patients without lesions (21). 

Hence, in the present study, we investigated transcriptomics profiles of Normal appearing 

grey matter (NAGM) and Grey matter lesions (GML) and healthy control samples (CG) to 

understand the affected Biological Pathways and genes behind the appearance of GML using 

various bioinformatics techniques. After identifying the significant genes between these 
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groups; we scrutinized the affected biological pathways as the disease progresses to Normal 

appearing grey matter (NAGM) and Grey matter lesions (GML) samples. 

METHODS 

Data sets 

 In this study, processed microarray data was taken from the NCBI GEO [GSE131282] The 

dataset of this project was generated by Florian Geier et Al.(2020) and published as a bio 

project on NCBI with accession number PRJNA543111. This was our discovery data set. 

Transcriptome data contains microarray processed quantile normalized values using the 

Bioconductor package Lumi (version 2.32.0) of total RNA extracted from grey matter tissue 

from the Illumina HumanHT-12 V4.0 expression bead chip platform. The data set of the 

following Bio project is shown in Table 1 below. The validation dataset of this project was 

generated by Florian Geier et Al.(2020) and published as a bio project on NCBI with 

accession number PRJNA543111. The GEO Accession number was GSE131279. 

Transcriptome microarray data contain quantile normalized values of RNA expression 

extracted from grey matter tissue using the Illumina HumanHT-12 V4.0 expression bead chip 

platform.  This data set had the following number of samples shown in the table 1 below. 

Table 1. Datasets used in the study. 

Discovery Data (Main Dataset) Validation Dataset 

Disease State Number of Samples Disease State Number of samples 

Normal Appearing Grey 

matter 

105 Normal appearing 

Grey Matter 

64 

Grey Matter Lesions 37 Control samples 42 
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Control Grey Matter 

(Healthy) 

42   

 

Data Pre-Processing 

The microarray processed data was quantile normalized signal data. The processed data had 

Illumina probe ids.  We mapped probe IDs with the gene symbols using the SOFT family 

files.  

Exploratory Analysis  

Exploratory analysis facilitated the examination of variation between all samples, including 

healthy and diseased patients samples (Normal appearing grey matter and Grey matter 

lesions).  To understand the patterns in the data exploratory data analysis was performed 

using the Principal component analysis module integrated on the T-bio info server 

(https://server.t-bio.info/). PCA is a dimensionality reduction technique that discerns the 

variability between the samples (22). PCA was performed in four independent conditions: (1) 

All 3 conditions (Grey matter lesions Vs Normal appearing Grey Matter Vs Healthy Control 

Samples); (2)Grey matter lesions Vs Normal appearing Grey Matter; (3) Grey matter lesions 

Vs Control Grey Matter; and (4) Normal appearing Grey matter Vs Control Grey Matter. 

Eventually, the PCA scatter plots were used to determine the patterns. 
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Figure 1: Screenshot of PCA Pipeline on T-bioinfo Server 

 

Differential Gene expression Analysis 

Differential  Gene  Expression (DGE) analysis was conducted by contrasting  Grey matter 

lesions with Control grey matter samples. The differential gene expression (DGE) analysis 

was performed using the Welch’s T-test (23). Welch’s T-test is a modification of statistical 

analysis used for getting statistical significance for unequal variances (23). When two groups 

have unequal sample sizes and variances –a Welch’s Test can be applied (24).  The Welch’s 

Test uses a one-step approach for  DGE  analysis and combines several methods. The 

significant genes were identified with the threshold of (p.adj value <0.05, Fold change (>= 

±1.5) (39). 

Assessment of Discriminatory potential of Significant genes 

Next, to assess and visualize the potential of significant genes in distinguishing both the 

classes of samples PCA and H-Clustering were performed with the selected set of significant 

RNA genes only. H-clustering (Distance: Euclidean, Linkage: average) was performed to 

understand the discriminatory potential of significant genes in distinguishing the GML and 

Control samples based on their gene expression.  Eventually, heatmaps were drawn to 

visualize the gene expression patterns among different classes of samples. 

Gene Enrichment Analysis 

To delineate the biological implication of the significant genes, the gene enrichment analysis 

for Gene Ontology (GO) terms was performed using the annotation module integrated on the 

T-bio info server.  Further, significantly (p.adj value <0.05, Fold change(>= ±1.5) enriched  

KEGG pathways were identified using the Enrichr (25). Enrichr is an easy-to-use intuitive 

enrichment analysis web-based tool providing various types of visualization summaries of 

collective functions of gene lists (25). Notably, enriched pathways and GO terms were also 
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identified using the Enrichr Platform for significant up-regulated and down-regulated genes. 

Further, the Enrichr was also used to identify the associated Gene Ontology terms and 

biological pathways with significant up-regulated and down-regulated genes.  

RESULTS 

In the current study, we explored transcriptomics data of Normal appearing grey matter 

(NAGM), Grey matter lesions (GML), and healthy control samples using various insilco 

techniques to delineate the underlying gene signature and biological pathways. The complete 

workflow of the study is represented below in Figure 2. 

 

 

Figure 2:  Work Flow of the study representing the key steps. 

 

Exploratory Data Analysis 

Data were explored by using principal component analysis (PCA). We did PCA to understand 

the variation between the 3 groups, namely Normal appearing Grey Matter, Grey Matter 

lesions, and Controls. Figure 3A shows the variation between GML and NAGM. The PC1 is 

84.53% along with PC2 as 11.54% and PC3=0.60%.  It is evident from the PCA of this 
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exploratory analysis that there is something that triggers the variation between GML and 

NAGM. Notably, variation between NAGM and Control samples is very diverse where PC1 

as 81.94%, PC2 as 14.09% and PC3=0.70% as shown in Figure 3B. Figure 3C represents 

variation between Control Grey Matter and Grey Matter lesion samples. The variation 

between 3 PCAs is given as PC1=69.69%, PC2=27.31% and PC3=0.54%.Further, NAGM 

and CG are not separating from each other based on PCA results, here PC, PC2 and PC3 

represent 82.39%, 13.74% and 0.48% variation of the data, respectively as shown in Figure 

3D.Since the main focus of our study was to find out the underlying reason for Grey matter 

lesions and their degeneration, we decided to go with the Variance between GML and CG to 

further our analysis. 

 

Figure 3: (A ) PCA for All 3 conditions (Grey matter lesions Vs Normal appearing Grey 

Matter Vs Healthy Control Samples), (B) PCA For Grey matter lesions Vs Normal 

appearing Grey Matter, (C) PCA showing Variance among Control Grey 

matter(Healthy Control) and Grey Matter Lesion, and (D) PCA For Normal appearing 

Grey matter Vs Control Grey Matter samples. 
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Downstream Analysis  

It is evident from the PCA results (Figure 3A to 3D) that the variation between Grey Matter 

lesions and Control grey matter samples is maximum. Hence, we further carried out a 

Comparative analysis between Grey matter lesions and Healthy Control samples.Based on 

Figure  3C,  it can be seen that healthy[Control]  samples and the  Grey matter lesion samples 

are well separated,  which means there is significant variation between these groups. Hence, 

in downstream analysis, we performed differential gene expression analysis between Grey 

Matter lesions and Healthy control samples. When the Grey Matter lesion samples and 

Control samples were examined in a specific scatter plot, it was obvious that there was an 

improvement in principal components, and the two groups were separated from each other.  

After the observed variation between the these two groups-Grey Matter lesions and Control 

samples, the reason for this difference and its impacts could be investigated at the level of 

gene regulation. 

Differential Genes Expression Analysis  

The differential gene expression analysis between the Grey matter lesions (GML) and 

Control grey matter (CGM) samples scrutinized 1525 significantly (p.adj value <0.05, Fold 

change >= ±1.5). Among them, 438 genes were found to be significantly upregulated (p.adj 

value <0.05, Fold change >= +1.5) genes and 1087 genes were found to be significantly 

downregulated (p.adj value <0.05, Fold change <= -1.5) in GML in comparison to CGM. 

Clustering and Heat Map revealed variations among Grey Matter lesions and Control 

samples 

Hierarchical Clustering (26) was performed to understand whether significant genes are 

capable to form distinct clusters of Grey Matter lesions and Control Grey Matter samples 

based on their gene expression. Clustering results clearly show the distinct clusters of Grey 

Matter lesions and Control Grey Matter samples as shown in Figure 4. Heatmap representing 
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the expression pattern of significant genes among Grey Matter lesions and Control Grey 

Matter samples, as shown in Figure 5. 

 

Figure 4: Hierarchical Clustering results as dendrograms. Red boxes clusters indicate 

the Control (Healthy) samples, and the blue one represents the clusters of the GML 

(lesions) samples. 
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Figure 5: Heatmap representing the Gene expression patterns of significantly 

differentially expressed genes.  

 

Pathways involved in the pathogenesis of Multiple sclerosis. 

To understand the biological importance of pathways, gene ontology analysis was performed. 

Interestingly, although there were different pathways in upregulated genes, many represented 

biological pathways involved Huntington’s Disease, GTP Binding biological processes, 

Mitochondrial Chain 1 respiratory complexes (Figure 6A). 
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Fig 6A: Gene ontology and KEGG pathway analysis of Up-regulated genes. 

 

Fig 6B: Gene ontology and KEGG pathway analysis of Down-regulated genes.  

 

The same concept could be detected with down-regulated genes as shown in Figure 6B. The 

gene ontology analysis for down-regulated pathways involved Olfactory transduction 

pathways, Plasma membrane functional pathways, and the development of male primary 
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sexual characteristics and gonad developmental pathways. According to the first principal 

component, Grey matter lesion had a lot of variability within its group (Figure 3A). Per the 

experiments conducted by Subbiah-Pugazhenthi(27), it shows that Cyclic AMP response 

element-binding protein (CREB), is a nuclear transcription factor that plays a major role in 

neurodegenerative diseases and it’s progression(27). Also, CREB is responsible for the 

retention of memory and survival of neurons (28). The role of the TAF4 gene is increasing in 

neurodegeneration (29). Hence after a literature review on the close association of 

Huntington’s Disease (HD) associated genes involved/found in MS patients, we concluded. 

From our list of significantly expressed genes, many of the HD-associated genes were 

expressed differentially, specifically up-regulated. 7 HD-associated pathway genes that are 

significantly differentially expressed (up-regulated) in GML samples with their annotations 

are enlisted in Table 2. 

Table 2. Differentially Expressed 7 Huntington Disease-associated Genes identified in 

our study (P. Adjusted value < 0.05;Fold change(>= ±1.5). 

Sr. 
No 

Illumina Probe 
Id 

Gene 
symbol 

Gene description P. Adjusted 
Value 

1. ILMN_1751097 CREB3L2 cAMP responsive element 
binding protein 3 like 2 

3.46755E-53 

2. ILMN_1788160 KIF5B kinesin family member 5B 6.026E-48 

3. ILMN_1781386 WIPI1 WD repeat domain, 
phosphoinositide interacting 1 

1.27873E-55 

4. ILMN_1744665 EP300 E1A binding protein p300 2.75264E-74 

5. ILMN_1784286 NDUFA1 NADH: ubiquinone oxidoreductase 
subunit A1 

6.31711E-67 

6. ILMN_1772527 ATG101 autophagy related 101 2.71359E-52 

7. ILMN_1737535 TAF4 TATA-box binding protein 
associated factor 4 

1.15292E-57 
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We can see in the heat map (Supplementary Figure S1) that the majority of Huntington’s 

associated genes are up-regulated in patients with multiple sclerosis lesions in comparison to 

the control samples. This was evident even in KEGG analysis (Figure 6A) as the Huntington 

Disease-associated pathway is significantly Up-regulated in Grey matter lesions (MS).  

Validation of the Results 

Next, to assess and validate the 7 Huntington’s disease-associated genes expression patterns, 

we analyze the expression pattern of those 7 Huntington’s disease-associated genes in a 

validation dataset containing patients of MS without lesions. It is evident from the Heat-map 

(Supplementary Figure S1) that the 7 Huntington’s disease-associated genes in Multiple 

sclerosis normal-appearing Grey Matter are highly upregulated in comparison to control 

samples in the discovery dataset. Hence, we also analyze the expression pattern of these 

genes in the validation data, the bar-plot (Supplementary Figure S2) between Healthy 

(controls) and Normal appearing Grey matter without lesions (Multiple sclerosis) represents 

the expression pattern of the genes. Our validation results confirm our hypothesis. In the PCA 

plot (Supplementary Figure S3), we can clearly see the distinct clusters. Similarly, 

hierarchical clustering results (Supplementary Figure S4) confirming that the two groups 

form distinct clusters separately in the dendrogram, which implies these significant genes 

might predict MS characteristics. 

Discussion & Conclusion 

The origin of Lesions in Multiple Sclerotic patients remains unknown. Previous studies 

addressing this question have shown contrasting results, thus making it difficult to establish 

any one of the theories as to the answer (30). In this study, we have attempted to reveal the 

close association of Multiple sclerosis with several affected Biological pathways namely 

Huntington disease-associated pathways using RNA-Seq Analysis. To identify differences in 

gene expression between Grey Matter lesion samples and Healthy control samples, RNA-Seq 
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analysis was performed on RNA-seq samples obtained from both of the samples. Exploratory 

data analysis using PCA revealed that the samples of both categories form separate clusters, 

depicting the vast genetic differences between the MS Grey matter lesions and Control 

samples. This hints towards the theory that there is something that triggers the progression of 

MS diseases which leads to the formation of lesions at the transcriptomics level. Further 

studies on the same would be able to divulge the series of events that take place during this 

transformation. 

Based on differential gene expression analysis using Welch’s T-Test, we observed 438 genes 

were significantly (adjusted P-value <0.05, Fold change (>= ±1.5) upregulated and 1087 

(adjusted P-value <0.05, Fold change (>= ±1.5)  genes were downregulated in GML in 

comparison to CGM. Next, the PCA plot and dendrogram from Hierarchical clustering 

indicated their significance in distinguishing GML and CGM. A heat map generated from 

these genes showed that most of the genes were downregulated in GML samples whereas 

some of them were up-regulated in GML samples, highlighting differential expression in both 

populations. 

Gene ontology analysis performed using Enrichr based on significant gene sets showed 

obvious involvement of genes, specifically in Grey matter degeneration, via functional 

annotation and clustering. However, hits were obtained for genes associated with cell 

adhesion, Huntington’s Disease, Mitochondrial respiratory chain complexes, GTP-Protein 

synthesis, Olfactory and recovery adaptation pathways, migration, and invasion, indicating 

that their possible dysregulation may have led to the formation of Grey Matter lesions. 

Further, pathway analysis demonstrated a better understanding of the involvement of the gene 

sets in pathways representing the Odour dysfunction in MS patients which is based on 

downregulation of Olfactory transduction pathways. It also shows the up-regulation of 

pathways like Huntington disease-associated pathways, Mitochondrial respiratory chain 
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complex pathways, and GTP Protein binding pathways. This study shows that as per our 

KEGG Analysis pathways, the most affected pathway is the HD-associated pathway. The 

associated genes with this pathway are CREB3L2, KIF5B, WIPI1, EP300, NDUFA1, 

ATG101, AND TAF4[as per Enrichr]as the key features that may substantially contribute to 

loss of cognitive functions in neurodegenerative disorders like Multiple sclerosis, 

Huntington’s disease, and further on. However, since our study was focused on samples of 

patients with multiple sclerosis, the involvement of certain genes that are also associated with 

HD is something of great importance. Studies have shown that the CREB Factor plays a 

major role in memory formation and neuronal regeneration (31). The gene TAF4 plays a 

significant role in controlling the differentiation of human neural progenitor cells (32). Since 

TAF4 is up-regulated in MS patients, in this study we have drawn a possible association 

between TAF4 and neuronal degradation (33). TAF4 is primarily concerned with the 

production of human neural progenitor cells. However, from our results depicted here, due to 

the significant up-regulation of TAF4, the production of new neural cells especially glial cells 

and neurons is hindered-leading to progressive neuroinflammation and neurodegeneration. 

Our results also depict, severe up-regulation of the CREB gene which might be the possible 

causes of progressive neuronal degeneration and loss of cognitive functions in patients of 

MS. The indication of such genes up-regulated in MS patients could be used as a predictive 

tool for identification that MS is progressing and this progression might be fatal and lead to 

severe other neurodegenerative disorders. Talking about the KIF5B gene, it is a motor neuron 

protein that plays a significant role in dendritic transport, synaptic plasticity, and memory 

retention (35). WIPI1(WD Repeat Domain, Phosphoinositide Interacting 1) is a protein-

coding gene responsible for neurodegeneration because of its involvement in brain iron 

accumulation. Enhanced iron uptake in acute cases of MS has been reported which shows 
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that the WIPI1 gene can play a leading cause in iron accumulation and neurodegeneration of 

the brain (36). 

It should be also noted WIPI1, TAF4, and CREB protein-coding genes are the ones that are 

also associated with the early onset of Huntington’s disease (37). Several studies have 

suggested that impairments of the autophagic process are associated with several 

neurodegenerative diseases like HD and MS (38). The depiction of these in patients of GML 

suggests that they are early predictive biomarkers for HD. Thus, while assessing the patients 

with MS, the Up-regulation of these genes can be used as a tool for recognizing progressive 

fatal neurodegeneration and onset of HD. 

However, it should be noted that in this study we have portrayed 7 genes (CREB3L2, KIF5B, 

WIPI1, EP300, NDUFA1, ATG101, AND TAF4) as the key features that may substantially 

contribute to loss of cognitive functions and progressive neurodegeneration involved in the 

MS pathogenesis. This study was able to identify several protein-coding genes whose role in 

the association with HD remains largely unclear. Studying their functionality in the future 

may reveal key biomarkers or drug targets that could be exploited for MS in association with 

HD. People suffering from MS who might be potentially screened for HD can be looked upon 

for these genes in order to get signals for early onset of HD. 

Conclusively, our study revealed significant differences in gene expression between Grey 

matter lesions and Healthy Control samples. Importantly, we confirm and validate the 

significant upregulation of 7 HD pathway-associated genes in GML in comparison to normal 

samples. This most likely reveals an important clue to the etiology of this fatal 

neurodegenerative disease. 

Future Directions 

In the future, intensive research is required to assess the precise effect of Multiple sclerosis 

on genes like NDUAF1, EP300, and ATG101. More comprehensive research is needed to 
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support these findings stated above. As part of a future study, it would be interesting to 

understand the changes in MS pathogenesis and its effects on olfactory transduction, 

Development of Primary male sexual characteristics, GTP Binding protein, and Plasma 

Membrane component pathways. 
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MS: Multiple Sclerosis 

GML: Grey matter lesions 

CGM: Control Grey matter 

CG: Control Samples 

NAMG: Normal appearing Grey Matter 

CNS: Central nervous system 
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